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Abstract 

Hypertension is one of the main risk factors for vascular dementia and Alzheimer’s 

disease. To predict the onset of these diseases, it is necessary to develop tools to detect 

the early effects of vascular risk factors on the brain. In this thesis we will tackle the 

problem of hypertensive brain organ damage characterization approaching it at 

multiple scales and leveraging multiple techniques. The first part of the thesis will be 

focused on a deep learning system to perform automatic segmentation of White Matter 

Hyperintensities (WMH), one of the most common form of macrostructural vascular 

injury in the brain, on T2-FLAIR imaging. To this aim we will leverage a public dataset 

and compare our results with the ones achieved in the MICCAI WMH segmentation 

challenge. The second part of the thesis is focused on the setup of analysis pipelines 

for Diffusion Tensor Imaging (DTI) and resting state functional MRI (rs-fMRI), with 

the aim of characterize the microstructural integrity and the functional connectivity. 

These pipelines have been implemented on hypertensive brains to characterize the 

subtle brain functional and microstructural damage associated with the hypertensive 

condition. Finally, both approaches have been implemented in a ongoing research 

program at IRCCS Neuromed in the context of the heart and brain clinical research, 

achieving the injury characterization for the first two recruited patients of the study 

and field-testing the proposed brain injury characterization framework.
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CHAPTER 1.  INTRODUCTION AND 

BACKGROUND 

1.1 Introduction 

With the worldwide increase of ageing population, dementia and neurodegenerative 

diseases became a major issue for healthcare systems that have to ensure adequate 

management of affected subjects. The estimates by World Health Organization report 

of more than 35 million people worldwide affected by dementia and is expected a 3-

fold increase by year 2050[1]. One of the main modifiable risk factors leading to these 

pathologies is hypertension[2], a chronic condition affecting about the 30% of adult 

population worldwide, with incidence growing to more than 60% in the elderly. It is a 

consolidated knowledge in both clinical practice and pre-clinical research that high 

blood pressure exerts powerful detrimental effect on a variety of organs such as heart 

and kidneys, while its effect on cognition and brain health are less known and needs 

further investigation. 

Recent works have leveraged post-mortem analysis tools to shed light on the 

pathophysiological conditions underlying the symptoms of dementia or cognitive 

impairment. These works evidenced that more than 50% of dementia cases shown a 

vascular involvement, as main factor or in combination with neurodegeneration[3]. To 

empower clinicians and give them proficient tools to understand whether the cognitive 

decline in process is codetermined by vascular factors, first of all we should investigate 

the effects on brain structure and functioning of primary vascular risk factors and 

pathological conditions, as hypertension[4, 5].  

To this aim, it is fundamental to correctly stage the entity of the injuries produced 

by the hypertensive pathology on different brain regions and how the progression of 

the pathology impacts its structure and functional organization. Magnetic Resonance 
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Imaging (MRI) has proven itself as an unparalleled tool to investigate these 

characteristics in vivo in a non-invasive manner and without administering ionizing 

radiations to the patient. Leveraging different kind of MRI scans, we can obtain 

various information about the brains, investigating with the appropriate tools different 

markers corresponding to distinct stages of the pathology. 

1.2 Hypertension 

Hypertension has been classically defined as systolic blood pressure (SBP) > 140 

mmHg and/or diastolic blood pressure (DBP) >90 mmHg, or the use of 

antihypertensive medication. Hypertension is a complex and systematic pathology, 

affecting primary the cardiovascular system, with a multitude of secondary organs and 

functions involved by the effects of long-lasting elevated blood pressure. The 

hypertension diagnosis and treatment is carried on according to guidelines established 

and published by two major international workgroups: i) the join American Heart 

Association and American College of Cardiology Hypertension guidelines 

(AHA/ACC)[6]; ii) the European Society of Cardiology Hypertension guidelines 

(ESC)[7]. It is worth noting that while the two workgroups have been substantially 

concordant on the aforementioned hypertension definition throughout the history, the 

last revision of the AHA/ACC guidelines has defined as hypertensive also the subject 

reporting a SBP > 130mmHg and/or a DBP >80 mmHg. This change reflected in a 

more intensive use of anti-hypertensive treatment, looking for an increased benefit on 

both well-known and object of research consequences of hypertension[8].  

While the end-organ damage induced by hypertension in some districts like heart 

or kidneys is comprehensively characterized and studied, the effects of hypertension 

on the brain are largely unknown, with the main contribution identified as a strong risk 

factor for stroke and Alzheimer’s Disease. It is however becoming clearer thanks to 

recent mechanistic and epidemiologic studies that hypertension alone can impact 

cognition and can alter the cerebral homeostasis in a way capable of altering the 

cognitive performances of hypertensive patients, without the onset of neurological 

conditions as AD or acute cerebrovascular event[3, 9, 10].  
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1.3 The brain and the cerebrovascular system 

The brain is the main organ of the nervous system, responsible for the perception 

and cognition. It is a complex organ made of billions of interconnected cells, which 

can be grouped respect to their anatomical or functional nature. One of the biggest 

efforts of contemporary neuroscience has been directed to map the differences between 

the different regions of the brain and to elucidate their distinct role in the cognition 

processes. 

1.3.1 Anatomy of the Brain 

The  brain is made up of different major parts connected between them and attached 

to the spinal cord through the brainstem. This serves as a regulator of primary functions 

through the vagus nerve such as breathing, cardiac rhythm, digestive system, immune 

system activation. Attached to the brainstem there is the cerebellum, a neuronal 

structure mainly responsible for receiving sensory input from the peripheral nerves and 

managing the motor response. At the top of the brainstem we can find the limbic 

system, made of several substructures which are fundamental in several function as 

memory, learning and emotional responses. 

The most important structure of the brain is the cerebrum, divided into left and right 

hemisphere interconnected by a central structure of thick neuronal fibers called corpus 

callosum. In the cerebrum we can distinguish the gray matter (GM) and white matter 

(WM), with the cerebrospinal fluid (CSF) filling the void spaces called ventriculi 

between different hemispheres and regions. The gray matter, named also the cortex, is 

the region composing the surface of the brain, is structured as a layered architecture of 

neuronal cell bodies interconnected between them on a single layer and between 

layers. The white matter instead is mainly composed by the neuronal axons connecting 

different brain regions. The most prominent characteristic of human brain respect to 

other species is the presence of convolutions, with crests named gyri and the valleys 

named sulci. This convoluted structure results in a greater surface of gray matter 

respect to the surface who would be available on a smooth sphere.  
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The main activity of the brain has been classically identified as cortical activity and 

with several techniques throughout the history we have been able to map with notable 

precision the regions of the cortex pairing them with their functions. 

White matter, responsible for the intercommunications between distinct subcortical 

and cortical regions, can be divided in fascicles or bundles, which are organized groups 

of axons projecting in the same direction. Both grey and white matter mapping and 

organization will be discussed in further detail in Chapter 3. 

1.3.2 The cerebrovascular tree and the neurovascular unit 

While the brain is one of the most complex and energy demanding organs of our 

body, it is not provided with a proper energy storage, relying its functioning only on 

nutrients continuously coming through the cerebral circulation. Thus, to have a reliable 

cognitive functioning it is mandatory to get a constant and well-regulated blood flow 

feeding neuronal cells. To do so, the cerebrovascular tree has developed the capability 

to regulate its pressure and flow autonomously respect to the general circulation, 

namely the cerebral autoregulation. Alterations of this property following acute 

cerebrovascular events, due to sustained increase of blood pressure or the aging 

process can impact on cognitive performance, making the system less prone to 

distribute the nutrients from the blood flow equally in all the cerebral regions. 

To provide a homogeneous perfusion of the brain tissues, the large arteries branch 

into progressively smaller vessels, up to the diameter of few microns composing the 

capillary bed. The complex of cells responsible for the mechanism of isolating the 

neuronal tissues from the direct blood flow running through the capillary bed is called 

the NeuroVascular Unit (NVU), mainly maintaining the integrity of the blood-brain 

barrier (BBB) and regulating the regional cerebral blood flow and oxygen and nutrient 

delivery[11]. 

Both large vessels and the NVU are part of the delicate mechanism of brain blood 

flow regulation, which is heavily stressed in conditions of hypertension and are two of 

the main target of damage in case of chronic elevated blood pressure, often reflected 

into an increased permeability of the BBB and other kinds of focal tissue damage, like 

white matter hyperintensities (discussed in detail in Chapter 2). 
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1.4 Magnetic Resonance Imaging 

To date, the best available tool to explore the human brain is Magnetic Resonance 

Imaging (MRI). Originated around fifty years ago, this technology leverages the 

property of hydrogen nuclei which, when stimulated by radiofrequency pulses, 

resonate with the magnetic field where they are immersed, allowing the analysis of 

different tissues. By reading the signals emitted during the resonance we can obtain 

the time needed for a particular tissue to return to steady state on the longitudinal 

component or on the transverse one, respectively T1 relaxation time and T2 relaxation 

time. The images are obtained by weighting one of the two components, emphasizing 

the contrasts between tissues with different T1 or T2 relaxation times. During the 

decades, MRI techniques evolved from the methods that allowed to obtain images of 

internal tissues of the patients to techniques capable of providing functional insights 

of the biological systems under examination.  

The support of various MRI techniques can be a fundamental addition to the clinical 

practice, in order to specifically characterize and diagnose different forms of cognitive 

impairment originated from vascular pathologies. On this notice, a modern and 

quantitative approach can be instrumental to extrapolate effective biomarkers for 

clinical and modern computer-driven analyses. 

The first applications of brain MRI were developed to understand and analyse the 

morphological alterations induced by various pathologies impacting on white and grey 

matter. The first approach was aimed at obtaining a segmentation of the brain and a 

parcellation of the cortical areas, by hand or by using specialized software [12, 13]. 

The data obtained from these elaborations were used to characterize the 

neurodegenerative processes and put in relation the affected physical areas with the 

associated cognitive functions[14]. 

The development of new techniques specific for white matter injury evaluation 

paved the way to the analysis and identification of one of the most important markers 

of cerebrovascular damage in the brain: the white matter hyperintensities (WMH). T2-

FLAIR sequence (T2-Fluid Attenuated Inversion Recovery, discussed in detail in 

Appendix A)[15] is useful to highlight regions of T2 prolongation in the white matter, 
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corresponding to regions of increased water content respect to normal white matter. In 

this kind of sequence, areas of hyperintensity represent a region where the white matter 

is undergoing a process of demyelination or axonal loss. In general, these alterations 

are the main evidence of cerebrovascular diseases, even though they can correspond 

to different pathological states[16]. 

Characterization of WMH has been first qualitative, with a grading system based 

on the appearance and position of the identifiable lesions[17], then with the progress 

of computer-aided diagnosis (CADx) systems and improvements in the computer 

vision field, we can now absolutely quantify the volume of white matter lesions[18, 

19]. This improvement is fundamental to define absolute and quantitative biomarkers 

that could help in better evaluating and predicting the onset of VCI in the population 

at risk. 

Further techniques of MRI were implemented to describe microstructural and 

functional alterations in the brain, respectively the diffusion tensor imaging and the 

functional magnetic resonance imaging. These techniques will be leveraged to 

describe the hypertensive brains and will be discussed in detail in next chapters of this 

thesis together with the analysis pipelines necessaries to get significant insight from 

the raw diffusion and functional data.  

1.5 The Role of Machine Learning 

Machine Learning is a branch of computer science aimed at designing automated 

systems capable of automatic learning from examples with minimal human guidance 

and interference. This results in computer programs capable of absorbing data, build 

and refine models on the input data to maximize the system capability to predict certain 

outcomes and perform better decision on new data. 

The model adopted for the process of learning divides the ML algorithms in two 

major categories: supervised and unsupervised methods. 

Supervised learning is based on a labelled training data set, in which every sample 

is associated to a distinct category. The main aim of the algorithm is to achieve the 

capability to generalize the decision took from the model (the classification) from the 

training data to unseen data. 
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Unsupervised learning is based on a heterogeneous data set without any labelling. 

The aim of the algorithm is to identify commonalities between different samples in the 

dataset and organize them in homogeneous group, the clusters.  

The technological advances which took place in the last decade greatly improved 

the capabilities of training complex mathematical models with big datasets. Previous 

limitations were upper bounds in term of high-speed memory, needed to load the 

model, and the lack of adequate computing capabilities, needed to train complex 

models with a sufficient amount of data. Graphical Processing Unit (GPU) 

improvements were key to develop affordable and reliable parallel computing 

capability, exploiting the intrinsic parallel architecture needed for graphical 

computations: many processors needed for simple parallel operations to generate and 

perform calculations on matrix objects (i.e. images). 

Neural Networks are one of the first models of machine learning proposed in 

literature, and while effective have been soon put aside due to the computational 

complexity of the training process. The model is made up by several primitive 

elements (the neurons) interconnected between them and whose connections are ruled 

by a rule which considers both their value and the value of incoming connections. This 

kind of model gives the flexibility of a common operator which can approximate any 

nonlinear function, given a particular architecture of connections is provided. 

The intrinsic parallel nature of Neural Networks gave it a strong boost with recent 

technological leap, facilitating the training of architectures composed by several 

interconnected layer, composing “deep” networks. 

1.6 Outline of the work and aims 

In this thesis we will split the task of characterizing the brain injury associated with 

hypertension in two sections, both part of the heart and brain research program carried 

on at Istituto di Ricovero e Cura a Carattere Scientifico Neuromed by the 

AngioCardioNeurology and Translational Medicine department. The first one will 

tackle the segmentation of white matter hyperintensities, macroscopical lesions which 

are evidenced by MRI scans performed in the clinical routine, hallmark of advanced 

stage hypertension brain damage[20, 21]. To do so, we will leverage a publicly 
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available dataset comprising scans from different machines and clinical units in 

Europe. The second part will be centred on characterizing by advanced neuroimaging 

sequences the damage exerted on brain microstructure and functional organization by 

hypertension, in an early stage of pathology to design a multimodal biomarker which 

could be a candidate for prediction of cognitive decline[9]. This study will be 

conducted on patients recruited in our clinical unit, to set up all the neuroimaging 

pipelines to obtain a comprehensive microstructural and functional characterization of 

the brain. At this stage, it will be used to evaluate whether it is possible to predict the 

presence of a cardiovascular pathology only from neuroimaging analysis.  

