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Abstract

Supervised learning tasks aim to de�ne a data-based rule by which new objects are

assigned to one of the given classes. To this end, a training set containing objects

with known memberships is exploited. Directional data are points lying on the sur-

face of circles, spheres or hyper-spheres. Given that they lie on a non-linear manifold,

directional observations require speci�c methods to be analyzed. In this thesis, the

main interest is to present novel methodologies and to perform reliable inferences for

directional data, within the framework of supervised classi�cation. First, a supervised

classi�cation procedure for directional data is introduced. The procedure is based on

the cumulative distribution of the cosine depth, that is a directional distance-based

depth function. The proposed method is compared with the max-depth classi�er, a

well-known depth-based classi�er within the literature, through simulations and a real

data example. Second, we study the optimality of the depth distribution and the max-

depth classi�ers from a theoretical perspective. More speci�cally, we investigate the

necessary conditions under which the classi�ers are optimal in the sense of the optimal

Bayes rule. Then, we study the robustness of some directional depth-based classi�ers in

the presence of contaminated data. The performance of the depth distribution classi-

�er, the max-depth classi�er and the DD-classi�er is evaluated by means of simulations

in the presence of both class and attribute noise. Finally, the last part of the thesis

is devoted to evaluate the performance of depth-based classi�ers on a real directional

data set.



Preface

In the last decades, directional data analysis has emerged as an interesting �eld in

statistics. In many contexts, the considered natural supports of data are Riemannian

manifolds: the unit circle, the sphere and their extensions in higher dimensions. Such

kind of data can be described by one or more directions.

Analyses of directional data through statistical methods focus on their graphi-

cal representation and on tasks related to regression, time series, correlation, image

analysis, text mining and machine learning. Analyzing directional data implies speci�c

methods given their speci�c nature. A wide survey on the theory and the methodology

of directional statistics can be found in Mardia & Jupp (2009).

Machine learning methods are an integral part of many practical problems. For

instance, classi�cation is an innate task done by human beings every day for hundreds

of times. Unconsciously, the human brain tends to classify all the objects that surround

us based on past experiences and according to their properties.

The learning process that each one undertook creates a gained knowledge from

which one can distinguish between classes, indicate their di�erences and determine the

class membership of a new observed object. Over the last decades, this process was

automatized due to the increasing of computing power. Thus, a new �eld known as

machine learning has emerged with the main goal of developing computer algorithms

for supervised learning.

Supervised learning procedures aim to de�ne data-based rules by which new ob-

jects can be assigned to one of the existing classes. Generally speaking, objects are

regarded as data points in the multivariate space where each is described by a set of

features (explanatory variables) and a class label (dependent variable). Then, through

analyzing the training set in which those data points have a known class membership,
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one can infer a separating function to be used in order to assign new points to the class

to which they most probably belong.

Supervised classi�cation methods should �gure out how close an observation is

situated with respect to a class. This could be done through studying location, shape

and scale of the underlying distribution. The closeness of a data point to a class can be

de�ned as a measure of correspondence to the entire class or as a measure of distance

to a prede�ned center.

Several existing classi�cation procedures rely either on a certain parametric dis-

tributions for the data or a certain forms of separating curves. Parametric classi�ers

are not fully useful in real applications especially when little information about the

underlying distributions is available. On the other hand, non parametric classi�ers

are more �exible and more desirable given their ability to accommodate di�erent data

structures.

The statistical function known as data depth is a measure of centrality and a

representative way of ordering data points regarding to their centrality within the data

group. In particular, depth functions have been employed in classi�cation given their

parameter-free nature which allow classi�ers to have attractive theoretical properties.

On the other hand, data depth is promising for directional observations since no stan-

dard ordering is available for such kind of data.

Within the one-dimensional space, it is always possible to order observations given

their magnitude or their median (known as robust location measure). Moving to the

higher dimensional space, there is no natural way to rank the data. This motivated the

introduction of depth functions, which provide a center outward ordering of all data

points from a center (deepest point) of a given multivariate distribution.

Based upon these considerations, the aim of this work is to propose depth-based

approaches for dealing with directional data in the context of classi�cation. This thesis

contains �ve chapters. The �rst focuses on introducing the main concepts and notions

that will be adopted and developed in the remaining part of the monograph. The second

chapter, named A Directional Depth Distribution Classi�er based on the Cosine Depth,

introduces a supervised classi�cation procedure for directional data, that is based on

the cosine depth function. The proposed depth distribution classi�er is based on the
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distribution function of the cosine depth and it aims at assigning directional data

observations to classes. The new method is compared to the max-depth classi�er which

is based on the depth value. Our results show the e�ectiveness of our proposal. The

cosine depth distribution improves over the max-depth distributions in many di�erent

settings.

In Chapter 3, which is named On the optimality of the max-depth and depth

distribution classi�ers for spherical data, we investigate conditions under which the

max-depth classi�er and the depth distribution classi�er (known also as max-rank

classi�er) are equivalent to the optimal Bayes rule. They are optimal if distributions

are unimodal, rotational symmetric, di�er only in location parameters and have equal

prior probabilities.

Chapter 4, named Distance-based directional depth classi�ers: a robustness study,

tackles the problem of robustness of distance depth-based classi�ers for directional data.

We mainly consider in this study three classi�ers which are the max-depth, the depth

distribution and the DD-classi�er. We compare their performance in presence of class

noise and label noise with respect to the Bayes classi�er. We introduce some directional

speci�c contamination schemes: antipodality and orthogonality of the contaminated

distribution mean, and the directional mean shift outlier model.

In Chapter 5, which is named Directional supervised learning through depth func-

tions: an application to ECG waves analysis, we apply the depth-based classi�ers to

a real data set. Some �nal remarks are o�ered to conclude the manuscript and sum-

marize the main contributions. Lastly, The Appendix A supplements Chapter 4 with

additional material related to some computational aspects while Appendix B provides

the main R function used in this thesis.
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Chapter 1

Introduction to Directional data

Directions can be depicted in two, three or more dimensions (on a q-dimensional hyper-

sphere). Directional data presented on these di�erent manifolds come up in many areas

such as Biology, Genetics, Astronomy, Physics, Earth Sciences, Meteorology, Medicine,

and Social Sciences.

Working with directional data requires the use of special methods that take into

account the angular nature of the information. For instance, 0 and 2π are the same

angle and their average is 0 and not π (Fernandes & Cardoso, 2016). The periodical

behavior makes linear statistics methods inappropriate for this kind of data.

Directional statistics o�ers a wide range of techniques as well as theoretical back-

ground to successfully explore and work with directional information. A recent survey

on advances of directional statistics can be found in Pewsey & García-Portugués (2020)

where developments in di�erent �elds including classi�cation are considered.

The aim of this chapter is to provide an overview of notions and statistical tools

useful for the analysis of directional data. It has been conceived in order to better

understand the topics covered within the next chapters of this work. We provide

background information related to circular data, spherical data and we also review

supervised classi�cation methods for directional data.
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1.1 Circular data

A direction like wind direction can be recorded and graphically represented as an angle

θ (in radians or degrees) on a circle. Otherwise, this kind of data refereed as circular

data can be depicted as unit vectors connecting the origin of the circle to these points

or as points on the circumference of the unit circle centered at the origin. This implies

a reference direction (the zero direction) and a sense of rotation (clockwise or counter-

clockwise) that can be chosen given the nature of the data and/or the goal of the

analysis.

Once these two conditions are ful�lled, each directional point x can be de�ned

by an angle θ or by a complex number z. Thus, the relation can be represented as

x = (cos θ, sin θ)T ,

or

z = eiθ = cos θ + i sin θ,

where θ is a measured angle.

In the directional domain, the use of the arithmetic mean as measure of center for

circular data is meaninglessness because of its dependence on the reference direction

and on the sense of rotation. A useful measure known as the mean direction or as

the circular mean can be obtained by considering data points as unit vectors. Thus,

given unit vectors x1, .., xn with corresponding angles θ1, .., θn, the mean direction θ̄ is

obtained by solving the following equations

C̄ = R̄ cos θ̄, S̄ = R̄ sin θ̄,

and the mean resultant vector R̄ is given by:

R̄ = ||R|| = (C̄2 + S̄2)
1/2

.

The mean resultant length is the length of the mean vector while the mean

direction is the projection of such vector on circle. Figure 1.1 shows the circular mean,

depicted by the black arrow where some random circular data points are generated.
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Figure 1.1: Circular representation of simulated circular random observations, the black
arrow represents the sample mean direction.

The mean resultant vector R̄ measures the dispersion of circular data. It lies in

the range [0, 1] in the sense that the smaller is the mean resultant length, the more

the data are dispersed and the higher is, the higher circular observations are clustered.

Hence, the circular variance can be de�ned as

V = 1− R̄.

The range of the circular variance is also [0, 1]. If V = 0, the distribution is highly

concentrated.

The probability of a circular distribution is concentrated on the circumference of

a unit circle, and the range of circular random variables (measured in radians) is [0, 2π)

or [π,−π). The most common used distribution in circular statistics is the von Mises

distribution (Von Mises, 1918) which is unimodal and symmetric.

The probability density function of the von Mises distribution can be de�ned as

f(θ;µ, c) = 1
2πI0(c)

ec cos(θ−µ),

where I0 is the modi�ed Bessel function of the �rst kind and order 0, µ is the mean

direction and c is the concentration parameter.

Figure 1.2 shows the circular density plot for a random sample generated from a

von Mises distributions with µ = π and c = 3.
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Figure 1.2: Density plot of random circular data generated from the von Mises distri-
bution with circular mean equal to π and concentration equal to 3.

1.2 Spherical data

Directions observed in R3 such as the positions of stars on the celestial sphere can be

expressed by a pair of angles (θ,ϕ) or by a 3 × 1 unit vector on the unit sphere S2 and

they are distinguished by the term spherical data. Directions in q−dimensions can be

described as unit vectors x, as points on Sq−1 = {x : x′x = 1} on the (q−1)-dimensional

sphere with unit radius and center at the origin.

Directional data can be stored as spherical coordinates or as polar coordinates.

The spherical coordinates of any point x on the sphere (depicted in Figure 1.3) can be

obtained as

x = (cos θ, sin θ cosϕ, sin θ sinϕ)T ,

where θ ∈ [0, 2π) and ϕ ∈ [0, π].
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Figure 1.3: Spherical coordinates: θ= colatitude, ϕ= longitude (Mardia & Jupp, 2009).

On the other hand, the polar coordinates which represent the radius r, the incli-

nation θ and the azimuth ϕ of any point x are obtained from its Cartesian coordinates

(x, y, z) by 
r =

√
x2 + y2 + z2

θ = arccos(
z

r
)

ϕ = arctan(
y

x
)

Descriptive Measures

The mean direction and the mean resultant length: Assuming that x1, .., xn

are points on S(q−1), the location of these points can be given by their sample mean

direction

x̄0 = ||x̄||−1x̄,

where

x̄ = 1
n

∑n
i=1 xi

is the center mass of x1, .., xn.

As in the circular case, the vector x̄ in polar coordinates can be expressed by

x̄ = R̄x̄0.
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where R̄ is the mean resultant length, a common measure of concentration for spherical

data

R̄ = ||x̄||, R̄ ≥ 0.

Figure 1.4: A random sample from a von Mises-Fisher distribution vMF ((0,0,1)',5).
The black arrow shows the sample mean direction.

Figure 1.4 shows a group of 100 points from the von Mises-Fisher distribution

vMF((0,0,1)',5) de�ned on the sphere S2.

At the population level, we de�ne analogously, the population mean resultant length

ρ for a random unit vector as

ρ =
∑q

i=1E[xi]
2)1/2 = {E[x]TE[x]}1/2.

The population mean direction mean direction, when ρ ≤ 0, can be de�ned as

µ = ρ−1E[x].

The mean direction of spherical data has the following equivariance properties.

Assuming that U is an orthogonal transformation (i.e. a rotation) and x1, .., xn a

sample of spherical observations, the mean direction of Ux1 , .., Uxn is Ux̄0 . The mean

resultant length of Ux1 , .., Uxn is R̄ which is invariant under rotation.

The mean resultant length has a minimization property, that is, S(a) the arith-

metic mean of the squared euclidean distance between xi and a which attains its min-

imum at a = x̄0 and it is giving by
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S(a) =
1

n

n∑
i=1

‖xi − a‖2 = 2(1− x̄Ta) = 2(1− R̄x̄0
Ta) (1.1)

Sample spherical variance:

From Eqn. 5.1, when S(a) is minimized at a = x̄0 (subject to the constraint

aTa = 1), we get the sample spherical variance

min
a
S(a) = 2(1− R̄)

This quantity is a measure of clustering of data points around the mean direction in

the sense that when R̄ ' 0, the data points x1, ..., xn are widely dispersed. On the

other hand, when R̄ ' 1, the observations x1, ..., xn are highly concentrated.

Variance decomposition: The total variation can be decomposed as

2n(1− C̄) =
∑n

i=1 ‖xi − µ‖2 = 2n(1− R̄) = 2n(R̄− C̄),

where µ is a unit vector and C̄ is the sample mean of the components x1, ..., xn along

µ, such that C̄ is given by

C̄ = 1
n

∑n
i=1 xi

Tµ.

The moment of inertia: The spherical dispersion can be measured by the

scatter matrix T̄ about the origin and it is de�ned as

T̄ = 1
n

∑n
i=1 xi

Txi.

Let S be the sample variance matrix, that is giving by

S = 1
n−1

∑n
i=1(xi − x̄0)T (xi − x̄0).

Then, the spherical dispersion can be written as

T̄ = n−1
n
S + x̄0

T x̄0.

If we put x̄0
T x̄0 = 1, we get

tr(T̄ ) = 1,
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and thus

S =
n− 1

n
tr(S) + R̄2. (1.2)

Analogously, a connection between the population mean resultant vector ρ and the

variance matrix Σ of x is de�ned as

tr(Σ) + ρ2 = 1.

Additionally, since there is a connection between the mean E[x] and the variance

matrix Σ of the random vector x and since S is unbiased estimator of Σ, taking the

expectation from Eqn. 1.2 yields

E[R̄2] = ρ2 + 1
n
(1− ρ2).

1.3 Spherical models

The von Mises-Fisher distribution:

The von Mises-Fisher distribution (vMF) is the most common used distribution

for spherical data in the �eld of directional statistics. The probability density function

of the von Mises-Fisher distribution is given by

h(x;µ, c) =

(
c

n

)q/2−1
1

Γ(q/2)Iq/2−1(c)
exp{cµTx},

where c ≥ 0, ||µ|| = 1, and Iv denotes the modi�ed Bessel function (Mardia & Jupp,

2009) of the �rst kind and order v. The parameters µ and c are the mean direction

and the concentration parameter, respectively.

The modi�ed Bessel function Iq is de�ned as

Iq(c) =
1

2π

∫ 2π

0

cos qθ expc cos θ dθ.



Chapter 1: Introduction to Directional data 9

Figure 1.5: Von Mises-Fisher observations with longitude θ = 45◦, latitude ϕ = 0◦ and
concentration c = 5. The spherical density is drawn in red.

A random sample of spherical data from a von Mises-Fisher de�ned on S2 is

drawn in Figure 1.5 and the corresponding density is plotted in red.

The Uniform distribution:

The uniform distribution on the sphere Sq−1 is the basic distribution. The von Mises-

Fisher distribution reduces to the uniform distribution when the concentration c = 0.

Figure 1.6: Spherical representation of simulated random data from a vMF((0,0,1)',0).

As much as the concentration parameter increases, as much as the data are con-

centrated on the sphere. In �gure 1.6, data points are very sparse given that the

concentration is equal to 0.

The Fisher-Bingham Distribution:

The Fisher-Bingham distribution is an important distribution on S(q−1) and it
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can serve to generate a wide class of directional distributions (Kent et al., 2018). The

probability density function of the Fisher-Bingham distribution can be expressed as

hFB := exp(cµT0 x− xTAx),

where µ0, c > 0 are the mean direction and concentration parameters, respectively,

and A(q × q) is a symmetric matrix. The smallest eigenvalue of A can be set equal to

0.

From a statistical point of view, the full family of Fisher-Bingham distributions

is wide and too general. In practice, a special case of the aligned Fisher-Bingham

distributions with unique mode at x = µ0 and for which µ0 is an eigen vector of A can

be considered.

In theory, the aligned models are easy to describe if the coordinate system is

rotated so that µ0 = (1, 0, .., 0)T lies on the �rst coordinate axis and A = diag(λ1, ..., λd)

is the diagonal. Some important special cases of unimodal aligned models include the

the balanced �ve-parameter Fisher-Bingham (FB5b) and the extreme �ve-parameter

Fisher-Bingham (FB5e) distributions.

The balanced �ve-parameter Fisher-Bingham (FB5b) distribution, that is also

known as the kent distribution on S2, is characterized by its matrix A where the

eigenvalues λ1, ..., λj of A should be as follow: λ1 = 0 and
∑q

j=2 λj = 0. On the other

hand, the extreme �ve-parameter Fisher-Bingham (FB5e) is the case where λ1 = λ2 = 0

and λ3 = δ ≥ 0. An example of spherical observations generated from FB5b and FB5e

distributions is depicted in Figure 1.7.

1.4 Supervised classi�cation of directional data

The development of discriminant analysis methods for directional data has been a major

research theme lately, particularly amongst the machine learning community. As for

circular data, SenGupta & Roy (2005) introduced a chord-length based classi�cation

rule in order to classify circular observations. They compared their proposed methods

with respect to the Fisher's rule based on the exact error probabilities and apparent

error rates.
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(a) (b)

Figure 1.7: Simulated data points from Fisher-Bingham on S2. (a) Balanced FB5
distribution (kent), (b) extreme FB5 distribution. We reproduce the same plot designed
in Kent et al. (2018).

Recently, Di Marzio et al. (2018) proposed a non-parametric classi�cation method

based on the kernel estimation of the population density and local logistic regression.

They showed that the non parametric estimators are preferred against the classical

parametric ones, especially in case of high complexity of the data scenario. Leguey

et al. (2019) introduced a Bayesian classi�cation rule for wrapped Cauchy circular

predictors. They proved that circular classi�ers improve over linear classi�ers for the

case of wrapped Cauchy distributions.

For spherical data, classi�cation procedures for the Watson and the von Mises-

Fisher distributions were proposed (Figueiredo & Gomes, 2006; Figueiredo, 2009).

López-Cruz et al. (2015) extended the naive Bayes classi�er for directional spheri-

cal von Mises-Fisher distributed predictors. They proposed various versions of naive

Bayes and discussed conditions under which each method should be used.

Within the �eld of image textures classi�cation, Kim & So (2018) considered a

classi�cation rule based on multi-resolution directional �lters. Non parametric methods

for supervised classi�cation of spherical data, based on kernel density estimation, have

been studied by Di Marzio et al. (2019).

More recently, Tsagris & Alenazi (2019) studied the use of maximum likelihood

discriminant analysis function on the sphere considering di�erent distributions. They
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mainly considered rotational symmetric distributions as well as non-rotationally sym-

metric ones. They compared the performance of the discriminant rule based on the

maximum likelihood with respect to the k-nearest neighbors classi�cation rule and

discussed under which conditions one should be preferred over the other.

Given the interest in this topic, this research work is then dedicated to some

non-parametric supervised classi�cation rules based on directional depth functions. In

brief, non-parametric tools are preferred here because of their �exibiity, while depth

functions are preferred because they do not need any additional parameter (like the

bandwidth parameter) to be exploited.



Chapter 2

A Directional Depth Distribution

Classi�er based on the Cosine Depth

Abstract

Directions, rotations, axes, clock or calendar measurements can be represented as angles or

equivalently as unit vectors. As points lying on the boundary of circles, spheres or hyper-

spheres, they are also referred as directional data, and they require dedicated methods to be

analyzed. In the framework of supervised classi�cation, this work introduces a directional data

classi�er based on a data depth function. Depth functions provide an inner-outer ordering

of the data in a reference space according to some centrality measure, and have appeared

as a powerful tool in many �elds of multivariate statistics. The recently introduced distance

based depth functions for directional data are considered here. More speci�cally, this work

introduces a cosine depth-based distribution method which aims at assigning directional data

to classes, given that a training set with class labels is already available. A simulation study

evaluating the performance of the proposed method and a real data example are provided.

