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Abstract— The paper presents a novel technique to derive an 
equivalent homogeneous transmission line model of a lossy 
electrical interconnect embedding a graphene contact. The 
technique is based on the exploitation of the monotonicity property 
that holds for suitable matrices associated to the transmission line 
model. Starting from simulated or measured values of any of the 
terminal matrices describing the original line (e.g., impedance, 
admittance or scattering matrices), equivalent permittivity values 
are obtained by checking the behavior of an index related to such 
matrices. These values correspond to homogeneous transmission 
lines whose features (such as stored energy, propagation velocity, 
and characteristic impedance) provide lower and upper bound to 
the optimal performance. The technique is here applied to an 
interconnect embedding a graphene contact, which introduces a 
huge variability of the permittivity value. 

Keywords— Graphene interconencts; Inhomogeneous media; 
Homogenization techniques; Interconnects; Transmission Lines. 

I.  INTRODUCTION 

Modeling the signal propagation along a multiconductor 
interconnect embedded in inhomogeneous media is a classical 
problem that has been approached with different techniques [1]. 
Fully-numerical models based on differential formulations (e.g., 
FDTD) can naturally handle inhomogeneous media but usually 
require a large domain to be meshed, including conductors and 
dielectrics. On the other side, methods based on integral 
formulations (e.g., EFIE) require  meshing only the conducting 
regions, but suffer from the cumbersome computational cost 
associated to the Green functions for inhomogeneous media, 
usually derived from costly evaluation of Sommerfeld integrals 
[2]-[3].  

In presence of inhomogeneous media, also the popular 
Transmission Line (TL) model must be modified to take into 
account the physical features of the guided propagating field, 
which is not of Transverse ElectroMagnetic (TEM) type, as in 
the case of an interconnect embedded in homogeneous media 
[4]-[5]. However, under the quasi-TEM assumption is it still 
possible to model the inhomogeneous interconnect in the frame 
of the TL theory. By using such a model, the propagation along 
a Multiconductor Transmission Line (MTL) made by N signal 
conductors and one ground conductor is associated to N different 
modes, each of them characterized by a different velocity [4]-
[5]. This is the main difference with respect to the homogeneous 
case, where all the modes propagate with the same velocity: 

            𝑣 = 1/√𝜀𝜇  (1) 

being  𝜀  and 𝜇  the permittivity and permeability of the 
surrounding medium. The presence of different propagation 
velocities introduces a rather high complexity in any circuit 
model derived from the TL model of the interconnect, due to 
high number of pole and residues needed to catch accurately the 
phase variation associated with the propagation delays. 
Therefore, popular macromodeling techniques such as the 
Vector Fitting [6], have been modified to take into account 
explicitly the propagation delays, e.g. [7]. In many cases, 
however, it could be useful to describe such interconnects 
through simpler models that can be easier and faster simulated: 
this may happen, for instance, when extensive signal integrity 
analysis of large interconnects systems must be performed, and 
time-consuming task must be implemented, such as the analysis 
of the eye-diagrams [8]. Another case is given by the statistical 
analysis of the signal integrity of such systems, for instance to 
take into account the variability induced by the manufacturing 
process [9].  

Practical examples of inhomogeneous interconnects are 
given, for instance, by electrical cables with many dielectric 
coatings, or by electrical traces embedded in two or more 
dielectric layers (e.g., PCB or on-chip interconnects). In this 
paper, we focus on hybrid interconnects made by conventional 
materials and novel nanomaterials, such as graphene, which are 
nowadays widely studied, in view of their potentially 
outstanding performance [10]-[11]. Indeed, the presence of such 
materials introduce a strong variability of the physical 
parameters, such as conductivity or permittivity.  

In this paper, we derive a simplified macromodel by using 
homogenization techniques. The concept of equivalent 
homogeneous system is widely used in electromagnetics to 
lower the computational cost of simulations, for instance when 
dealing with highly non-uniform materials such as the 
composites or the metamaterials. An example is the 
homogenization of non-uniform TLs proposed in [12], based on 
Principal Component Analysis.  

