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1 Introduction

Pension systems, designed for public social security purposes, are generally
mandatory and substantially pay-as-you-go (PAYG) �nanced, that is contribu-
tions paid by workers are used to �nance the pension expenditure for retirees.

In last decades, the demographic trends, especially in Western countries,
show a current and future increase in the ratio retirees-workers, which seriously
threatens the �nancial sustainability of PAYG pension systems. Indeed, the
sustainability of PAYG pension systems is theoretically based on the results of
the Aaron's theorem [3], which is developed under the very strong assumption
of a general stability, referred to as a steady state in the economic literature.
Currently, in contexts of demographic unbalance and economic instability, that
is out of the steady state assumption, the PAYG schemes are unsustainable, and
any improvement to their �nances can be made by reducing bene�ts, by increas-
ing contributions (or by a mix of the two), and by postponing the retirement
frequently with the same bene�t [4, 5].

As a matter of fact, countries with large, unsustainable PAYG systems have
enacted reforms of their public pension systems. Substantially, these reforms
have postponed the normal retirement age: for example, in the OECD countries
the retirement age will increase by 1.5 and 2.1 years on average for men and
women, respectively [6]. Other reform options have introduced automatic links
between pension bene�ts and life expectancy, also in de�ned bene�t schemes and
in point systems like Germany. On the other hand, more structural reforms,
made in recent years, have changed the formula for bene�t calculation, moving
from the de�ned bene�t to the de�ned contribution scheme, in particular with
the aim of reducing the pension expenditure, and improving transparency in
pension accounting [7].

Since the early 1990s, some European countries, among which Sweden and
Italy, moved towards the Notional De�ned Contribution (NDC) schemes (also
referred to as Non-�nancial De�ned Contribution schemes), where contributions
are substantially saved in individual accounts and are used to pay current pen-
sion bene�ts according a PAYG logic. To understand conceptual foundations
and issues of NDC schemes, and to analyze the pros and cons of these schemes,
refer to [8]. In Sweden, the NDC scheme is supplemented by a proper automatic
balance mechanism that adjust bene�ts when the system turns in a situation
estimated to be of �nancial unsustainability. However, despite what many be-
lieve, note that the adoption of the NDC scheme does not guarantee the pension
system [9].

This paper is inserted in the framework of the logical sustainability the-
ory, which is substantially based on the two forerunner papers [1, 2], where the
mathematical formalization of the pension system's structure and the logical
management rules that ensure the �nancial sustainability are set in a �continu-
ous� framework.

The model proposed in the logical sustainability theory considers a de�ned
contribution pension system supported by a funded component. This compo-
nent, and its related return, are structurally inserted into the management rules
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of the system. Indeed, in our model, speci�c conditions of sustainability have
been proved, and a proper rule on the rate of return on the pension liability is
provided. This rule allows to stabilize the level of the unfunded pension liability
in relation to wages, referred to as the beta indicator [10, 11].

Speci�cally, the aim of this work is twofold: on the one hand, to transfer
the logical sustainability model, with its related conditions, from the continuous
to the discrete framework; and on the other, to introduce an innovative part,
directly developed into the discrete framework, which deals with the e�ciency
issue of the rule on the rate of return on the pension liability that stabilizes the
beta indicator.

In the model transformation from the continuous to the discrete framework,
the section concerning the management of a demographic/economic wave will
be developed in future research; see [12, 13] for the development of this issue in
the continuous framework.

This paper is structured as follows. In Section 2, the de�nitions of the basic
variables and main indicators of the model, and the evolution equations of the
fundamental state variables, the pension liability and the fund, are reformu-
lated in the discrete framework. In addition, to take into account the longevity
risk that seriously a�ects the pension system sustainability, in this paper we
develop the logical sustainability model under the assumption of variable mor-
tality tables. To take into account updated life tables and to consider the actual
group of retirees alive at each time in comparison with the expected group, two
new readjustment rates are introduced in the evolution equation of the retiree
pension liability. Section 3 contains the transformation from the continuous to
the discrete framework of the fundamental conditions for the pension system
sustainability, among which the necessary and su�cient condition and the rule
for the stabilization of the beta indicator. Hence, the e�ciency of this rule is
proved in Section 4. Section 5 contains our main concluding comments.

2 The logical sustainability model in the discrete

case

In this Section, the logical sustainability model is provided for the discrete case.
For a complete description of all the variables and indicators of the logical
sustainability model, as well as for a deeper understanding of their meanings,
one can refer to [2], where the model is exhaustively illustrated in the continuous
framework.

Let t∗ ∈ R be any initial time, and let one year be the unitary time increment.
Hence, the time yearly sequence {t∗, t∗ +1, t∗ +2, t∗ +3, ...} is determined. Such
sequence can be biunivocally transformed in sequence {0, 1, 2, ...k...} by means
of transformation k = t− t∗.

Throughout the paper we refer to time k, with k ∈ N, where N denotes the
set of nonnegative integers, or refer to year k, with k ≥ 1, as the unitary time
interval beginning in k − 1, excluding k − 1, and ending in k, including k, i.e.
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(k − 1, k].