Keywords: Max-depth classi�er; Supervised classi�cation; von Mises-Fisher.
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2.1 Introduction

Directional information arises whenever observations are recorded as directions in two or three

dimensions, or as points lying on the surface of q-dimensional hyper-spheres. They can be

recorded using either angles or unit vectors in the q-dimensional Euclidean space. A one-to-

one mapping between these two representations exists, so that the Cartesian coordinates of

the ending point of a unit vector can be transformed in spherical coordinates, and vice versa.

A two-dimensional observation (circular data) can be represented by an angle or as

a point on the circumference of the unit circle centered at the origin, or as a unit vector

connecting the origin to this point. Three-dimensional directional data (spherical data) can

be depicted by two angles or as a unit vector in three dimensions, or as a point on the unit

sphere, and so on.

Directional data can be found in many scienti�c areas in the context of measuring

directions or cycles. For instance, they are used to estimate the relative rotations of tectonic

plates in Earth sciences (Chang, 1993), to measure the electrical cardiological activity during

a heartbeat in Medicine (Downs & Liebman, 1969), to study the animal navigation patterns

in Biology (Batschelet, 1981), and to analyze wind and ocean directions in Metrology (Bowers

et al., 2000). For a deeper introduction to directional data, the reader is referred to the book

(Mardia & Jupp, 2009).

In directional data analysis, a special role is played by data depth functions. They

characterize the centrality of a point with respect to a distribution or a sample so that a

center-outward ordering of the points can be obtained. Depth functions are available for

linear, functional, and directional data. For a review of directional depth functions, see the

recent work by Pandolfo, Paindaveine, & Porzio (2018).

Depth functions have found interesting applications in supervised classi�cation, where

the aim is to assign new observations to labeled classes. Among the many proposals that

exploit data depth functions, the most popular are probably the max-depth classi�er (widely

investigated in Ghosh & Chaudhuri (2005)), and the depth vs. depth (denoted by DD)

classi�er (Li et al., 2012). Unlike the many parametric and semi parametric classi�cation

methods, they neither assume any particular type of probability distribution, nor consider

any speci�ed parametric form for the separating surface.

In the directional data domain, both these popular depth-based classi�ers have been

developed, at least to a certain extent. The performance of directional max-depth classi�ers



Chapter 2: A Directional Depth Distribution Classi�er based on the

Cosine Depth 15

when di�erent depth functions are adopted has been studied in Pandolfo, Paindaveine, &

Porzio (2018), while the DD-classi�er for circular data has been introduced in Pandolfo,

D'Ambrosio, & Porzio (2018).

An additional depth-based classi�er for linear data has been recently introduced by

Makinde & Fasoranbaku (2018): the depth distribution classi�er. The proposal seems promis-

ing given that it is optimal for a wider class of distributions if compared with the max-depth

classi�er. For this reason, the aim of this work is two-fold. First, it provides a review of the

max-depth, the DD-classi�er, and the depth distribution techniques. Then, it introduces a

new supervised classi�cation tool for directional data: the cosine depth distribution classi�er.

Unlike the DD-classi�er, the depth distribution classi�er is naturally able to deal with

multiclass classi�cation issues. As a consequence, we compare its performance with others

who can deal with multi classes. A simulation study is then o�ered to the reader where we

compare the performance of the depth distribution classi�er with respect to the max-depth

classi�er.

The chapter is organized as follows. Section 2.2 provides background on statistical

depth functions and on depth-based classi�ers. In Section 2.3, the proposed directional depth

distribution classi�er is introduced, while its performance is assessed through a simulation

study in Section 2.4. Finally, some �nal remarks are o�ered in Section 2.5.

2.2 Depth-based classi�ers for linear data

Generally speaking, the depth of a point measures to what extent that point is inner with

respect to a given distribution or to a multivariate sample. The most internal point is called

the deepest, and it is considered a measure of centrality. More precisely, by de�nition of a

depth function (Liu et al., 1999), if a given distribution has a symmetry point, this point

should be the deepest above all of that distribution, and a depth will decrease whenever the

distance from the symmetry point increases.

Formally, we have that a depth function D(.) : Rq → R with respect to a distribution F

is a mapping of a vector x ∈ Rq to a real-valued number D(x;F ) ∈ R. Within the literature,

several depth functions have been introduced. Amongst the many, Tukey's half space depth

(Tukey, 1975), the simplicial depth (Liu, 1990) and the zonoid depth (Koshevoy & Mosler,

1997) have reached some popularity.

The data depth concept provides center-outward ordering of points in any dimension
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and it allows some non-parametric multivariate statistical analysis to be performed, in which

no distributional assumptions are needed. That is, the distribution F in the expression

D(x;F ) is typically substituted by its empirical counterpart F̂ , with no needs to assume

a parametric form for it. Applications of data depth arise in statistical inference (location

and scatter estimation Romanazzi, 2009), (statistical quality control Messaoud et al., 2008),

(outlier detection and data visualization Rousseeuw et al., 1999; Buttarazzi et al., 2018).

The same concept of data depth could be applied to directional data. Within this

framework, Figure 2.1 shows a random sample of directional observations on the sphere (q = 3)

where the blue point is more central within the data cloud than the red point. Thus, the depth

value of the blue point should be greater than the one of the red point.

Figure 2.1: Graphical representation of a random sample of spherical data. The blue
point is more central than the red point within the group of black points.

Depth functions have been also employed in supervised learning, where a classi�cation

rule is constructed from labeled training data to assign an arbitrary new data point to one of

the labels. The main underlying idea is that the centrality of a new point with respect to the

labeled classes (i.e., its depth) is a measure of the degree of closeness to each label.

Dissimilar to parametric and semi parametric classi�cation methods, the depth-based

classi�ers neither assume any particular type of probability distribution nor consider any

speci�ed parametric form for the separating surface. Generally speaking, any depth function

can be adopted to de�ne a depth-based classi�er.

In this section, the two main depth-based classi�ers are reviewed. Namely, the max-

depth classi�er and the DD-classi�er. Other depth-based classi�ers have been proposed for

linear data, such as the DD − α classi�cation approach (Lange et al., 2014), and the class of

depth-based functions associated with the knn classi�cation rule introduced by Paindaveine

& Van Bever (2015). A recent comprehensive overview of depth-based classi�ers can be found

in Vencálek (2017). More recently, a depth distribution classi�er was introduced by Makinde
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& Fasoranbaku (2018). Given the focus of this work, it will be also brie�y described in this

section.

2.2.1 The max-depth classi�er

The max depth classi�er assigns the new data point to the class with respect to which it attains

the highest depth value. This is because higher depth values correspond to more central areas

with respect to the class. After Liu (1990), the concept of max-depth in classi�cation has

been developed by Ghosh & Chaudhuri (2005).

Let y be the new point to be assigned, and let D(y, F̂ ) be the depth of y with respect

to the empirical distribution F̂ . For the sake of simplicity, let us consider the case of two

groups (i.e., we have available F̂1 and F̂2 from a training data set). Then, the max-depth

classi�cation rule is given by

 D(y, F̂1) > D(y, F̂2) =⇒ assign y to population 1

D(y, F̂1) < D(y, F̂2) =⇒ assign y to population 2

If D(y, F̂1) = D(y, F̂2), the classi�cation rule will randomly assign the observation to

one of the two groups with equal probability.

The max-depth classi�er is equivalent to the optimal Bayes classi�er with equal prior

probabilities in case all the populations are elliptically distributed with density function

strictly decreasing when moving away from the ellipsoid center, and with populations dif-

fering only in location parameters (Ghosh & Chaudhuri, 2005). For this condition to hold,

the adopted depth functions must be continuous, positive over the entire q-dimensional space

and decreasing too.

When the populations di�er not only in location, a modi�ed version of the classi�cation

approach based on a function of the half-space depth has been proposed (Ghosh & Chaudhuri,

2005), where the empirical half space depth of a point y with respect to a multivariate sample

is given by the minimum number of points that lie in any closed half-space containing y

Tukey (1975). A modi�ed version of the max-depth classi�er based on the projection depth

function has been introduced as well (Cui et al., 2008). It outperforms the method by Ghosh

& Chaudhuri (2005) only in normal settings.

Finally, the use of the max-depth classi�er for directional data has also been studied

(Pandolfo, Paindaveine, & Porzio, 2018). By means of a simulation study, it has been shown

that the distance based depth classi�ers outperform classi�ers based on the angular Tukey's
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(Liu & Singh, 1992) and on the angular simplicial depth (Liu & Singh, 1992) if data are drawn

from a von Mises-Fisher distribution (Mardia & Jupp, 2009), either with equal or di�erent

concentration levels.

2.2.2 The DD-classi�er

The depth vs. depth classi�er (or DD-classi�er) is a non parametric two-class classi�cation

method introduced by Li et al. (2012). It is based on the depth vs. depth (or DD)-plot,

which is a graphical tool allowing the comparison of two multivariate distributions or samples

through their corresponding depth values.

Brie�y, the DD-plot is a scatterplot where each plotted point has coordinates given by

the depths of the corresponding point in the original multivariate space with respect to the

two examined groups. In this way, it is possible to transform two multivariate samples to a

simple two-dimensional scatter plot regardless of the dimensions of the original sample space.

The main idea behind the DD-classi�er is to �nd the best polynomial separating function

in a DD-plot. Consequently, the generic form of the DD-classi�er is given as follows. Let r(.)

be some real increasing function, and F̂1 and F̂2 be the empirical cdf's of two multivariate

samples (the two samples are the training set, where each of the two sample has its own class

label). Then, the classi�cation rule is de�ned by

 D(y, F̂1) > r(D(y, F̂2)) =⇒ assign y to population 1

D(y, F̂1) < r(D(y, F̂2)) =⇒ assign y to population 2

In case of equality, y will be randomly classi�ed to group 1 or 2 with equal probability.

If r(.) is set equal to the 45 degree line, and apart from the case of equality, the DD-

classi�cation rule would assign y to group 1 if D(y, F̂1) > D(y, F̂2) and assign y to group 2

otherwise. This will reduce the DD classi�er to the max-depth classi�er described above. If

F1 and F2 di�er and they both admit a density from the elliptically contoured family, then

the DD-classi�er will be optimal in the Bayes sense whenever the used depths are strictly

increasing functions of the densities themselves.

The performance of the DD-classi�er associated with di�erent depth functions (Maha-

lanobis depth Mahalanobis, 1936), (projection depth Y. Zuo, 2003), (half-space depth Tukey,

1975), and (simplicial depth Liu, 1990) has been compared by Li et al. (2012) with the perfor-

mance of other classi�ers such as the Linear Discriminant Analysis (James et al., 2013), the

Quadratic Discriminant Analysis (James et al., 2013), the Support Vector Machine (Vencálek,
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2017), and the max-depth (Ghosh & Chaudhuri, 2005) classi�er. It seems the DD-classi�er

shows a better performance in many of the cases, or a similar performance otherwise.

For this reason, a recent interest eventually arised on the use of the DD-classi�er for di-

rectional data. It has been investigated for the case of circular data by Pandolfo, D'Ambrosio,

& Porzio (2018).

2.2.3 The depth distribution classi�er

Based on the cumulative distribution function (cfd) of depths, a new depth-based classi�er has

been very recently introduced Makinde & Fasoranbaku (2018). That is, the depth distribution

classi�er.

Let FGD (x) be the cumulative distribution function of a depth function D(X,G) evalu-

ated in x:

FGD (x) := P (D(X,G) ≤ D(x,G))

where X is a random variable, and G is a generic distribution with respect to which the depth

is evaluated. Both X and G are de�ned on the original sample space.

The value of FGD (x) provides information on how central is x with respect to G. If x is

a central observation, then D(x,G) will be large, and hence FGD (x) will be large too. At the

extreme, if x0 is a deepest point of G, we will have FGD (x0) = 1. On the other hand, if x is

far from the center of G (from its deepest point), then FGD (x) will be small.

Accordingly, a depth distribution classi�er can be de�ned Makinde & Fasoranbaku

(2018). Let y be the new point to be assigned. And, for the sake of simplicity, let us consider

the case of two groups G1 and G2. Then, the depth distribution classi�cation rule is given by

 F Ĝ1
D (y) > F Ĝ2

D (y) =⇒ assign y to population 1

F Ĝ1
D (y) < F Ĝ2

D (y) =⇒ assign y to population 2

If F Ĝ1
D (y) = F Ĝ2

D (y), the classi�cation rule will randomly assign the observation to one

of the two groups with equal probability.
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2.3 The cosine depth distribution classi�er for direc-

tional data

The cosine depth distribution classi�er is proposed here as a tool to classify points lying on

the surface of hyper-spheres, in analogy with the work by Makinde & Fasoranbaku (2018).

Directions in q-dimensions can be represented as unit vectors z on the sphere S(q−1) =

{z : zT z = 1} with unit radius and center at the origin. Let H1, ...,HJ be a set of directional

distributions, and let FHD (z) be the cumulative distribution function of a depth function

de�ned on hyper-spheres D(Z,H) evaluated in z:

FHD (z) := P (D(Z,H) ≤ D(z,H))

Let w be the new point to be assigned, and, again for the sake of simplicity, let us

consider the case of two groups (i.e., G1 and G2 ). Then, the directional depth distribution

classi�cation rule will be given by

 F Ĝ1
D (w) > F Ĝ2

D (w) =⇒ assign w to population 1

F Ĝ1
D (w) < F Ĝ2

D (w) =⇒ assign w to population 2

If F Ĝ1
D (w) = F Ĝ2

D (w), the classi�cation rule will randomly assign the observation to one

of the two groups with equal probability.

The performance of the just introduced directional depth distribution classi�er depends

on the choice of the depth function. Many depths for directional data were introduced and

are available in the literature Pandolfo, Paindaveine, & Porzio (2018). Here, distance based

directional depths will be considered. They are brie�y reviewed below.

Let d() be a bounded and nonnegative directional distance function with dsup its supre-

mum over S(q−1). By de�nition, a directional distance based depth of a point z ∈ S(q−1) with

respect to a distribution H on S(q−1) is given by

D(z,H) := dsup − EH [d(z,W )],

where E[.] is the expected value, and W is a random variable from a distribution H.

To obtain a directional depth function enjoying nice properties, suitable distances should

be adopted. Particularly, they must be rotation invariant. As a consequence, they will be of
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the form δ(z′s) for some function δ = [−1, 1] → R+ where s is also a point on S(q−1). For

instance, three of these distances that will yield rotational invariant directional depths are

discussed in Pandolfo, Paindaveine, & Porzio (2018), and brie�y reported below.

� Cosine depth: Adopting the cosine distance, i.e. δ(t) = 1 − t, the cosine depth is

obtained as Dcos := 2− EH [(1− z′W )].

� Arc distance depth: Adopting the arc distance, i.e. δ(t) = arccos(t), the arc distance

depth is obtained as Darc := π − EH [arccos(z′W )]

� Chord depth: Adopting the chord distance, i.e. dchord = ||z − t|| =
√

2(1− z′t), the

chord depth is obtained as Dchord := 2− EH [
√

2(1− z′W )]

Finally, amongst these three directional depth functions, the cosine depth is preferred

here. This is because of two reasons. First, it can be easily computed. Then, it provided

good performances when associated to the max-depth classi�er on hyper-spheres Pandolfo,

Paindaveine, & Porzio (2018). This yields the cosine depth distribution classi�er.

2.4 Simulation Study

The performance of the cosine depth distribution classi�er is evaluated by means of a simu-

lation study. A comparison with the max-depth classi�er for directional data based on the

same depth function is also o�ered to the reader.

2.4.1 Study design

This study is based on the assumption of equal prior probabilities and considering a two class

classi�cation problem.

Let G1 and G2 be two von Mises-Fisher distributions (vMF). That is, G1 and G2 have

their probability density function given by

h(z;µ, c) =

(
c

n

)q/2−1 1

Γ(q/2)Iq/2−1(c)
exp{cµT z},

where c ≥ 0, ||µ|| = 1, and Iv denotes the modi�ed Bessel function Mardia & Jupp (2009) of

the �rst kind and order v. The parameters µ and c are the mean direction and the concen-

tration parameter, respectively.
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For the sake of comparison, the simulation scheme was designed in analogy with the sim-

ulations in Pandolfo, Paindaveine, & Porzio (2018), where the performance of the directional

max-depth classi�er was investigated with respect to the choice of the depth function.

Within the �rst two setups, the two groups are both unimodal with di�erent locations

parameters and same/di�erent concentration levels (setup 1 and 2, respectively). On the

contrary, the third setup will investigate the case of bimodality for one of the two groups.

The other will be unimodal with its mode lying between the modes of the �rst group.

� In Setup 1, we study the case of di�erence in location, same concentration parameter

for both G1 and G2, data on the sphere (q = 3) and on a hyper-sphere in dimension

q = 10. The location parameters are set µ1 = (0, 0, 1) and µ2 = (1, 0, 0) for dimension

q = 3, and µ1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) and µ2 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) for dimension

q = 10, respectively. The performance is then investigated for di�erent concentration

levels. We set c ∈ {2, 5}.

� In Setup 2, the two distributions di�er also in concentration. With the same location

parameters of Setup 1, the concentration c is set equal to 2 for group 1, and 5 for group

2, considering again dimensions q ∈ {3, 10}.

� In Setup 3 we consider discrimination between a vMF distribution with µ = µ1, and a

bimodal density obtained as an equal weight mixture of two von Mises-Fisher, with

means µ21 and µ22. For dimension d = 3, we set µ1 = (0, 0, 1), µ21 = (1, 0, 0),

µ22 = (1, 0, 1). For dimension d = 10, we set µ1 = (0, 0, 0, 0, 0, 0, 0, 0, cos 7π/4, sin 7π/4),

µ21 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0) and µ22 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1). All the vMF's have

the same concentration levels c = 4.

As in Pandolfo, Paindaveine, & Porzio (2018), we set the training set size equal to 200

with 100 observations generated from G1 and 100 observations generated from G2 and the

testing set size equal to 100 with 50 observations generated from G1 and 50 observations

generated from G2. For each simulation condition, the experiment is replicated 250 times.
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Setup
AMR (standard deviation)
DistD MaxD

Setup 1
q = 3

c = 2 0.236 (0.037) 0.257 (0.045)
c = 5 0.066 (0.028) 0.074 (0.022)

q = 10
c = 2 0.375 (0.052) 0.380 (0.052)
c = 5 0.150 (0.030) 0.167 (0.037)

Setup 2
q = 3 0.104 (0.022) 0.170 (0.030)
q = 10 0.238 (0.045) 0.274 (0.037)

Setup 3
q = 3 0.496 (0.022) 0.440 (0.030)
q = 10 0.170 (0.037) 0.185 (0.037)

Table 2.1: Average misclassi�cation rate (AMR) and standard deviations of the depth
distribution (DistD) and the max-depth (MaxD) classi�ers in di�erent simulation se-
tups. Best achieved results are highlighted in bold.

2.4.2 Results

The detailed result of our simulation studies are reported in this Section. The performance

of the classi�ers is evaluated by means of the misclassi�cation rate. That is, the number of

observations misclassi�ed over the sample size in each replicated sample.

For each simulation setup, the distribution of the misclassi�cation rates obtained by the

cosine depth distribution classi�er (DistD) and by the max-depth classi�er (MaxD) are sum-

marized through boxplots (Figures 2.2-2.5). The corresponding average misclassi�cation rates

(AMR) and standard deviations are instead reported in Table 2.1, where the best achieved

results are highlighted in bold.

Considering Setup 1 in dimension 3 (results in Figure 2.2), the cosine depth distribution

classi�er achieved a slightly better performance than the max-depth classi�er for both scenar-

ios of concentration parameters, i.e., c = 2 and c = 5. On the other hand, the misclassi�cation

rate is lower when the concentration parameter is higher, and this is because data are more

separated and less sparse on the sphere, and hence they can be better discriminated.
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Figure 2.2: Boxplots of the misclassi�cation rates (MR) of the depth distribution
(DistD) and the max-depth (MaxD) classi�ers obtained from 250 independent replica-
tions in Setup 1 with concentration parameters c = 2 and c = 5 in dimension q = 3.

For q = 10, results from Setup 1 indicate that the cosine depth distribution classi�er

performs better than the max-depth classi�er, in case of equal concentration, also in higher

dimensions (Figure 2.3). However, the overall performance deteriorates, especially for quite

sparse data (c = 2).

Figure 2.3: Boxplots of the misclassi�cation rates (MR) of the depth distribution
(DistD) and the max-depth (MaxD) classi�ers obtained from 250 independent replica-
tions in Setup 1 with concentration parameters 2 or 5 for dimension q=10.