In both sections we will apply machine learning strategies, to leverage the amount 

of data generated from these experimental procedures and to automate the time-

consuming part of labelling and quantification of lesion, with the final aim to produce 

a framework to comprehensively characterize the damage in the brains of hypertensive 

patients, from the earliest stage of it to identify the set of markers which can identify 

patients at risk of cognitive decline in the later stage of the pathology to automated 

tools to provide fast and reliable segmentation of hypertensive lesions in the brain to 

stratify in an efficient way the hypertensive population for their brain damage. 

Our final aim will be to implement both strategies on patients recruited in our clinical 

unit in the context of an ongoing prospective study, to characterize patients in a 

longitudinal way to predict the onset of hypertension associated cognitive impairment 

from macrostructural, microstructural and functional data. Due to the ongoing 

recruiting process, it will be only shown the application of the complete pipeline to 

two example cases.
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CHAPTER 2. A DEEP LEARNING 

APPROACH FOR THE SEGMENTATION OF 

WHITE MATTER HYPERINTENSITIES 

2.1 Introduction 

The term “Deep Learning” and the concept of deep neural networks (DNN) was 

introduced in 2006 by Hinton in a seminal paper in which he showed a multilayer 

forward network in which every layer is pretrained as a Restricted Boltzmann Machine 

(RBM) (Figure 1) and then combined with fine tuning by a supervised back 

propagation[22].  

 

After this first experiments an increasing number of problems were tackled by deep 

learning, especially in the context of computer vision and image processing with the 

Convolutional Neural Network (CNN) architecture. The capability of CNNs of 

Figure 1- Restricted Boltzmann Machine Model 
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efficiently solving problems with results unmatched by other ML techniques soon 

captured the global attention of the computer vision and pattern recognition world, 

generating dozens of different architectures to solve different problems of different 

context.  

The first successful applications of DNN has certainly been the image processing 

and recognition context: the ImageNET competition[23], a benchmark problem for 

image recognition, has seen a spike of the classification performance with the DNNs, 

from a 25% error percentage in 2010 with classical ML algorithm to a 4% 

classification error in 2015[24], implementing a complex CNN and achieving a 

performance superior to the human. Other fields of application which saw dramatic 

improvements with DNN are notably the Natural Language Processing (NLP), in 

which different kind of architectures have greatly improved the capability of machine 

to understand and process human written or spoken language, with great breakthroughs 

achieved in text sentiment analysis or speech recognition. 

Medical imaging also saw great improvements from the implementation of deep 

learning approaches. Computer-aided diagnosis or and computer-aided detection 

(CADx) have always been one of the main research field in biomedical and computer 

engineering[25], with deep learning these systems have reached notable performances 

Figure 2- Occurrences of deep learning research papers in medical imaging 
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in selected fields of application, like a CADx system for melanoma diagnosis which 

outperformed trained physicians in recognizing and grading melanomas from moles 

pictures[26].  

Mimicking the capillary diffusion that deep learning had in several computer 

science, the medical imaging field has seen a sudden surge in the number of systems 

and research papers which implement deep learning strategies. As seen in Figure 2, 

from Litjens et al.[27], the breakthrough seen in 2012-2013 brought a 20x times 

appearance of deep learning techniques first in workshops and conferences, then in 

peer-reviewed journals. The breakdown of the task addressed in the papers and the 

imaging modalities in exam show that segmentation task is the most prominent one, 

often paired with MRI modality (see [27, 28] for comprehensive review). The most 

common model of NN is the Convolutional Neural Network, given its strong 

performance with image recognition and pattern recognition. 

In my research experience I focused on neuroimaging analysis, with images 

obtained by various techniques of Magnetic Resonance Imaging (MRI). The first 

problem tackled with deep learning was the automatic segmentation of white matter 

lesions evidenced by T2-FLAIR imaging. 

2.2 MRI applied to evaluate macrostructural brain 

damage: White Matter Hyperintensities  

MRI is a powerful tool for diagnosis of many different pathologies and the in-vivo 

inspection of internal organs. Thanks to the high contrast achieved between different 

soft tissues has established as the exam of choice for brain imaging, leveraging the 

different magnetic properties of gray matter, white matter and cerebrospinal fluid. 

During the last 50 years of clinical use of the MRI capabilities expanded greatly, and 

one of the first advanced sequences adopted in the routine examination has been the 

T2 Fluid Attenuated Inversion Recovery (FLAIR) (see Appendix A – MRI sequences 

for more information). 

This kind of technique has been developed to image the brain weighting in T2 while 

attenuating the signal generated from the cerebrospinal fluid. In this way, while gray 
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and white matter show a low contrast between them, lesions of the white matter 

presented as spot of hyperintensity are evident. While the aetiology of these marks is 

still debated and can be ascribed to multiple factor like massive axon demyelination, 

ischemic damage, hypoxia, reduced glial presence, there are strong epidemiological 

associations with conditions such as vascular dementia, vascular cognitive impairment 

and small vessel disease. Standard clinical grading of these injuries is based on their 

shape, extension and location, characteristics which are synthesized with a single score 

(Fazekas Score)[29]. In Figure 3 are reported two examples of T2 Flair showing low 

grade WMH and severe WMH in two different patients. 



CHAPTER 2  A deep learning approach for the 

segmentation of White Matter Hyperintensities 

 

14 

 

 

Figure 3 – Example of T2 Flair images with segmented WMH (in green) and lesions of other nature 

(Red). Top row: scan of a patient with a low grade WMH (Fazekas 1); Middle row: scan of a patient 

with severe WMH (Fazekas 4); Bottom Row: same image without segmentation overlays 
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Given the wide spectrum of disorders associated with White Matter 

Hyperintensities (WMH), it would be of utmost importance have a repeatable and 

objective measurement of the lesions, to better stratify the population and use the 

lesion volume as a proper damage biomarker. 

To this aim, we will leverage the Deep Learning technologies to perform automated 

segmentation of T2-FLAIR brain scans to extract an absolute quantification of WMH. 

To do this, we will leverage a dataset collected for MICCAI 2017 – White Matter 

Hyperintensity Segmentation Challenge. 

2.3 Methods 

2.3.1 Dataset Characteristics 

The MICCAI 2017 WMH Segmentation Challenge dataset is composed of brain 

scans of 60 patients obtained on 3 different scanners from different vendors, 20 for 

each scanner. Every patient has both 3D-T1 weighted and T2-FLAIR images hand 

labelled for WMH and different lesions[30]. Lesions have been segmented according 

to the standard procedures identified in the STRIVE (STandards for ReportIng 

Vascular changes on nEuroimaging). FLAIR images were acquired according to three 

different protocols, depending on the clinical unit and scanner vendor: 

- UMC Utrecht – 3T Philips - 2D FLAIR sequence (48 transversal slices, voxel 

size: 0.96×0.95×3.00 mm3, TR/TE/TI: 11000/125/2800 ms) 

- NUHS Singapore – 3T Siemens -  2D FLAIR sequence (transversal slices, voxel 

size: 1.0×1.0x3.00 mm3, TR/TE/TI: 9000/82/2500 ms) 

- VU Amsterdam – 3T GE - 3D FLAIR sequence (132 saggital slices, voxel size: 

0.98×0.98×1.2 mm3, TR/TE/TI: 8000/126/2340) 

3D FLAIR images were reoriented to transversal orientation and resampled to a 

slice thickness of 3.00 mm, according to the 2D FLAIR specifications. 

 

The images were pre-processed for bias correction by the dataset curators using 

SPM 12 and the T1 image was co-registered to the T2-FLAIR with elastix. 
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2.3.2 Brain Extraction 

In T2 FLAIR imaging the WMH appears as bright spot in the middle of grey 

appearing white and grey matter, making possible to highlight the lesions. Skull 

surrounding skin however appear as bright as WMH, making hard to distinguish it 

from the lesions, especially in slices comprising almost only skin. Thus, to avoid this 

confounding element we extracted the brain to eliminate all the tissues not useful to 

learn the characteristic patterns of WMH lesions. To do so, we leveraged the widely 

used Brain Extraction Tool, part of one of the main neuroimaging analysis suite (FSL). 

In all the subsequent steps of the pipeline were all executed on masked images, as in 

Figure 4. All brain extraction results were quality checked to ensure a correct brain 

segmentation and to ensure that all the WMH lesions were inside the extracted region. 

 

2.3.3 Framework 

All the experiments were implemented in Python 3.6, leveraging the Tensorflow 

(1.13) libraries with Keras (2.3.6) functional APIs, installed on a workstation with 

Ubuntu 18.06 OS. The workstation was equipped with an Intel 9980XE, 64GB of 

RAM and a Nvidia Titan RTX, built with 576 Tensor Cores and 24GB of GDDR6 

RAM. 

Figure 4 – Left: T2 Flair showing similar intensity between WMH and skin. Right: mask of the 

extracted brain in red, with WMH segmentation in green. 
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On top of this setup, all the experiments were implemented leveraging MisCNN, a 

framework designed for medical image segmentation. In Figure 5 is depicted the 

schematics of the framework implementations, with a series of tool to load the 

neuroimaging data (Nifti I/O interface), preprocess data (normalization, patch 

extraction, one hot encoding), data augmentation (flips, rototranslation), built-in 

models and the possibility to expand the library with custom designed models, training 

and evaluation validation. Some minor implementation have been performed to 

modify the framework to implement functionalities as 2D patch extraction from 3D 

volumes. 

2.3.4 Preliminary Experiments 

In order to leverage three-dimensional shape information provided by volumetric 

scans of the brain, we first implemented a 3D segmentation network. The experiments 

were carried on 3D patches extracted from the whole volume and applied a 3D 

implementation of the networks discussed in 2.3.6. The results were discouraging, with 

Dice Scores for the WMH segmentations in the order of 0.1. Our hypothesis is that the 

anisotropy of the images (1x1x3 mm approximatively for the three different scanners) 

does not add significant information to the segmenting network while the 3D structure 

has a significantly increased number of weights to train, resulting in a more complex 

Figure 5 - Schematics of MIScnn framework implementation 
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training process. In Figure 6 is shown the loss trend of the best-performing 3D 

segmentation network. 

Thus, we focused the subsequent experiments on the segmentation of planar patches 

extracted on the X-Y plane. In Figure 7 we can see an example of 3D patch used in 

preliminary experiments and an example of patch used in subsequent experiments. 

2.3.5 Network Architectures 

To tackle the problems of medical images semantic segmentation the most common 

approach has been U-Net and variations, since its first implementation in 2015[31]. 

The basic principle of U-Net is to structure a network coupling one encoder or 

convolutional arm which acting as feature extractor and a decoder or deconvolutional 

arm which leverages the extracted features to provide a dense segmentation of the 

input image. In this experiment we are implementing two different variations of this 

Figure 6 - 3D Train and Validation loss 
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architecture, previously published in the context of semantic segmentation[32]: Unet3 

and FractalNet. 

U-Net3is a extension of the original architecture with focus on the training with a 

reduced number of samples. The contracting path is a typical convolutional network 

architecture, with a sequence of two 5x5 convolutions followed by a ReLU and a 2x2 

max pooling with stride of 2 to perform down-sampling. After this down-sampling the 

features are doubled. The expansive path is made of up-sampling blocks followed by 

a 2x2 up-convolution, halving the features and performing a concatenation with the 

Figure 8 – U-NET standard architecture 

Figure 7 - Comparison between 3D patch and 2D patch 
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corresponding feature map obtained from the contractile path. The output of this layer 

is followed by to 5x5 convolutions and a ReLU. The output layer of the network maps 

the final feature vector to the output number of classes. This architecture extends the 

original UNet by adding a batch normalization after every ReLU activation function, 

after each max-pooling and up-sampling layer. 

 

FractalNet is an architecture introduced by Larsson et al. [33]. This networks aims 

at exploit at a convolutional layer features from different visual levels, joining them to 

enhance the discriminative capabilities of the network. To this aim, let define C as the 

index of a truncated fractal fC(·) and the base case of this fractal defined as a single 

convolutional layer: f1(z) = conv(z). Defining the expansion rule as: 

𝑧′ = 𝑐𝑜𝑛𝑣(𝑧) 

𝑓𝐶+1(𝑧) = 𝑐𝑜𝑛𝑣(𝑐𝑜𝑛𝑣(𝑧′) ⊕ 𝑓𝐶(𝑧′)) 

It can be defined recursively for successive fractals, with ⊕ as a generic join operation 

and conv(·) as the convolution operator. The ⊕ operation can be summation, 

maximization or concatenation, as in this specific architecture. In order to enlarge the 

receptive field and enclose more contextual information, down-sampling and up-

sampling operations are added in the above expansion rule. In particular, a max 

pooling with a stride of 2 and a deconvolution also with a stride of 2 are added. After 

the down-sampling operation, the receptive field of a fractal becomes broader. When 

combining different receptive fields through the join operation, the network can 

harness multi-scale visual cues and promote itself in discriminating. 

2.3.6 Training 

Data Augmentation was carried on in order to increase the number of training 

samples, adding them by applying a combination of transforms to the original dataset. 

In this case, we applied 3 cycles of data augmentation applying mirroring, rotations 

and scaling to the original images. Data augmentation is applied at image level, not to 

the sliced patches. Mirroring was enabled on every image axis, rotations were 

constrained in a random angle between -15 and +15 degrees, random scaling was 

applied between 0.85 and 1.25.  
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Training was performed with in batches, with batch size of 128 patches. Networks 

weights were initialized with a normal distribution for the bias and a glorot normal 

function for the weights[34]. Three different loss were tested in this experiment: the 

soft Dice coefficient loss, calculated as one minus the average dice coefficient of each 

segmented class in a multiclass problem; the soft Dice loss +  the categorical 

crossentropy loss; the Tversky loss, with alpha and beta coefficients = 0.5, which is a 

loss function for multiclass segmentation with fully convolutional deep networks [35].  

The optimization of the weights have been performed with an Adam optimizer [36], 

with a learning rate of 0.01, β1 = 0.9 and β2=0.999. The training process was repeated 

for 200 epochs, with a reduction of a ten factor in learning rate after 30 epochs without 

loss improvement. All experiments were performed with a 5-fold cross validation. 