2.1 Basic variables

For each time k ∈ N, the following state variables are considered:

1. Fk is the pension system fund, that is the aggregate value of the assets;

2. LAk is the pension liability of contributors, referred also to as the latent
pension liability, with LAk ≥ 0;

3. LPk is the pension liability of retirees, referred also to as the current pension
liability, with LPk ≥ 0;

4. LTk is the total pension liability, namely LTk = LAk + LPk .

For each time k ∈ N, with k ≥ 1, the following �ow (or �ow-connected)
variables are considered:

1. αk is the contribution rate (with αk ≥ 0);

2. Wk, Ck, and Pk are the wages, the contributions, and the pension dis-
bursements, with Wk > 0, Ck ≥ 0, and Pk ≥ 0, respectively; all of them
are referred to year k, hence both Ck and Pk are paid in arrears; clearly,
it is

Ck = αkWk; (1)

3. ALPk is the total yearly pension liability that turns, in time k, from latent
into current, after the yearly revaluation by rate rLAk , see following point
5;

4. rk is the interest rate returned on fund Fk−1 for year k; it can be described
by a stochastic process [9];

5. rLAk is the revaluation rate returned on pension liability of contributors
LAk−1 for year k;

6. rLPk is the revaluation rate returned on pension liability of retirees LPk−1

for year k;

7. ∗rLPk is the rate explicitly returned on pension liability of retirees LPk−1

for year k.

Refer to following subsection 2.2. for the relationship between rLPk and ∗rLPk .

Furthermore, throughout the paper, it is assumed that:
Assumption 1. For each time k, with k ≥ 1, the state variables are evalu-

ated after the calculation of the �ow variables.
Speci�cally, it follows that for each time k, with k ≥ 1, state variables Fk,

LAk , L
P
k , and hence LTk , are evaluated at the end of year k, immediately after the



THE LOGICAL SUSTAINABILITY THEORY FOR PENSION SYSTEMS . . . 5

revenue of annual contribution Ck, the payment of annual pension expenditure
Pk, and the transfer of liability from contributors to retirees ALPk .

Assumption 2. Pension liability LAk equals the sum of the contribution
amounts of each contributor alive at time k; pension liability LPk equals the sum
of the liability of each retiree alive at time k. Speci�cally, the liability of each
retiree alive at time k equals the �individual reserve� of a revaluing life annuity,
calculated by a zero technical rate and yearly paid in arrears. Therefore, the
liability of each retiree results equal to the product of his pension in k times the
(curtate) life expectancy calculated with the last life tables available in k.

2.2 Evolution equations

Firstly, we consider the evolution equation of the fund, whose amount at time
k + 1 is given by

Fk+1 = Fk(1 + rk+1) + Ck+1 − Pk+1 k ∈ N. (2)

Hence, we consider the evolution equation of the pension liability of contributors,
which in a de�ned contribution scheme has to be given by

LAk+1 = LAk (1 + rLAk+1) + Ck+1 − ALPk+1 k ∈ N. (3)

As a consequence of equation (3), it follows that the pension liability, related
to contribution amounts of those who have died during their working years,
has to be redistributed to other contributors (the inheritance gain1). In
this work, for ease of exposition, and without prejudice to the model proposed,
the possible reimbursement of the contribution amount of participants who exit
from the pension scheme is not taken into consideration. This case can be easily
integrated into our model. It is worth noting that the changing of mortality does
not a�ect the evolution equation of the contributors pension liability, namely
equation (3).

Lastly, we consider the more complex evolution equation of the pension
liability of retirees under the assumption of changing mortality.
In this regard, we denote by h

mL
P
k the retiree pension liability at time k, evalu-

ated with the last life table available at time h (in our formulation with h = k
or h = k + 1), with reference to the collectivity existing at time m (in our for-
mulation with m = k or m = k + 1).
By this notation, k+1

k+1L
P
k+1 is the pension liability of retirees calculated at time

k+1, with reference to the collectivity of retirees who are existing to time k+1,
according to the last life tables available in k+ 1. Analogously, kkL

P
k is the pen-

sion liability of retirees calculated at time k, with reference to the collectivity
of retirees who are existing to time k, according to the last life tables available
in k.
Under the assumption of changing life tables and using the above notation, the

1In this regard, refer to what is provided in the Swedish pension system, [14] p. 116.
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evolution equation of the pension liability of retirees in a de�ned contribu-
tion scheme is given by

k+1
k+1L

P
k+1 = k

kL
P
k (1 +HT

k+1)(1 +HC
k+1)(1 + ∗rLPk+1)− Pk+1 + ALPk+1

for each k ∈ N.
(4)

Note that equation (4) shows that the retiree pension liability in k + 1 stems
from both the pension liability of retirees already existing in k, see kkL

P
k in the

�rst addend at r.h.s of (4), and the pension liability of new retirees, ALPk+1,
turned into in k + 1 from the liability of contributors, after the revaluation by
rate rLAk+1. In addition, we note that the last life table, available in k + 1, has
also to be used to transform in annuity the pension liability of contributors who
have become retirees in k + 1, whose liability is ALPk+1 at r.h.s. of (4).

Referring to equation (4), we have that

a) HT
k+1 is the rate of change of retiree pension liability k

kL
P
k as a result of

the recalculation of the same with the last life table available in k + 1.
HT
k+1is de�ned by the following equation

k+1
k LPk = k

kL
P
k (1 +HT

k+1),

and hence it results

HT
k+1 =

k+1
k LPk − k

kL
P
k

k
kL

P
k

;

naturally, if the same life table is used in k and in k + 1, this rate is zero.
We refer to HT

k+1 as the rate of the table readjustment;

b) HC
k+1 is the rate of change of the retiree pension liability evaluated at k,

with the last life table available in k + 1, i.e. k+1
k LPk , on the basis of the

collectivity existing in k and the collectivity e�ectively existing in k + 1.
HC
k+1 is de�ned by the following equation

k+1
k+1L

P
k = k+1

k LPk (1 +HC
k+1),

and hence it results

HC
k+1 =

k+1
k+1L

P
k −

k+1
k LPk

k+1
k LPk

.