In the case of di�erent concentration levels across the two groups (Setup 2), the cosine

depth distribution classi�er shows highly satisfactory performance, with a much lower mis-

classi�cation rate compared to the max-depth classi�er, especially in lower dimension (Figure

2.4).
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Figure 2.4: Boxplots of the misclassi�cation rates (MR) of the depth distribution
(DistD) and the max-depth (MaxD) classi�ers obtained from 250 independent replica-
tions in Setup 2 for dimensions q ∈ {3, 10}.

In the third setup, the case of the bimodal group, if both the dimension and the con-

centration level are low (q = 3, c = 4), the two classi�ers essentially fail (Figure 2.5, left).

Although the max-depth classi�er slightly outperform the new introduced method, both their

average misclassi�cation rates approximate the 50% rate, which can be attained by just as-

signing randomly each new observations to one of the two groups. This happens because

data from the two groups are largely mixed up on the sphere. When the dimension increases

(q = 10), data are not largely mixed up any more, the two classi�ers perform better, with the

cosine distribution depth slightly beating the max-depth classi�er (Figure 2.5, right).

Figure 2.5: Boxplots of the misclassi�cation rates (MR) of the depth distribution
(DistD) and the max-depth (MaxD) classi�ers obtained from 250 independent replica-
tions in Setup 3 for dimension q ∈ {3, 10}.

2.5 Concluding Remarks

This chapter �rst reviews supervised classi�cation methods based on data depth, and then

it introduces a procedure to classify directional data. Directional data are a special class of



Chapter 2: A Directional Depth Distribution Classi�er based on the

Cosine Depth 26

quantitative measures which requires dedicated methods to be analyzed properly. They refer

to point lying on the surface of hyper-spheres.

The proposed classi�er is based on the distribution function of the cosine depth, and for

this reason it is called cosine depth distribution classi�er. The performance of the proposed

classi�cation method is investigated in lower and higher dimension settings with a comparison

to the max-depth classi�er through simulations. The simulation results suggest that the cosine

depth distribution classi�er might improve over the max-depth classi�er in many scenarios.

The use of the cosine depth classi�er for directional data seems thus promising. As a

further study, it would be of interest to investigate to what extent, and in which cases, such a

classi�er would provide better performances if di�erent depth functions are adopted in place

of the cosine depth. Some real data applications would also be of interest.
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The main goal of supervised learning is to construct a function from labeled training data

which assigns arbitrary new data points to one of the labels. Classi�cation tasks may be solved

by using some measures of data point centrality with respect to the labeled groups considered.

Such a measure of centrality is called data depth. In this paper, we investigate conditions

under which depth-based classi�ers for directional data are optimal. We show that such

classi�ers are equivalent to the Bayes (optimal) classi�er when the considered distributions

are rotationally symmetric, unimodal, di�er only in location and have equal priors. The

necessity of such assumptions is also discussed.
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3.1 Introduction

Supervised classi�cation techniques enjoy a wide range of applications in many �elds. Given

a training set of observations and their membership of certain groups, new observations with

unknown membership should be accordingly assigned. A fairly large number of classi�cation

rules are available in the literature (e.g James et al., 2013).

Within this setting, depth-based classi�cation procedures have been introduced. Depths

provide center-outward ordering of points in multidimensional spaces with respect to a given

distribution, and their applications often lead to e�ective robust statistical procedures. As

a consequence, depth-based supervised classi�cation techniques are typically able to deal

with the presence of outliers or mislabeled observations in the training set (Hubert et al.,

2017). Many depth based classi�ers are available, and for a review we refer to the work of

Vencálek (2017). On the other hand, depth-based supervised classi�cation procedures have

only recently been introduced in the directional data framework (Demni et al., 2019; Pandolfo,

D'Ambrosio, & Porzio, 2018; Pandolfo, Paindaveine, & Porzio, 2018).

Spherical (or directional) data are data lying on the unit hyper-sphere. They occur

naturally when a direction or an angle in space is of interest (e.g. wind direction), but

also when data consist of time points and the interest is in cycles (time points on a watch

can be treated as angles). In higher dimensions, locations on the Earth and/or any kind of

information recordable as unit vectors can be analyzed from a directional data perspective.

Such data can be encountered in many �elds of science and technology such as Earth sci-

ences (Chang, 1993; N. Fisher, 1989), meteorology (Bowers et al., 2000), neurosciences (Leong

& Carlile, 1998) or biology (Batschelet, 1981) to capture the direction of some phenomena of

interest. Other interesting applications of directional data include shape analysis and its use

in economics (Klecha et al., 2018; Kosiorowski, 2007).

Spherical data have their own speci�c features and therefore classical statistical meth-

ods need to be adjusted to these kinds of data. In this context, depths have been success-

fully applied (Agostinelli & Romanazzi, 2013; Ley et al., 2014; Liu & Singh, 1992; Pandolfo,

Paindaveine, & Porzio, 2018) and some robustness aspects have also been investigated. For

instance, Pandolfo, Paindaveine, & Porzio (2018) showed that the cosine depth deepest point

achieves the highest directional breakdown point in terms of lower bound when compared to

the chord and arc distance depth deepest points in the case of von Mises-Fisher distributions.

A discussion on the �nite-sample maximum bias of the cosine depth deepest point (the spher-
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ical mean) and the arc distance deepest point (the spherical median) is instead available in

Kirschstein et al. (2019).

However, although the recently introduced depth-based classi�ers for directional data

performed well in simulation studies (Demni et al., 2019; Pandolfo, D'Ambrosio, & Porzio,

2018; Pandolfo, Paindaveine, & Porzio, 2018), corresponding theoretical results are still lack-

ing. For all the above reasons, this work investigates properties of depth-based classi�ers

for directional data. It introduces the conditions under which these classi�ers are optimal.

That is, they are equivalent to the Bayes classi�er � the classi�er with the lowest achiev-

able probability of misclassi�cation. Special attention is paid to the case of von Mises-Fisher

distributions, since they play a central role among models for directional data.

The chapter is organized as follows. Section 3.2 introduces some basic concepts of

directional data and the directional distance-based depth functions. Furthermore, it describes

the max-depth and the depth distribution classi�ers for spherical data. Section 3.3 includes

the main results. It provides a discussion about the assumptions under which the depth-

based classi�ers are optimal as well as the necessity of such assumptions. Final comments are

provided in Section 3.4.

3.2 Background material

This section reviews basic concepts of directional data and their corresponding depth mea-

sures. Furthermore, it introduces directional data depth based classi�ers.

3.2.1 Directional data

In q-dimensional space, directions can be depicted as points on the sphere Sq−1 = {x ∈

Rq : x′x = 1} or as vectors with unit radius and center at the origin. Note that in the two-

dimensional case, any direction can be also described by an angle (circular data). In the

three-dimensional case, data points can also be described by two angles corresponding to

longitude and latitude.

As highlighted in Chapter 1, the basic location parameter of spherical data is the mean

direction µ = EX
‖EX‖ (de�ned i� the value in the denominator is positive). A possible measure

of variability, denoted traditionally as ρ, is the mean resultant length and is de�ned as ρ =

‖EX‖ = (EX ′EX)1/2.

In this chapter, the class of rotationally symmetric distributions is considered. The
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distribution H of a random variable X is said to be rotationally symmetric about some vector

µ ∈ Sq−1 i� the distribution of OX is again H for all q × q orthogonal matrices O satisfying

Oµ = µ. This class of distributions was �rst studied by Saw (1978). Any distribution which

is rotationally symmetric about µ and absolutely continuous w.r.t. a surface area measure on

Sq−1 has a density of the form h(x) = g(x′µ) for some (univariate) function g : [−1, 1]→ R+
0 ,

e.g. Paindaveine & Verdebout (2015).

The most widely used distribution on the sphere is the von Mises-Fisher distribution,

which is also rotationally symmetric (e.g Ley et al., 2014). Here, we recall the probability

density function of the von Mises-Fisher distribution which is de�ned as

h(x;µ, κ) = cκ,q exp{κµ′x},

where µ is the mean direction, κ ≥ 0 is a concentration parameter, and cκ,q > 0 is a normal-

izing constant (depending on parameters κ and q). Its value is cκ,q =

(
κ
2

)q/2−1
1

Γ(q/2)Iq/2−1(κ)
,

where Iv is the modi�ed Bessel function of the �rst kind and order v (e.g Mardia & Jupp,

2009).

3.2.2 Data depth for directional data

The concept of data depth for directional data was �rst introduced by Small (1987). Later,

it was extended by Liu & Singh (1992). They introduced the arc distance depth and at

the same time extended the simplicial depth (originally introduced in Liu (1990)) to the

directional angular simplicial depth and the halfspace depth (originally introduced in Tukey

(1975)) to the directional angular Tukey depth.

In this work, the class of depth based on rotational invariant distance is considered. It

was introduced by Pandolfo, Paindaveine, & Porzio (2018).

� The directional distance-based depth is recalled here:

Let d : Sq−1 × Sq−1 → R+
0 be a bounded distance on the sphere Sq−1. Let H be a

probability distribution on Sq−1. The directional d-depth of a point x ∈ Sq−1 with

respect to the distribution H is de�ned as

D(x,H) = dsup − EH (d(x,X)) , (3.1)

where dsup is the upper bound of the distance between any two points on Sq−1, EH is
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the expected value and X is a random directional variable from H.

� Rotational invariance is an important property of distance and subsequently depth.

A distance d is rotationally-invariant if d(Ox,Oy) = d(x, y) for all x, y ∈ Sq−1 and all

q × q orthogonal matrices O.

Any rotationally-invariant (bivariate) distance d(x, y) can be expressed as a univariate

function δ of the scalar product x′y, i.e.

d(x, y) = δ(x′y), (3.2)

as shown in Pandolfo, Paindaveine, & Porzio (2018) (Proposition 1). It is easy to see

that any directional depth based on rotationally-invariant distance is also rotationally-

invariant, i.e. D(x,H) = D(Ox,HO) for all x ∈ Sq−1 for all q×q orthogonal matrices O,

where HO denotes distribution of OX when X has distribution H. See also Theorem 1

in Pandolfo, Paindaveine, & Porzio (2018).

� Let us now recall the three most widely used rotationally-invariant distance-based depth

functions: the cosine depth, the arc distance depth, and the chord depth.

� The cosine depth of a point x ∈ Sq−1 w.r.t. the distribution H of a random direc-

tional variable X is de�ned as Dcos(x,H) := 2 − EH [(1− x′X)] = 1 + EH(x′X)

using the cosine distance δ(t) = 1− t .

� The arc distance depth of a point x ∈ Sq−1 w.r.t. the distribution H of a random

directional variable X is de�ned as Darc(x,H) := π−EH [arccos (x′X)] using the

arc distance δ(t) = arccos(t).

� The chord depth of a point x ∈ Sq−1 w.r.t. the distribution H of a random

directional variable X is de�ned as Dchord(x,H) := 2− EH

[√
2(1− x′X)

]
using

the chord distance δ(t) =
√

2(1− t).

3.2.3 Max-depth and depth distribution classi�ers for direc-

tional data

This section introduces the max-depth and the max rank classi�ers. The above classi�ers

can be associated with all the available depth functions for directional data within the liter-

ature. In this study, the cosine depth is preferred for the following reasons. First, the cosine
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depth does not require a large computational e�ort, unlike the other depths. Secondly, both

classi�ers provide good performance when associated with the cosine depth on hyper-spheres

(Demni et al., 2019; Pandolfo, Paindaveine, & Porzio, 2018). Finally, the cosine depth (deep-

est point) can be considered a robust location estimator (Pandolfo, Paindaveine, & Porzio,

2018).

Consider now K di�erent distributions H1, . . . ,HK on hyper-sphere Sq−1. A classi�ca-

tion rule in the directional framework is a function

c : Sq−1 → {1, . . . ,K},

which assigns points on the hyper-sphere to distributions from which they are likely to come.

Here we restrict our attention to the two-class problem (K = 2).

Directional max-depth classi�er

The concept of max-depth classi�er for multivariate data was developed by Ghosh & Chaud-

huri (2005). More recently, Pandolfo, D'Ambrosio, & Porzio (2018) extended the max depth

classi�er to the directional framework.

Let x be the new observation to be classi�ed, and letD(x,Hi), i = 1, . . . ,K be the depth

of x with respect to the distributions H1, . . . ,HK , respectively. The max depth classi�cation

rule is then given by

cm(x) = argmax
i

D(x;Hi) (3.3)

In practice, theoretical distributions are unknown and need to be estimated. Therefore, one

uses empirical distribution functions Ĥi based on data points in the training set instead of

theoretical distributions Hi.

Directional depth distribution classi�er

The depth distribution classi�er known also as the max rank classi�er was introduced by

Makinde & Fasoranbaku (2018) for multivariate data and then extended to directional data

by Demni et al. (2019).

The cumulative distribution function of the depth functionD(·, H), denoted as FD(·, H)
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is de�ned as

FD(x,H) = P (D(X,H) ≤ D(x,H)) , (3.4)

where X is a random directional variable from the distribution H.

The directional depth distribution classi�cation rule Demni et al. (2019) is then de�ned

as

cedd(x) = argmax
i

FD(x,Hi).

In practice, the unknown distributions Hi are again replaced by their corresponding empirical

distributions based on training set observations.

3.3 Properties of the max-depth and the depth dis-

tribution classi�ers

The properties of the max-depth and max-rank classi�ers are studied in this section. To the

best of our knowledge, the optimality property of the depth-based classi�ers has not been

investigated elsewhere in the context of directional data.

The optimality of the considered depth-based classi�ers was studied by Ghosh & Chaud-

huri (2005) (the max-depth classi�er) and by Makinde & Fasoranbaku (2018) (the max-rank

classi�er) in the context of multivariate (unconstrained) data. Both classi�ers were shown to

be equivalent to the optimal Bayes classi�er (the classi�er with the lowest total probability

of misclassi�cation) in some situations. More precisely, optimality is achieved if the consid-

ered distributions are elliptically symmetric with density strictly decreasing from the center

(which implies unimodality of the distributions), di�ering only in location and having equal

prior probabilities. While the assumptions on symmetry and unimodality are not too restric-

tive in practice, the assumptions on equal dispersions (implied by di�erence only in location)

and equal priors reduce the applicability of the classi�ers in practice quite substantially. We

show that similar assumptions are needed for optimality also in the case of directional data.

Theorem 3.3.1. Let H1 and H2 be rotational symmetric unimodal continuous distributions on

the sphere Sq−1 di�ering only in their mean directions (denoted by µ1 and µ2, respectively),

i.e. their densities hi(), i = 1, 2 can be expressed as hi(x) = h(µ′ix), i = 1, 2 for all x ∈
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Sq−1, where h() is some strictly increasing function. Let the distributions have equal prior

probabilities p1 = p2. Then for any rotation-invariant distance-based depth, both the max-depth

classi�er and the max-rank classi�er are equivalent to the (optimal) Bayes classi�er.

Proof. First, we simplify the form of the Bayes classi�er in the considered settings. The Bayes

classi�cation rule assigns x to group 1 i�

p1h1(x) > p2h2(x).

In the case of equal priors and rotational symmetric distributions the inequality sim-

pli�es to h(µ′1x) > h(µ′2x). Since h() is a strictly increasing function, the inequality can be

rewritten as

µ′1x > µ′2x.

Now we show that the max-depth classi�er can be expressed in the same way. This

results directly from Theorem 3 of Pandolfo, Paindaveine, & Porzio (2018) who showed that

in the considered situation depth can be expressed as a strictly increasing function of the

cosine distance from the mean direction, i.e. D(x,Hi) = φ(µ′ix), i = 1, 2, for some strictly

increasing function φ : [−1, 1]→ R+
0 . Since the function φ is the same for both distributions,

the inequality D(x,H1) > D(x,H2) holds i�

µ′1x > µ′2x.

Finally, we deal with the max rank classi�er. For the distribution Hi, i = 1, 2, the

cumulative distribution function of depth (3.4) can be expressed as

FD(x,Hi) = P (D(X,Hi) ≤ D(x,Hi)) =

∫
S(x)

hi(y) dy =

∫
S(x)

h(µ′iy) dy,

where S(x) = {y ∈ Sq−1 : µ′iy < µ′ix}. Since we are integrating a non-negative function,

the value of the integral increases with expanding the set S(x). Therefore, the higher is the

product µ′ix, the higher is the value of the integral, and hence FD(x,H1) > FD(x,H2) i�

µ′1x > µ′2x.
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In the following, we discuss the conditions which guarantee Bayes optimality. The depth-

based classi�ers employ rotation-invariant distance-based depth functions and therefore the

depth is a function of the cosine distance from the mean direction. To achieve correspondence

between depth and density (used in the Bayes classi�er), we have to assume that the density

is also a function of the cosine distance from the mean direction, i.e. the rotational symmetry

of the distribution. We further need assumption of monotonicity of a function h() to avoid

situations in which the density is low in points close to the mean direction. As already men-

tioned at the beginning of this section, the other assumptions � on equal variability and equal

priors � reduce the applicability of the classi�ers in practice quite substantially. Therefore,

we investigated the performance of the classi�ers in the case of unequal concentrations.

3.3.1 The max-depth classi�er in a more general case

The following theorem clari�es the form of the max depth classi�er for the cosine depth in

the situation in which the considered distributions may di�er not only in location but also in

dispersion.

Theorem 3.3.2. Let H1 and H2 be two distributions on the sphere Sq−1, having mean direc-

tions µ1 and µ2, respectively, and mean resultant lengths ρ1 and ρ2, respectively. If the cosine

depth is employed, the max-depth classi�er (3.3) has the following form:

c(x) = argmax
i

ρiµ
′
ix. (3.5)

and therefore, the distributions are �separated� by the hyperplane

(ρ1µ1 − ρ2µ2)′x = 0. (3.6)

Proof. The theorem directly follows from the form of the cosine depth in this case:

D(x,Hi) = 1 + EHix
′X = 1 + ρix

′µi.

The separating hyperplane is determined by the parameters of location (µ1 and µ2)

and parameters re�ecting variability of the distributions (ρ1 and ρ2). Clearly, the max-depth

classi�er does not include (and hence does not account for) information on priors. Also, the
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whole information on distribution is reduced only to its mean direction and mean resultant

length.

In the case of equal mean resultant lengths, the max depth classi�er simpli�es to the

form c(x) = argmaxµ′ix. The separating hyperplane is then determined by the equation

(µ1 − µ2)′x = 0. It is a hyperplane orthogonal to the hyperplane determined by vectors µ1

and µ2 which halves the angle between them.

Note that the formula of the max-depth classi�er cannot be simpli�ed in this way when

using nonlinear transformations of the scalar product µ′ix in the depth function even if the

transformation is monotone, i.e. for the arc distance depth and the chord depth.

Geometrically, we can imagine the above-described situation as follows. Denote the

angle between µ1 and µ2 as θ (cos θ = µ′1µ2). There exists an orthogonal matrix R such that

Rµ1 = (cos θ2 , sin
θ
2 , 0, . . . , 0)′ =: µ0

1 and Rµ2 = (cos θ2 ,− sin θ
2 , 0, . . . , 0)′ =: µ0

2. Hence, we can

assume that µ1 = µ0
1 and µ2 = µ0

2.

In this situation, the cosine depth of a point x = (x1, x2, . . . , xq)
′ can be expressed in

the following form:

D(x,H1) = 1 + ρ1(x1 cos
θ

2
+ x2 sin

θ

2
)

D(x,H2) = 1 + ρ2(x1 cos
θ

2
− x2 sin

θ

2
).

The separating hyperplane is then determined by the equation

(ρ1 − ρ2)

(
cos

θ

2

)
x1 + (ρ1 + ρ2)

(
sin

θ

2

)
x2 = 0,

which simpli�es to the form x2 = 0 in the case of equal mean resultant lengths.

3.3.2 Studied class of spherical distributions

We studied a broad subclass of unimodal rotational symmetric distributions on the sphere

Sq−1 for which the Bayes classi�er can be derived and subsequently compared to the max

depth classi�er discussed above.

Let us consider a density function h(x) proportional to a sum v + g(µ′x), where v > 0

is a positive real constant, µ ∈ Sq−1 mean direction and g : [−1, 1] → R is an odd strictly

increasing function.

Note that the higher the value of the constant v, the closer is the distribution to the

uniform distribution. Therefore, higher values of v imply higher variability. Parameter v can
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be thus understood as a measure of variability.