 

2.3.7 Evaluation Metrics 

The evaluation of results was carried on according to the metrics considered in the 

WMH Segmentation Challenge, using the provided script. The five considered metrics 

were: 

• Dice Score, calculated as 𝐷𝑆 = 1 − 𝑑𝑖𝑐𝑒 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, with dice 

dissimilarity defined in scipy package 

• Hausdorff Distance, 95th percentile, defined as the greatest distance from a 

point of one set from the closest point in another set. This parameter is 

calculated between the segmented lesions and ground truth boundaries. 

• Average volume difference, expressed in absolute value percentage. 

• Sensitivity for individual lesion, defined as the number of detected lesions 

divided by the number of true lesions. 

• F1-score for individual lesion, defined as 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
, with both 

precision and recall parameters calculated on the number of identified 

connected components in the results. 

Individual lesions are identified and defined as single 3D connected components. 
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2.4 Results  

2.4.1 Raw Data 

Our first experiment was carried on raw data, which underwent only the brain 

extraction procedure. We compared the two different architectures presented in 2.3.5 

trained with the losses discussed in 2.3.6. The discrepancy between the loss metric 

evaluated on the sliced patch extracted from the samples and the parameters for the 

global evaluation of the system shown in 2.3.7, we decided to save a checkpoint of the 

trained model every 20 epochs of training, to analyze how the evaluation metrics on 

the whole sample behaved respect to the loss calculated on the patches extracted from 

the sample. This analysis revealed that all the metrics show a concordant trend with 

the patch-based loss measured during the validation phase, with an example shown in 

Figure 9. We can show that the best model in the validation phase corresponds to 

optimal results in the image-based validation. 
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All the combinations of architectures and losses in this setting show non optimal 

results. To further enhance the predictive performances of the models and improve the 

generalization capability of the system we proposed to leverage an ensemble of 

networks, by combining the predictions of the 5 models obtained in the 5-fold 

validation, proposing the final result as the average of the 5 outcomes. In Table 1 we 

report the obtained results and we evaluate the performance of our system in the 

Figure 9 - Variation of final evaluation metrics with epochs 



CHAPTER 2  A deep learning approach for the 

segmentation of White Matter Hyperintensities 

 

24 

 

ranking of the WMH segmentation challenge, assuming that the system will be able to 

generalize the segmentation process to images obtained by different scanners. 

 

 

 

Figure 10 - Loss trend with raw data. Left column: Unet, Right column: Fractal Net 
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Table 1 - Results for Raw Data 

2.4.2 Normalized Data 

To improve the segmentation performances of the system we implemented a basic 

preprocessing strategy, the data normalization. As implemented by MIScnn 

framework normalization is carried on the whole image, before splitting it up in 

patches. The performances of all the networks greatly improved with this strategy, as 

shown in Table 2 and Figure 11. In Figure 12 and Figure 13 we show respectively a 

comparison of all the networks results against the ground truth and the segmentation 

obtained with the model with the best projected ranking.  

Table 2 - Results for Normalized Data 

 

  

Architecture Loss Dice H95 AVD Recall F1 
Projected 

ranking 

Unet 

Normalized Dice 0.604 17.53 41.10 0.663 0.596 0.252 – 24th 

ND + CrossEntropy 0.416 22.63 64.55 0.430 0.373 0.485 – 37th 

Tversky 0.608 18.67 40.23 0.674 0.606 0.249 – 24th 

FractalNet 

Normalized Dice 0.427 30.42 140.9 0.592 0.441 0.461 – 36th 

ND + CrossEntropy 0.346 32.57 333.3 0.584 0.398 0.561 – 37th 

Tversky 0.559 27.05 108.8 0.730 0.520 0.520 – 37th 

Architecture Loss Dice H95 AVD Recall F1 
Projected 

ranking 

Unet 

Normalized Dice 0.755 14.33 29.52 0.729 0.618 0.155 – 20th 

ND + CrossEntropy 0.738 9.878 27.85 0.599 0.647 0.175 – 22nd 

Tversky 0.754 14.78 29.60 0.693 0.611 0.171 – 22nd 

FractalNet 

Normalized Dice 0.779 10.51 21.70 0.763 0.693 0.096 – 13th 

ND + CrossEntropy 0.745 17.40 42.03 0.802 0.600 0.157 – 22nd 

Tversky 0.780 14.21 22.96 0.777 0.658 0.118 – 18th 
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Figure 11 - Loss trend with normalized data. Left column: Unet, Right column: Fractal Net 
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2.5 Discussion 

With this work we designed an end to end system to segment white matter 

hyperintensities in T2-FLAIR imaging leveraging fully convolutional networks. The 

segmentations evaluation describe a system which is capable of achieving a 

performing score in terms of dice similarity coefficient and average volume difference 

Figure 12 - Segmentation results of all the implemented models on normalized data 
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percentage, while suffering from a low F1-score calculated on the single lesions. This 

parameter in particular is suggesting the tendency of the network to segment as WMH 

lesions areas originally labelled as other lesions. Moreover, a visual inspection of the 

segmentation suggested us that our models show a tendency to underestimate the 

Figure 13 - Triplane comparison between ground truth (top row) and segmentation results of our 

proposed system (bottom row) 
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lesions, as shown in Figure 12 and Figure 13, where smaller isolated lesions are not 

recognized and where bigger lesions have smaller boundaries. To improve this issue 

we are currently implementing WMH segmentation leveraging multimodal imaging, 

to enhance the discrimination between WMH and other lesions using also T1-weighted 

images, where other lesions have other distinctive patterns to identify them. 

Observing the loss per epoch in Figure 11 we can notice the very stable trend 

showed by Normalized Dice + Crossentropy loss, which reaches the plateau of 

learning very early in the process, without significant improvements till the end. This 

suggest us that this is the best performance we could obtain with this combination of 

loss and network. The Tversky loss showed a better learning trend, while more 

unstable across different folds. However, the best results and the best projected ranking 

was achieved by Dice Normalized Loss. This experiment showed the most stable 

learning trend and reached the best F1- score on the single lesions, the most impacting 

evaluation on the projected rankings of our networks. The future works will be focused 

on this combination of architecture and loss: the first step will be the inclusion of a 

second channel on the contractile path to take into account also the T1-weighted 

images, other works will be directed to add preprocessing steps to enhance the quality 

of T2-FLAIR images. Preliminary results have been obtained with image histogram 

equalization, with drastic improvements on some images showing contracted 

histograms, while no impact or performance degradation on images with well-

distributed histograms. 

Finally, it is ongoing the building of the official evaluation docker to test in real 

field the proposed architectures and obtain an objective ranking in the WMH 

segmentation challenge. 
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CHAPTER 3. HYPERTENSIVE PATIENTS 

AND EARLY BRAIN DAMAGE: A 

STRUCTURAL AND FUNCTIONAL 

CONNECTIVITY CHARACTERIZATION 

3.1 Introduction 

The WMH segmentation is a fundamental task to obtain a quantification of the 

white matter lesion burden, being a representative marker of brain injury associated to 

ongoing cognitive decline and later-stage hypertension. Thus, it’s nature of established 

damage phenotype make it useful to stage the degree the pathology, not a good 

candidate to be a predictive biomarker of early brain damage and vascular cognitive 

impairment. 

To that aim, in our work we looked for alternate parameters to be assessed on 

hypertensive patients in a early stage of brain damage, in which no damage is 

diagnosed by a routine clinical MRI exam. We designed a prospective study in which 

this class of patients, recruited in our outpatient facility at I.R.C.C.S. Neuromed, 

underwent standard clinical assessments, echocardiography, cognitive assessment and 

advanced neuroimaging. 
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3.1.1 Patient Sample  

To stage the hypertensive disease, we subjected patients to standard organ damage 

assessment for hypertension target organs, such as vasculature, heart and kidneys. In 

Figure 14 it is shown the flowchart of the enrolment process of the study, with the 

main inclusion criteria and the breakdown of excluded patients. The hypertensive 

population show a hypertrophic cardiac remodelling, characterized by the thickening 

of heart walls, without loss of function, evidenced by the Ejection Fraction. This 

suggests a process of adaptive remodelling of the heart, excluding heart failure. No 

significant vasculature remodelling is evidenced, as shown by the Intima-Media 

Thickness (IMT) of the carotids. It is worth noting the absence of atherosclerotic 

plaques in the carotid tract, which could independently contribute to cognitive 

impairment. Renal function is still unaltered in hypertensive patients, excluding 

chronic kidney disease (Table 3). The chosen sample represent a homogeneous sample 

with early damages in organs target of chronic elevated BP levels and no failure in any 

of those organs. Thus, is a candidate population to explore whether hypertension exerts 

Figure 14 - Enrollment Flowchart 
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a damage on the brain and how we can assess it in an early stage, when no sign of 

WMH or structural damage is present. 

 

Sample Characteristics Normotensive 

n= 18 

Hypertensive 

n=19 

p value 

Demographic       

Age. mean (SD) 52 (8) 55 (7) 0.256 

Sex. number of females (percentage) 10 (55.55%) 10 (52.63 %) 0.863 

Smokers. number (percentage) 3 (16.66%) 4 (21.05%) 0.742 

BMI. mean (SD) 25.38 (4.76) 29.96 (4.50) **<0.01 

Blood Pressure        

Systolic Blood Pressure - mmHg mean (SD) 123 (9.19) 138 (10.97) ***<0.001 

Diastolic Blood Pressure - mmHg mean (SD) 77 (6.24) 87 (9.71) ***<0.001 

Cardiac Remodeling        

LV end-diastolic diameter - mm. mean (SD) 4.85 (0.30) 4.96 (0.33) 0.257 

IV septal thickness- mm. mean (SD) 0.91 (0.12) 1.16 (0.14) ***<0.001 

LV posterior wall thickness- mm. mean (SD) 0.91 (0.14) 1.09 (0.09) ***<0.001 

LV mass index (LVMI2.7) - g/m2. mean (SD) 37.69 (9.11) 54.66 (8.28) ***<0.001 

Relative wall thickness - RWT. mean (SD) 0.37 (0.05) 0.44 (0.04) ***<0.001 

Diastolic dysfunction (percentage) 4 (22.22%) 15 (78.94%) ***<0.001 

LV Ejection fraction - %. mean (SD) 65.44 (6.20) 68.63 (7.03) 0.153 

Carotid Artery (CA) Thickening       

Internal CA (right) - IMT. mean (SD) 0.76 (0.18) 0.86 (0.23) 0.137 

Common CA (right) - IMT. mean (SD) 0.80 (0.14) 0.87 (0.13) 0.118 

Internal CA (left) - IMT. mean (SD) 0.76 (0.17) 0.87 (0.21) 0.082 

Common CA (left) - IMT. mean (SD) 0.81 (0.13) 0.90 (0.18) 0.094 

Renal damage       

Creatinine - mg/dL. mean (SD) 0.75 (0.17) 0.74 (0.15) 0.848 

Microalbuminuria - mg/24hrs. mean (SD) 11.84 (16.08) 17.30 (17.96) 0.338 

Estimated GFR – mL/min. mean (SD) 114.84 (34.95) 127.12 (41.50) 0.338 

Table 3 - Patient Sample Characteristics 
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Cognitive tests revealed that hypertensive population show a significantly reduced 

MoCA score (Montreal Cognitive Assessment, the gold standard for vascular 

cognitive impairment diagnosis) (Table 4)[37]. The damage is focused on executive 

function, as can be seen in Table 5 in which are reported the values obtained in 

different subscales of MoCA test, to better differentiate the cognitive domains with 

impaired function. 
 

Normotensive 

n= 18 

Hypertensive 

n=19 

p value 

Cognitive Assessment       

IADL – score. mean (SD) 7.7 (0.75) 7.7 (0.65) 0.950 

MoCA – score, mean (SD) 26.00 (2.43) 22.36 (2.73) ***<0.001 

Semantic Verbal Fluency – score. mean (SD) 48.67 (11.44) 43.68 (12.24) 0.210 

Paired-Associate Learning – score. mean (SD) 13.92 (4.04) 9.55 (5.31) **<0.01 

Stroop Color Word Test – score. mean (SD) 0.22 (0.65) 0.97 (1.51) 0.059 

Stroop Interference Test – time. mean (SD) 16.68 (7.90) 25.99 (12.11) **<0.009 

        

Table 4 - Cognitive Assessment 

 
Normotensive 

n= 18 

Hypertensive 

n=19 

p value 

MoCA cognitive subdomains       

Visuospatial – score. mean (SD) 3.2 (1) 3.35 (1) 0.680 

Executive Functions – score, mean (SD) 3.6 (0.7) 2.4 (1.2) **<0.01 

Language – score. mean (SD) 5.3 (0.8) 4.9 (0.7) 0.216 

Attention – score. mean (SD) 5.2 (1.3) 4.7 (1.5) 0.324 

Memory – score. mean (SD) 2.9 (1.7) 1.4 (1.3) **<0.01 

        

Table 5 - MoCA cognitive subdomains 

  

3.2 Structural Connectivity: Diffusion Tensor 

Imaging applied to Hypertensive Patients 

Our first aim in this study was to characterize the microstructural damage that 

hypertension exerts on cerebral white matter, the region of the brain which connects 
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different areas of the cerebral cortex between them and with the subcortical structures. 

Damages to this region have classically been associated and diagnosed with the WMH, 

lacking methods to investigate its integrity in early stages of damage. To this aim, the 

use of Diffusion Tensor Imaging (DTI) is a powerful tool. Briefly, by analysing the 

Brownian motion of the water in the brains we can reconstruct a model of the neuronal 

fibers, thus evidencing the connections existing in the brains and their microstructural 

properties[38, 39]. (see Appendix A – MRI Sequences for more insights) 

3.2.1 Diffusion parameters 

To fully characterize the diffusion at each voxel the first measure extracted is the 

Mean Diffusivity (MD), which is the sum of the diagonal elements of D, is a measure 

of the magnitude of diffusion and is a rotationally invariant measure[40]. From MD 

we can thereby extract the most widely used measure of anisotropy, the Fractional 

Anisotropy (FA) [40]. 