Note that k+1
k LPk is the reserve for a revaluing life annuity paid in arrears

evaluated with respect to the retirees existing in k, whereas k+1
k+1L

P
k equals

the reserve, calculated with the last life table available in k + 1, of a
revaluing life annuity paid in advance to retirees e�ectively existing in
k + 1. In both cases, the reserves have been evaluated before accrediting
rate ∗rLPk+1 explicitly returned on the pension liability of retirees; we refer

to HC
k+1 as the rate of the collectivity readjustment after the table
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readjustment.
Note that by means of these two rates it is obtained the component of
pension liability, k+1

k+1L
P
k+1, deriving from the old pension liability related

to retirees existing in k, before the rate explicitly returned on the pension
liability of retirees in k + 1, that is

k+1
k+1L

P
k = k+1

k LPk (1 +HC
k+1) = k

kL
P
k (1 +HT

k+1)(1 +HC
k+1);

c) In relation to (4), note that it is similarly possible to de�ne �rstly the rate
of the collectivity readjustment, denoted by HC∗

k+1, and secondly the rate
of the table readjustment after the collectivity readjustment, denoted by
HT∗
k+1. However, it easy to verify that

(1 +HT
k+1)(1 +HC

k+1) = (1 +HC∗
k+1)(1 +HT∗

k+1) for each k ∈ N;

d) we set the following relationship between the two rates, rLPk+1 and ∗rLPk+1,
namely between the yearly revaluation rate of the pension liability of re-
tirees and the yearly rate explicitly returned on the pension liability of
retirees,

(1 +HT
k+1)(1 +HC

k+1)(1 + ∗rLPk+1) = 1 + rLPk+1. (5)

In �rst approximation, we get the following relationship

rLPk+1 ≈ HT
k+1 +HC

k+1 + ∗rLPk+1,

that is the yearly revaluation rate of the pension liability of retirees is
approximated by the sum of the above-mentioned three rates.

If we set, by de�nition, LPk = k
kL

P
k for each k ∈ N, then it is

LPk+1 = LPk (1 + rLPk+1)− Pk+1 +A LPk+1 k ∈ N, (6)

where rLPk+1 is obtained from (5). Referring to the total pension liability, from
(3) and (6) it follows

LTk+1 = LTk + LAk r
LA
k+1 + LPk r

LP
k+1 + Ck+1 − Pk+1 k ∈ N.

If we assume rLAk = rLPk , k ∈ N, k ≥ 1, then we can de�ne the rate of
revaluation of the total pension liability, denoted by rLk , such that

rLk = rLAk = rLPk k ∈ N. (7)

Therefore, it is also

LTk+1 = LTk (1 + rLk+1) + Ck+1 − Pk+1 k ∈ N. (8)

Lastly, assumed W0 known and W0 > 0, the evolution equation of wages is
given by

Wk+1 = Wk(1 + σk+1) k ∈ N, (9)
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where σk+1 is the growth rate of wages in year k + 1, subjected to constraint
1 + σk+1 > 0. If the active population is assumed to be constant in year k + 1,
then it is σk+1 = gk+1, where gk+1 denotes the growth rate of the productivity
in year k+1. Note that the growth rate of wages can be described by a stochas-
tic process as in [9], for example.
Equation (9) is a linear di�erence equation, of �rst order, with variable coe�-
cients, and homogeneous. Set the initial valueW0, there exists a unique solution
given by

Wk = W0

k∏
s=1

(
1 + σs

)
k ∈ N, k ≥ 1. (10)

2.3 Basic de�nitions

Let us consider time n, with n ≥ 1.

Definition 1 A pension system is sustainable in time interval [0, n] if and only
if Fk ≥ 0 for each k = 0, 1, 2, 3, ...n.

Note that for each time k pensions are assumed to be paid with reference
to the pension liability of retirees at time k − 1, liability revalued by the rate
of return of year k, rLPk . Hence, the contributions paid at time k are accounted
into the pension liability of retirees calculated at time k, and they do not a�ect
the pension payments at time k.

Taking into account this note, referring to the pension payments at time k,
for each k ≥ 1, we refer to the following quantities

Fk−1(1 + rk),

LAk−1(1 + rLAk ),

LPk−1(1 + rLPk ),

LAk−1(1 + rLAk ) + LPk−1(1 + rLPk )

as the provisional fund, the provisional pension liability of contributors,
the provisional pension liability of retirees, and the provisional total
pension liability, respectively.

We consider the following de�nitions.

Definition 2 The degree of funding of the pension liability is indicated
by Dck and is given by

Dck =
Fk
LTk

.

Definition 3 The provisional degree of funding of the pension liability
is indicated by Dc∗k and is given by

Dc∗k =
Fk−1(1 + rk)

LTk−1(1 + rLk )
. (11)
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Note that the provisional degree of funding is calculated before of the payment of
contributions and pensions at time k, whereas the degree of funding is calculated
after.
Throughout this paper we assume that 0 ≤ Fk ≤ LT

k , and we de�ne

Definition 4 The unfunded and funded pension liability are de�ned re-
spectively as

LUNk = LTk − Fk and LFk = Fk. (12)

Under assumption (7), the evolution equation of the unfunded pension lia-
bility is obtained from the di�erence between equations (8) and (2), and it is
given by

LUNk+1 = LTk+1 − Fk+1 = LUNk + LTk r
L
k+1 − Fkrk+1 k ∈ N (13)

or also

LUNk+1 = LTk+1 − Fk+1 = LTk (1 + rLk+1)− Fk(1 + rk+1) k ∈ N. (14)

Notice that LUNk+1 does not depend on the payment of contributions and pensions
in k + 1.
By (12), it follows that the evolution equation of the funded pension liability is
provided by the evolution equation of the fund, see (2).

Definition 5 (The beta indicator) The level of the unfunded pension
liability in relation to wages, the beta indicator, is denoted by βk and it is

βk =
LUNk
Wk

. (15)

By de�nition (12) and using (14), it also follows that

βk =
LTk − Fk
Wk

=
LTk−1(1 + rLk )− Fk−1(1 + rk)

Wk
. (16)

It is easy to show that

βk =
LTk
Wk

(1−Dck), (17)

which makes explicit the link between the two state indicators, βk and Dck.