After plugging in the normalizing constant, the density can be expressed as

h(x) =
1

Aq
+
g(µ′x)

vAq
,

where Aq denotes the surface area of the sphere Sq−1. Assuming that µ = (1, 0, . . . , 0)′,

which can be achieved by a rotation of the distribution, one can derive a relation between the

variability parameter v and the mean resultant length ρ of the considered distribution:

ρ = EX1 =

∫
Sq−1

x1h(x) dx =

∫
Sq−1

x1

(
1

Aq
+
g(x1)

vAq

)
dx =

1

vAq
Gq,

where Gq =
∫
Sq−1 x1g(x1) dx is a constant. The density can thus be expressed as a function

of its mean direction µ ∈ Sq−1 and mean resultant length ρ (using above-de�ned constants

Aq and Gq) in the following way:

h(x) =
1

Aq
+

1

Gq
ρg(µ′x). (3.7)

Let us now consider a classi�cation problem for two distributions with densities of

the above-mentioned form (3.7) with possibly di�erent mean directions and mean resultant

lengths, but with the same function g(), i.e. we assume hi(x) = 1
Aq

+ 1
Gq
ρig(µ′ix), i = 1, 2.

Assuming equal prior probabilities, the Bayes classi�er can be expressed as

c(x) = argmax
i

ρig(µ′ix).

If g is identity, i.e. g(y) = y, the Bayes classi�er is equivalent to the max-depth classi�er if

the cosine depth is employed (see Theorem 3.3.2 above).

We have shown that equal variability (expressed by the mean resultant length) is not

a necessary condition for optimality. We found a class of distributions, in which optimality

is achieved even if distributions di�er in variability (identity or some multiple of identity are

the only cases of g() in which the Bayes classi�er coincides with the max depth classi�er).
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3.3.3 Bayes classi�er in the case of von Mises-Fisher distribu-

tions

The class of distributions studied in the previous section does not include the most well-known

distribution on the sphere, namely the von Mises-Fisher (vMF) distribution. In this section,

we brie�y discuss this important case. Let us consider two di�erent vMF distributions, i.e.

distributions with densities

hi(x;µi, κi) = cκi,q exp{κiµ′ix}, i = 1, 2.

The equation de�ning the separating subspace for the Bayes classi�er given by equality

π1h1(x) = π2h2(x) can be rewritten as

(κ2µ2 − κ1µ1)′x = ln

(
π1cκ1,q
π2cκ2,q

)
. (3.8)

As with the max-depth classi�er (3.6), the separation subspace is a hyperplane. However,

mean directions are multiplied by concentration parameters κ here, not by mean resultant

lengths ρ. The relationship between these parameters of variability is not straightforward.

The following holds:

ρ =
Iq/2(κ)

Iq/2−1(κ)
, (3.9)

where Iv is the modi�ed Bessel function of the �rst kind and order v, see section 9.3.2 of Mardia

& Jupp (2009). Note that the ratio (3.9) is strictly increasing in κ. Moreover, the constant

on the right-hand side of (3.8) is non-zero in the case of di�ering priors and concentration

parameters (if the considered ratio is not equal to one by chance).

3.4 Final Remarks

This chapter reviewed two depth-based classi�ers for directional data, namely the max-depth

and max-rank classi�ers, and discussed conditions under which they are equivalent to the

Bayes (optimal) classi�er. Conditions under which optimality is guaranteed include (rota-

tional) symmetry and unimodality of the underlying distributions, with a di�erence only in

location and equal prior probabilities.

These conditions are not necessary and we found a class of distributions for which
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the max-depth classi�er based on the cosine depth can be optimal even if distributions also

di�er in variability. On the other hand, such a class does not include the von Mises-Fisher

distributions, and the max depth classi�er is generally not optimal when groups present

di�erent variability levels. Moreover, it was shown that the above classi�ers ignore information

on prior probabilities.



Chapter 4

Distance-based directional depth

classi�ers: a robustness study

Abstract

Contaminated training sets can highly a�ect the performance of classi�cation rules. For

this reason, robust supervised classi�ers have been introduced. Amongst the many, this

work focuses on depth-based classi�ers, a class of methods which have been proven to enjoy

some robustness properties. However, no robustness studies are available for them within a

directional data framework. Here, their performance under some directional contamination

schemes is evaluated. A comparison with the directional Bayes rule is also provided. Di�erent

directional speci�c contamination schemes are introduced and discussed: antipodality and

orthogonality of the contaminated distribution mean, and the directional mean shift outlier

model.
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4.1 Introduction

Given a set of labeled data, with the labels expressing their membership to some groups

(training set), supervised classi�cation methods aim at predicting the class of new unlabeled

observations. Supervised classi�ers, which are widely exploited in many scienti�c �elds, have

thus the main goal of discriminating between two or more classes. The performance of a

classi�er is problem speci�c and it is generally evaluated by considering its ability to correctly

assign observations from a test set to the class they belong to.

However, such a performance can be dramatically in�uenced by the presence of contam-

inated data points in the training set. As a consequence, one of the issues to be considered

when a classi�er is adopted is its robustness. That is, its ability to provide reasonable results

even in the presence of some kind of contamination. Note that the need for robust classi�ers

is well recognized in applications (e.g. for gene expression data, Chandra & Gupta, 2011).

Amongst the many available robust techniques, depth-based classi�ers have been widely

considered. Hubert & Van der Veeken (2010) studied the robustness of projection depth

classi�ers for skewed data, while Li et al. (2012) examined the robustness properties of the

DD-classi�er and showed that it is robust against outliers and extreme observations. Dutta

& Ghosh (2012) investigated the robustness of projection depth classi�ers and showed their

superiority against classi�ers based on the half-space depth. Exploiting the properties of

depth functions, Hubert et al. (2017) proposed a robusti�ed classi�er that relies on depth

functions and distances. Vencálek & Pokotylo (2018) introduced depth weighted classi�ers

for multivariate data and investigated their robustness with respect to the Bayes classi�cation

rule.

Depth-based classi�ers have been introduced in the directional domain as well. More

speci�cally, the directional max-depth classi�er (Pandolfo, Paindaveine, & Porzio, 2018), the

DD-classi�er (Pandolfo, D'Ambrosio, & Porzio, 2018) and the depth distribution classi�er

(Demni et al., 2019) are available. They have been also successfully employed in di�erent

�elds of applications (see Demni, 2021; Pandolfo & D'Ambrosio, 2021). Here, directional

domain refers to the analysis of distributions whose support is either the boundary of a circle,

or a sphere, or a hyper-sphere.

On the other hand, how these directional methods perform in case of contaminated train-

ing sets is substantially unknown. We only found some preliminary notes on the robustness

of the circular DD-classi�er in Pandolfo (2017). Furthermore, robustness in the directional
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domain must be evaluated apart: the location parameter space is bounded, and hence the bias

is bounded too. As a consequence, as already discussed in Ko & Guttorp (1988), standard

robustness measures like in�uence function or breakdown point are not directly applicable.

See also the discussion in Kirschstein et al. (2019), and references therein.

Henceforth, given the lack of studies and the speci�city of the robustness issues in

the directional domain, this work investigates to what extent the available directional depth-

based classi�ers are able to deal with contaminated training sets. Two di�erent contamination

models are considered: the general outlier case (anomalous data lies somewhere within the

admittable space, far from all the labeled groups) and the more speci�c mislabeling model

(some training data have been erroneously labeled).

For the general outlier case, directional speci�c contamination schemes are introduced

and discussed here. Particularly, conditions are investigated under which the mean of the

contaminated distribution is antipodal (maximum impact) or orthogonal (half-a-way impact)

to the mean of the uncontaminated distribution. The directional mean shift outlier model is

also examined.

Finally, for each depth-based classi�er, one has to choose the depth function to employ.

In the directional domain, several of them are available: the angular simplicial and half-

space depths (Liu & Singh, 1992), the angular Mahalanobis depth (Ley et al., 2014), and the

distance-based depths (Pandolfo, Paindaveine, & Porzio, 2018). Because of their much lower

computational cost, the distance-based depths are considered in this work.

A common practice in supervised classi�cation is to evaluate the robustness of a method

through more or less extensive numerical simulations. Accordingly, the comparison of the per-

formance of the discussed methods will be done by means of a thorough simulation study under

the von Mises-Fisher distribution, the main directional distribution on spheres. Performance

of the depth-based classi�ers will be also compared against the directional Bayes classi�er

(whose optimality properties are well known in the literature).

The chapter is structured as follows. Section 4.2 provides a review on robust supervised

classi�cation methods and on how their robustness has been evaluated. Section 4.3 illustrates

why robustness studies for directional data need a speci�c attention, and it introduces direc-

tional speci�c contamination schemes. Section 4.4 reviews directional depth functions and

discusses their robustness properties, and presents depth-based classi�ers. The simulation

study is provided in Section 4.5. Section 4.6 o�ers some �nal remarks.
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4.2 Robustness of supervised classi�ers

The maximum achievable accuracy in classi�cation problems depends on the chosen classi�-

cation rule as well as on the quality of the training set. Information contained in such labeled

data sets is used to classify the remaining unlabeled data. Therefore, contaminated data (also

known as unreliable data) can highly a�ect the performance of classi�ers.

In a supervised classi�cation context, two main sources of contamination can be distin-

guished: outliers and mislabeled data. The former refers to some data points in the training

set that are misplaced far away from each cluster, whereas the latter is related to inaccurate

group memberships, that is caused by labeling errors. Those kinds of anomalous data are

also known as attribute noise and class noise, respectively (see Zhu & Wu, 2004; Frénay &

Verleysen, 2013).

Formally, the two sources of contamination can be described using two di�erent kinds

of mixture models. Let thus F := {Fi, i = 1, ..,K} be a set of K unknown distributions where

each Fi characterizes the i-th class. Then, the contamination model for the case of outliers

in the i-th group is given by:

F outi := (1− εi)Fi + εiGi (4.1)

where F outi is the distribution associated to the i-th group contaminated by a proportion εi

of outliers, and Gi /∈ F . This contamination model derives from the standard contamination

model in robustness studies (Huber & Ronchetti, 2009, page 12), and it has been largely

adopted to evaluate the performance of classi�ers as well.

A sub-model of Eqn.(4.1) is the mean shift outlier model, where the original distribution

Fi and the contaminating distribution Gi di�er only in location. The mean shift outlier con-

tamination model has been widely considered to evaluate robustness of supervised classi�ers.

More recently, a contamination model more speci�c to supervised classi�cation meth-

ods arised: the mislabeled data model. We also de�ne such a model as a mixture of two

distributions. We have:

Fmisi :=
1

1 + εji
Fi +

εji
1 + εji

Fj (4.2)

where Fmisi is the distribution associated to the i-th group contaminated by a proportion εji of
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observations from Fj . The contamination rate εji refers thus to the proportion of observations

belonging to the j -th group which have been erroneously labeled as if from group i : the mistake

happened to the observations from Fj , the impact is on Fi (there will be also an impact on

the size of each group in the training set). Equation (4.2) assumes the distribution Fi is

contaminated only through mislabeling of observations from Fj . Such a de�nition can be

clearly extended to the case of mislabeling in more classes.

Several techniques have been proposed to deal with both issues in the literature. A �rst

option is to analyze the training set by applying data pre-processing tools in order to detect

unreliable observations before doing the classi�cation task. Within this context, many tools

are available. Hodge & Austin (2004) provided a survey of techniques for outlier detection and

discussed their advantages and disadvantages for clustering, classi�cation and/or recognition.

Debruyne (2009) introduced an outlier map for support vector machines. He showed that this

tool is e�cient to detect outliers and/or mislabeled data when using support vector classi�ers.

The limit of this �rst approach is that the analyst needs to decide upon each candidate outlier

if it is so or not, and the analysis must be run in two steps (outlier detection, and then

classi�cation).

Alternatively, several robust classi�cation methods are available. Hawkins & McLach-

lan (1997) introduced high-breakdown linear discriminant analysis and showed their method

is robust against contamination by outliers through real data sets. Thereafter, robust discrim-

inant rules based on high-breakdown estimators, on robust estimates of location and scatter,

and on the minimum covariance determinant estimates of the mean and covariance have been

proposed under the hypothesis that each group is normally distributed (see Croux & Dehon,

2001; Hubert & Van Driessen, 2004; Abebe & Nudurupati, 2009).

Within the same framework, Joossens & Croux (2004) studied the e�ect of outliers

on the behavior of robust linear and quadratic discriminant analysis through an extensive

simulation study. They compared the total probabilities of misclassi�cation under di�er-

ent contamination schemes and discussed which method should be preferred. Recently, a

semi-supervised classi�cation method has been suggested in order to improve the classi�er

performance and to identify outlying observations (Cappozzo et al., 2020). Nakayama (2019)

also proposed a robust version of a support vector machine classi�er, that can handle high-

dimensional imbalanced data.

Hawkins & McLachlan (1997) discussed the breakdown point (i.e. the maximum number

of outliers that can be accommodated) of their method under the mean-shift outlier model. All
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the others evaluated the performance of their classi�cation methods by means of simulations.

Mainly, simulation studies considered normal distributions. Abebe & Nudurupati (2009)

included the Cauchy distribution.

4.3 Directional data, robustness, and directional con-

tamination scenarios

Directional data can be viewed as unit vectors on the unit hyper-sphere S(q−1) := {x ∈

Rq, ||x|| :=
√
x′x = 1}. Such data can be encountered in many �elds such as neurosciences,

astrophysics, oceanography and biology, to cite a few. For a recent review on directional

statistics, the reader is referred to Pewsey & García-Portugués (2020). For discriminant

analysis on the sphere, see in particular (Tsagris & Alenazi, 2019).

Being a hyper-sphere, the support of a directional variable is bounded by de�nition.

As a consequence, directional location parameters have bounded parameter space, and their

robustness features need to be analyzed apart. For instance, given that their in�uence func-

tion is also bounded, Ko & Guttorp (1988) introduced the standardized in�uence function.

Later, He & Simpson (1992) discussed breakdown points for compact parameter space, while

Kirschstein et al. (2019) analyzed the �nite sample maximum bias of some directional location

estimators.

To illustrate the issue, consider the robustness properties of the expected value of a

linear variable (we call a linear variable a variable whose support is a subset of the real

line). Clearly, by Eqn.(4.1), if the expected value of the contaminating distribution Gi goes

to in�nity, the expected value of the contaminated distribution F outi goes to in�nity as well,

irrespective of the value of the contamination level ε > 0. This is a well known story who

suggests to use the median as a robust location parameter (see e.g. Wilcox, 2011, Sect. 2.1.3).

Unlikely, directional location parameters cannot go to in�nity. Under which conditions

they go the furthest possible becomes thus a case of interest.

To exemplify, let us focus on the directional mean. By de�nition, the directional mean

of a directional random variable X ∼ H is de�ned as µX := E(X)/||E(X)||, provided that

||E(X)|| 6= 0, where E() is the expected value operator, and || · || is the L2 Euclidean norm.

By de�nition of directional variables, we also have ||E(X)|| ≤ 1. Note that ||E(X)|| =: ρX is

a measure of dispersion and it is called the mean resultant length of the directional variable
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X.

Consider then the contamination model introduced above (Eqn.4.1) for a directional

distribution. Provided that it exists, it is possible to derive its directional mean, as stated in

the following Theorem.

Theorem 4.3.1 (Directional mean of a contaminated distribution). Let X1 ∼ H1 and

Xc.ing ∼ Hc.ing be two directional random variables whose directional mean exists. Let also de-

note with µ1 and µc.ing their directional means, respectively. Consider then the contaminated

directional distribution HC with a level ε of contamination:

HC := (1− ε)H1 + εHc.ing 0 < ε <
1

2
. (4.3)

The directional mean µC of the contaminated distribution HC is given by:

µC =
(1− ε)µ1||E(X1)||+ εµc.ing||E(Xc.ing)||
||(1− ε)µ1||E(X1)||+ εµc.ing||E(Xc.ing)||||

, (4.4)

provided that ||E(XC)|| 6= 0, with XC ∼ HC .

The proof follows from standard properties of expected values. The statement is similar

to Eqn.(4.4) in Kirschstein et al. (2019). However, in that work the statement referred to an

estimator of the directional mean. Here, the interest is on the parameter itself. There, the

contaminating distribution was a Dirac distribution (worst case). Here, the contaminating

distribution is a generic directional distribution with ||E(Xc.ing)|| 6= 0.

After Theorem 4.3.1, we are able to introduce and investigate three di�erent directional

contamination scenarios. That is, the cases of antipodality and orthogonality of the directional

mean of the contaminated distribution, and the mean shift outlier model. These cases will be

exploited to evaluate the performance of the classi�ers later in Section 4.5.

First of all, Theorem 4.3.1 allows investigating conditions under which a contamination

achieves its maximum impact on the directional mean. That is, under which conditions

the directional mean of the contaminated distribution HC is antipodal to the mean of the

uncontaminated distribution (i.e., µC = −µ1). The result is stated as a Corollary.

Corollary 4.3.2 (Maximum impact on the directional mean). Let the conditions of Theorem

4.3.1 hold. If µc.ing = −µ1 and

(1− ε)||E(X1)|| − ε||E(Xc.ing)|| < 0, (4.5)



Distance-based directional depth classi�ers: a robustness study 47

then

µC = −µ1. (4.6)

In other words, if the contaminating distribution is antipodally located (µc.ing = −µ1)

and its mean resultant length ||E(Xc.ing)|| is larger than (1−ε)/ε||E(X1)||, then the directional

mean moves by an angle of width equal to π radians (it moves the furthest possible from its

original location). Note that, when µc.ing = −µ1 and instead (1−ε)||E(X1)||−ε||E(Xc.ing)|| >

0, we have that µC = µ1. Hence, in this latter case, an antipodally located contaminating

distribution has no impact at all on the directional mean of the uncontaminated distribution.

From Theorem 4.3.1 it is also possible to derive conditions under which the mean of

the contaminated distribution is π/2 radians far away from its original value (or orthogonal

to the original mean, µTCµ1 = 0). That is, under which conditions a contamination moves the

directional mean half a way between the maximum impact and no impact on the contaminated

distribution. This result is stated as a Corollary as well.

Corollary 4.3.3 (Impact on the directional mean: orthogonality). Let the conditions of

Theorem 4.3.1 hold. Then µTCµ1 = 0 i�

µTc.ingµ1 = −(1− ε)
ε

||E(X1)||
||E(Xc.ing)||

, (4.7)

with (1−ε)
ε

||E(X1)||
||E(Xc.ing)|| < 1.

The condition in Eqn.(4.7) has many solutions. For instance,


µ1 = (0, 0, · · · , 1)T ,

µc.ing =
(
−
√

1−
( (1−ε)

ε
||E(X1)||
||E(Xc.ing)||

)2
, 0, · · · , 0,− (1−ε)

ε
||E(X1)||
||E(Xc.ing)||

)T
.

(4.8)

Finally, the mean shift outlier model within the directional setting can be also inves-

tigated thanks to Theorem 4.3.1. This is the case where the original and the contaminating

distributions have equal mean resultant length (||E(X1)|| = ||E(Xc.ing)||). Under such a

condition, Eqn.(4.4) simpli�es and the following Corollary can be stated.

Corollary 4.3.4 (Directional Mean Shift Outlier Model: Impact on the directional mean).
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Let the conditions of Theorem 4.3.1 hold. Let also ||E(X1)|| = ||E(Xc.ing)|| 6= 0. Then,

µTCµ1 =
(1− ε) + εµTc.ingµ1

||(1− ε)µ1 + εµc.ing||
. (4.9)

To illustrate Eqn.(4.9), the functions which relate the angles in degrees between the

means of the contaminated and the uncontaminated distributions (arccos (µTCµ1)) with the

angle in degrees between the means of the contaminating and the uncontaminated distribu-

tions (arccos (µTc.ingµ1)) have been depicted in Figure 4.1 for di�erent levels of contamination

ε (ε = {0.05, 0.10, 0.20, 0.30, 0.40, 0.49}). They are all non-monotone functions, with a max-

imum which depends on the level of contamination and which is roughly located within a

range from 80◦ for ε = 0.05 to 165◦ for ε = 0.49.