𝐹𝐴 =  √
(𝜆1 − 𝑀𝐷)2 + (𝜆2 − 𝑀𝐷)2 + (𝜆3 − 𝑀𝐷)2

2(𝜆1
2 + 𝜆2

2 + 𝜆3
2)
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Note that the diffusion anisotropy does not describe the full tensor shape or 

distribution. This is because different eigenvalue combinations can generate the same 

values of FA. Although FA is likely to be adequate for many applications and appears 

to be quite sensitive to a broad spectrum of pathological conditions, the full tensor 

shape cannot be simply described using a single scalar measure. However, the tensor 

shape can be described completely using a combination of spherical, linear and planar 

shape measures. The last two measures are secondary combination or amplitude 

evaluation of the eigenvalue: the Axial Diffusivity (AD) [40], which is the greatest 

eigenvalue (λ1) and the Radial Diffusivity (RD) [40] which is the average of the others 

Figure 15 - Diffusion Parameters Map 
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eigenvalues (
𝜆2+𝜆3

2
). An example of the maps is shown in Figure 15. The scalar maps 

can’t represent the principal directions of the diffusion. A standard color coding, 

superimposed to an FA map, has been vastly used to represent the principal 

eigenvector in each voxel (Figure 16). The green represents diffusion on the Posterior-

Anterior direction, red represents diffusion on the Left-Right direction, blue represents 

diffusion on the Upper-Lower direction. 

Every parameter’s alteration can be associated to a specific type of damage of the 

analysed area: FA and MD are associated with primary axon degeneration. Lower FA 

values indicate disorganized fibers, which are affected by microstructural processes 

such as demyelination, axonal degradation, or gliosis. Of the two, MD, is a more 

Figure 16 - Fractional Anisotropy Color Map 
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sensitive measure even though it is less specific, and its results can be increased by 

any pathological process affecting the neuronal cell membranes. Incremental 

variations in RD are associated with myelin breakdown, whereas in AD describe 

secondary axon degeneration.  

3.2.2 From tensorial model to probabilistic diffusion 

modelling 

The main limitation of DTI deterministic methods can be found in the simplistic 

modelling of a single fiber per voxel. White matter fibers are microscopical structures 

and brain networks are intricate and it is often needed the connection between distant 

areas. The typical spatial resolution of a MRI dataset is 1x1x1 mm, so one voxel is 

very likely to contain more than a bundle of fiber. To overcome this limitation a 

probabilistic approach has been developed to model the crossing fibers in each voxel: 

BEDPOSTX (Bayesian Estimation of Diffusion Parameters Obtained using Sampling 

Techniques. X stands for Crossing Fibers)[41]. This technique exploits the partial 

volume model (also called ball and stick model) which assumes that a fraction of 

diffusion is along a single dominant direction, and that the remainder is isotropic. The 

algorithm also estimates how many fibers can be modelled in each voxel of the space, 

creating a multi-fiber distribution parameter estimation. The output of BEDPOSTX is 

a series of scalar maps per estimated fiber. For each fiber we have the estimates of 

theta, phi (polar coordinates identifying the main diffusion direction) and anisotropic 

volume fraction. These maps are necessary to perform probabilistic tractography. The 

information from multiple fibers can be superimposed to have a global view of the 

modelled fibers distribution. In Figure 17 the modelling of the first fiber, in red, the 

second fiber, in blue, and their superimposition is shown. In detail the zoom of the 

green rectangle: it’s possible to see how, in high anisotropy regions, the models are 

mixed and the two fibers point out different diffusion directions. 
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3.2.3 Probabilistic tractography 

After the multiple fibers modelling, classical tractography methods are unfeasible. 

Having no longer a single principal direction to follow means that a deterministic 

tractography algorithm is not able to decide which fiber a streamline should follow. 

To solve this issue, PROBTRACKX (Probabilistic tracking with crossing fibres) has 

been introduced[42]. To perform probabilistic tractography we need to define a seed 

voxel (or a group of seed voxels) and a target voxel (or a group of target voxels). This 

method repetitively samples starting at the seed voxels from the distributions of voxel-

wise principal diffusion directions, each time computing a streamline through these 

local samples to generate a probabilistic streamline or a sample from the distribution 

Figure 17 - Probabilistic Diffusion Modelling 
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on the location of the true streamline. By taking many such samples PROBTRACKX 

is able to build up the histogram of the posterior distribution on the streamline location 

or the connectivity distribution between the seed region and the target region. In Figure 

18 the spatial histogram of the connectivity distribution of anterior thalamic radiation 

tract is shown. The colour scheme represents the confidence of the connection: yellow 

stands for a high connectivity region, red stands for a low connectivity region. 

3.2.4 Analysis Pipeline 

In order to process data collected from the study and make them comparable, it has 

been necessary to develop and implement a rigorous analysis pipeline. The stages of 

this workflow are here presented and discussed (Figure 19).  

  

Figure 18 - Probabilistic Tractography Heathmap 



CHAPTER 3  Hypertensive patients and early 

brain damage: a structural and functional connectivity characterization 

 

40 

 

First, structural and DWI images are examined by an expert radiologist to exclude 

pathologies which could affect the outcome of the study (gliosis, white matter hyper 

intensities, ischemia). After the radiological response the raw DWI data begins the 

processing with BET (Brain Extraction Tool)[43], a tool which deletes from the image 

all non-brain tissues and creates a binary mask to identify the brain. The images so 

obtained are then processed with the eddy current correction tool[44]. Eddy currents 

are characteristics parasite currents induced by the magnetic field, resulting in image 

artefacts like shading and blurring. Corrected images are then co-registered to a 

common atlas in a standard space. On the resulting image is fitted the tensorial model, 

to obtain the standard parameter maps, then BEDPOSTX is performed in order to 

produce data for tractography[41]. 

Preprocessing
•Radiological Assessment

•Brain Extraction

• Eddy Current Correction

• Tensor Model Fitting

•BEDPOSTX

Probabilistic 
Tractography

• PROBTRACKX

• Tract Quality Check

Parameters 
Extraction

•Mean FA per tract

•Mean MD per tract

•Mean RD per tract

•Mean AD per tract

•Volume per tract

Figure 19 – DTI Analysis Pipeline 
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The second stage of the pipeline is the tractographic analysis. In this step we create 

a per subject segmentation of the white matter based on connectivity features[45]. The 

main tract of the white matter has been characterized by a team of expert 

neuroanatomists[46]. In order to perform the segmentation, each tract has been 

described with a series of binary masks in standard space: the seed mask, the region 

from which the tract is originated; the target mask, the region where the tract is headed 

to; the stop mask, a region which describes a terminator for streamlines; the exclusion 

mask, if streamlines crosses this region are eliminated from the model. PROBTRACK 

is performed tract by tract to obtain a connectivity distribution for every tract specified 

in the protocol[42]. After that the tracts are thresholded to optimize the repeatability 

of the parameters’ extraction. A different threshold is used for visualization. Tracts are 

identified by their functionality: in Figure 20A the right hemisphere (RH) fraction of 

the callosal tracts is shown, in Figure 20B the RH of the limbic system tracts is shown, 

in Figure 20C the RH of the associative tracts is shown, in Figure 20D the RH of the 

projection tracts is shown. On a per patient basis a visual inspection and tract quality 

check is performed, to exclude from the study potential outliers (interrupted tracts, 

errors due to misaligning of masks and anatomic structures). Once we have obtained 

the white matter segmentation for the patient, we proceed to extract the diffusion 

parameters associated with each tract. After a co-registration of segmentation maps 

and parameters maps, segmented areas are used as ROI in which the diffusion 

parameters are averaged and extracted. For each tract, volume is also calculated in 

order to exclude tract atrophy. After the clinic study the first data analysis approach 

has been the univariate statistical comparison, to explore where the hypertension could 

have caused damages and how was this damage characterized. 
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3.3 Functional Connectivity: resting state functional 

MRI applied to Hypertensive Patients 

 

Our second aim in this study was to characterize not only the damage that 

hypertension exerted on the brain structure, but which was the consequent functional 

damage. While mainly limited to psychiatric or neurodegenerative disorders, resting 

Figure 20 - White matter tracts reconstruction 
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state functional MRI is a potent tool to assess the functional organization of the brain. 

By acquiring the blood-oxygen-level dependent signal (BOLD signal) we can image 

the relative concentration of oxygenated and deoxygenated blood in each voxel, and 

sampling this signal repeatedly let us reconstruct the regional neuronal activations[47]. 

(see Appendix A – MRI Sequences for more insights) 

3.3.1 Functional Network Analysis 

It has been extensively demonstrated that in normal subjects the brain in resting 

state shows a consistent pattern of synchronous alterations. Since the first works using 

this technique in small populations of healthy controls, it was very evident the 

activation during rest time of an ensemble of regions which were conversely negatively 

associated and non active during every kind of task previously administered: the 

Default Mode Network (DMN)[48-50].  

 Subsequent efforts were aimed at resolving all the synchronous connections 

through different regions of the brains, and these efforts resulted in precise mapping 

of each brain region associated to a group of synchronous activations dedicated to 

generic type of brain activity. One of the pivotal works in rs-fMRI research mapped 7 

Figure 21 - Default Mode Network activation regions 
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coarse networks of activation which could be eventually divided in 17 fine networks, 

each one consistent between one thousand subjects included in the study. To do this, 

Yeo at al. applied a clustering algorithm to group the voxels taking into account both 

their functional time course and their distance and regional profile[51]. 

Figure 22 - Yeo et al. coarse (7-network) cortex parcellation 
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Other approaches were able to extrapolate functional networks from the raw data: 

Independent Component Analysis (ICA) is one of the main tools exploited in 

functional MRI analysis[52]. ICA is used to find a set of statistically independent maps 

(which are the maps depicting the regions of the functional networks) with time 

courses associated between them (which is the measure of their functional 

connectivity). This technique let us extrapolate the spatial and temporal information 

of the brain networks from the data, without any a-priori knowledge, and without any 

a-priori constraint. Usually the results of ICA, while explaining the quasi-totality of 

the starting dataset, need to be cleaned to rule out the spurious signals from regions 

not involved in functional connectivity (such as CSF or, in a classical vision of the 

problem, white matter). Once obtained the regional maps and their associated time 

course, we can proceed with the analysis of functional connectivity between different 

Figure 23 - Connectome Ring Display 
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patient populations. It can be considered intra network connectivity (the differences 

between FC in the synchronicity between different regions of the same network) or 

inter network connectivity (the differences between FC in the synchronicity of 

different regions between different networks). In Figure 23 it’s shown an example of 

a full connectome ring, in which every connection is represented in a round scheme, 

color coded by intensity of the correlation and grouped by the functional network of 

origin. 

 

3.3.2 Graph Analysis 

Once we evaluate the correlation between the timeseries of different regions, it is 

possible to build an undirected graph of connections. The resulting graph will be 

composed of a node for each region and edges between region whom timeseries 

correlation is above a certain threshold value[53]. 

On this built graph we can estimate topological measurements for each node and 

we can aggregate them across the network[54]: 

• Degree: the degree of a node is the number of edges associated to the node, 

and estimates the network centrality and local connectivity of a node 

• Average Path Length: Average length of the paths connecting a node with 

each other node in the network, gives an estimate of the compactness 

• Clustering Coefficient: Fraction of edges among all possible edges in the 

local neighbouring sub-graph for each node. It is an estimate of the 

interconnectedness in sub-graphs, often measures the small-world 

characteristics of a network. 

• Global and Local Efficiency: Average of inverse-distances between each 

node and all other nodes in the graph. The global efficiency measures the 

centrality of a node in a network, while the local efficiency is the same 

metric applied to neighbouring sub-graphs. 

• Betweenness Centrality: Measure of node centrality in a graph, measures 

the percentage of optimal paths between other nodes in which the node is 

included. 
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3.3.3 Analysis Pipeline 

In a similar manner for the DTI analysis pipeline, we needed to establish a pipeline 

to standardize the process to make comparisons between control and hypertensive 

population. 

The preliminary step of the pipeline is to obtain a structural segmentation of the 

brain on T1-weighted images. After that, the functional image is denoised, low-pass 

filtered and co-registered to the structural one, to have a map of functional timeseries 

associated to structural region parcellation[55].  

Figure 24 - Graph network built on rs-fMRI 
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The subsequent stage is denominated First-Level Analysis, or subject level analysis. 

In this step all the operations are performed on a per-patient basis and are aimed at 

extracting functional connectivity measures from the functional scans.  In our problem 

we are interested mainly to analyse whether the hypertension modifies the functional 

organization of the brain. Thus, we chose to implement a ROI-to-ROI, in which a set 

of previously validated networks are divided in ROIs and the timeseries in those ROIs 

are pairwise correlated to obtain an estimate of their functional connectivity. Once we 

characterized every patient, we carried on Second-Level Analysis, in which we 

perform group-level comparison between normotensive and hypertensive patients both 

on ROI-to-ROI functional connectivity and on topological metrics of the graph built 

by thresholding the connectivity matrices.  

 

Preprocessing

• Structural Segmentation

• Functional Scan Denoising

• Functional Scan low-pass 
filtering

• Functional and Structural 
image registration

First-Level 
Analysis

•ROI-to-ROI Correlation

Second-Level 
Analysis

•Between-
Network 
Connectivity

•Graph Analysis

Figure 25 - rs-fMRI Analysis Pipeline 
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3.4 Results 

Our multimodal characterization of the early brain damage revealed a characteristic 

pattern of damage, both in the microstructural integrity of the white matter fibers and 

in the functional organization between different regions. 

3.4.1 Hypertension alters microstructural integrity of white 

matter 

By assessing the diffusion parameters of FA, MD, AD and RD of the segmented 

tracts, we evidenced a pattern of significant alterations which pointed out a worse 

fascicle organization in hypertensive patients’ white matter respect to the 

normotensive ones. This is supported by the concomitant variation of FA and MD in 

specific tracts, a characteristic usually associated to an ongoing pathological process. 

Hypertensive patients show a reduced integrity of WM fiber bundles of right 

Anterior Thalamic Radiation (ATR) (Figure 26A), right Superior Longitudinal 

Fasciculus (SLF) (Figure 26B) and Forceps Minor (FMI) (Figure 26C).  
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While the damage on FA was evident only in the aforementioned tracts, the MD 

showed a broader pattern of alteration, suggesting an ongoing WM integrity loss which 

can be first measured by MD (Table 6). In addition, AD and RD DTI parameters were 

considered, to take into account the potential impact of different neural mechanisms 

on WM abnormalities. Conventionally, incremental variations in RD are associated 

Figure 26 - WM altered tracts 
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with myelin breakdown, whereas in AD describe secondary processes of axon 

degeneration. Our data also report a significant alteration of RD and AD in the tracts 

of interest (Table 7).  