Definition 6 The divisor of the provisional total pension liability in
the provisional pension liability of retirees is denoted by νk and it is

νk =
LAk−1(1 + rLAk ) + LPk−1(1 + rLPk )

LPk−1(1 + rLPk )

with LPk−1 6= 0.
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Note that it is νk > 1 generally; however, it is νk = 1 if LAk−1 is zeroed, that is
when the active group is exhausted. Under assumption (7), it is

νk =
LTk−1

LPk−1

.

Definition 7 The divisor of the provisional pension liability of retirees
in the pension expenditure is denoted by γk and it is

γk =
LPk−1(1 + rLPk )

Pk

with Pk 6= 0.

Note that indicator γk represents the average duration of the average pension
at time k.

Definition 8 The divisor of the provisional total pension liability in
the pension expenditure is given by γkνk, i.e.

γkνk =
LAk−1(1 + rLAk ) + LPk−1(1 + rLPk )

Pk
,

with Pk 6= 0.

Under assumption (7) it is

γkνk =
LTk−1(1 + rLk )

Pk
,

and considering the reciprocals it is

1

γkνk
=

Pk
LTk−1(1 + rLk )

, (18)

hence, 1
γkνk

can be considered as the yearly rate of repayment of the pension

liability (or the yearly pension expenditure paid out per unit of pension liability).
Note that the de�nition of the γkνk indicator allows the decomposition of

the pension expenditure in its unfunded and covered components. Indeed, we
can express the pension expenditure as

Pk =
LTk−1(1 + rLk )

γkνk
=
LTk−1(1 + rLk )− Fk−1(1 + rk)

γkνk
+
Fk−1(1 + rk)

γkνk
. (19)

Under the assumption that the numerators of both ratios at r.h.s. of (19) are
non-negative, we refer to quantities

PUNk =
LTk−1(1 + rLk )− Fk−1(1 + rk)

γkνk
,
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PCk =
Fk−1(1 + rk)

γkνk

as the unfunded pension expenditure and the covered pension expen-
diture, respectively. Hence, by (19) it follows that

Pk = PUNk + PCk .

Definition 9 The degree of PAYG covering of the pension disburse-
ments is denoted by DcPAY Gk and is given by

DcPAY Gk =
Ck
Pk
. (20)

In relation to the contribution rates, that is the pension expenditure with respect
to wages, we consider the following de�nitions.

Definition 10 The PAYG contribution rate is denoted by αPAY Gk and it
is

αPAY Gk =
Pk
Wk

.

Hence, αPAY Gk is the contribution rate that, applied to Wk, makes the corre-
sponding contributions equal to the pension expenditure in k. Therefore, from
(18) it follows that

αPAY Gk =
LTk−1(1 + rLk )

γkνk

1

Wk
. (21)

Definition 11 The level of the unfunded contribution rate, or the un-
funded contribution rate, is denoted by αUNk and it is

αUNk =
βk
γkνk

.

From (16), it follows that

αUNk =
LTk−1(1 + rLk )− Fk−1(1 + rk)

γkνk

1

Wk
.

Hence, αUNk is the contribution rate that, applied toWk, makes the corresponding
contributions equal to the unfunded pension expenditure in k.

Definition 12 The level of the covered contribution rate, or the covered
contribution rate, is denoted by αCk and it is

αCk =
Fk−1(1 + rk)

γkνk

1

Wk
.
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Hence, αCk is the contribution rate that, applied to Wk, makes the corresponding
contributions equal to the covered pension expenditure in k.
It easy to verify that

αPAY Gk = αUNk + αCk .

Lastly, with reference to the e�ective contribution rate αk, we consider the
de�nition of the funded contribution rate:

Definition 13 The level of the funded contribution rate, or the funded
contribution rate, is denoted by αFk and it is

αFk = αk − αUNk = αk −
βk
γkνk

. (22)

We de�ne the funded contribution, CFk , as

CFk = (αk − αUNk )Wk.

Definition 14 The intrinsic rate of return is denoted by intrk and it is de�ned
as the rate such that

1 + intrk = (1 + rk)
(
1− 1

γkνk

)
. (23)

In �rst approximation, it is

intrk ≈ rk −
1

γkνk
.

3 Basic conditions for the pension system sus-

tainability

In the following, assumption (7) is set throughout the paper.
Let n be any time �xed, with n ∈ N, n ≥ 1. We express the necessary and

su�cient condition for the pension system sustainability for time interval [0, n],
where upper limit n can also be equal to +∞.

Theorem 1 The necessary and su�cient condition for the pension
system sustainability.
Let the pension system have an initial non-negative fund, i.e. F0 ≥ 0.
The pension system is sustainable in [0, n], with n ≥ 1, if and only if for each
k = 1, 2, . . . n the whole of the annual funded contribution, paid until k and
discounted at time 0 by the intrinsic rate of return, does not create a de�cit
greater than the initial available fund, F0.
Hence, assumed F0 ≥ 0, it results
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Fk ≥ 0 for each k = 1, 2, . . . n

if and only if

−
k∑
h=1

Wh

(
αh −

βh
γhνh

) h∏
s=1

(
(1 + rs)

(
1− 1

γsνs

))−1

≤ F0

for each k = 1, 2, . . . n.