Figure 4.1: Directional mean shift outlier model. Impact on the directional mean of
a certain level of contamination ε for a value of the angle between the means of the
uncontaminated (H1) and the contaminating distribution (Hc.ing). Each function refers
to a di�erent level of contamination (ε = {0.05, 0.10, 0.20, 0.30, 0.40, 0.49}; long-dashed,
dotted, dot-dashed, solid, dashed, and two-dashed lines, respectively). The vertical axis
represents the angle in degrees between the directional mean of the original distribution
µ1 and the directional mean of the contaminated distribution µC . The maximum of a
function tells the value at which the directional mean of the contaminating distribution
µc.ing must lie apart from µ in order to have the largest possible impact on the mean of
the contaminated distribution (HC) for a given level of contamination. To exemplify,
a vertical line is depicted at 115.5◦: a value for which the function corresponding to
ε = 0.30 (solid red line) is approximately maximized.



Distance-based directional depth classi�ers: a robustness study 49

Results from Corollaries (4.3.2), (4.3.3), and (4.3.4) allow illustrating some speci�city

of robustness issues within the directional domain. First, unlike the mean of linear variables,

the directional mean is robust up to a certain extent (it cannot reach its antipodal value

unless (1 − ε)||E(X1)|| − ε||E(Xc.ing)|| < 0, by Corollary (4.3.2)). Second, unlike the linear

case, its robustness properties depend on the level of dispersion of both the uncontaminated

and contaminating distributions. Third, the mean shift outlier model - largely adopted to

discuss robustness of linear variables - does not yield the worst contamination case (even if

µc.ing = −µ1, no ε <
1
2 yields µC = −µ1).

Corollaries (4.3.2), (4.3.3), and (4.3.4) will be exploited to design the simulation study

in Section 4.5. The robustness of the mentioned directional depth-based classi�ers will be

investigated under the case of antipodality, orthogonality, and mean shift outlier model.

For the mean shift outlier model, the performance will be evaluated at µTc.ingµ1 = −0.43,

i.e. at arccos(µTc.ingµ1) ≈ 115.5◦). This is the value at which the impact on the directional

mean of the uncontaminated distribution is approximately maximized under ε = 0.30 (to

illustrate, a vertical line at 115.5◦ has been superimposed on the plot in Figure 1).

4.4 Directional data depths and depth-based classi-

�ers

This section reviews distance-based depth functions and their robustness properties. It then

introduces depth-based classi�ers for directional data.

4.4.1 Directional depth functions

Statistical depth functions extend univariate ordering to higher dimensions by ordering mul-

tivariate data with respect to a center. Particularly, they o�er a center-outward ordering by

providing a measure of how central a point is with respect to a certain distribution. To cite,

the �rst and most adopted depth function is the well known Tukey's half-space depth (Tukey,

1975). Many other depth notions are available (see e.g. Liu et al., 1999; Y. Zuo & Ser�ing,

2000).

In analogy with data depth for data points in Rq, the depth idea has been extended to

the directional domain as well (see Small, 1987; Liu & Singh, 1992). Accordingly, directional

depth functions measure the degree of centrality of a point in the sample space with respect



Distance-based directional depth classi�ers: a robustness study 50

to a directional distribution, and they provide a center-outward ordering on circles or on

hyper-spheres.

In the current study, for computational reasons, the focus is on three rotational invariant

distance-based depth functions: the arc distance, the chord, and the cosine depth (Pandolfo,

Paindaveine, & Porzio, 2018). A directional distance-based depth of a point x ∈ S(q−1) with

respect to a directional distribution H is given by:

D(x,H) := dsup − EH(d(x,X)),

where d is a bounded distance on S(d−1), dsup is the upper bound of such a distance between

any two points on S(q−1), E(.) is the expected value, and X is a random variable from H.

Accordingly, the following rotational invariant distance-based depth can be de�ned:

� The cosine depth: Dcos := 2− EH(1− x′X);

� The arc distance depth: Darc := π − EH(arccos(x′X));

� The chord depth: Dchord := 2− EH(
√

2(1− x′X)).

The empirical version of each of the depth functions is obtained by replacing H by

Ĥ. General properties of the distance-based depth functions have been widely discussed in

Pandolfo, Paindaveine, & Porzio (2018).

4.4.2 Robustness of distance-based directional depth functions

Robustness properties of the distance-based depth functions have been essentially investigated

in terms of the robustness of the deepest point z(H) := supx∈S(d−1) D(x,H). Mainly, a

general result on the directional breakdown point of the deepest points for the depth functions

discussed above is available.

Let consider the contamination model de�ned by Eqn.(4.3), and let us de�ne the break-

down point of a directional deepest point as the in�mum of the contamination level ε such

that the deepest point of the contaminated distribution is antipodal to the deepest point of

the uncontaminated distribution. It has been proved that the breakdown point of the deepest

point z(H) is greater or equal than [D(z(H), H) − D(−z(H), H)]/(2dsup). For von Mises-

Fisher distributions, such a bound is larger for the cosine depth deepest point when compared

with the bounds for the arc and chord distance deepest points (Pandolfo, Paindaveine, &

Porzio, 2018).
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Further robustness properties of the deepest points are depth speci�c, and are inherited

by the properties of the corresponding parameter. For instance, given that the cosine depth

deepest point is the spherical mean, its maximum bias is given by Theorem 3 in Ko & Guttorp

(1988).

On the other hand, it is possible to derive SB-robustness properties of the cosine and

arc distance deepest points by Theorem 6.2 in He & Simpson (1992). We have that the arc

distance deepest point is SB-robust at the von Mises-Fisher distribution, while the cosine

depth deepest point does not enjoy such a property.

4.4.3 Directional depth-based classi�ers

A directional classi�er is a function class : S(q−1) → {1, ..., i, ...,K} where the integer i refers

to one of the K di�erent directional distributions H1, ...,Hi, ...,HK . Three main directional

depth-based classi�ers are available: the max-depth classi�er, the depth distribution classi�er

(also called max-rank classi�er) and the depth versus depth classi�er (DD-classi�er). The �rst

assigns observations to the distribution Hi where they attains the highest depth value. The

second exploits the cumulative distribution function of the depth within each labeled group.

The third de�nes a discriminating function within the DD-plot, a plot where each observation

has coordinates based on its depth value with respect to two directional distributions.

In particular, given a training set composed byK empirical distributions Ĥi, i = 1, ..,K,

the max-depth classi�cation rule is given by

classmax(x) := argmaxiD(x; Ĥi) i = (1, ...,K),

where x is a new observation to be classi�ed, and D(x, Ĥi), i = 1, ..,K, is the empirical depth

of x with respect to the distribution Ĥi.

The depth distribution classi�er is based on the value

FD(x, Ĥi) := P (D(X, Ĥi) ≤ D(x, Ĥi)),

where X ∼ Hi. Then, to classify a new observation, the directional depth distribution classi-

�cation rule is given by:

classdd(x) := argmaxi FD(x, Ĥi) i = (1, ...,K).

The DD-classi�cation rule has been thought for the case of two or few more classes and

it is given by

classDD(x) := argmaxi r(D(x; Ĥi)) i = (1, ...,K),
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where r(.) is a real increasing function which has the aim of discriminating points in the DD-

space. Several separating functions can be considered for discrimination in the DD-space. Li

et al. (2012) suggested a polynomial function whose degree needs to be chosen by minimizing

the average error rate on the training set. In case r is a straight line, Li et al. (2012) advice it

should pass through the origin. If such a line is the 45 degree line, we obtain the max-depth

classi�er as a special case. Other choices can be also made such as the linear and quadratic

discriminant separating rules and the k-nearest neighbors classi�cation rule (see e.g. Pandolfo

& D'Ambrosio, 2021).

Optimality properties of the max-depth classi�er and of the depth distribution classi�er

for directional data were investigated by Vencálek et al. (2020). They showed that, under

rotational invariance of the adopted depth functions, both classi�ers are equivalent to the

optimal Bayes classi�er under the following assumptions on the underlying distributions:

unimodality, rotational symmetry, di�erence only in location and equal priors. They also

proved that, under some circumstances, the cosine max-depth can be optimal even when

distributions are enjoying di�erent concentration parameters.

4.5 Robustness of directional depth-based classi�ers:

a simulation study

The robustness of the max-depth, the depth distribution and the DD classi�ers is investi-

gated in this section through a simulation study. To evaluate their performance, the two

contamination models mentioned in Section 4.2 are considered. For the �rst of them, the

three contamination scenarios introduced in Section 4.3 are adopted.

To simplify, a binary classi�cation problem is discussed, and only one of the two groups

will be contaminated within the training set. To avoid confusion, we will use the following

notation throughout this Section. Two directional distributions H1 and H2 will be considered:

the �rst will be contaminated by a third distribution Hc.ing, while the second will be not.

Accordingly, for the case of outliers (Eqn.(4.1)), we will have:

Hout
1 := (1− ε1)H1 + ε1Hc.ing 0 ≤ ε1 < 1/2. (4.10)
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For the case of the mislabeled data, by Eqn.(4.2) we have:

Hmis
1 :=

1

1 + ε21
H1 +

ε21

1 + ε21
H2 0 ≤ ε21 < 1/2. (4.11)

Data are generated from von Mises�Fisher distributions, the most widely used distribu-

tion to model data on spheres and in particular in the framework of supervised classi�cation

(see Figueiredo, 2009; López-Cruz et al., 2015). Under the hypothesis that each class Hi,

i = 1, 2 follows a von Mises-Fisher distribution on S(q−1), their probability density function

is given by

hi(x;µi, ci) :=

(
ci
n

)q/2−1 1

Γ(q/2)Iq/2−1(ci)
exp{ciµTi x}, (4.12)

where the parameters µi and ci denote the mean direction and the concentration parameter,

respectively, with ||µi|| = 1, ci ≥ 0, and Iv denotes the modi�ed Bessel function of the �rst

kind and order v. The higher is the value of the concentration parameter ci, the more the

data are concentrated on the sphere. The case of ci = 0 yields the uniform distribution on

the sphere. The concentration level ci is a strictly increasing function of the mean resultant

length of the distribution. Tabled values of such a function for the case q = 3 are available in

(Mardia & Jupp, 2009, Appendix 3.2).

4.5.1 The directional Bayes classi�er as a benchmark

As a benchmark, because of its optimality, the directional Bayes classi�er is considered. The

Bayes rule is optimal as it minimizes the total probability of misclassi�cation. In the direc-

tional domain, it is de�ned as

classBayes(x) := argmaxi hi(x)pi

where hi, is the directional density function which corresponds to the distribution Hi, and pi

is its corresponding prior probability, i = 1, ..,K.

The empirical version of the Bayes classi�er is adopted in practice and the case of equal

prior is considered here. That is, the density parameters are estimated on the training set,

and - within our setting - we obtain

classB(x) := argmaxhi(x, µ̂i, ĉi),
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where hi(.) is now the density in Eqn.(4.12), and µ̂i and ĉi are estimates of the corresponding

parameters.

Given the aim of this work, three versions of the empirical Bayes classi�ers are considered

within the simulation study. Each version di�ers from the others for the way the location and

concentration parameters µi and ci are estimated on the training set. We adopt the standard

maximum likelihood estimators, and both the robust M-type estimators introduced by Kato

& Eguchi (2016). Note that the optimality is reached in case the parameters are not estimated

but known in advance (this case being known as theoretical Bayes classi�er).

4.5.2 Simulation design

All the data were generated according to a von Mises-Fisher (VmF) distribution. The location

parameters of the distributionsH1 andH2 were set to be orthogonal. Because of the rotational

invariance of the procedure, without loss of generality, we set µ1 = (0, 0, 1) and µ2 = (1, 0, 0).

The following simulation scheme is adopted.

(a) Three directional depth-based classi�ers: max-depth, depth distribution, DD-classi�er.

As mentioned in Sect. 4.3, the classi�ers considered for the comparison are the max-depth,

the depth distribution classi�ers and the DD-classi�er.

(b) Three depth functions: cosine depth, chord depth, arc distance depth.

As discussed, these rotational invariant distance depth functions are computationally feasible

even in high dimensions (unlike the angular simplicial and half-space depths). In addition,

optimality of the max-depth and depth distribution classi�ers when associated with the cosine

depth is ensured under von Mises-Fisher and equal prior if distributions di�er only in location.

(c) Three discriminating functions in the DD-space (for the DD-classi�er): linear discrimi-

nant analysis rule (lda), quadratic discriminant analysis rule (qda) and k-nearest neigh-

bors classi�cation rule (knn).

We adopt the linear discriminant analysis, the quadratic discriminant analysis and the

k-nearest neighbor rules as separating functions in the DD-classi�er. The tuning parameter

k for the k-nearest neighbor (knn) is chosen by cross validation.

(d) Three outlier contamination settings (Eqn.4.1), one contamination setting for misla-

beled data (Eqn.4.2).
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Within the training set, the �rst group is contaminated, the second group it is not. The three

outlier contamination settings are based on the discussion in Section 4.3. For the �rst two of

them, we consider the cases for which under 30% of contamination we have either antipodality

or orthogonality of the directional mean of the contaminated distribution Hout
1 with respect to

the mean of the uncontaminated distribution H1, respectively. The third is the mean outlier

shift model with maximum impact under ε = 30%.

Accordingly, for the antipodal case, the training observations from H1 are contaminated

with observations generated from a VmF with location parameter equal to µc.ing = (0, 0,−1)

and mean resultant length ||E(Xc.ing)|| = ρc.ing = 0.9 (which corresponds to cc.ing = 10).

To have the mean of the contaminated distribution orthogonal to the original mean

of H1, the contamination set is from a VmF with location parameter equal to µc.ing =

(−0.855, 0,−0.519) (calculated from Eqn.4.7), and mean resultant length ρc.ing = 0.9 (cc.ing =

10). The mean resultant length for H1 is equal to ρ1 = 0.2 (c1 = 0.615) in both cases of an-

tipodality and orthogonality.

The location parameter of the contamination set in H1 within the mean shift outlier

model is µc.ing = (−0.43,−0.903, 0) according to the discussion in Section 4.3 (see also Figure

4.1). The mean resultant length of the contaminating distribution is equal to the mean

resultant length for H1 (ρ1 = ρc.ing = 0.9, c1c.ing = cc.ing = 10).

In case of contamination with mislabeled data, a percentage ε21 of observations from

H2 is labeled as from group 1. That is, according to Eqn.4.2, the training observations from

H1 are contaminated with observations coming from H2.

To provide insights on this simulation design, training sets-one for each of the adopted

contamination settings (for ε = 0.3), are plotted in Figure 4.2 (panel a, b, c and d). Non-

contaminated observations from H1 are depicted in black, those from H2 in red, and the

contaminating set is depicted in blue. Panel (a) represents the case of antipodal mean to H1

while panel (b) illustrates the case where the mean of the contaminated distribution Hcont is

orthogonal to the original mean of H1. The mean shift outlier model is depicted in panel (c),

while the contamination case with mislabeled data is in panel (d).

(e) Three levels of contamination on the training set from H1: ε = 0%, 10%, and 30%.

For ε = 0% we have no contamination at all, and hence optimality of the theoretical Bayes

classi�er. Then, the case of a certain degree of contamination (ε = 10%) and of a more

unfavorable case (ε = 30%) are investigated. See the discussion above on the e�ect of 30% of
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(a) (b) (c) (d)

Figure 4.2: Illustration of the simulation design. Contamination ε = 0.30. Mean
resultant length ρ1 = 0.2, ρ2 = 0.8 and ρc.ing = 0.9. Contamination models: mean of
the contaminated distribution Hout

1 is antipodal to the original uncontaminated mean
of group 1 (panel a), orthogonal mean of Hout

1 to the original uncontaminated mean
of group 1 (panel b), mean shift outlier model (panel c), mislabeled data (panel d).
The black and red points refer to the two main groups (contaminated group in black),
while the blue points represent the contaminating data.

contamination in our setting.

(f) Two cases of mean resultant length for the group which is not contaminated (H2):

ρ2 ∈ {0.8, 0.9} (c2 ∈ {5, 10}).

Conditions (d), (e) and (f) are considered for the three Bayes classi�ers (maximum

likelihood and robust) as well. Hence, the complexity of the design is (2× 3× 4× 3× 2 + 3×

3× 4× 3× 2 + 3× 4× 3× 2)= 432 simulation conditions.

In order to preserve the numerical stability of the methods, we use a multiple holdouts

simulation generating scheme. Under each simulation condition, 150 training sets of size 1000

are generated (500 from each group). For each of them, testing sets made up of 500 obser-

vations (250 from each Hi) are generated and the obtained misclassi�cation rate is recorded.

Furthermore, under contamination, each training set from H1 is contaminated by 10 di�erent

contamination sets generated according to Hc.ing (each set of size 500 · ε), and the average

misclassi�cation rate over the 10 contamination sets is recorded.

Under the mislabeled data model, we will have 500 · (1 + ε21) observations in group 1,

and 500·(1−ε21) observations in group 2. As a matter of fact, this implies that the two groups

have the same size under no contamination, they will di�er in size in case of contaminated

data.



Distance-based directional depth classi�ers: a robustness study 57

4.5.3 Simulation results

The performance of each classi�er is evaluated by looking at the empirical distribution of the

misclassi�cation rate (the proportion of misclassi�ed observations in each replicated sample),

for 150 replications. In order to illustrate and discuss the obtained results, the misclassi�cation

rate distribution under each setting is summarized through boxplots (Figure 4.3-4.6).

Within each contamination scheme, we keep the same scale on the vertical axis. For the

sake of comparison, a line corresponding to the average misclassi�cation rate of the theoretical

Bayes under no contamination in each simulation scheme has been superimposed in each plot.

Results are discussed for all the contamination cases in detail.

Comparison of depth-based classi�ers. Under no contamination, the DD-classi�er provides

the overall best performance with respect to the max-depth and depth distribution classi�ers

(Figure 4.3-4.6, �rst column of plots). If outliers are present, the overall better performance is

still achieved by the DD-classi�er expect for the case of orthogonality. In this latter case, we

observe that the DD-classi�er is not the best if associated with a linear separating function.

(Figure 4.4, middle and right panels).

Worth of note is the case of the mean shift outlier model, under no contamination, when

H1 and H2 di�er only in location (Figure 4.5, bottom left corner plot, Appendix A, Table

A.6): the performance of all the depth-based classi�ers is equivalently good and comparable

to the Bayes rule. This result seems to suggest that the optimality property of the cosine

max-depth and the cosine depth distribution classi�ers (Vencálek et al., 2020) holds for the

DD-classi�er and for the arc and chord depth functions as well.

Under the same scheme, when H1 and H2 di�er in both location and in concentration

(Figure 4.5, upper left corner plot), the behavior of all the classi�ers is still comparable. This

is probably related to the fact that data are separated and not too sparse on the sphere within

this scheme, and hence they can be fairly discriminated.

Within the case of mislabeled data (Figure 4.6, Appendix A, Table A.7-8), the less

robust clearly appears to be the depth distribution classi�er (Figure 4.6, right panels).

E�ect of contamination. The e�ect of contamination depends on the setting and on the

classi�er. In case of antipodality and orthogonality, the contamination level has substantially

no e�ect on the classi�er performances.

In case of mean shift model, we observe an impact of the contamination level on the

empirical Bayes based on the maximum likelihood estimates, while the Bayes based on the
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Figure 4.3: Antipodality. Under ε = 0.30, the mean of the contaminated distribution
Hout

1 is antipodal to the mean of the original uncontaminated distribution H1. Boxplots
of misclassi�cation rates of the empirical Bayes, max-depth (MaxD), depth distribution
(Ddist) and DD-classi�ers (DD). Plots by column: no contamination (ε = 0), contam-
ination (ε = 10%, 30%). Plots by row: concentration of the uncontaminated group H2

c2 = 5 (ρ2 = 0.8), c2 = 10 (ρ2 = 0.9). Within each plot each graph-box refers to the
empirical Bayes, MaxD, Ddist and DD classi�ers (according to the considered classi�-
cation rules in the DD-space, i.e. lda, qda and knn), respectively. The blue box-plot
refers to the empirical Bayes, the sky blue box-plot refers to the robust Bayes type 0
estimators and the cadet blue box-plot refers to the robust Bayes type 1 estimators.
The orange box-plots refer to the cosine depth, the green ones to the chord depth and
the yellow ones to the arc distance depth. The horizontal dashed red line gives the
average misclassi�cation rate of the theoretical Bayes under no contamination.

Kato and Eguchi type 0 estimator seems to be the most robust solution. However, we should

note that di�erences in the average mislcassi�cation rates are negligible in absolute value

between the di�erent empirical Bayes and the DD-plot classi�ers for any contamination level.