 

 FA MD 

Associative NT HT NT HT 

SLF R 0.39 (0.03) 0.36 (0.02)* 0.77 (0.03) 0.81 (0.04)*** 

SLF L 0.39 (0.03) 0.39 (0.02) 0.76 (0.03) 0.80 (0.04)** 

ILF R 0.39 (0.02) 0.38 (0.02) 0.86 (0.02) 0.87 (0.04) 

ILF L 0.39 (0.02) 0.39 (0.02) 0.86 (0.02) 0.87 (0.03) 

IFO R 0.40 (0.02) 0.39 (0.02) 0.85 (0.02) 0.88 (0.04)* 

IFO L 0.40 (0.02) 0.39 (0.03) 0.86 (0.02) 0.88 (0.04) 

UNC R 0.33 (0.02) 0.32 (0.02) 0.89 (0.04) 0.93 (0.05)** 

UNC L 0.33 (0.03) 0.33 (0.02) 0.88 (0.04) 0.91 (0.06)* 

Limbic     

CGC R 0.35 (0.03) 0.34 (0.02) 0.81 (0.03) 0.84 (0.04)* 

CGC L 0.39 (0.04) 0.37 (0.03) 0.81 (0.03) 0.83 (0.05) 

CGH R 0.23 (0.02) 0.22 (0.02) 0.99 (0.04) 1.03 (0.06)* 

CGH L 0.23 (0.02) 0.21 (0.03) 0.99 (0.06) 1.02 (0.10) 

Projection     

CST R 0.45 (0.02) 0.44 (0.03) 0.89 (0.05) 0.90 (0.06) 

CST L 0.44 (0.03) 0.44 (0.03) 0.90 (0.06) 0.89 (0.06) 

AR R 0.30 (0.02) 0.30 (0.02) 0.93 (0.07) 0.98 (0.07) 

AR L 0.29 (0.02) 0.30 (0.02) 0.95 (0.06) 0.97 (0.06) 

ATR R 0.36 (0.02) 0.34 (0.02)** 0.86 (0.03) 0.91 (0.07)** 

ATR L 0.36 (0.02) 0.35 (0.02) 0.86 (0.04) 0.89 (0.05) 

STR R 0.38 (0.02) 0.37 (0.02) 0.82 (0.05) 0.83 (0.06) 

STR L 0.39 (0.02) 0.38 (0.02) 0.81 (0.04) 0.82 (0.05) 

PTR R 0.37 (0.02) 0.36 (0.03) 0.88 (0.04) 0.88 (0.04) 

PTR L 0.37 (0.02) 0.37 (0.02) 0.89 (0.04) 0.90 (0.04) 

Callosal     

FMI 0.47 (0.02) 0.45 (0.02)* 0.87 (0.04) 0.91 (0.04)** 

FMA 0.45 (0.03) 0.45 (0.03) 1.04 (0.08) 0.99 (0.07)* 

Table 6 - Average FA and MD of segmented tracts 
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 AD RD 

Associative NT HT NT HT 

SLF R 1.10 (0.03) 1.13 (0.04)* 0.61 (0.04) 0.65 (0.04)** 

SLF L 1.12 (0.03) 1.14 (0.04)* 0.61 (0.03) 0.63 (0.04)* 

ILF R 1.24 (0.03) 1.25 (0.03) 0.66 (0.03) 0.68 (0.04) 

ILF L 1.25 (0.03) 1.26 (0.03) 0.66 (0.02) 0.68 (0.04) 

IFO R 1.24 (0.05) 1.27 (0.04) 0.66 (0.02) 0.69 (0.04)* 

IFO L 1.25 (0.04) 1.28 (0.05) 0.67 (0.02) 0.69 (0.05) 

UNC R 1.22 (0.05) 1.25 (0.05)* 0.73 (0.04) 0.77 (0.05)** 

UNC L 1.20 (0.05) 1.24 (0.06)* 0.73 (0.05) 0.75 (0.06) 

Limbic     

CGC R 1.12 (0.05) 1.15 (0.05) 0.65 (0.03) 0.68 (0.04)** 

CGC L 1.17 (0.05) 1.18 (0.05) 0.63 (0.04) 0.66 (0.05)* 

CGH R 1.23 (0.05) 1.26 (0.07) 0.88 (0.04) 0.92 (0.06)* 

CGH L 1.22 (0.07) 1.24 (0.10) 0.88 (0.06) 0.92 (0.10) 

Projection     

CST R 1.33 (0.06) 1.33 (0.06) 0.67 (0.06) 0.68 (0.06) 

CST L 1.33 (0.06) 1.32 (0.05) 0.68 (0.07) 0.68 (0.06) 

AR R 1.22 (0.08) 1.27 (0.07)* 0.79 (0.07) 0.83 (0.07) 

AR L 1.22 (0.06) 1.27 (0.07) 0.81 (0.06) 0.83 (0.06) 

ATR R 1.19 (0.04) 1.24 (0.08)* 0.69 (0.04) 0.74 (0.06)** 

ATR L 1.19 (0.05) 1.23 (0.05)* 0.69 (0.04) 0.72 (0.05)* 

STR R 1.16 (0.04) 1.17 (0.07) 0.64 (0.05) 0.66 (0.06) 

STR L 1.15 (0.03) 1.16 (0.05) 0.64 (0.04) 0.65 (0.05) 

PTR R 1.24 (0.05) 1.24 (0.05) 0.70 (0.04) 0.70 (0.04) 

PTR L 1.26 (0.06) 1.26 (0.04) 0.71 (0.04) 0.71 (0.05) 

Callosal     

FMI 1.37 (0.07) 1.41 (0.05)* 0.62 (0.04) 0.66 (0.04)** 

FMA 1.57 (0.09) 1.52 (0.08) 0.78 (0.08) 0.73 (0.07) 

 

Table 7 - Average AD and RD of segmented tracts 
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3.4.2 WM microstructural alterations scale with cognitive 

impairment and target organ damage 

We generated correlation models among microstructural WM alterations, cardiac 

remodeling, hypertensive condition and cognitive profile. We found a significant 

positive correlation between MoCA scores and FA of the projection and association 

fibers (ATR and SLF) (Figure 27C and D). FA values of the same projection and 

association fibers negatively correlated with the estimated duration of hypertension 

(Figure 27E ) as MoCA scores did (Figure 27F). It is interesting to notice that the 

sample of hypertensive patients (n=18), excluded because of already manifest 

neurological damage, had a significantly longer estimated duration of hypertension 

(mean ± SD = 9.61 ± 5.57) when compared to the group of included patients (mean ± 

SD = 6.13 ± 3.73) (*p < 0.05), thus suggesting that with disease advancement, brain 

damage progressively evolve toward an increasingly manifest injury. Further 

supporting this hypothesis, both the included and excluded patients had comparable 

good levels of blood pressure control. 

Hence, in order to test whether the observed correlations between DTI parameters 

and cognitive scores was modulated by hypertensive condition, we also performed a 

partial correlation analyses controlling for SBP and years of hypertensive conditions. 

There were no significant influences of SBP levels and overall duration of 

hypertension in the correlation observed neither between MoCA and FA r-ATR (SBP: 

p = .132; years of hypertension: p = .213) nor between MoCA and FA r-SLF (SBP: p 

= .069; years of hypertension: p = .081).  

Since altered FMI may be involved in impaired processing speed tasks41, we tested 

the correlation between Stroop interference time, Stroop test errors and FMI-FA, 

finding a significant relationship suggestive of an impact of hypertension in inhibiting 

interfering stimuli, represented by the time performance (Figure 27G and H). Even the 

correlation observed between FA-FMI and Stroop Interference Time was controlled 

for the interaction with both SBP, duration of hypertension and age, given that this 
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latter parameter emerged as influencing the deterioration of FA-FMI observed in HT. 

Interestingly, while there was a statistically significant negative partial correlation 

between Stroop Interference Time and FA-FMI whilst controlling for SBP (p = .040) 

Figure 27 - Characteristic pattern of altered tracts and DTI-organ damage correlations 
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no effect was observed for overall duration of hypertension (p = .074) or when 

controlling for age (p = .431). When controlling the correlation between Stroop test 

errors and FMI-FA for the same parameters it emerged a significant negative 

correlation when controlling for overall duration of hypertension (p = .047) while no 

effect were observed controlling for SBP (p = .057) or when controlling for age (p = 

.219).  

In the end, the significant negative correlation observed between indexed LVMI 

and MoCA (Figure 27I) revealed parallel progression of early cognitive alterations and 

initial peripheral organ damage. 

3.4.3 ROI-to-ROI analyses of Functional Connectivity show 

altered aberrant connections between task-positive 

networks 

The ROI-to-ROI showed a pattern of altered connections in hypertensive patients 

respect to the normotensive controls between the Dorsal Attention Network, the Visual 

Network, the Sensorimotor Network and the FrontoParietal Network. Specifically, in 

the hypertensive sample the Intraparietal Sulcus (IPS) region of the right hemisphere 

shows an increased functional connectivity with the Superior (p = 0.0064) and the 

Lateral (R: p = 0.0379; L: p = 0.0427) regions of the SensoriMotor Network and 

increased functional connectivity with the Occipital region of the Visual Network (p 

= 0.0427). Conversely, the right hemisphere IPS presents a decreased functional 
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connectivity with the same hemisphere Lateral PreFrontal Cortex (LPFC) of the 

FrontoParietal network (p = 0.0379) (Figure 28). 

3.4.4 Graph Theory Analyses of brain network connectivity 

By thresholding the connectivity values between the different regions of interest we 

can obtain an undirected graph representing the global network of connections in the 

brains. Once obtained the network, graph theory analysis can highlight differences in 

the global organization of the network and the differences in the nodes of the network. 

While no metric shows significant differences at global network level, the Intraparietal 

Sulcus region of the FrontoParietal network in the left hemisphere shows a decreased 

node Degree (p = 0.0485) and an increased Average Path Length (p = 0.0428). 

Figure 28 - Connectome ring showing altered subnetwork and its 3D reconstruction 
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Moreover, the left hemisphere of the Salience network shows a similar decrease in 

Degree (p = 0.0485) (Figure 29). 

3.4.5 Diffusion parameters and cognitive performances 

correlates with the functional connectivity 

Analyzing the effect of different covariates on functional connectivity, we tested 

whether the Fractional Anisotropy of altered connection identified in hypertensive 

patients and their scores in cognitive tests could be correlated to the functional 

connectivity. We tested Anterior Thalamic Radiation (ATR), Superior Longitudinal 

Fasciculus (SLF) and Forcep Minor (FMI) regarding the tracts, MoCA Score and 

Figure 29 - Nodes altered in corresponding graph metrics 
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Stroop Test Execution Time for the cognitive performances scores. No significant 

correlation could be identified between FC and ATR FA nor between FC and FMI FA, 

while SLF FA was negatively correlated to the connection between the Precuneus 

Cortex of the Default Mode Network and the Posterior Parietal Cortex of the 

FrontoParietal Network (p = 0.039). Global cognitive performances, expressed as 

MoCA score, is correlated to various connectivity scores between different regions, 

mirroring the capability of the test to examine different cognitive domains regulated 

by different brain regions. Specifically, a significant correlation could be identified 

with the connectivity scores between the right IPS of the Dorsal Attention Network 

and the SupraMarginal Gyrus of the Salience Network (p = 0.0463) and the Superior 

region of Sensorimotor Network (p = 0.0240). Moreover, a significant correlation was 

found between MoCA Score and the connectivity of the right Frontal Eye Fields of the 

Dorsal Attention Network and the posterior Superior Temporal Gyrus (pSTG) of the 

Language network (p = 0.0320) and between pSTG and Accumbens of Salience 

Network (p = 0.0320). 

3.5 Dataset Construction 

All data has been collected in csv file format. A single database containing clinical, 

cognitive and tractographic data has been used for univariate statistical analysis. From 

the global data three separate datasets for machine learning analysis have been 

extracted: 

 Functional data: the dataset is composed of 407 attributes. 

 Advanced Neuroimaging data: contains all data from the aforementioned 

dataset plus the addition of tractographic data. Is composed of 542 attributes. 

 Advanced Neuroimaging + Cognitive data: contains all data from the 

aforementioned dataset with the addition of data from cognitive tests. Is composed of 

549 attributes.
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CHAPTER 4. A MACHINE LEARNING 

APPROACH TO CLASSIFY 

HYPERTENSION FROM ADVANCED 

NEUROIMAGING DATA 

4.1 The curse of dimensionality 

Richard Bellman introduced the term curse of dimensionality in 1961 to describe 

the problem of an exponential growth in volume when the dimensions of the input 

space increase. For example, the volume of a hypercube with 100 units (sampled 

intervals) in each of its p dimensions has a volume of V = 100p. Regarding these 

problems Bellman said: “This does not mean that we cannot attack them. It merely 

means that we must employ more sophisticated methods”. 

With the technological advancement in the biomedical field the capability to extract 

different data from a single observation increased, often presenting datasets with more 

variables than observation. The effort of the statisticians and machine learning experts 

have been very focused on this kind of problem, defined in its theoretical aspects only 

during the last decade. “Large p, small n” problems[56], with p number of features 

composing the feature vector and n number of observations, can be easily found in 

genetic analysis or functional MRI data[57]. One of the solutions to optimize the 

classification of such datasets has been the feature reduction with various techniques 

of feature selection. Following the example of Kuncheva, we wanted to investigate 

whether our dataset required a dimension reduction and what technique could achieve 

the best result. The experiment consisted of the comparison between various 

classification techniques with and without a feature selection strategy. 
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4.2 Weka Tools 

Waikato Environment for Knowledge Analysis (WEKA), is a very popular open 

source software written in Java and developed at the University of Waikato, New 

Zealand, in 1997. It is available under the GNU General Public License. Contains a 

graphical user interface (GUI) very useful for interacting with data files and represent 

the results in an intuitive form like curves or graphics[58]. 