(24)

Proof. Let us reformulate the fund evolution equation, see (2), expressing
contributions by means of the wages and the contribution rate, namely Ck+1 =

αk+1Wk+1, and pensions using (18), namely Pk+1 =
LT
k (1+rLk+1)

γk+1νk+1
. Hence, we

have

Fk+1 = Fk(1 + rk+1) + αk+1Wk+1 −
LTk (1 + rLk+1)

γk+1νk+1
k = 0, 1, . . . n− 1. (25)

Adding and subtracting same quantity Fk(1+rk+1)
γk+1νk+1

at the right hand side of (25),

we have

Fk+1 = Fk(1 + rk+1) + αk+1Wk+1 −
LTk (1 + rLk+1)

γk+1νk+1

+
Fk(1 + rk+1)

γk+1νk+1
− Fk(1 + rk+1)

γk+1νk+1
k = 0, 1, . . . n− 1,

and hence

Fk+1 = Fk(1 + rk+1) + αk+1Wk+1 −
LTk (1 + rLk+1)− Fk(1 + rk+1)

γk+1νk+1
+

− Fk(1 + rk+1)

γk+1νk+1
=

= Fk(1 + rk+1) + αk+1Wk+1 −
LUNk+1

γk+1νk+1
− Fk(1 + rk+1)

γk+1νk+1

for each k = 0, 1, . . . n− 1.

In this latter, using de�nition (15) of the beta indicator, after some algebraic
calculation, we get the following equation

Fk+1 = Fk(1 + rk+1)
(
1− 1

γk+1νk+1

)
+Wk+1(αk+1 −

βk+1

γk+1νk+1
)

for each k = 0, 1, . . . n− 1,

(26)

where (1+rk+1)
(
1− 1

γk+1νk+1

)
is equal to the compounding factor corresponding

to the yearly intrinsic rate de�ned by (23), and αk+1−
βk+1

γk+1νk+1
is the level of
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the funded contribution rate de�ned by (22).
The evolution equation of the fund, see (26), has the following solution

Fk = F0

k∏
s=1

(1 + rs)
(
1− 1

γsνs

)
+

+

k∑
h=1

Wh

(
αh −

βh
γhνh

) k∏
s=h+1

(1 + rs)
(
1− 1

γsνs

)
for each k = 1, 2, . . . n,

and hence

Fk =

k∏
s=1

(1 + rs)
(
1− 1

γsνs

)
(
F0 +

k∑
h=1

Wh

(
αh −

βh
γhνh

) h∏
s=1

(
(1 + rs)

(
1− 1

γsνs

))−1
)

for each k = 1, 2, . . . n.

It follows that

Fk ≥ 0 for each k = 1, 2, . . . n

if and only if

F0 +

k∑
h=1

Wh

(
αh −

βh
γhνh

) h∏
s=1

(
(1 + rs)

(
1− 1

γsνs

))−1

≥ 0

for each k = 1, 2, . . . n,

and therefore, if and only if (24) holds. �

Remark 1 Taking into account (10), the necessary and su�cient condition can
be written as

−
k∑
h=1

(
W0

h∏
s=1

(
1 + σs

))(
αh −

βh
γhνh

) h∏
s=1

(
(1 + rs)

(
1− 1

γsνs

))−1

≤ F0

for each k = 1, 2, . . . n,

and then

−
k∑
h=1

(
αh −

βh
γhνh

) h∏
s=1

(1 + σs)

(1 + rs)
(
1− 1

γsνs

) ≤ F0

W0

for each k = 1, 2, . . . n.

(27)
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3.1 Further conditions for the pension system sustainabil-

ity

Proposition 1 The su�cient condition for the sustainability.Let the
pension system have an initial non-negative fund, i.e. F0 ≥ 0.
Su�cient condition for the pension system sustainability in [0, n] is that for each
k = 1, 2, . . . n contribution rate αk is greater than or equal to the level of the
unfunded contribution rate, i.e.
if

αk ≥ αUNk =
βk
γkνk

for each k = 1, 2, . . . n (28)

then
Fk ≥ 0 for each k = 0, 1, . . . n.

Proof. This derives directly from Theorem 1. In fact, if (28) is true, then
the l.h.s of condition (24) is surely less than or equal to zero, and therefore, as
condition (24) is satis�ed, the pension system is sustainable. �

For each k ∈ N, k ≥ 1, we de�ne the following indicator.

Definition 15 The Logical Sustainability Indicator (LSI) of the pension system
is denoted by LSIk and is given by

LSIk =
Ckγkνk + Fk

LTk
.

Remark 2 Note that Proposition 1 can be expressed in terms of the LSI. In-
deed, condition (28) in Proposition 1, by means of (15) and (12), can be written
as

αk ≥
1

γkνk

LTk − Fk
Wk

for each k = 1, 2, . . . n

and hence equivalently

αkWkγkνk + Fk
LTk

≥ 1 for each k = 1, 2, . . . n

and
Ckγkνk + Fk

LTk
≥ 1 for each k = 1, 2, . . . n.

Therefore, condition (28) in Proposition 1 is equivalent to

LSIk ≥ 1 for each k = 1, 2, . . . n.

It should be noted that the LSI analytical form is very similar to that of the Bal-
ance Ratio indicator used in the Swedish pension system. For the de�nition of
the Balance Ratio and an exhaustive explanation of this indicator, refer to [14],
whereas for further remarks on the comparison between these two indicators,
see [2].
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Remark 3 The su�cient condition for the sustainability can be expressed also
referring to the indicators of the degree of PAYG covering of the pension dis-
bursements and the degree of funding of the pension liability. Indeed, condition
(28) in Proposition 1, by means of (16), can be also re-expressed as

αk ≥
1

γkνk

LTk−1(1 + rLk )− Fk−1(1 + rk)

Wk
for each k = 0, 1, 2, . . . n

and hence equivalently

αkWkγkνk + Fk−1(1 + rk)

LTk−1(1 + rLk )
≥ 1 for each k = 0, 1, 2, . . . n.

Therefore, condition (28) in Proposition 1 is equivalent to

Ck
Pk

+
Fk−1(1 + rk)

LTk−1(1 + rLk )
≥ 1 for each k = 0, 1, 2, . . . n,

namely, by means of de�nitions (20) and (11),

DcPAY Gk +Dc∗k ≥ 1 for each k = 1, 2, . . . n.