In case of mislabeled data, a slight e�ect of contamination is observed for all the clas-
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Figure 4.4: Orthogonality. Under ε = 0.30, the mean of the contaminated distribution
Hout

1 is orthogonal to the mean of the original uncontaminated distribution H1. Box-
plots of misclassi�cation rates of the empirical Bayes, max-depth (MaxD), depth dis-
tribution (Ddist) and DD-classi�ers (DD). Plots by column: no contamination (ε = 0),
contamination (ε = 10%, 30%). Plots by row: concentration of the uncontaminated
group H2 c2 = 5 (ρ2 = 0.8), c2 = 10 (ρ2 = 0.9). Within each plot each graph-box refers
to the empirical Bayes, MaxD, Ddist and DD classi�ers (according to the considered
classi�cation rules in the DD-space, i.e. lda, qda and knn), respectively. The blue box-
plot refers to the empirical Bayes, the sky blue box-plot refers to the robust Bayes type
0 estimators and the cadet blue box-plot refers to the robust Bayes type 1 estimators.
The orange box-plots refer to the cosine depth, the green ones to the chord depth and
the yellow ones to the arc distance depth. The horizontal dashed red line gives the
average misclassi�cation rate of the theoretical Bayes under no contamination.

si�ers.

E�ect of depth functions. The misclassifcation rates of the cosine depth, chord depth and arc

distance depth classi�ers are more or less comparable in each of the examined schemes. The

performance of the depth-based classi�ers does not seem to be mainly related to the choice
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Figure 4.5: Mean shift outlier model. The original uncontaminated distribution H1 and
the contaminating distribution Hc.ing di�er only for their directional mean. Means are
115° far from each other: this yields the maximum achievable impact on the mean of the
original uncontaminated distribution H1 under ε = 0.30. Boxplots of misclassi�cation
rates of the empirical Bayes, max-depth (MaxD), depth distribution (Ddist) and DD-
classi�ers (DD). Plots by column: no contamination (ε = 0), contamination (ε =
10%, 30%). Plots by row: concentration of the uncontaminated group H2 c2 = 5
(ρ2 = 0.8), c2 = 10 (ρ2 = 0.9). Within each plot each graph-box refers to the empirical
Bayes, MaxD, Ddist and DD classi�ers (according to the considered classi�cation rules
in the DD-space, i.e. lda, qda and knn), respectively. The blue box-plot refers to the
empirical Bayes, the sky blue box-plot refers to the robust Bayes type 0 estimators
and the cadet blue box-plot refers to the robust Bayes type 1 estimators. The orange
box-plots refer to the cosine depth, the green ones to the chord depth and the yellow
ones to the arc distance depth. The horizontal dashed red line gives the average
misclassi�cation rate of the theoretical Bayes under no contamination.

of the depth function in these settings.

E�ect of the separating function within the DD-plot. The DD-classi�er associated with the

quadratic discriminant function (qda) and the k-nearest neighbors classi�cation rule (knn)
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Figure 4.6: Mislabeled data. A percentage ε21 of observations from the uncontaminated
distribution H2 is added up to the original uncontaminated distribution H1. Boxplots
of misclassi�cation rates of the empirical Bayes, max-depth (MaxD), depth distribution
(Ddist) and DD-classi�ers (DD). Plots by column: no contamination (ε = 0), contam-
ination (ε = 10%, 30%). Plots by row: concentration of the uncontaminated group H2

c2 = 5 (ρ2 = 0.8), c2 = 10 (ρ2 = 0.9). Within each plot each graph-box refers to the
empirical Bayes, MaxD, Ddist and DD classi�ers (according to the considered classi�-
cation rules in the DD-space, i.e. lda, qda and knn), respectively. The blue box-plot
refers to the empirical Bayes, the sky blue box-plot refers to the robust Bayes type 0
estimators and the cadet blue box-plot refers to the robust Bayes type 1 estimators.
The orange box-plots refer to the cosine depth, the green ones to the chord depth and
the yellow ones to the arc distance depth. The horizontal dashed red line gives the
average misclassi�cation rate of the theoretical Bayes under no contamination.

generally outperform or perform equivalently to the case of the linear discriminant analysis

(lda) separating function (see Appendix A).

E�ect of mean resultant length of the uncontaminated distribution H2. When the mean resul-

tant length of the group from H2 is lower, the misclassi�cation rate is higher. This is because
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the higher is the mean resultant length, the more concentrated are the data within the group,

and thus they can be better discriminated with respect to the �rst group, regardless of the

e�ect of the contamination on this latter (Figure 4.3-4.5).

Comparison with the empirical Bayes classi�ers. Under no contamination, the performance of

the DD-classi�er is equivalent to the performance of the empirical maximum likelihood Bayes

and robust Bayes classi�ers. In case of contamination, the DD-classi�er is comparable to the

empirical Bayes classi�ers. In particular, under antipodality, orthogonality and mean shift

outlier model, the best overall performance is achieved by the empirical maximum likelihood

Bayes, robust Bayes and the DD classi�ers. Considering the case of mislabeled data, the DD-

classi�er and the empirical Bayes classi�ers also provide the overall best performance in terms

of average misclassi�cation rates. The robust empirical Bayes classi�ers show a comparable

behavior to the empirical (maximum likelihood) Bayes and to the DD-classi�er in almost all

the settings and they are slightly better within the case of mean shift outlier model (although

not substantially better).

4.6 Final remarks

The unique feature of directional data asks for dedicated studies. In particular, robustness of

directional methods needs to be evaluated apart.

To exemplify, in the standard linear data domain, the further are the outliers from

the data center, the larger is their impact on the estimate of the mean. In the directional

domain, if a bunch of anomalous data is located at the furthest point from the mean of the

uncontaminated data set (i.e. they are located at the point antipodal to the mean), their

e�ect in terms of bias on the directional mean estimate can be negligible, if not null (unless

outliers are in great proportion and much more concentrated than the uncontaminated data;

see the discussion in Section 4.3 in the present work).

For this reason, this work investigated the robustness of some directional depth-based

classi�ers under both class and attribute noise, a contribution not yet available in the liter-

ature. A comparison of the performance of the max-depth classi�er, the depth distribution

classi�er and the DD-classi�er (associated with di�erent separating functions) with respect to

the empirical Bayes rules was thus provided. For a further comparison, the empirical Bayes

was evaluated both under maximum likelihood and robust estimators of the parameters.

With that aim, this work also introduces and investigates three contamination schemes
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which are speci�c for the case of directional data under class noise. Under the �rst scheme,

the mean of the contaminated distribution is antipodal to the mean of the uncontaminated

distribution; under the second, the two directional means are orthogonal; under the third, we

have a directional mean shift outlier model.

The main �ndings of our study follow. When there is no contamination in the training

set, the DD-classi�er perform equivalently well with respect to the empirical Bayes classi�ers,

regardless of the choice of the depth function, and if the discriminant rule adopted within the

DD-plot is the quadratic or the knn separator. On the other hand, the DD-classi�er de�nitely

shows better performances with respect to the max-depth and the empirical depth classi�ers

(unless the distributions di�er only in location, where they perform equally well). This �rst

�nding may suggest as further work to investigate if the DD-classi�er enjoys any optimality

property under rotationally symmetric distributions.

In case of contamination, empirical results suggest the DD-classi�er has again merits

with respect to the max-depth and the depth distribution classi�ers. Furthermore, the DD-

classi�er is fairly comparable with respect to the empirical Bayes rule both in terms of center

and variability of the misclassi�cation rate distributions (the center being the average misclas-

si�cation rate). That is, DD and Bayes classi�ers enjoy a robustness level which is generally

equivalent both in terms of average than in terms of reliability of the results.

More speci�cally, in the presence of outliers in the training set, the DD-classi�er and the

empirical Bayes yield the best in terms of average misclassi�cation rate within all the examined

class attribute contamination settings (antipodality, orthogonality, mean shift outlier model).

These results are consistent with those obtained in the linear domain. Li et al. (2012) found

indeed that the empirical Bayes and the DD-classi�er are more robust if compared with a

broad range of classi�ers for Euclidean data. The same level of robustness is not achieved by

the max-depth and the depth distribution classi�ers.

In case of mislabeled data, the best classi�cation accuracy is still obtained by the DD

and the Bayes classi�er, while the performance of the depth distribution deteriorates in the

presence of a high level of class noise. The max-depth seems to be less a�ected by mislabeling

under some scenarios, although it is not in general a real competitor to the other depth-based

classi�ers.

As for the depth function to be adopted, the choice is a minor issue also in case of

contamination. The quadratic discriminant rule and the k-nn should be preferred under

contamination as well.
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Finally, from a data analysis viewpoint, the following recommendations arise. If the

training data are not contaminated and they clearly follow some well known parametric di-

rectional distribution, then use the Bayes rule. If some attribute or class noise is suspected,

and the group directional distributions are known, use the Bayes rule as well. If no information

about the distributions is available, use the DD-classi�er: it is a non-parametric technique

which works equally well under both contaminated and non-contaminated von Mises-Fisher,

probably not so badly under other distributional set up too.

On the other hand, the current study focused on the von Mises-Fisher distribution, the

main rotational symmetric distribution on the sphere. It would be de�nitely of interest to

investigate the robustness of depth-based classi�ers under non-rotational invariant contami-

nated and non-contaminated distributions. An issue which is left as further work.
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Directional supervised learning

through depth functions: an

application to ECG waves analysis

Abstract

Detecting cardiac arrhythmia is important to prevent sudden and untimely deaths.

Therefore, the present work investigates arrhythmias from Electrocardiography (ECG) waves.

Directional depth-based classi�ers are employed to predict the presence of cardiac arrhythmia.

A comparison of their performance with respect to the directional Bayes rule is provided.
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5.1 Introduction and motivations

Over many decades, linearization were used to explore spherical data by trying to circumvent

with their non-linear nature. Then, R. A. Fisher (1953) showed that linear approximations

hamper studying some speci�c phenomena such as the remanent magnetism in sedimentary

rocks. Thereafter, several studies have been dedicated to analyze directional data in an

appropriate way due to their distinctive properties (e.g. Mardia (1975); Jupp & Mardia

(1989)).

The use of directional statistical methods have been motivated by interesting appli-

cations in many �elds such as astronomy, bioinformatics, neurology, genetics, aeronautics,

medicine and machine learning. Here, we focus on the application of directional supervised

learning techniques to Electrocardiography (ECG) waves analysis. The aim is to �nd a func-

tion that assigns new patients to either the class of healthy or ill people, based on values

obtained from their ECG waves. To this end, the predictive variables in our problem are

not treated as linear continuous variables any more, but as directional variables measured in

angles.

Within the context of directional supervised classi�cation, new depth-based classi�ers

have been quite recently introduced: the max-depth classi�er (Pandolfo, Paindaveine, &

Porzio, 2018), the DD-classi�er (Pandolfo, D'Ambrosio, & Porzio, 2018) and the depth dis-

tribution classi�er (Demni et al., 2019). For these classi�ers, both optimality properties and

simulation results are available.

Vencálek et al. (2020) derived the conditions under which some of these classi�ers are

optimal in the Bayes sense. For instance, they found that the max-depth and the depth

distribution classi�ers are optimal if the underlying distributions are rotationally symmetric,

unimodal, di�er only in location, and gave equal prior probabilities.

Robustness properties of the max-depth, depth versus depth and depth distribution

classi�ers were investigated under di�erent contamination schemes in Demni et al. (2020). It

came out that the DD-classi�er performs better or equivalently to the empirical Bayes while

it outperforms the max-depth and the depth distribution classi�ers in the presence of noise.

What is still lacking is to evaluate how these depth-based directional classi�ers perform

on real data. This short note has thus the goal of starting ful�lling this gap. With that

aim, this work analyzes the performance of the max-depth, the depth versus depth, and the

depth distribution classi�ers on a real data set which is well known in the supervised learning
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literature. It refers to some arrhythmia data used to discriminate between healthy and ill

people. In our study, we focus on the directional predictors which comes from ECG waves.

The performance of such classi�ers is also compared with the performance of the directional

Bayes classi�er under the hypothesis of a von-Mises Fisher distribution.

This chapter is organized as follows. Section 5.2 presents the arrhythmia data set, a

description of the directional variables and the overall aim of the analysis. In section 5.3, we

brie�y present the mentioned depth-based classi�ers for directional data. Section 5.4 reports

results on the performance of the depth-based classi�ers when applied to the ECG waves

problem. In Section 5.5, some �nal remarks are o�ered to the reader.

5.2 The arrhythmia data set

Arrhythmia refers to irregular heartbeats, and it can be evaluated by looking at the electrical

activity of the heart, recorded through Electrocardiogram (ECG) waves. Analyzing ECG

waves can provide insights on heart health issues. Waves which can be in turn evaluated as

angular variables.

The arrhythmia data is one of the data sets available within the UCI Machine Learning

Repository (Frank & Asuncion, 2010). It reports the presence of di�erent types of cardiac-

arrhythmia from ECG as well as its absence. The original data set contains 452 patients

records described by 279 predictive variables (measurements, patient data and ECG record-

ing) and 16 classes: the �rst refers to normal ECG (healthy patients) while classes 2 to 15

correspond to di�erent types of arrhythmia and class 16 refers to the unclassi�ed patients.

5.2.1 Standard classi�cation methods for Cardiac Arrhythmia

Various Machine learning and data mining methods have been applied for the detection of

arrythmia through electrocardiograms (ECG). In this section, we review machine learning

methods for the diagnosis of cardiac arrythmia within the context of classi�cation.

For instance, Guvenir et al. (1997) proposed an inductive supervised classi�cation al-

gorithm which is based on the majority of votes among the class predictions made by each

feature. They showed that their proposed method provides better performance if compared

to other standard methods. Gao et al. (2005) developed a detection system for arrhythmia

based on a Bayesian Arti�cial Neural Network Classi�er which is able to deal with missing

feature values and unclassi�ed classes. A comparison with a wide range of classi�ers such
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as naive Bayes, decision trees, logistic regression and radial basis function networks has been

also provided.

W. Zuo et al. (2008) introduced a kernel weighted k-nearest neighbor classi�er for the

diagnosis of cardiac arrhythmia. They considered the multi-class classi�cation problem and

they showed their method outperforms both the naive Bayes classi�er and the one introduced

in Guvenir et al. (1997). An e�ective automated Arti�cial Neural Network based system has

been also suggested by Jadhav et al. (2010). They showed that the multilayer perceptron

(MLP) feedforward neural network model is able to ensure the true estimation of the complex

decision boundaries.

5.2.2 Directional classi�cation methods for Cardiac Arrhyth-

mia

Amongst the many, the studies which exploited the arrhythmia data while adopting directional

data techniques are considered here. All of them dealt with the waves as angular variables.

First, López-Cruz et al. (2015) proposed an extension to directional data of the naive

Bayes classi�er and the selective naive Bayes for von-Mises and von-Mises Fisher distributions.

They showed their superiority with respect to other versions of the naive Bayes.

Then, Fernandes & Cardoso (2016) introduced a discriminative binary classi�er for

mixed data (linear and angular) and they showed that their method is competitive to tradi-

tional classi�ers. More recently, Pernes et al. (2019) proposed several versions of directional

support vector machines that supports both angular and linear predictors and compared them

to several directional classi�ers.

The best average misclassi�cation rate for the arrhythmia data is 0.209 and it was

obtained in Pernes et al. (2019) by a directional logistic regression model. However, we note

that the performances reported within these three papers are not directly comparable, given

that di�erent simulation settings have been adopted within each of them. Furthermore, such

performances are not comparable with our case study results as well, where the focus is on

the discriminant power of the directional variables on their own.

5.2.3 Scope of the analysis and variables description

In line with the previous mentioned studies (López-Cruz et al., 2015; Fernandes & Cardoso,

2016; Pernes et al., 2019), unclassi�ed samples were removed and the study goal was trans-
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Number of dir. variables Classes Number of obs. Number of obs. per class

4 2 430
class 1, normal: 245

class 2, arrhythmia: 185

Table 5.1: Summary of the main characteristics of the data used in this work, including
the number of directional (dir.) features and the number of observations (obs.) per
class (class 1: normal vs class 2: arrhythmia).

formed into a binary classi�cation problem (normal vs.arrhythmia).

As predictors, the four angular variables characterizing ECG waves are considered.

That is, the aim of our study is to discriminate between healthy and non-healthy patients

with arrhythmia based on the values obtained from their ECG waves. Table 5.1 summarizes

the number of directional variables, the number of classes and the number of observations per

class of the evaluated dataset.

The angular variables characterize the vector angles from the front plane of four ECG

waves and they are measured in degrees in the original data set. The P-wave re�ects the

atrial depolarization, the QRS-wave represents the depolarization of the ventricles, the T-

wave describes the rapid re-polarization of contractile cells while the QRST-wave corresponds

to the global ventricular re-polarization.

By looking at the rose diagram of each observed distribution separately for the groups

of healthy and ill people, we saw they are unimodal. Hence, their distribution can be properly

investigated by means of circular boxplots (Buttarazzi et al., 2018), which are here represented

in Figure 5.1.
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Figure 5.1: Circular box-plots of the angular variables exploited in this study. By
column: healthy patients (left) and patients with arrhythmia (right). By row: QRS-
wave, T-wave, P-wave and QRST-wave.

We note that the distribution of the QRS-wave angles span over more than half a

circle, while all the others have angles in (0, π). As a consequence, they can be mapped
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into a 4-dimensional hyper-sphere embedded in a 5D space. Directional supervised learning

procedures act directly on such a hyper-sphere.

Some of the observed marginal distributions are substantially symmetric, others are

clearly asymmetrically distributed (e.g. the P-wave angles and, to a certain extent, the QRST

waves). Looking at di�erences between the two groups, the T-waves seems to have the higher

marginal ability to discriminate.

5.3 Directional depth-based supervised learning tech-

niques

In this section, the three main directional depth-based supervised classi�cation methods are

brie�y reviewed: the max-depth classi�er, the depth versus depth classi�er (DD-classi�er)

and the depth distribution classi�er.

Considering K empirical distributions Ĥi, i = 1, ..,K, the directional max-depth clas-

si�er is given by

classmax(x) := argmaxiD(x; Ĥi),

where x ∈ S(q−1) is a new observation to be classi�ed and,D(x, Ĥi), i = 1, ..,K is the empirical

depth of x with respect to the directional empirical distributions Ĥ1, .., ĤK , respectively.

The directional DD-classi�er is a generalization of the max-depth classi�er and it is

given by

classDD(x) := argmax
i

r(D(x; Ĥi)), (5.1)

where r(.) is a real increasing function which has the aim of well separate points in the

depth versus depth space (DD-plot). Di�erent choices have been considered for r(.). Li et al.

(2012) suggested to consider a polynomial discriminating function, whose degree have to be

estimated, while Mosler & Mozharovskyi (2017) adopted a knn decision rule.

The directional depth distribution classi�er is given by

classdd(x) := argmaxi FD(x, Ĥi),

with

FD(x, Ĥi) := P (D(X, Ĥi) ≤ D(x, Ĥi)),
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where D(x, Ĥi), i = 1, ..,K is the empirical depth of x with respect to the empirical distri-

butions Ĥ1, .., ĤK , respectively, and hence FD(., Ĥi) is the cdf of the depth function under

Ĥi.

For each classi�er, a depth function must be adopted. Here, distance-based depth

functions are considered. They are de�ned as follows (Pandolfo, Paindaveine, & Porzio, 2018):

� The cosine depth: Dcos(x,H) = 2− EH [(1− x′X)];

� The arc distance depth: Darc(x,H) = π − EH [arccos(x′X)];

� The chord depth: Dchord(x,H) = 2− EH [
√

2(1− x′X)].

Here, x ∈ S(q−1) is a point whose depth is evaluated with respect to the directional

distribution H, E[.] is the expected value, and X is a random variable from H. The empirical

depth is obtained by replacing H by Ĥ for each depth function.

Finally, for the sake of completeness, we recall how the empirical Bayes classi�er is

de�ned. We have:

classBayes(x) := argmaxi ĥi(x)pi

where pi is the prior probability corresponding to the distribution Hi, i = 1, ..,K, and ĥi()

is the estimated assumed density for the i-th group. In directional supervised learning, the

Bayes classi�ers has been used with the hi()'s being von Mises-Fisher densities with di�erent

location and concentration parameters (López-Cruz et al., 2015).