Some of WEKAs main features are the following:  

Data preprocessing - WEKA supports a couple of popular text file formats 

such as CSV, JSON and Matlab ASCII files to import data along with their own file 

format ARFF. They also have support to import data from databases through JDBC. 

Beside importing data, they have a wide collection of supervised as well as 

unsupervised filters to apply on your data to facilitate further analysis. 

Data classification - A huge collection of algorithms has been implemented to 

perform classification on data sets. These include Bayesian algorithms, mathematical 

functions such as support vector machines, lazy classifiers implementing nearest-

neighbour calculations, meta based algorithms as well as rule and tree-based 

classifiers.  

Data clustering - A couple of algorithms for clustering exist such as variations 

of the k-mean method as well as density and hierarchical based clustering algorithms. 

Attribute selection - Methods to evaluate which attribute contribute the most 

when predicting an outcome.  

Data visualization - Depending on the methods used to analyse the data, this 

view can to plot data against suitable variables as well as give tools to analyse specific 

points further. 

4.3 Classifiers 

In this section we present the most popular classifiers provided by WEKA tools 

which have been used in our experiments. 

4.3.1  J48 Decision Tree 
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J48 is an implementation of the well-known C4.5 algorithm for producing either 

pruned or unpruned C4.5 tree[59]. The C4.5 algorithm was built based on the concept 

of information obtaining or entropy reduction to select the most efficient split. In 

general, it assumes that individual attributes of the data can be used to make a decision 

by splitting the original data into minor subsets. The main reason J48 decision tree was 

chosen to serve as a model for classification is that it produces simpler rules and 

remove insignificant parameters before it begins a process of tree induction. Usually, 

J48 decision trees happen to have a relatively higher accuracy than other classification 

algorithms. In addition, J48 also provides extremely fast and pretty powerful way of 

fast and powerful way to show structures for a data. 

4.3.2 Naïve Bayes 

Naïve Bayes classifier works under the assumption that the classes are all 

statistically independent[60]. The Naïve Bayes algorithm makes use of Bayes' 

Theorem, which is a formula that determines a probability by estimating the frequency 

of values and mixture of values in the previously collected data. It determines the 

probability of an event happening provided that the probability of another event that 

has already happened. The Bayes’ theorem is stated as follows: 

P (H/X) = P(X/H) P(H) / P(X) 

The Naive Bayes algorithm provides a way to mix the prior probability and 

conditional probabilities within a single formula that can be used to determine the 

probability of each of the classifications in turn. After that, the class with the highest 

value will be chosen as the class of the new instance. 

4.3.3 Logistic Regression 

Logistic regression models the probabilities for classification problems with two 

possible outcomes. It’s an extension of the linear regression model for classification 

problems[61]. 

The logistic function is defined as: 

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜂) =
1

1 + exp(−𝜂)
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 Logistic regression is used in various applications, mainly in the medical field 

and social sciences, as a simple model to perform binary prediction with one or more 

features (with the multivariate model).  

4.3.4 SVM 

Support vector machines, also called SVM, is a popular type of learning machine 

that use supervised learning models to analyse and classify data. One of the main areas 

of usage is to construct an optimal model that can distinguish new data points into one 

of two different classes. First presented by Vapnik and Lerner in 1963, the main 

concept is to construct a hyperplane as the separator of the two classes[62]. The clever 

thing about hyperplanes is that it can be with ease be applied in higher dimensions as 

well which makes them ideal to general solutions. 

 

 

When dealing with a linearly separable data set, there can be up to infinite ways to 

construct a hyperplane to correctly divide a data set into two classes as seen in Figure 

30. However, this is where SVM excels since the method presented by Vapnik will 

present an optimal hyperplane such as the one seen below in Figure 31. 

Figure 30 - Linearly separable data 
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Not all data sets are linearly separable as seen in, in fact that is usually the case 

when dealing with real data. A clever trick is that the above algorithm to maximize the 

margin still works in higher dimensions, so if you’re faced with non-linear separable 

points in the x space, you can do a nonlinear transformation into a much higher 

dimensional space and solve the problem there with the linear SVM method.  

4.4 Ensemble  

A common optimization of the classifier performances is given by using ensembles 

techniques to exploit a combination of various weak learners (learners which have an 

accuracy at least of 50%+1) to obtain a strong learner. 

4.4.1  AdaBoost 

AdaBoost stands for “Adaptive Boosting”, is one of the most used algorithms for 

the generation of a classifier ensemble[63]. AdaBoost builds a list of classifiers, 

assigning in an iterative procedure a weight to each of them, based on the capability to 

correctly classify samples which hadn’t been correctly classified by other learners. 

Every classifier will contribute to the final decision proportionally to their weighting 

and the output will be decided on majority of voting.  

4.4.2 Bagging 

Figure 31 - Optimal hyperplane placement 
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Bagging stand for “Bootstrap Aggregating”, is an algorithm which improves the 

stability of the selected weak learner ensemble[64]. From a given training set D, this 

technique consists in generating m different training sets Di by sampling from D 

uniformly and with replacement. A weak learner is trained on one of the m different 

training sets. After the different models are built, the different learners are combined 

in the classification stage by voting.  

4.4.3 Random Forest 

Random forest is an ensemble method in which multiple decision trees are grown 

independently and can be grown in parallel. Each tree is built using all the training 

samples sampled with replacement[65]. The forest is trained to optimize the 

parameters at each node of every tree. While training a tree, each node of the tree has 

access to only a randomly chosen subset of the entire set of features. Training consists 

of selecting at each internal node the feature in the randomly chosen feature subset that 

best separates the training samples. During testing, all decision trees in the forest 

classify the sample, and the predicted class label is simply most frequent output of the 

individual decision trees. 

4.4.4 Random Subspace 

Random Subspace is a technique in which we can construct an ensemble on m 

classifiers with m different training set obtained by a random sampling without 

replacement of the original training set D[66]. After the different models are built, the 

different learners are combined in the classification stage by voting.  It is a technique 

similar to bagging, with the main difference that in the latter the sampling is with 

replacement. 

4.5 Feature Selection 

The strategies to reduce the number of examined features are fundamental to 

achieve a better classification result, especially in a “Large p, small n” situation. These 

strategies are used mainly to enhance the generalization capabilities of the classifiers, 
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reducing the overfitting of the model. Hereby are described the used selection 

strategies. 

4.5.1 Correlation-based Feature Subset 

CFS evaluates the worth of a subset of attributes by considering the individual 

predictive ability of each feature along with the degree of redundancy between them. 

Correlation coefficients is used to estimate correlation between subset of attributes and 

class, as well as inter-correlations between the features[67]. Relevance of a group of 

features grows with the correlation between features and classes and decreases with 

growing inter-correlation. CFS is used to determine the best feature subset and is 

usually combined with search strategies such as forward selection, backward 

elimination, bi-directional search, best-first search. 

4.5.2 Information Gain and Gain Ratio 

The information gain filter measures the attribute’s information gain with respect 

to the class. Entropy was defined as follows: 

𝐻(𝐷) = − ∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)

𝑚

𝑖=1

 

Where 𝐷 is our data sample, 𝑝𝑖 is the proportion of 𝐷 in respect to class Ci, m is the 

number of outcomes. H(D) is bound by 0 (perfectly classified) and 1 (totally random). 

We can define the expected information required to classify a sample of the dataset 

based on the partitioning of a feature A. 

𝐻𝐴(𝐷) = ∑(|𝐷𝑗|/|𝐷|

𝑣

𝑗=1

)  × 𝐻(𝐷𝑗) 

where Dj is the subset of D containing distinct value of A, and v is the number of 

distinct values in A[68]. The information gain is the difference between the prior 

entropy of classes and posterior entropy. 

𝐺𝑎𝑖𝑛 = 𝐻(𝐷) − 𝐻𝐴(𝐷) 

Gain Ratio is the Gain normalized by the intrinsic information of a feature. 

4.5.3 Principal Component Analysis 
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PCA is one of the most commonly used dimensionality reduction methods. PCA 

finds a linear combination of the multivariate data that captures a maximum amount 

of variance[69]. However, the projections that PCA seeks are not necessarily related 

to the class labels; hence they may not be optimal for classification problems.  

4.6 Results 

Here is the global comparison among the top performing classifiers on the three 

different datasets (Functional, Advanced Neuroimaging, Advanced Neuroimaging and 

Cognitive data) and then the global ranking all the classifiers applied. The evaluated 

parameters are classification accuracy, AUC and F-measure. Each result is the average 

over 10 different runs of the same classifier, each run configured in 10-fold cross 

validation. (Total run: 18000) 

4.6.1 Global Comparison 

Functional data 

Classifier 

Accuracy AUC F Measure 

Random Forest - 

Infogain 

85.83% (19.37) 0.95 (0.13) 0.83 (0.26) 

Random Forest - 

GainRatio 

85.18% (18.45) 0.93 (0.16) 

 

0.81 (0.27) 

Random Forest - 

CFS 

85.08% (19.11) 0.92 (0.18) 0.81 (0.28) 

Naïve Bayes - CFS 82.67% (18.90) 0.92 (.019) 0.80 (0.25) 

J48 – Bagging - CFS 81.58% (20.25) 0.89 (0.22) 0.80 (0.25) 

 

  

Table 8 - Top 5 classifiers on functional data 
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Neuroimaging data 

Classifier 

Accuracy AUC F Measure 

Naïve Bayes – CFS 91.25% (15.95) 0.95 (0.15) 0.91 (0.19) 

Random Forest – 

CFS 

89.50% (15.87) 0.94 (0.15) 0.89 (0.19) 

Naïve Bayes – 

Infogain 

86.75% (18.69) 0.93 (0.16) 0.86 (0.23) 

Random Forest – 

Infogain 

85.50% (18.41) 0.92 (0.16) 0.83 (0.25) 

SVM – Random 

SubSpace – Infogain 

84% (17.99) 0.90 (0.21) 0.83 (0.24) 

 

All data  

Classifier 

Accuracy AUC F Measure 

Random Forest – 

CFS 

89.42% (15.97) 0.96 (0.12) 0.87 (0.23) 

Naïve Bayes – CFS 89.17% (17.14) 0.95 (0.13) 0.87 (0.23) 

SVM – Random 

SubSpace – CFS 

85.58% (18.95) 0.93 (0.17) 0.85 (0.23) 

Naïve Bayes – 

Infogain 

85.17% (17.67) 0.93 (0.17) 0.84 (0.23) 

SVM – Bagging –

CFS 

83.75% (19.48) 0.89 (0.20) 0.81 (0.27) 

  

Table 9 - Top 5 classsifiers on advanced neuroimaging data 

Table 10 - Top 5 classifiers on all data 
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4.6.2 Global Ranking 

 

Table 11 - Accuracy Ranking 

  

Accuracy 

Classifier 

Better Worse Delta 

Naïve Bayes 15 0 15 

Random Forest 9 0 9 

SVM – Random 

SubSpace 

3 0 3 

SVM 3 0 3 

SVM – Bagging 2 0 2 

J48 – Bagging 0 0 0 

J48 – Adaboost 1 1 0 

MLP 0 2 -2 

SVM – Adaboost 0 3 -3 

J48 – Random 

Subspace 

0 4 -4 

J48 0 9 -9 

Logistic Regression 0 14 -14 
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Table 12 - F Measure Ranking 

  

F Measure 

Classifier 

Better Worse Delta 

Naïve Bayes 12 0 12 

Random Forest 6 0 6 

SVM – Random 

SubSpace 

4 0 4 

SVM 1 0 1 

SVM – Bagging 1 0 1 

J48 – Bagging 0 0 0 

J48 – Adaboost 0 0 0 

MLP 0 2 -2 

SVM – Adaboost 0 -2 -2 

J48 – Random 

Subspace 

0 3 -3 

J48 0 5 -5 

Logistic Regression 0 12 -12 



CONCLUSIONS 

 

70 

 

 

 Table 13 - AUC Rankings 

4.6.3 Discussion 

With our experiment we demonstrated the efficacy of feature selection strategies in 

classification of hypertensive pathology from neuroimaging data. Every classifier 

tested ameliorated its performances when the input dataset was subjected to a feature 

selection strategy, with both Information based approaches and Correlation based 

approaches. On the other hand, feature extraction (PCA) always worsened the 

performances of the classifiers, probably because of the detrimental variance, not 

useful for classification, condensed in the extracted dimensions. 

Naïve Bayes and Random Forest had better results overall, being non statistically 

inferior to any classifier in any condition and always in top 2 positions of the rankings 

for different metrics. Quite surprisingly the addition of cognitive tests scores worsened 

the performances of the classifiers, suggesting that the imaging marker of damage 

while correlated is not strictly linked to the cognitive tests, which can be altered also 

by emotive reaction during the tests and thus be less objective. 

AUC 

 Classifier 

Better Worse Delta 

Random Forest 17 0 17 

Naïve Bayes 12 0 12 

J48 – Bagging 4 0 4 

J48 – Adaboost 4 0 4 

J48 – Random 

Subspace 

2 0 2 

SVM – Random 

Subspace 

2 0 2 

SVM – Bagging 1 0 1 

SVM – Adaboost 1 0 1 

MLP 1 0 1 

SVM 0 6 -6 

Logistic Regression 0 9 -9 

J48 0 29 -29 
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Our best setup can discriminate with accuracy greater than 90% the cardiovascular 

pathology only based on the signature of damage it exerts on the brain, both in 

functional and microstructural way. With this work we identified a candidate 

biomarker composed of the subsequent features: 

• Right Superior Longitudinal Fasciculus – Fractional Anisotropy 

• Forceps Minor – Fractional Anisotropy 

• Right Anterior Thalamic Radiation – Mean Diffusivity 

• Right Superior Longitudinal Fasciculus – Mean Diffusivity 

• Forceps Major – Mean Diffusivity 

• Right Anterior Thalamic Radiation – Radial Diffusivity 

• Default Mode LP – Visual Occipital – Functional Connectivity 

• Sensorimotor Lateral Right – Language pSTG Left – Functional 

Connectivity 

• Sensorimotor Superior – Salience Acc. – Functional Connectivity 

• Sensorimotor Superior – Dorsal Attention IPS Right – Functional 

Connectivity 

• Visual Medial – Salience Acc. – Functional Connectivity 

• Salience RPFC Left – FrontoParietal LPFC Left – Functional Connectivity 

• Salience RPFC Left – FrontoParietal PPC Left – Functional Connectivity 

• Salience RPFC Left – Language IFG Right – Functional Connectivity 

• Dorsal Attention IPS Right – FrontoParietal LPFC Right – Functional 

Connectivity 

We are performing follow up visits at one and four years, in order to monitor the 

progression of the cognitive impairment and of the parameters of our identified 

biomarker, with the addition of the absolute quantification of WMH for 

macrostructural damage with the system established in the first part of this thesis.
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CONCLUSIONS 

Application of our pipeline analysis to two clinical 

cases 

The present body of work has been implemented in a continuous development together 

with the clinical recruitment of patients in the context of the heart and brain research 

program in I.R.C.C.S. Neuromed. In particular, this toolset was optimized for a new 

project in which we perform the global brain injury characterization. In this conclusion 

we will report the results obtained on the first two recruited patients, showing the 

results of the segmentation network proposed in Chapter 2, the diffusion and functional 

parameters obtained with the pipelines setup and presented in Chapter 3, with 

particular attention to the ensemble of features proposed in 4.6.3 which will be the 

subset of features evaluated at baseline and follow up to establish whether the 

hypertension associated brain injury has worsened or not after 1 year follow up. 