3.2 The rule for the stabilization of the level of the un-

funded pension liability in relation to wages

Let n be any time �xed, with n ∈ N, n ≥ 1. Following [2], we re-express some
further relationships useful for controlling the pension system sustainability in
the discrete context for time interval [0, n], where upper limit n can also be
equal to +∞.

Proposition 2 The rule for the beta stabilization.
Let us assume 0 ≤ Fk ≤ LTk , with LTk > 0, for a �xed k, with k = 0, 1, . . . n− 1.
It is

∆βk+1 = βk+1 − βk = 0

if and only if

rLk+1 =
Fk
LTk

rk+1 +
LTk − Fk
LTk

σk+1 = Dckrk+1 + (1−Dck)σk+1.

Proof. Note that from assumption Fk ≤ LTk it follows that βk ≥ 0.
We calculate the di�erence in the level of the unfunded pension liability in
relation to wages between k and k + 1

∆βk+1 = βk+1 − βk =
LUNk+1

Wk+1
− LUNk

Wk
. (29)
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By substituting in the previous formula the expressions of LUNk+1 andWk+1, given
by (13) and (9) respectively, we obtain

∆βk+1 =
LUNk + LTk r

L
k+1 − Fkrk+1 − LUNk (1 + σk+1)

Wk(1 + σk+1)
=

=
LTk r

L
k+1 − Fkrk+1 − LUNk σk+1

Wk(1 + σk+1)
.

(30)

Then ∆βk+1 = 0 if and only if

rLk+1 =
Fk
LTk

rk+1 +
LUNk
LTk

σk+1 =
Fk
LTk

rk+1 +
LTk − Fk
LTk

σk+1.

�

Remark 4 To �x the value of the beta indicator in time interval [n1, n2], with
0 ≤ n1 < n2 ≤ n, the rule for the beta stabilization has to be applied in all
(n2 − n1) unitary intervals included in interval [n1, n2].

Remark 5 Note that from relationship (29) it follows that

∆βk+1 = 0

if and only if
∆LUNk+1

LUNk
=

∆Wk+1

Wk
= σk+1, (31)

where it is ∆LUNk+1 = LUNk+1 − LUNk and ∆Wk+1 = Wk+1 −Wk.

Remark 6 Note that in the rule for the beta stabilization rates rk+1 and σk+1

can be outcomes determined by stochastic processes.

Proposition 3 The rule for the Dck stabilization.
Let us assume 0 ≤ Fk < LTk for a �xed k, with k = 0, 1, . . . n− 1. It is

∆Dck+1 = Dck+1 −Dck = 0

if and only if

αk+1 =
LTk
Wk+1

(
1 + rLk+1

γk+1νk+1
−
Fk(rk+1 − rLk+1)

βkWk

)
. (32)

Proof. We calculate the di�erence in the degree of funding of the pension
liability between time k and k + 1, namely

∆Dck+1 = Dck+1 −Dck =
Fk+1

LTk+1

− Fk
LTk

.
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By means of the evolution equations of the fund and the pension liability, see
(2) and (8), respectively, this di�erence can be expressed as

∆Dck+1 =
(Fk(1 + rk+1) + Ck+1 − Pk+1)LTk

LTk+1L
T
k

+

−
(LTk (1 + rLk+1) + Ck+1 − Pk+1)Fk

LTk+1L
T
k

=

=
FkL

T
k (rk+1 − rLk+1) + (Ck+1 − Pk+1)(LTk − Fk)

LTk+1L
T
k

.

Then ∆Dck+1 = 0 if and only if

Pk+1 − Ck+1 =
FkL

T
k (rk+1 − rLk+1)

LTk − Fk
. (33)

Through algebraic calculation, using (1), (18), and (15), we obtain (32). �

Remark 7 As for the beta indicator, to �x the value of the degree of funding
of the pension liability in time interval [n1, n2], with 0 ≤ n1 < n2 ≤ n, the rule
provided by (32) has to be applied in all (n2− n1) unitary intervals included in
interval [n1, n2].

Remark 8 If Fk = 0, then the contribution rate provided by (32) equals the
PAYG contribution rate at k+1, see (21). Note that if Fk > 0 and rk+1 > rLk+1,

then it follows that αk+1 < αPAY Gk+1 , with αk+1 given by (32) .

Remark 9 Let us assume that Fk > 0 and that αk+1 is given by (32). By
means of Proposition 3, it is ∆Dck+1 = 0, and in particular condition (33)
holds. From this last one, we have that

∆Fk+1 = Fk+1 − Fk = Fkrk+1 −
FkL

T
k (rk+1 − rLk+1)

LTk − Fk
,

and hence

∆Fk+1 =
Fk

LTk − Fk
(
LTk r

L
k+1 − Fkrk+1

)
. (34)

Therefore, dividing both sides of (34) by Fk, and using (13), we have that

∆Dck+1 = 0

if and only if

∆Fk+1

Fk
=

∆LUNk+1

LUNk
.
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Furthermore, as it can be easily proved that

∆βk+1

βk
=

Wk

Wk+1

(
∆LUNk+1

LUNk
− ∆Wk+1

Wk

)
(see footnote 2), then it follows also that

∆Dck+1 = 0

if and only if
∆Fk+1

Fk
=
Wk+1

Wk

∆βk+1

βk
+

∆Wk+1

Wk
. (35)

Proposition 4 Let us assume 0 < F0 < LT0 .
Furthermore, for each k = 0, 1, . . . , n− 1 let us assume

(A) rLk+1 =
Fk
LTk

rk+1 +
LTk − Fk
LTk

σk+1

(B) αk+1 =
LT0
W0

1 + rLk+1

(1 + σk+1)γk+1νk+1
− F0

W0

(rk+1 − σk+1)

(1 + σk+1)

then it is βk = β0 and Dck = Dc0 for each k = 0, 1, ..., n .