5.4 Performance of depth-based classi�ers on ECG-

waves

As discussed, the aim of this study is to evaluate the performance of depth-based classi�ers

on a set of real data arising from an ECG analysis. With that goal, the angular variables

were transformed to their Euclidean coordinates (units vectors) and a simulation study was

performed. In line with the existing literature (López-Cruz et al., 2015; Fernandes & Cardoso,

2016; Pernes et al., 2019), a 3-fold strati�ed cross-validation method where the percentage of

samples for each class is preserved was considered. The experiment was repeated 100 times.

Ten di�erent possible solutions were evaluated and compared. Each of the three men-

tioned classi�ers was combined with three di�erent directional depth functions (cosine, chord,
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Classi�er AMR Average macro F1-score
Empirical Bayes 0.36 0.63

Max-depth
cosine 0.40 0.60
chord 0.39 0.60

arc-distance 0.42 0.52

Depth distribution
cosine 0.36 0.63
chord 0.35 0.64

arc-distance 0.35 0.63

DD-plot with knn
cosine 0.35 0.64
chord 0.33 0.67

arc-distance 0.34 0.66

Table 5.2: Average misclassi�cation rate (AMR) and average macro F1-score of the
Bayes, max-depth, depth distribution and DD-classi�ers when associated to the cosine,
chord, and arc distance depth functions. Best achieved results are highlighted in bold.

arc-distance), and all of them were compared against the empirical Bayes classi�er under the

von-Mises Fisher assumption.

For the r(.) function in Eq.5.1, the k-Nearest Neighborhood (knn) discriminant rule

has been adopted in line with (Pandolfo, Paindaveine, & Porzio, 2018; Demni et al., 2020),

with the tuning parameter k chosen by cross validation. The performance of the classi�ers

was evaluated by means of the misclassi�cation rate which is the number of misclassi�ed

observations over the sample size in each replicated sample, and by the macro F1-score which

is the unweighted mean value of the individual F1-scores of each class.

The distribution of the misclassi�cation rates obtained by the max-depth, depth distri-

bution, DD and Bayes classi�ers when associated with di�erent distance based-depth functions

are here provided through box-plots (Figure 5.2) and summarized through the average mis-

classi�cation rates (Table 5.2). The macro F1-scores of the directional classi�ers are also given

in Table 5.2.

Although the two classes are imbalanced, the average macro F1-score and the average

accuracy of the classi�ers are consistent with each other: the best classi�er in terms of average

accuracy is the best classi�er in terms of average macro F1-score too (Table 5.2).
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Figure 5.2: Box-plots of misclassi�cation rates (MR) of the Bayes, max-depth (MD),
depth distribution (Dd) and DD-classi�ers (DD). In each graph-box (excluding the
Bayes), the most left box-plot refers to the cosine depth, the middle one to the chord
depth and the most right to the arc distance depth. The best performance is achieved
by the DD-classi�er associated with the chord depth.

The DD-classi�er achieves the best overall performance in terms of average misclassi�ca-

tion rate (Figure 5.2, most right graph-box). Furthermore, it performs better than the Bayes

rule independently from the choice of the depth function. The depth distribution and the DD

classi�ers performs equivalently to the empirical Bayes classi�er (if not slightly better). The

worst performance is given by the max-depth classi�er.

In general, the choice of the depth function seems not to be particularly in�uential on

the performance of the three classi�ers, although some small di�erences arise. In addition, by

looking at the confusion matrix of the classi�ers, it appears that it is in general more di�cult

to classify patients with arrhythmia. The higher proportion of misclassi�ed observations arises

indeed from class 2 (observations are wrongly assigned to class 1 while they are coming from

class 2).
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5.5 Final remarks

In this chapter, directional distance-based depth classi�ers were applied to some arrhythmia

data in order to distinguish between the presence or absence of cardiac diseases. We inves-

tigated the performance of the max-depth, depth distribution, depth versus depth classi�ers

and the Bayes rule. Angular variables arising from ECG recordings were considered.

In directional supervised learning, the standard Bayes rule assumes data in each group

come from a von-Mises Fisher distribution. If so, the Bayes rule yields the best available

discriminant procedure. On the other hand, real data not necessarily ful�ll such or any other

parametric assumption. This is why it is always of interest to compare the performance of

new methods against the Bayes rule on speci�c �elds of application.

On the considered data, we had that the DD-classi�er largely outperforms the max-

depth and it performs better than the depth distribution and the empirical Bayes classi�er.

On the other hand, the performance of the depth distribution classi�er is equivalent to the

Bayes rule, and the max-depth classi�er de�nitely provides the worst behavior over all the

considered methods.

As further research, we see the necessity of developing new depth-based methods which

combine both linear and directional variables to fully exploit the information available within

the data set. It would be also of interest to test the discussed directional supervised learning

methods on other real data applications within this �eld.
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A supervised classi�cation method exploits a labeled training data set to classify a new data

point by assigning it to one of the labeled groups. With that aim, given two or more labeled

data groups, data depth functions can be adopted for solving classi�cation tasks. These

functions measure the centrality of a data point with respect to each group.

This work analyzed the use of depth functions to obtain classi�ers within a directional

domain. Directional observations are data points lying on the boundary of circles, spheres and

their extensions. For this kind of data, standard statistical techniques are not suitable. Within

the following, we summarize our main contributions and we report the main perspectives and

future works.

Main contributions

This work contributes to the existing literature in many ways. First, it introduces a new

directional depth distribution classi�er based on the cumulative distribution of the cosine

depth function. Under di�erent scenarios, experimental results suggest that the cosine depth

distribution classi�er is an improvement over the existing max-depth classi�er. Both classi�ers

are well suited for multiple classes problems.

The second contribution concerns studying the optimality of the introduced cosine depth

distribution and the cosine max-depth classi�ers. Conditions under which the aforementioned

classi�ers are optimal in the sense of the Bayes rule are discussed. It is formally proved that

both classi�ers achieve Bayes optimality when group distributions are rotationally symmetric,

unimodal, have equal priors and di�er only in location. It is also proved that the cosine max-

depth classi�er is optimal when distributions di�er in both location and dispersion and group

distributions belong to a speci�c distribution family.

Furthermore, robustness of directional depth-based supervised classi�ers is deeply in-
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vestigated. According to the recent literature, two contamination sources are considered:

attribute and label noise. For the �rst case, we examine conditions under which the mean of

the contaminated distribution is antipodal or orthogonal to the mean of the uncontaminated

distribution. The directional mean shift outlier model is also considered. Through an exten-

sive simulation study, performances in terms of robustness of the max-depth classi�er, the

DD-classi�er and the depth distribution classi�er were compared against the standard and

some robust Bayes classi�ers. We adopted three distance depth functions to be associated

with the classi�ers. Results show that the directional DD-classi�er performs well when dealing

with noise in many di�erent settings. Some recommendations from a data analysis point of

view were also provided.

Finally, a new application of the aforementioned methods was considered. Directional

depth based-classi�ers were exploited to identify groups of patients based on their Electro-

cardiogram waves. Results show that the DD-classi�er yields the best in term of average

misclassi�cation rate.

Future works

This work opens many and diverse perspectives for future research. From a theoretical point

of view, it would be of interest to study properties and optimality conditions of the directional

DD-classi�er. Our empirical results suggest that it can achieve Bayes optimality under a large

class of distributions.

It would be also of interest to assess the performance of depth-based classi�ers not

only when they are combined with distance-based depth functions. Other directional depth

functions are indeed available. However, they have not been considered here because of their

prohibitive computational cost. In case new algorithms should be made available, their adop-

tion can even improve the achieved performances. Another line of research is to investigate

the robustness of depth-based classi�ers under non-rotational symmetric distributions, such

as the Fisher-Bingham distributions.

Finally, while an extremely recent attempt is available in Pandolfo & D'Ambrosio (2021),

investigating the performance of directional depth-based classi�ers on some other real data

applications is certainly worthy. On the other hand, the application examined in this thesis

work suggests the need to develop new depth-based classi�ers that are able to deal with

mixed data (linear and directional variables): emerging �eld with many possible potential
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applications.



Appendix A

In this Appendix, we report the average misclassi�cation rates of the empirical Bayes classi�ers

(maximum likelihood (ML), robust type 0, robust type 1 estimators), the max-depth, the

depth distribution and the DD classi�ers (according to the considered classi�cation rules in

the DD-space, i.e. lda, qda and knn), respectively, associated with the cosine depth, the chord

and the arc distance depths for the robustness study conducted in Chapter 4. We consider

three outlier contamination scenarios: antipodality and orthogonality of the contaminated

distribution mean, and the directional mean shift outlier model and one mislabeled data case.
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Table A.1: Antipodality. Average misclassi�cation rates AMR of the empirical Bayes
(maximum likelihood (ML), robust type 0, robust type 1 estimators), the max-depth,
the DD-classi�er (according to the considered classi�cation rules in the DD-space, i.e.
lda, qda and knn) and the depth distribution associated with the cosine depth, the
chord and the arc distance depths when the mean resultant length of the uncontami-
nated group H2 ρ2 = 0.8 (c2 = 5), best achieved results for each contamination level
are in bold.

Setup
contamination level

ρ2 = 0.8, c2 = 5 0% 10% 30%

Empirical Bayes ML 0.157 0.163 0.168

Robust type 0 0.157 0.163 0.170

Robust type 1 0.157 0.163 0.170

Max-depth Cosine 0.234 0.250 0.267

Chord 0.216 0.231 0.246

Arc distance 0.232 0.250 0.268

Depth distribution Cosine 0.227 0.249 0.267

Chord 0.227 0.244 0.265

Arc distance 0.227 0.249 0.267

DD-plot with lda Cosine 0.165 0.173 0.179

Chord 0.159 0.164 0.171

Arc distance 0.163 0.169 0.177

DD-plot with qda Cosine 0.159 0.166 0.165

Chord 0.158 0.165 0.169

Arc distance 0.159 0.166 0.166

DD-plot with knn Cosine 0.161 0.167 0.168

Chord 0.160 0.166 0.167

Arc distance 0.162 0.166 0.167
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Table A.2: Antipodality. Average misclassi�cation rates AMR of the empirical Bayes
(maximum likelihood (ML), robust type 0, robust type 1 estimators), the max-depth,
the DD-classi�er (according to the considered classi�cation rules in the DD-space, i.e.
lda, qda and knn) and the depth distribution associated with the cosine depth, the
chord and the arc distance depths when the mean resultant length of the uncontami-
nated group H2 ρ2 = 0.9 (c2 = 10), best achieved results for each contamination level
are in bold.

Setup
contamination level

ρ2 = 0.9, c2 = 10 0% 10% 30%

Empirical Bayes ML 0.095 0.095 0.098

Robust type 0 0.095 0.095 0.099

Robust type 1 0.095 0.095 0.099

Max-depth Cosine 0.235 0.241 0.259

Chord 0.212 0.216 0.232

Arc distance 0.233 0.240 0.261

Depth distribution Cosine 0.199 0.230 0.239

Chord 0.198 0.220 0.231

Arc distance 0.199 0.229 0.238

DD-plot with lda Cosine 0.131 0.133 0.140

Chord 0.107 0.107 0.116

Arc distance 0.120 0.120 0.129

DD-plot with qda Cosine 0.096 0.096 0.099

Chord 0.097 0.097 0.101

Arc distance 0.096 0.096 0.099

DD-plot with knn Cosine 0.100 0.100 0.104

Chord 0.099 0.099 0.101

Arc distance 0.100 0.100 0.102
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Table A.3: Orthogonality. Average misclassi�cation rates AMR of the empirical Bayes
(maximum likelihood (ML), robust type 0, robust type 1 estimators), the max-depth,
the DD-classi�er (according to the considered classi�cation rules in the DD-space, i.e.
lda, qda and knn) and the depth distribution associated with the cosine depth, the
chord and the arc distance depths when the mean resultant length of the uncontami-
nated group H2 ρ2 = 0.8 (c2 = 5), best achieved results for each contamination level
are in bold.

Setup
contamination level

ρ2 = 0.8, c2 = 5 0% 10% 30%

Empirical Bayes ML 0.157 0.160 0.169

Robust type 0 0.157 0.160 0.171

Robust type 1 0.157 0.160 0.171

Max-depth Cosine 0.234 0.240 0.254

Chord 0.216 0.225 0.243

Arc distance 0.232 0.239 0.253

Depth distribution Cosine 0.227 0.187 0.167

Chord 0.227 0.187 0.164

Arc distance 0.227 0.186 0.168

DD-plot with lda Cosine 0.165 0.172 0.187

Chord 0.159 0.163 0.170

Arc distance 0.163 0.170 0.185

DD-plot with qda Cosine 0.159 0.163 0.169

Chord 0.158 0.160 0.172

Arc distance 0.159 0.162 0.170

DD-plot with knn Cosine 0.161 0.164 0.170

Chord 0.160 0.163 0.168

Arc distance 0.162 0.164 0.169
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Table A.4: Orthogonality. Average misclassi�cation rates AMR of the empirical Bayes
(maximum likelihood (ML), robust type 0, robust type 1 estimators), the max-depth,
the DD-classi�er (according to the considered classi�cation rules in the DD-space, i.e.
lda, qda and knn) and the depth distribution associated with the cosine depth, the
chord and the arc distance depths when the mean resultant length of the uncontami-
nated group H2 ρ2 = 0.9 (c2 = 10), best achieved results for each contamination level
are in bold.

Setup
contamination level

ρ2 = 0.9, c2 = 10 0% 10% 30%

Empirical Bayes ML 0.095 0.095 0.101

Robust type 0 0.095 0.095 0.103

Robust type 1 0.095 0.095 0.102

Max-depth Cosine 0.235 0.241 0.251

Chord 0.212 0.216 0.235

Arc distance 0.233 0.240 0.250

Depth distribution Cosine 0.199 0.230 0.105

Chord 0.198 0.220 0.102

Arc distance 0.199 0.229 0.107

DD-plot with lda Cosine 0.131 0.133 0.159

Chord 0.107 0.107 0.109

Arc distance 0.120 0.120 0.140

DD-plot with qda Cosine 0.096 0.096 0.100

Chord 0.097 0.097 0.101

Arc distance 0.096 0.096 0.101

DD-plot with knn Cosine 0.100 0.100 0.102

Chord 0.099 0.098 0.101

Arc distance 0.100 0.100 0.102
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Table A.5: Mean shift outlier model. Average misclassi�cation rates AMR of the
empirical Bayes (maximum likelihood (ML), robust type 0, robust type 1 estimators),
the max-depth, the DD-classi�er (according to the considered classi�cation rules in
the DD-space, i.e. lda, qda and knn) and the depth distribution associated with the
cosine depth, the chord and the arc distance depths when the mean resultant length
of the uncontaminated group H2 ρ2 = 0.8 (c2 = 5), best achieved results for each
contamination level are in bold.

Setup
contamination level

ρ2 = 0.8, c2 = 5 0% 10% 30%

Empirical Bayes ML 0.028 0.032 0.038

Robust type 0 0.028 0.028 0.029

Robust type 1 0.028 0.028 0.032

Max-depth Cosine 0.039 0.034 0.037

Chord 0.037 0.033 0.033

Arc distance 0.038 0.033 0.035

Depth distribution Cosine 0.031 0.036 0.046

Chord 0.031 0.035 0.042

Arc distance 0.031 0.035 0.043

DD-plot with lda Cosine 0.031 0.031 0.036

Chord 0.030 0.031 0.035

Arc distance 0.030 0.031 0.035

DD-plot with qda Cosine 0.028 0.032 0.037

Chord 0.028 0.031 0.036

Arc distance 0.029 0.031 0.036

DD-plot with knn Cosine 0.029 0.031 0.038

Chord 0.029 0.031 0.035

Arc distance 0.029 0.030 0.037
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Table A.6: Mean shift outlier model. Average misclassi�cation rates AMR of the
empirical Bayes (maximum likelihood (ML), robust type 0, robust type 1 estimators),
the max-depth, the DD-classi�er (according to the considered classi�cation rules in
the DD-space, i.e. lda, qda and knn) and the depth distribution associated with the
cosine depth, the chord and the arc distance depths when the mean resultant length
of the uncontaminated group H2 ρ2 = 0.9 (c2 = 10), best achieved results for each
contamination level are in bold.

Setup
contamination level

ρ2 = 0.9, c2 = 10 0% 10% 30%

Empirical Bayes ML 0.009 0.011 0.015

Robust type 0 0.009 0.009 0.010

Robust type 1 0.009 0.010 0.012

Max-depth Cosine 0.009 0.010 0.028

Chord 0.009 0.010 0.019

Arc distance 0.009 0.010 0.024

Depth distribution Cosine 0.009 0.023 0.030

Chord 0.010 0.023 0.024

Arc distance 0.010 0.023 0.026

DD-plot with lda Cosine 0.009 0.010 0.015

Chord 0.009 0.010 0.012

Arc distance 0.009 0.010 0.013

DD-plot with qda Cosine 0.009 0.011 0.013

Chord 0.009 0.011 0.012

Arc distance 0.009 0.011 0.013

DD-plot with knn Cosine 0.010 0.010 0.013

Chord 0.010 0.010 0.012

Arc distance 0.010 0.010 0.012
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Table A.7: Mislabeled case. Average misclassi�cation rates AMR of the empirical Bayes
(maximum likelihood (ML), robust type 0, robust type 1 estimators), the max-depth,
the DD-classi�er (according to the considered classi�cation rules in the DD-space, i.e.
lda, qda and knn) and the depth distribution associated with the cosine depth, the
chord and the arc distance depths when the mean resultant length of the uncontami-
nated group H2 ρ2 = 0.8 (c2 = 5), best achieved results for each contamination level
are in bold.

Setup
contamination level

ρ2 = 0.8, c2 = 5 0% 10% 30%

Empirical Bayes ML 0.157 0.159 0.162

Robust type 0 0.157 0.159 0.162

Robust type 1 0.157 0.159 0.162

Max-depth Cosine 0.234 0.236 0.235

Chord 0.216 0.219 0.219

Arc distance 0.232 0.235 0.234

Depth distribution Cosine 0.227 0.280 0.374

Chord 0.227 0.287 0.406

Arc distance 0.227 0.281 0.381

DD-plot with lda Cosine 0.165 0.173 0.179

Chord 0.159 0.159 0.204

Arc distance 0.163 0.160 0.205

DD-plot with qda Cosine 0.159 0.160 0.163

Chord 0.158 0.161 0.170

Arc distance 0.159 0.160 0.165

DD-plot with knn Cosine 0.161 0.163 0.213

Chord 0.160 0.164 0.211

Arc distance 0.162 0.164 0.214
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Table A.8: Mislabeled case. Average misclassi�cation rates AMR of the empirical Bayes
(maximum likelihood (ML), robust type 0, robust type 1 estimators), the max-depth,
the DD-classi�er (according to the considered classi�cation rules in the DD-space, i.e.
lda, qda and knn) and the depth distribution associated with the cosine depth, the
chord and the arc distance depths when the mean resultant length of the uncontami-
nated group H2 ρ2 = 0.9 (c2 = 10), best achieved results for each contamination level
are in bold.

Setup
contamination level

ρ2 = 0.9, c2 = 10 0% 10% 30%

Empirical Bayes ML 0.095 0.095 0.099

Robust type 0 0.095 0.095 0.100

Robust type 1 0.095 0.095 0.100

Max-depth Cosine 0.235 0.232 0.231

Chord 0.212 0.210 0.210

Arc distance 0.233 0.231 0.229

Depth distribution Cosine 0.199 0.284 0.388

Chord 0.198 0.304 0.440

Arc distance 0.199 0.290 0.412

DD-plot with lda Cosine 0.131 0.113 0.117

Chord 0.107 0.097 0.121

Arc distance 0.120 0.104 0.123

DD-plot with qda Cosine 0.096 0.096 0.101

Chord 0.097 0.099 0.108

Arc distance 0.096 0.097 0.105

DD-plot with knn Cosine 0.100 0.100 0.121

Chord 0.099 0.099 0.124

Arc distance 0.100 0.100 0.124
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In this Appendix, the main R functions which were used within the thesis are reported. For

completeness, some of the codes were reproduced. Thanks are due to Giuseppe Pandolfo for

providing the cosine depth, the chord depth and the arc distance depth functions as well as

to Davide Buttarazzi for sharing his function to draw the spherical density on the sphere.