  

RF004 

The first patient which completed all the procedures for the ongoing project is a 43 

year old female, presenting a controlled hypertension (132 SBP, 89 DBP) diagnosed 2 

years ago, smoker, not presenting any carotid stenosis or significant wall thickening, 

no metabolic syndromes nor renal damage. The patient shows no significant cognitive 

decline, scoring 30/30 on Minimental cognitive test and 25/30 at MoCA test, 

suggesting preserved cognitive functions. Moreover, no errors were evidenced at 

stroop interference test, which was completed in 31.5 seconds. The clinical 

assessments suggest an hypertensive patient whom pressure control is optimal, with 
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mostly preserved cognitive functions. We performed brain imaging to assess white 

matter hyperintensities, diffusion and functional connectivity parameters. 

The analysis of WMH was carried on applying the same preprocessing steps reported 

in Chapter 2 to images acquired by our scanner, then we applied the FractalNet trained 

with Dice Normalized loss and obtained our WMH segmentation. One first issue raised 

by this process is the difference in basal noise and contrast between challenge images 

and our acquired images. This resulted in many spurious lesion segmentations located 

on the white matter – gray matter interfaces and gray matter – background interface. 

While we are working on the sequence to optimize the FLAIR contrast, we applied the 

workaround to mask the lesion segmentation on the white matter. This ensures that 

WMH lesions are correctly localized and spurious segmentations are avoided. An 

example of this results is shown in Figure 32. 

After WMH, we characterized the brain for its diffusion connectivity and functional 

connectivity, extracting and reporting here the proposed feature ensemble: 

• Right SLF – FA: 0.331 

• FMI – FA: 0.409 

• Right ATR – MD: 0.916 * 10-3 

• Right SLF – MD: 0.871 * 10-3 

• FMA – MD: 1.047 * 10-3 

Figure 32 - Input image, raw WMH segmentation and masked WMH segmentation of patient RF004 
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• Right ATR – RD: 0.742 * 10-3 

• Default Mode LP – Visual Occipital – FC: -0.061 

• Sensorimotor Lateral Right – Language pSTG Left – FC: 0.035 

• Sensorimotor Superior – Salience Acc. – FC: -0.213 

• Sensorimotor Superior – Dorsal Attention IPS Right – FC: 0.504 

• Visual Medial – Salience Acc. – FC: 0.150 

• Salience RPFC Left – FrontoParietal LPFC Left – FC: 0.323 

• Salience RPFC Left – FrontoParietal PPC Left – FC: 0.123 

• Salience RPFC Left – Language IFG Right – FC: 0.161 

• Dorsal Attention IPS Right – FrontoParietal LPFC Right – FC: 0.779 

 

  

RF009 

The second patient which completed all the procedures for the project is a 47 year old 

female, presenting controlled hypertension (126 SBP, 77 DBP) diagnosed 5 years ago, 

no smoking, not presenting any carotid stenosis or significant wall thickening, no 

metabolic syndromes nor renal damage. The patient shows hints of cognitive decline, 

scoring 26/30 on Minimental cognitive test and 24/30 at MoCA test, suggesting 

declining cognitive functions mainly ascribed to the low score on Minimental test. 

Moreover, 3 errors were evidenced at stroop interference test, which was completed in 

58 seconds. The clinical assessments suggest an hypertensive patient whom pressure 

control is optimal, with declining cognitive functions. We performed brain imaging to 

assess white matter hyperintensities, diffusion and functional connectivity parameters. 
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We applied the same workaround used in RF004 to ensure an optimal WMH 

segmentation, as shown in Figure 33. 

 After WMH, we characterized the brain for its diffusion connectivity and functional 

connectivity, extracting and reporting here the proposed feature ensemble: 

• Right SLF – FA: 0.324 

• FMI – FA: 0.447 

• Right ATR – MD: 0.958 * 10-3 

• Right SLF – MD: 0.867 * 10-3 

• FMA – MD: 1.112 * 10-3 

• Right ATR – RD: 0.794 * 10-3 

• Default Mode LP – Visual Occipital – FC: -0.400 

• Sensorimotor Lateral Right – Language pSTG Left – FC: -0.009 

• Sensorimotor Superior – Salience Acc. – FC: -0.194 

• Sensorimotor Superior – Dorsal Attention IPS Right – FC: -0.035 

• Visual Medial – Salience Acc. – FC: 0.315 

• Salience RPFC Left – FrontoParietal LPFC Left – FC: 0.068 

• Salience RPFC Left – FrontoParietal PPC Left – FC: 0.286 

• Salience RPFC Left – Language IFG Right – FC: -0.092 

Figure 33 - Input image, raw WMH segmentation and masked WMH segmentation of patient RF009 
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• Dorsal Attention IPS Right – FrontoParietal LPFC Right – FC: -0.049 

 

Conclusion 

We applied our brain MRI analysis pipeline to two hypertensive patients recruited 

in a prospective study to evaluate the effects of hypertension on cognitive functions 

and brain structure and connectivity. The reported analysis are the baseline exams for 

the two patients which will be monitored yearly, to analyze how hypertension 

progression can impact the brain on a macrostructural (evaluated as WMH load) or 

microstructural and functional basis (evaluated by the proposed feature ensemble). 

From this baseline analysis, what is evident from on a per patient analysis is that a 

patient in which the cognitive functions are more challenged and which hypertension 

has been sustained for more years show a higher load of white matter hyperintensities 

and increased diffusion parameters as MD and RD, representing a less organized fiber 

structure in the white matter. The functional connectivity differences are less obvious, 

as the FC parameter is an index of synchronicity between different areas. These 

parameters will be more useful to perform group based analysis in a longitudinal 

setting. 
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APPENDIX A – MRI SEQUENCES 

MRI Principles 

Magnetic Resonance Imaging (MRI) was developed following the principle of 

magnetic resonance, discovered in 1946 independently by Felix Block and Edward 

Purcell. This principle leverages the intrinsic characteristic of some atoms, the one 

presenting a nuclear spin, which if are immersed in an external magnetic field and 

irradiated with radiofrequencies, they start resonating and give back energy in the form 

of radiofrequency. The characteristics of the emitted signal let us infer information 

about physical and chemical composition of the excited element. This principle has 

been first exploited to perform Magnetic Resonance spectroscopy and then, following 

technological upgrades which included the modulation of the external magnetic field 

to add spatial encoding of exciting signal, MR evolved to MRI and largely penetrated 

the clinical practice. After the introduction of the imaging sequences in 1973 by 

Lauterbur, the field acquired a substantial stability in 1975 thanks to Richard Ernst and 

the introduction of the Fourier Imaging, whose principle is still now fundamentally 

unaltered and at the foundation of modern MRI.  

Every atom is composed by a certain number of particles and each of them has a 

property called spin, which is the angular momentum of each particle rotation. 

Depending on the direction of the momentum the spin can be positive or negative, and 

they can be “summed” to get the total spin of the nucleus. Non-zero spin nuclei can be 

investigated by NMR and by extension by MRI. The global behaviour of these nuclei 

is assumed as the one of small dipoles with a random orientation, thus having a random 

orientation the global magnetization cancels out and the net magnetization is zero. If 

the nuclei are immersed in an external magnetic field, the small dipoles will align to 

the external field and produce a net magnetization aligned with the direction of the 

magnetic field. 
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Figure 34 

Defined M0 the vector representing the net magnetization of the volume taken into 

account, and B0 the external magnetic field, we can define the longitudinal component 

of M0 as Mz, aligned along B0, and the transversal component of M0 as MT, which is 

perpendicular M0 direction. 

When the nuclei are supplied with energy the longitudinal part of net magnetization 

becomes lower than the value at equilibrium state, due to a dealignment of the nuclei 

dipoles. The time in which the system goes back to the equilibrium is defined as T1 

Relaxation time or spin-lattice relaxation time. 

When considering the single protons in the nuclei, while the global small dipole is 

aligned to B0, we have a certain angle of dealignment between them and B0. This 

angle produces a torque between the magnetic field B and the proton magnetic 

moment, causing a precession of the proton magnetic moment and subsequently of the 

net magnetization vectors M around the z-axis at the frequency of resonance of the 

system. The time needed after an excitation pulse to restore the equilibrium magnitude 

of the transverse plane magnetization influenced by this precession process is called 

T2-relaxation time or spin-spin relaxation time. This parameter is highly influenced 

by the inhomogeneity of the magnetic field and the susceptibility variation across the 

different tissues. 

By transmitting a radio-frequency pulse (RF pulse) through a transmitting RF coil 

at the resonance frequency energy is added to the system. A correct amount of energy 

at the resonance frequency flips the magnetization vector M0 from the longitudinal 

orientation to the transverse plane (xy-plane), flipping the net magnetization of 90°. 
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Precession of the magnetization vector in the xy-plane is measured through the 

oscillating electromagnetic field it generates. 

After the 90◦ pulse, the precessing motion of M generates an alternating current in 

a receiver coil placed around the x-axis and perpendicular to the y-axis, see Figure 2.6. 

The measured signal is called free induction decay (FID). Combinations of RF pulses 

and FID signal reading are performed to read the NMR signal. The addition of gradient 

magnet system let us alterate the punctual magnetic field, changing the frequency of 

resonance in different spatial points, thus exciting selectively a volume of interest (the 

voxels in the resulting images). The combination of gradient field modulation and MR 

signal in each different volume of interest makes possible reconstructing images 

leveraging spatial codification and FT of the received signal. 

 

T2-FLAIR 

 

T2-weighted fluid attenuated inversion recovery is a sequence of the inversion 

recovery family. This kind of pulse sequence leverage a succession of 180° and 90° 

excitation pulses. The first pulse is a 180°, which induces an inversion of 

magnetization and a subsequent realignment along B0 as shown in Figure 35. Then, 

during the relaxation process, a subsequent 90° pulse is provided, after the Time of 

Figure 35 
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Inversion (TI). This pulse will delay the magnetization of relaxing tissues, and 

selecting accurately the TI we will be able to bring to 0 the magnetization for tissues 

of choice (as in Figure 36 for water). 

T2-FLAIR uses a TI accurately selected to nullify the magnetization of cerebrospinal 

fluid, to highlight the fluid component from the inner region of white matter. 

Figure 37 – Pulse sequence of FLAIR sequence 

 

Figure 36 
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DIFFUSION TENSOR IMAGING (DTI) 

The diffusion tensor was originally proposed for use in magnetic resonance imaging 

(MRI) by Peter Basser in 1994[39]. Before DTI, diffusion MRI had developed from 

research in diffusion nuclear magnetic resonance. Prior to the introduction of the 

diffusion tensor model, to measure anisotropic diffusion the orientation of the axons 

in a tissue sample had to be known. The introduction of the diffusion tensor model 

allowed, for the first time, a rotationally invariant description of the shape of water 

diffusion. The invariance to rotation was crucial because it enabled application of the 

DTI method to the complex anatomy of the fiber tracts in the human brain. 

The popularity of DTI has been enormous. It has been applied to a tremendous 

variety of neuroscientific studies including schizophrenia, traumatic brain injury, 

multiple sclerosis, autism, and aging. Anatomical investigations have been undertaken 

regarding for example the structure of the language network, the asymmetry of the 

white matter in twins and siblings, and the location, asymmetry, and variability of the 

fiber tracts. Recent investigations have attempted to model the human “connectome” 

by analysing structural versus functional brain connectivity as measured by DTI and 

functional MRI. DTI has also been applied for neurosurgical planning and navigation. 

The addition of preoperative DTI to neuronavigation has been shown, in a large 

prospective study, to increase tumor resection and survival and to decrease neurologic 

morbidity. Our work represents one of the first study to apply DTI to investigate the 

consequences of hypertension of brain structural connectivity. 

Tensorial model 

Diffusion is a random transport phenomenon, which describes the transfer of 

material (e.g., water molecules) from one spatial location to other locations over time. 

In three dimensions, the Einstein diffusion equation: 

𝐷 =  
〈∆𝑟2〉

2𝑛∆𝑡
 

states that the diffusion coefficient, D (in mm2/s), is proportional to the mean 

squared displacement, 〈∆𝑟2〉 divided by the number of dimensions, n, and the diffusion 

time, ∆𝑡. The diffusion coefficient of pure water at 20°C is roughly 2.0 × 10−3mm2/s 
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and increases at higher temperatures. In the absence of boundaries, the molecular water 

displacement is described by a Gaussian probability density 

𝑃(∆𝑟, ∆𝑡) =
1

√(2𝜋𝐷∆𝑡)3
∗ 𝑒

−∆𝑟2

4𝐷∆𝑡 

The diffusion of water in biological tissues occurs inside, outside, around, and 

through cellular structures. Water diffusion is primarily caused by random thermal 

fluctuations. The behaviour is further modulated by the interactions with cellular 

membranes, and subcellular and organelles. Cellular membranes hinder the diffusion 

of water, causing water to take more tortuous paths, thereby decreasing the mean 

squared displacement. The diffusion tortuosity and corresponding apparent diffusivity 

may be increased by either cellular swelling or increased cellular density. Conversely, 

necrosis, which results in a breakdown of cellular membranes, decreases tortuosity and 

increases the apparent diffusivity. 