Proof. From hypothesis (A) we have ∆βk+1 = 0 for each k = 0, 1, . . . , n − 1,
i.e. βk = β0 for each k = 0, 1, . . . , n, see Proposition 2, the rule for the beta
stabilization.

Let us consider di�erence rk+1 − rLk+1. Using hypothesis (A), we have that

rk+1 − rLk+1 =
LTk − Fk
LTk

(rk+1 − σk+1) for each k = 0, 1...n− 1,

and also, from (16),

(
rk+1 − rLk+1

)
=
βkWk

LTk
(rk+1 − σk+1) for each k = 0, 1...n− 1. (36)

Proposition 3 establishes that ∆Dck+1 = 0 for each k = 0, 1, . . . , n − 1 if and
only if condition (32) holds. Hence, using (36), we obtain that ∆Dck+1 = 0 for

2Indeed, it is

∆βk+1

βk
=

(
LUN
k+1

Wk+1
−
LUN
k

Wk

)
Wk

LUN
k

=

=

(
LUN
k+1Wk − LUN

k Wk+1 − LUN
k Wk + LUN

k Wk

Wk+1Wk

)
Wk

LUN
k

=

=

(
Wk

Wk+1

∆LUN
k+1

LUN
k

−
∆Wk+1

Wk+1

)
=

Wk

Wk+1

(
∆LUN

k+1

LUN
k

−
∆Wk+1

Wk

)
.
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each k = 0, 1, . . . , n− 1 if and only if

αk+1 =
LTk
Wk+1

(
1 + rLk+1

γk+1νk+1
− Fk
LTk

(rk+1 − σk+1)

)
=

=
LTk (1 + rLk+1)

Wk+1γk+1νk+1
− Fk(rk+1 − σk+1)

Wk+1
=

=
LTk (1 + rLk+1)

Wk(1 + σk+1)γk+1νk+1
− Fk(rk+1 − σk+1)

Wk(1 + σk+1)

for each k = 0, 1, . . . , n− 1.

(37)

It is worth noting that ∆βk+1 = 0 for each k = 0, 1, . . . , n − 1; then from
condition (35) in Remark 9, it follows that

∆Fk+1

Fk
=

∆Wk+1

Wk
for each k = 0, 1, . . . , n− 1, (38)

and from condition (31) in Remark 5 it follows that

∆LUNk+1

LUNk
=

∆Wk+1

Wk
for each k = 0, 1, . . . , n− 1. (39)

From (38) and (39), we obtain respectively that

Fk+1

Wk+1
=

Fk
Wk

and
LUNk+1

Wk+1
=
LUNk
Wk

for each k = 0, 1, . . . , n− 1, (40)

and hence also

LTk+1

Wk+1
=
LTk
Wk

for each k = 0, 1, . . . , n− 1. (41)

Consequently, by substituting expressions (40) and (41) into expression (37), it
follows that ∆Dck+1 = 0 for each k = 0, 1...n− 1 if and only if

αk+1 =
LT0
W0

1 + rLk+1

(1 + σk+1)γk+1νk+1
− F0

W0

(rk+1 − σk+1)

(1 + σk+1)
for each k = 0, 1...n− 1.

�

4 The e�ciency of the rule for the βk stabilization

Proposition 5 Let us assume that 0 ≤ F0 ≤ LT0 . Furthermore, let us assume
that

(a) the sequence of contribution rates is bounded above,
i.e. there exists αMax > 0 such that αk ≤ αMax, ∀k ∈ N, k ≥ 1;
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(b) the yearly rate of revaluation of the total pension liability in year (k + 1)
follows rule

rLk+1 =
Fk
LTk

rk+1 +
LTk − Fk
LTk

σk+1 + hk+1 ∀k ∈ N (42)

where {hk+1} is a bounded below sequence of positive numbers, i.e. there
exists a positive constant h+ such that 0 < h+ ≤ hk+1 ∀k ∈ N;

(c) there exist positive constants, Q1, Q2, and M , such that

Q1 ≤ Ak+1 with Ak+1 =

k+1∏
s=1

1 + σs

(1 + rs)(1− 1
γsνs

)
∀k ∈ N, (43)

γk+1νk+1 ≤ Q2 ∀k ∈ N, (44)

LTk ≥M ·Wk+1 ∀k ∈ N. (45)

Then the pension system is not sustainable, i.e. there exists a time k̄, k̄ ∈ N,
such that Fk̄ < 0.

Proof. The proof is by contradiction, i.e. we assume that Fk ≥ 0 ∀k ∈ N. We
show that this assumption leads to a contradiction.
Firstly, we consider the di�erence in the level of the unfunded pension liability
in relation to wages between k and k + 1, ∆βk+1, see (30), given by

∆βk+1 =
LTk r

L
k+1 − Fkrk+1 − LUNk σk+1

Wk+1
∀k ∈ N. (46)

From assumption (42) it is

LTk r
L
k+1 = Fkrk+1 + (LTk − Fk)σk+1 + LTk hk+1 ∀k ∈ N.

Therefore, using the latter in (46), it follows that

∆βk+1 =
LTk
Wk+1

hk+1 ∀k ∈ N.