Code details in R language

R code to draw data on the circle and their corresponding mean direction

1 l i b r a r y ( c i r c u l a r ) # i n s t a l l . packages (" c i r c u l a r " , dep=T)

2 #Generate 100 obs e rva t i on s from a von Mises d i s t r i b u t i o n

3 # with mean d i r e c t i o n p i /2 and concent ra t i on 5

4 x <= rvonmises (n=100 , mu=c i r c u l a r ( p i / 2) , kappa=5)

5 # Plot the data

6 p l o t (x , s tack=TRUE, b ins=150)

7 # Plot the c i r c u l a r mean

8 arrows . c i r c u l a r (mean . c i r c u l a r ( x ) )

R code to draw the Density plot of circular data

1 l i b r a r y ( c i r c u l a r ) # i n s t a l l . packages (" c i r c u l a r " , dep=T)

2 #Generate 100 obs e rva t i on s from a von Mises d i s t r i b u t i o n

3 # with mean d i r e c t i o n p i and concent ra t i on 5

4 y <= rvonmises (n=100 , mu=c i r c u l a r ( p i ) , kappa=5)

5 Density <= dens i ty ( ( y ) , bw=25)

6 p l o t ( Density , po in t s . p l o t=TRUE, xlim=c (=1.5 ,1) , c o l =2)



Appendix B 89

R code to draw Fisher-Bingham data on the sphere

1 r equ i r e ( simd ) # i n s t a l l . packages (" simd " , dep=T)

2 #Generate 1000 obse rva t i on s from a Kent d i s t r i b u t i o n

3 # with mean d i r e c t i o n (1 , 0 , 0 ) and concent ra t i on 80

4 X_bFB5=rFisherBingham (1000 , c (80 , 0 , 0 ) , c (0 ,30 ,=30) )

5

6 #Generate 1000 obse rva t i on s from a the extreme FB5 d i s t r i b u t i o n

7 # with mean d i r e c t i o n (1 , 0 , 0 ) and concent ra t i on 80

8 X_eFB5=rFisherBingham (1000 , c (80 , 0 , 0 ) , c (0 ,40 ,=40) )

9

10 r e qu i r e ( sphe r ep l o t ) # i n s t a l l . packages (" sphe r ep l o t " , dep=T)

11 # conver t ing in to s ph e r i c a l c oo rd ina t e s

12 Xsph_bFB5<=car2sph (X_bFB5 [ , 1 ] ,X_bFB5 [ , 2 ] ,X_bFB5 [ , 3 ] , deg=TRUE)

13

14 r equ i r e ( r g l ) # i n s t a l l . packages (" r g l " , dep=T)

15

16 # 3D sphere p l o t

17 r g l . sphgr id ( rad iu s = 1 , add =TRUE, co l . long=1, c o l . l a t =1, longtype =D

)

18 #gr id : adding po in t s

19 r g l . sphpo ints (Xsph_bFB5 , deg=TRUE, co l =1, cex=3.5)

R code to draw the spherical Density plot

1 l i b r a r y ( ggp lot2 ) # For p l o t t i n g

2 l i b r a r y ( cowplot ) # gr id arrangement o f p l o t s

3 l i b r a r y ( D i r e c t i o n a l ) # For s ph e r i c a l dens i ty f unc t i on s

4 l i b r a r y (maps) # vecto r maps o f the world

5 l i b r a r y ( hrbrthemes ) # hrbrmstr themes

6 l i b r a r y (magick ) # For animation

7 l i b r a r y (mapproj ) # Needed f o r p r o j e c t i o n

8

9 # Generate data from von Mises s t a r t i n g from l a t i t u d e and long i tude



Appendix B 90

10 random_po in t s <= f unc t i on (n_points , l a t , lon , concent ra t i on ) {

11 # Di r e c t i o na l d e f i n e s l a t + long as 0=180 and 0=360 r e s p e c t i v e l y

12 # we have to s h i f t back and f o r th

13 mu <= eu c l i d ( c ( l a t + 90 , lon + 180) ) [ 1 , ]

14 pts <= eu c l i d . inv ( rvmf (n_points , mu, concent ra t i on ) )

15 pts [ , 1 ] <= pts [ , 1 ] = 90

16 pts [ , 2 ] <= pts [ , 2 ] = 180

17 data . frame ( pts )

18 }

19

20 # Make a dens i ty g r id to be p l o t t ed

21 # The arguments o f the func t i on vmf . kerncontour can be changed

22 vmf_dens i ty_gr id <= f unc t i on (u , ngr id = 100) {

23 # Trans late to (0 ,180) and (0 ,360)

24 u [ , 1 ] <= u [ , 1 ] + 90

25 u [ , 2 ] <= u [ , 2 ] + 180

26 r e s <= vmf . kerncontour (u , thumb = "none" , den . r e t = T, f u l l =

TRUE,

27 ngr id = ngr id )

28

29 # Trans late back to (=90 , 90) and (=180 , 180) and c r e a t e a g r id

o f coo rd ina t e s

30 r e t <= expand . g r id ( Lat = r e s $ l a t = 90 , Long = re s $ long = 180)

31 r e t $Density <= c ( r e s $den )

32 r e t

33 }

34

35 # Generate s ph e r i c a l data ( sample s i z e , l a t i t u d e o f mean , l ong i tude

o f mean , concent ra t i on )

36 # Here we generate a bimodal d i s t r i b u t i o n

37 x0 <= random_po in t s (100 , 0 , 0 , 15)

38 x1 <= random_po in t s (100 , 45 , 0 , 15)

39 x <= rbind . data . frame (x0 , x1 )
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40

41 # Graphica l parameter to be used l a t e r

42 no . ax i s <= theme ( ax i s . t i c k s . y = element_blank ( ) , ax i s . t ex t . y =

element_blank ( ) ,

43 ax i s . t i c k s . x = element_blank ( ) , ax i s . t ex t . x =

element_blank ( ) ,

44 ax i s . t i t l e . x = element_blank ( ) , ax i s . t i t l e . y =

element_blank ( ) )

45

46 # Def ine p l o t in b i v a r i a t e space

47 myplot <= ggp lot (x , aes ( x = Long , y = Lat ) ) +

48 s c a l e_y_cont inuous ( breaks = (=2:2) * 30 , l im i t s = c

(=90 ,90) ) + s c a l e_x_cont inuous ( breaks = (=4:4) * 45 ,

l im i t s = c (=180 , 180) )

49 +geom_point ( s i z e = 1)

50 +geom_contour ( data = vmf_dens i ty_gr id (x , ngr id = 300) ,

51 aes ( x=Long , y=Lat , z=Density ) , c o l o r = " red "

)

52

53 # Plot b i v a r i a t e myplot

54 # Plot on a hemisphere s t a r t i n g from the b i v a r i a t e s e t t i n g ( you

should choose the o r i e n t a t i o n )

55 # Or ientat i on = An opt i ona l vec to r c ( l a t i t ude , long i tude , r o t a t i on )

56 # which d e s c r i b e s where the "North Pole " should be when computing

the p r o j e c t i o n .

57 # Or ientat i on could be s e t as the mean d i r e c t i o n

58 ortho . p r o j e c t i o n s <= p lo t_gr id (

59 myplot + coord_map( " ortho " , o r i e n t a t i o n = c (0 , 0 , 0 ) ) + no . ax is ,

60 l a b e l s = NULL, a l i g n = 'h ' )

61

62 ortho . p r o j e c t i o n s
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Directional depth functions

1 ### Cosine depth func t i on ###

2 # arguments must be in c a r t e s i a n coo rd ina t e s

3 CosDepth <= f unc t i on (X, Y) {

4 # computing the co s i n e d i s s im i l a r i t y

5 cos_d i s <= f unc t i on (ma, mb) {

6 mat=tc ro s sp rod (ma, mb)

7 t1=sq r t ( apply (ma, 1 , c ro s sprod ) )

8 t2=sq r t ( apply (mb, 1 , c ro s sprod ) )

9 sim <= 1=(mat / outer ( t1 , t2 ) )

10 re turn ( sim ) }

11 M<=cos_d i s (X,Y)

12 # computing the co s i n e d i s t anc e depth

13 mat <= apply (M, 1 , mean)

14 r e s <= 2 = mat

15 return ( r e s )

16 }

1 ### Arc d i s t anc e depth func t i on ###

2 sArcDeptht <= f unc t i on (x ,X) {

3 # computing the arc d i s t anc e l ength

4 sphe rd i s t <= acos ( x%*%t (X) )

5 opt ions (warn==1)

6 sphe rd i s t [ i s . nan ( sphe rd i s t ) ] = 0

7 # computing the arc d i s t anc e depth

8 mat <= apply ( sphe rd i s t , 1 ,mean)

9 r e s <= pi = mat

10 return ( r e s )

11 }

1 ### Chord depth func t i on in dimension 3 ###

2 sChordDepth3D <= f unc t i on (X, Y) {

3 # computing chord d i s t ance
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4 M <= matrix (NA, nrow = nrow (X) , nco l = nrow (Y) )

5 f o r ( i in 1 : nrow (X) ) {

6 f o r ( j in 1 : nrow (Y) ) {

7 M[ i , j ] <= s q r t ( ( (X[ i ,1]=Y[ j , 1 ] ) ^2)+((X[ i ,2]=Y[ j , 2 ] ) ^2)

8 +((X[ i ,3]=Y[ j , 3 ] ) ^2) )

9 }

10 }

11 # computing the chord d i s t anc e depth

12 mat <= apply (M, 1 , mean)

13 r e s <= 2 = mat

14 return ( r e s )

15 }

1 ### Chord depth func t i on in 10 dimensions ###

2 sChordDepth10D <= f unc t i on (X, Y) {

3 # computing the chord d i s t anc e

4 M <= matrix (NA, nrow = nrow (X) , nco l = nrow (Y) )

5 f o r ( i in 1 : nrow (X) ) {

6 f o r ( j in 1 : nrow (Y) ) {

7 M[ i , j ] <= s q r t ( ( (X[ i ,1]=Y[ j , 1 ] ) ^2)+((X[ i ,2]=Y[ j , 2 ] ) ^2)

8 +((X[ i ,3]=Y[ j , 3 ] ) ^2)+((X[ i ,4]=Y[ j , 4 ] ) ^2)+((X[ i ,5]=Y[ j , 5 ] ) ^2)

9 +((X[ i ,6]=Y[ j , 6 ] ) ^2)+((X[ i ,7]=Y[ j , 7 ] ) ^2)+((X[ i ,8]=Y[ j , 8 ] ) ^2)

10 +((X[ i ,9]=Y[ j , 9 ] ) ^2)+((X[ i ,10]=Y[ j , 1 0 ] ) ^2) )

11 }

12 }

13 # computing the chord d i s t anc e depth

14 mat <= matrix (NA, nco l=1,nrow=nrow (M) )

15 SpherChordDepth <= matrix (NA, nco l=1,nrow=nrow (M) )

16 f o r ( k in 1 : nrow (M) ) {

17 mat [ k , ] <= mean(M[ k , ] )

18 SpherChordDepth [ k , ] <= 2 = mat [ k , ]

19 }

20 return ( as . matrix ( SpherChordDepth ) )



Appendix B 94

21 }

Cosine depth distribution classi�er function

1 # Di s t r i bu t i on depth c l a s s i f i e r = Use co s i n e d i s t ance depth (

r e qu i r e s the CosDepth func t i on )

2 # Input : t e s t s e t under H1 , t e s t s e t under H2 , t r a i n i n g s e t under H1 ,

t r a i n i n g s e t under H2

3 # Output : m i s c l a s s i f i c a t i o n ra t e

4 # (# of t imes obs . from tes t s e tH1 are a s s i gned to group 2 + # of

t imes obs . from tes t s e tH2 are a s s i gned to group 1) / t o t a l

5

6 #############################

7 ddc . cos <= f unc t i on ( H1test , H2test , H1train , H2train ) {

8

9 ######################## de f i n e i n t e r n a l func t i on " ed f ( ) " , c a l l e d

l a t e r

10 # " edf ( ) " w i l l takes as input a s e t o f va lue s ra the r than a s i n g l e

d i r e c t i o n a l obse rvat i on

11 # the func t i on " ed f " should take the same input o f the CosDepth

func t i on : a t e s t and a t r a i n i n g s e t

12 # the func t i on " ed f " should g ive as output a s e t o f va lue s ( a

vec to r ) :

13 # each element o f the vec to r i s the emp i r i c a l cd f o f the

cor re spond ing t e s t s e t va lue wrt to the whole t r a i n i n g s e t

14

15 ed f <= f unc t i on ( Htest , Htrain ) {

16

17 # Compute Cosine Distance Depth f o r the sample wrt i t s e l f

18 DepthHtrain <=CosDepth ( Htrain , Htrain )

19

20 # Compute Cosine Distance Depth f o r Htest wrt Htrain

21 DepthHtest <=CosDepth ( Htest , Htrain )

22
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23 # I need a vector , where each element i s the emp i r i c a l cd f o f the

t e s t s e t wrt to the t r a i n i n g depth s e t

24 # how many o f the depths in depthte s t are lower than the value o f

deptht ra in ?

25

26 r e s u l t <= rep (NA, l ength ( DepthHtest ) )

27

28 f o r ( i in 1 : l ength ( DepthHtest ) ) {

29 r e s u l t [ i ] <= l ength ( DepthHtrain [ DepthHtrain<=DepthHtest [ i ] ] ) /

l ength ( DepthHtrain )

30 } ### end f o r

31

32 re turn ( r e s u l t )

33

34 } ### end func t i on

35 ########################

36 cdd1 <= ed f ( H1test , H1train ) ## depth o f testH1 wrt trainH1

37 cdd2 <= ed f ( H1test , H2train ) ## depth o f testH1 wrt trainH2

38 cdd3 <= ed f ( H2test , H2train ) ## depth o f testH2 wrt trainH2

39 cdd4 <= ed f ( H2test , H1train ) ## depth o f testH2 wrt trainH1

40

41 ab <= cbind ( cdd1 , cdd2 ) ## 2 columns , depth o f testH1 wrt trainH1

on the f i r s t c . , depth o f testH1 wrt trainH2 on the second

42

43 cd <= cbind ( cdd3 , cdd4 ) ## 2 columns , depth o f testH2 wrt trainH2

on the f i r s t c . , depth o f testH2 wrt trainH1 on the second

44

45 ## the matrix "ad" has 2 columns :

46 ## depth o f testH1 wrt trainH1 , and o f testH2 wrt trainH2 on the

f i r s t column

47 ########## i f the se depths are g r e a t e r than those on the second

column , then c o r r e c t c l a s s i f i c a t i o n happened

48 ########## i . e . , i f the value on the f i r s t column i s g r e a t e r than
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the value on the second , then OK

49 ## depth o f testH1 wrt trainH2 , and o f testH2 wrt trainH1 on the

second column

50 ad <= rbind (ab , cd )

51

52 r e s <= c ( )

53 f o r ( i in 1 : nrow ( ad ) ) {

54 i f ( ad [ i , 1 ] == ad [ i , 2 ] ) { ## to ad jus t f o r equal va lue s o f the

depths

55 i f ( rbinom (1 , 1 , 0 . 5 0 ) > 0)

56 ( r e s [ i ] <= 2) e l s e ( r e s [ i ] <= 1)

57 }

58 e l s e i f ( ad [ i , 1 ] > ad [ i , 2 ] ) { r e s [ i ] <= 1} e l s e r e s [ i ] <= 2

59 }

60

61 ### re s <= 1 stay f o r c o r r e c t m i s c l a s s i f i c a t i o n

62 ### re s <= 2 stay f o r m i s c l a s s i f i c a t i o n ( m i s c l a s s i f i e d obse rvat i on )

63

64 #pr in t ( r e s )

65 mi s ra t e s <= 1=( l ength ( r e s [ r e s ==1]) ) / ( l ength ( r e s ) )

66 re turn ( mi s ra t e s )

67 }

Cosine max-depth classi�er function

1 # Max depth c l a s s i f i e r = Use co s i n e d i s t ance depth ( r e qu i r e s the

CosDepth func t i on )

2 # Input : t e s t s e t under H1 , t e s t s e t under H2 , t r a i n i n g s e t under H1 ,

t r a i n i n g s e t under H2

3 # Output : m i s c l a s s i f i c a t i o n ra t e

4 # (# of t imes obs . from tes t s e tH1 are a s s i gned to group 2 + # of

t imes obs . from tes t s e tH2 are a s s i gned to group 1) / t o t a l

5

6 #############################
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7 cddDD <= f unc t i on ( H1test , H2test , H1train , H2train ) {

8 cdd1 <= CosDepth ( H1test , H1train )

9 cdd2 <= CosDepth ( H1test , H2train )

10 cdd3 <= CosDepth ( H2test , H2train )

11 cdd4 <= CosDepth ( H2test , H1train )

12 ab <= cbind ( cdd1 , cdd2 )

13 cd <= cbind ( cdd3 , cdd4 )

14 ad <= rbind (ab , cd )

15 r e s <= c ( )

16 f o r ( i in 1 : nrow ( ad ) ) {

17 i f ( ad [ i , 1 ] == ad [ i , 2 ] ) {

18 i f ( rbinom (1 , 1 , 0 . 5 0 ) > 0)

19 ( r e s [ i ] <= 2) e l s e ( r e s [ i ] <= 1)

20 }

21 e l s e i f ( ad [ i , 1 ] > ad [ i , 2 ] ) { r e s [ i ] <= 1} e l s e r e s [ i ] <= 2

22 }

23 mi s ra t e s <= 1=( l ength ( r e s [ r e s ==1]) ) / ( l ength ( r e s ) )

24 re turn ( mi s ra t e s )

25 }

Directional Bayes classi�er function

1 r equ i r e ( D i r e c t i o n a l ) # i n s t a l l . packages (" D i r e c t i o na l " , dep=T)

2 r equ i r e (movMF) # i n s t a l l . packages ("movMF" , dep=T)

3 # C l a s s i f y an obse rvat i on us ing a random uniform va r i a t e

4 rand_c l a s s i f y<=f unc t i on ( ) {

5 x<=r un i f ( 1 )

6 i f (x>0.5)

7 c l a s s_t e s t p t<=1

8 e l s e

9 c l a s s_t e s t p t<=2

10

11 mi s ra t e s <= 1=( l ength ( c l a s s_t e s t p t [ c l a s s_t e s t p t ==1]) ) / ( l ength (

c l a s s_t e s t p t ) )
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12 return ( mi s ra t e s )

13 }

14

15 MLestimatesvm<=f unc t i on ( t ra in1 , t ra in2 , f a s t=FALSE, t o l=1e=07){

16 # Estimate the parameters o f the f i r s t d i s t r i b u t i o n

17 par1<=vmf ( t ra in1 , f a s t , t o l=t o l )

18 # Estimate the parameters o f the second d i s t r i b u t i o n

19 par2<=vmf ( t ra in2 , f a s t , t o l=t o l )

20 re turn ( c ( par1 , par2 ) )

21 }

22

23 c l a s s i f y_t e s t p t<=f unc t i on ( te s tpt1 , t e s tpt2 , par_1 , par_2) {

24 d1<=dmovMF( tes tpt1 , par_1$kappa*par_1$mu)

25 d2<=dmovMF( tes tpt1 , par_2$kappa*par_2$mu)

26 d3<=dmovMF( tes tpt2 , par_1$kappa*par_1$mu)

27 d4<=dmovMF( tes tpt2 , par_2$kappa*par_2$mu)

28 ab <= cbind (d1 , d2 )

29 cd <= cbind (d3 , d4 )

30 ad <= rbind (ab , cd )

31 c l a s s_t e s t p t <= c ( )

32

33 f o r ( i in 1 : nrow ( ad ) ) {

34 i f ( ad [ i ,1] >ad [ i , 2 ] )

35 c l a s s_t e s t p t [ i ]<=1

36 e l s e {

37 i f ( ad [ i ,1] <ad [ i , 2 ] )

38 c l a s s_t e s t p t [ i ]<=2

39 e l s e

40 c l a s s_t e s t p t [ i ]<=rand_c l a s s i f y ( )

41 }

42

43 }

44 mi s ra t e s <= (sum( c l a s s_t e s t p t [ 1 : l ength ( d1 ) ]==2)+sum( c l a s s_t e s t p t [
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l ength ( d1 )+1: l ength ( d3 ) ]==1) ) / ( l ength ( c l a s s_t e s t p t ) )

45 re turn ( mi s ra t e s )

46 }
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