In fibrous tissues including white matter, water diffusion is relatively unimpeded in 

the direction parallel to the fiber orientation. Conversely, water diffusion is highly 

restricted and hindered in the directions perpendicular to the fibers. Thus, the diffusion 

in fibrous tissues is anisotropic. 

The application of the diffusion tensor to describe anisotropic diffusion behaviour 

was introduced by Basser. In this model, diffusion is described by a multivariate 

normal distribution 

𝑃(∆𝑟, ∆𝑡) =  
1

√(4𝜋∆𝑡)3 |𝑫|
∗ 𝑒

−∆𝑟𝑇𝑫−1∆𝑟
4∆𝑡  

where the diffusion tensor is a 3x3 covariance matrix 

𝑫 =  [
𝐷𝑋𝑋 𝐷𝑋𝑌 𝐷𝑋𝑍

𝐷𝑌𝑋 𝐷𝑌𝑌 𝐷𝑌𝑍

𝐷𝑍𝑋 𝐷𝑍𝑌 𝐷𝑍𝑍

] 

which describes the covariance of diffusion displacements in 3D normalized by the 

diffusion time. The diagonal elements (Dii > 0) are the diffusion variances along the x, 

y and z axes, and the off-diagonal elements are the covariance terms and are symmetric 

about the diagonal (Dij = Dji). Diagonalization of the diffusion tensor yields the 

eigenvalues (λ1, λ2, λ3) and corresponding eigenvectors (ε1, ε2, ε3) of the diffusion 

tensor, which describe the directions and apparent diffusivities along the axes of 
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principle diffusion. The diffusion tensor may be visualized using an ellipsoid with the 

eigenvectors defining the directions of the principle axes and the ellipsoidal radii 

defined by the eigenvalues (Figure 38). Diffusion is considered isotropic when the 

eigenvalues are nearly equal (e.g., λ1 ~ λ2 ~ λ3). Conversely, the diffusion tensor is 

anisotropic when the eigenvalues are significantly different in magnitude (e.g., λ1 > λ2 

> λ3). The eigenvalue magnitudes may be affected by changes in local tissue 

microstructure with many types of tissue injury, disease or normal physiological 

changes (i.e., aging). Thus, the diffusion tensor is a sensitive probe for characterizing 

both normal and abnormal tissue microstructure. 

 

Figure 38 - Diffusion Tensor 

Applying the tensorial model to the raw diffusion weighted images, we can obtain 

maps of the DTI measures. Being unpractical to visualize a 3x3 matrix for each voxel, 

we have break down the diffusion matrix in multiple measures. 

region. 
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RESTING STATE FUNCTIONAL MRI (rs-fMRI) 

Functional MRI is a technique developed in the early nineties following the studies 

of Ogawa, which discovered the blood-oxygen-level dependent signal (BOLD 

signal)[70]. This signal is derived from the ratio between deoxyhemoglobine and 

oxyhemoglobine in a given volume of space and their differential magnetic 

susceptibility let us estimate their relative concentrations. This ratio is fundamental in 

the brains to understand the regions in which is undergoing a neuronal activation. The 

principle of hemodynamic response (HDR) states that neuronal activity, for which is 

needed an increase of nutrients flow, is reflected in a variation of oxygenated blood 

flow, even though with a temporal delay due to vascular system regulation (Figure 39). 

Exploiting this neurovascular coupling, it is possible to map the regional activations 

of the human brain and understand the functions associated to the different brain 

regions. The first experiments using this technique were aimed at understanding which 

were the regions whom activity was evoked in response to simple tasks which could 

be conducted while lying in the MRI scanner, such as finger tapping for motor 

mapping, image recognition for visual cortex mapping[47]. 

Figure 39 - Hemodynamic Response (HDR) 
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Another potent tool has been the introduction of resting-state functional MRI (rs-

fMRI). The concept behind it is that even when the brain is not challenged with any 

active task, there is a spontaneous brain activity which can be reconstructed and 

associated to the steady state activity of different brain circuits which are eventually 

recruited when we are challenged with different tasks.  

By acquiring several minutes of functional MRI scans, we can obtain timeseries of 

spontaneous brain activity and, by evaluating the synchronicity and correlation of the 

activation time course, we can estimate the synchronous regions and the networks they 

compose. 
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APPENDIX B – NETWORK STRUCTURES 
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Unet3 Structure 

def get_conv(f=16): 

    img_rows = 80 

    img_cols = 80 

    smooth = 1. 

    learning_rate = 0.001 

    inputs = Input((img_rows, img_cols, 1)) 

    conv1 = Convolution2D(f, 5, 5, activation='relu', border_mode='same')(inputs) 

    conv1 = BatchNormalization()(conv1) 

    conv1 = Convolution2D(f, 5, 5, activation='relu', border_mode='same')(conv1) 

    conv2 = MaxPooling2D(pool_size=(2, 2))(conv1) 

    conv2 = BatchNormalization()(conv2) 

    conv2 = Convolution2D(2 * f, 5, 5, activation='relu', border_mode='same')(conv2) 

    conv2 = BatchNormalization()(conv2) 

    conv2 = Convolution2D(2 * f, 5, 5, activation='relu', border_mode='same')(conv2) 

    conv3 = MaxPooling2D(pool_size=(2, 2))(conv2) 

    conv3 = BatchNormalization()(conv3) 

    conv3 = Convolution2D(4 * f, 5, 5, activation='relu', border_mode='same')(conv3) 

    conv3 = BatchNormalization()(conv3) 

    conv3 = Convolution2D(4 * f, 5, 5, activation='relu', border_mode='same')(conv3) 

    conv4 = MaxPooling2D(pool_size=(2, 2))(conv3) 

    conv4 = BatchNormalization()(conv4) 

    conv4 = Convolution2D(8 * f, 5, 5, activation='relu', border_mode='same')(conv4) 

    conv4 = BatchNormalization()(conv4) 

    conv4 = Convolution2D(8 * f, 5, 5, activation='relu', border_mode='same')(conv4) 

    conv5 = MaxPooling2D(pool_size=(2, 2))(conv4) 

    conv5 = BatchNormalization()(conv5) 

    conv5 = Convolution2D(16 * f, 5, 5, activation='relu', border_mode='same')(conv5) 

    conv5 = BatchNormalization()(conv5) 

    conv5 = Convolution2D(16 * f, 5, 5, activation='relu', border_mode='same')(conv5) 

    up1 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=3) 

    conv6 = BatchNormalization()(up1) 

    conv6 = Convolution2D(8 * f, 5, 5, activation='relu', border_mode='same')(conv6) 

    conv6 = BatchNormalization()(conv6) 

    conv6 = Convolution2D(8 * f, 5, 5, activation='relu', border_mode='same')(conv6) 

    up2 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=3) 

    conv7 = BatchNormalization()(up2) 

    conv7 = Convolution2D(4 * f, 5, 5, activation='relu', border_mode='same')(conv7) 

    conv7 = BatchNormalization()(conv7) 

    conv7 = Convolution2D(4 * f, 5, 5, activation='relu', border_mode='same')(conv7) 

    up3 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=3) 

    conv8 = BatchNormalization()(up3) 

    conv8 = Convolution2D(2 * f, 5, 5, activation='relu', border_mode='same')(conv8) 

    conv8 = BatchNormalization()(conv8) 

    conv8 = Convolution2D(2 * f, 5, 5, activation='relu', border_mode='same')(conv8) 

    up4 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=3) 

    conv9 = BatchNormalization()(up4) 

    conv9 = Convolution2D(f, 5, 5, activation='relu', border_mode='same')(conv9) 

    conv9 = BatchNormalization()(conv9) 

    outputs = Convolution2D(1, 1, 1, activation='hard_sigmoid', 

    border_mode='same')(conv9) 

    outputs = Convolution2D(1, 2, 2, activation='hard_sigmoid', 
    border_mode='same')(outputs) 

    adam = optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=None) 

    net = Model(inputs=inputs, outputs=outputs) 

    net.compile(loss=dice_coef_loss, optimizer=adam) 

    net.summary() 

    return net 
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FractalNet Structure 

def get_fractalunet(f=16): 

    img_rows = 80 

    img_cols = 80 

    inputs = Input((img_rows, img_cols, 1)) 

 

    conv1 = Convolution2D(f, 5, 5, activation='relu', border_mode='same', 
   kernel_initializer='glorot_normal', 
   bias_initializer='normal')(inputs) 

    conv1 = BatchNormalization()(conv1) 

    conv1 = Convolution2D(f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv1) 

 

    down1 = MaxPooling2D(pool_size=(2, 2))(conv1) 

 

    conv2 = BatchNormalization()(down1) 

    conv2 = Convolution2D(2 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv2) 

    conv2 = BatchNormalization()(conv2) 

    conv2 = Convolution2D(2 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv2) 

 

    down2 = MaxPooling2D(pool_size=(2, 2))(conv2) 

 

    conv3 = BatchNormalization()(down2) 

    conv3 = Convolution2D(4 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv3) 

    conv3 = BatchNormalization()(conv3) 

    conv3 = Convolution2D(4 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv3) 

 

    down3 = MaxPooling2D(pool_size=(2, 2))(conv3) 

 

    conv4 = BatchNormalization()(down3) 

    conv4 = Convolution2D(8 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv4) 

    conv4 = BatchNormalization()(conv4) 

    conv4 = Convolution2D(8 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv4) 

 

    down4 = MaxPooling2D(pool_size=(2, 2))(conv4) 

 

    conv5 = BatchNormalization()(down4) 

    conv5 = Convolution2D(16 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv5) 

    conv5 = BatchNormalization()(conv5) 

    conv5 = Convolution2D(16 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv5) 

 

    up1 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=3) 

 

    conv6 = BatchNormalization()(up1) 
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    conv6 = Convolution2D(8 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv6) 

    conv6 = BatchNormalization()(conv6) 

    conv6 = Convolution2D(8 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv6) 

 

    up2 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=3) 

 

    conv7 = BatchNormalization()(up2) 

    conv7 = Convolution2D(4 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv7) 

    conv7 = BatchNormalization()(conv7) 

    conv7 = Convolution2D(4 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv7) 

 

    up3 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=3) 

 

    conv8 = BatchNormalization()(up3) 

    conv8 = Convolution2D(2 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv8) 

    conv8 = BatchNormalization()(conv8) 

    conv8 = Convolution2D(2 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv8) 

 

    up4 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=3) 

 

    conv9 = BatchNormalization()(up4) 

    conv9 = Convolution2D(f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv9) 

    conv9 = BatchNormalization()(conv9) 

    conv9 = Convolution2D(f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv9) 

 

    # --- end first u block 

 

    down1b = MaxPooling2D(pool_size=(2, 2))(conv9) 

    down1b = merge([down1b, conv8], mode='concat', concat_axis=3) 

 

    conv2b = BatchNormalization()(down1b) 

    conv2b = Convolution2D(2 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv2b) 

    conv2b = BatchNormalization()(conv2b) 

    conv2b = Convolution2D(2 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv2b) 

 

    down2b = MaxPooling2D(pool_size=(2, 2))(conv2b) 

    down2b = merge([down2b, conv7], mode='concat', concat_axis=3) 

 

    conv3b = BatchNormalization()(down2b) 

    conv3b = Convolution2D(4 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv3b) 

    conv3b = BatchNormalization()(conv3b) 

    conv3b = Convolution2D(4 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv3b) 

    down3b = MaxPooling2D(pool_size=(2, 2))(conv3b) 

    down3b = merge([down3b, conv6], mode='concat', concat_axis=3) 
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conv4b = BatchNormalization()(down3b) 

    conv4b = Convolution2D(8 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv4b) 

    conv4b = BatchNormalization()(conv4b) 

    conv4b = Convolution2D(8 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv4b) 

 

    down4b = MaxPooling2D(pool_size=(2, 2))(conv4b) 

    down4b = merge([down4b, conv5], mode='concat', concat_axis=3) 

 

    conv5b = BatchNormalization()(down4b) 

    conv5b = Convolution2D(16 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv5b) 

    conv5b = BatchNormalization()(conv5b) 

    conv5b = Convolution2D(16 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv5b) 

 

    up1b = merge([UpSampling2D(size=(2, 2))(conv5b), conv4b], mode='concat',  
   concat_axis=3) 

 

    conv6b = BatchNormalization()(up1b) 

    conv6b = Convolution2D(8 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv6b) 

    conv6b = BatchNormalization()(conv6b) 

    conv6b = Convolution2D(8 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv6b) 

 

    up2b = merge([UpSampling2D(size=(2, 2))(conv6b), conv3b], mode='concat',  
   concat_axis=3) 

 

    conv7b = BatchNormalization()(up2b) 

    conv7b = Convolution2D(4 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv7b) 

    conv7b = BatchNormalization()(conv7b) 

    conv7b = Convolution2D(4 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv7b) 

 

    up3b = merge([UpSampling2D(size=(2, 2))(conv7b), conv2b], mode='concat',  
   concat_axis=3) 

 

    conv8b = BatchNormalization()(up3b) 

    conv8b = Convolution2D(2 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv8b) 

    conv8b = BatchNormalization()(conv8b) 

    conv8b = Convolution2D(2 * f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv8b) 

 

    up4b = merge([UpSampling2D(size=(2, 2))(conv8b), conv9], mode='concat',  
   concat_axis=3) 

    conv9b = BatchNormalization()(up4b) 

    conv9b = Convolution2D(f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv9b) 

    conv9b = BatchNormalization()(conv9b) 

    conv9b = Convolution2D(f, 5, 5, activation='relu', border_mode='same',  
   kernel_initializer='glorot_normal',  
   bias_initializer='normal')(conv9b) 

    conv9b = BatchNormalization()(conv9b) 
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    outputs = Convolution2D(1, 1, 1, activation='hard_sigmoid',  
   border_mode='same')(conv9b) 

    adam = optimizers.Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=None) 

 

    net = Model(inputs=inputs, outputs=outputs) 

    net.compile(loss=dice_coef_loss, optimizer=adam) 

    net.summary() 

 

    return net 
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