As {hk+1} is a bounded below sequence of positive numbers, and using assump-
tion (45), then it follows that

∆βk+1 =
LTk
Wk+1

hk+1 ≥Mh+ > 0 ∀k ∈ N. (47)

Hence, from (47), it follows that sequence βk is monotonically increasing.
We have assumed, by contradiction, that Fk ≥ 0 ∀k ∈ N. We prove that this
assumption leads to a contradiction, from which the thesis follows.
According to the necessary and su�cient condition for the sustainability, refer
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to condition (27) in Remark 1, under assumption F0 ≥ 0, the pension system is
sustainable in [0,+∞), namely Fk ≥ 0 ∀k ∈ N, k ≥ 1, if and only if it results

−
k∑
h=1

(αh −
βh
γhνh

)

h∏
s=1

1 + σs

(1 + rs)(1− 1
γsνs

)
≤ F0

W0
∀k ∈ N, k ≥ 1.

Equivalently, Fk ≥ 0 ∀k ∈ N, k ≥ 1, if and only if it results

k∑
h=1

( βh
γhνh

− αh
)
Ah ≤

F0

W0
∀k ∈ N, k ≥ 1, (48)

where the notation introduced in assumption (c) is used.
By assumption (c), see (43) and (44), and by assumption (a), it follows

Q1

k∑
h=1

( βh
Q2
− αMax

)
≤

k∑
h=1

( βh
γhνh

− αh
)
Ah ∀k ∈ N, k ≥ 1. (49)

Hence, from (48) and (49) it must result that

Q1

k∑
h=1

( βh
Q2
− αMax

)
≤ F0

W0
∀k ∈ N, k ≥ 1; (50)

but this last one, (50), cannot be true ∀k ∈ N, k ≥ 1. Indeed, as sequence {βk}
has been proved to be positively divergent, quantity

∑k
h=1

(
βh

Q2
−αMax

)
at l.h.s

of (50) approaches to +∞ for k approaching to +∞. Hence, there exists a k̄,
k̄ ∈ N, such that Fk̄ < 0. By contradiction the theorem thesis follows. �

Remark 10 Note that if there exists a positive constant, K∗, such that

rs − σs −
1

γsνs
> K∗ > 0 ∀s ∈ N, s ≥ 1,

then sequence Ak approaches to zero for k approaching to +∞, and hence
assumption (43) does not hold.

Proposition 6 Let us assume that 0 ≤ F0 ≤ LT0 . Furthermore, let us assume
that

(a) the yearly rate of revaluation of the total pension liability in year (k + 1)
follows rule

rLk+1 =
Fk
LTk

rk+1 +
LTk − Fk
LTk

σk+1 − hk+1 ∀k ∈ N (51)

where {hk+1} is a bounded below sequence of positive numbers, i.e. there
exists a positive constant h− such that 0 < h− ≤ hk+1, ∀k ∈ N;
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(b) there exist positive constants M and R such that

M ·Wk+1 ≤ LTk ≤ RWk ∀k ∈ N. (52)

Then sequence {Dck} is positively divergent.

Proof. Analogously to the proof of previous Proposition 5, we consider di�erence
∆βk+1 that, by (30), is given by

∆βk+1 =
LTk r

L
k+1 − Fkrk+1 − LUNk σk+1

Wk+1
∀k ∈ N. (53)

From assumption (51) it is

LTk r
L
k+1 = Fkrk+1 + (LTk − Fk)σk+1 − LTk hk+1 ∀k ∈ N,

and substituting in (53), it follows that

∆βk+1 = − LTk
Wk+1

hk+1 ∀k ∈ N.

Under the assumption that {hk+1} is a bounded below sequence of positive
numbers, and using assumption (52), then it follows that

∆βk+1 = − LTk
Wk+1

hk+1 ≤ −Mh− < 0 ∀k ∈ N. (54)

Therefore, sequence {βk} is monotonically decreasing, and also negatively di-
vergent. This means that the fund is sistematically greater than the pension
liability, that is the pension system is overcapitalized.
Using relationship (17), we can express Dck as

Dck = 1− βk
Wk

LTk
∀k ∈ N.

As sequence {βk} is proved to be negatively divergent, and it is
Wk

LTk
≥ 1

R by

assumption (52), then sequence Dck is positively divergent. �

5 Conclusions

In this paper we provide the model of the logical sustainability of de�ned con-
tribution pension systems in the discrete framework (for the continuous frame-
work, see [2]) under the general assumptions of variable mortality and stochastic
�nancial rate of the pension system fund and stochastic productivity of the ac-
tive participants. These assumptions must not be neglected, as usually occurs,
particularly when the pension systems are PAYG �nanced. As a matter of
fact, under these realistic assumptions, the model proposed allows to hedge the
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sustainability in a logical mathematical key. This means that in this realistic
framework speci�c conditions for the sustainability are proved. Hence, the sus-
tainability is not based on actuarial projections. Therefore, the sustainability
we propose is �strong� as opposite to the �weak� sustainability that is based on
actuarial projections and, hence, based on the underlying assumptions.

We propose an appropriate choice of the rate of return on the pension lia-
bility, which takes into account the �nancial return on the pension system fund
and the productivity of the active participants. This rule allows to stabilize the
beta indicator, that is the ratio between the unfunded pension liability and the
wages, and is linked to the minimum contribution rate for the system sustain-
ability. Furthermore, it is applicable out of the steady state, and whichever the
actual trends of the �nancial rate and the productivity rate could be. Note that
the problem of how to measure the rate of return to a no-steady state PAYG
pension system is one of the major issues to consider in the academic literature
and in the actuarial practice, [15].

In addition, in this paper we show that the proposed rule on the rate of
return on the pension liability is also the e�cient one: that is, if the rate of
return on the pension liability is higher or lower than that provided by the rule,
then the pension becomes unsustainable or overcapitalized, respectively.

Our further goal is to transform from the continuous to the discrete frame-
work also the part of the logical sustainability model related to phenomena of
economic/demographic unbalances (referred to as economic/demographic waves).
In our opinion, the model of the logical sustainability of pension systems is gen-
eral and actually tractable, and is able to address other concrete issues such as
the adequacy of the pension bene�ts or the gender inequality at retirement.
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