The technique adopted here has been proposed by the 
Authors in [13] to homogenize MTLs embedded in 
inhomogeneous dielectrics. It is based on the property of 
monotonicity of some matrix operators associated to this model, 
with respect to the permittivity value. The main features are 
summarized in Section II. We use here such a technique to 
derive the equivalent permittivity values associated to a 
microstrip embedding graphene nanoplatelets, described in 
Section III. The results, shown in Section IV, highlight a very 
good agreement with respect to those obtained in literature.  



 

 

II. MACROMODELING VIA MONOTONICITY 

 
In the following, we briefly recall the results shown in [13], 

where an equivalent permittivity value is derived, by using the 
monotonicity property of some matrices associated to the MTL 
model of an inhomogeneous interconnect. Specifically, the 
inhomogeneity comes from the presence of a spatial non-
uniform electrical permittivity, 𝜀 = 𝜀(𝒓).   

A. The Monotonicity property 

The homogenization procedure may start from any 
multiport representation of a lossy MTL with N signal lines and 
a ground one (Fig.1): let us consider, for instance the terminal 
impedance matrix, Z, or the admittance one, Y, defined as: 
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where 𝐕𝒂(𝐈𝒂)  is the vector of the N voltages (currents), 
evaluated at the two line ends (subscripts “0” and “l”), being 𝑙 
the line length, Fig.1. The MTL theory provides [4]-[5]:   
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where the propagation operator 𝑲  and the characteristic 
impedance matrix 𝐙𝟎 are, in turns, related to the per-unit-length 
parameter matrices [4]-[5]: 

            𝐊 = −𝑖𝜔[𝐙′𝐘′]ଵ/ଶ, 𝐙଴ = [(𝐘′)ିଵ𝐙′]ଵ/ଶ.   (5) 

By exploiting the physical properties of these latter operators,  
it is possible to prove that the following matrices:  

             𝐗𝟏 = 𝐼𝑚{𝑎𝑐𝑜𝑠ℎ[𝜆(𝐘௠
ିଵ𝐘ୱ)]},   (6) 

             𝐗𝟐 = 𝑅𝑒{−𝐘௠
ିଵ𝐙୫},   (7) 

are monotonic in a “weak sense”, with respect to the permittivity 
[13]. This means  that the following property holds: 

            𝜀ଵ(𝒓) ≥ 𝜀ଶ(𝒓)  ∀𝒓 → 𝜆௞(𝐗𝟏) ≥ 𝜆௞(𝐗𝟐)  ∀𝑘   (8) 

where 𝜆௞ are the eigenvalues of the matrices. 
 

 

 
Fig. 1. Multiconductor transmission line, with voltages and currents references. 

 

B. Macromodeling and optimization  

 
The proposed technique aims at macromodeling the 

inhomogeneous TL in terms of equivalent single homogeneous 
ones, thus described by a single value of the propagation velocity 
(or propagation delay). The concept of optimization is 
associated to target quantities, whose values obtained in the 
equivalent line must be compared to that in the original line, as 
done in classical works like [14].   

Here the optimization is contemporarily carried out from the 
physical standpoints of the stored energy, 𝑈, the propagation 
velocity, 𝑣, and the characteristic impedance, 𝐙଴ . Specifically, 
we are seeking two uniform values of the permittivity, 𝜀ଵ̅ and 𝜀ଶ̅, 
such that the solutions of the two homogeneous lines associated 
to them can bound those of the original line:  

            𝑈ଵ ≤ 𝑈 ≤ 𝑈ଶ,   𝑣ଵ ≤ 𝑣௞ ≤ 𝑣ଶ,   𝐙଴ଵ ≤ 𝐙଴ ≤ 𝐙଴ଶ.   (9) 

In other words, 𝜀ଵ̅ and 𝜀ଶ̅ are the bounds for the optimal value of 
the equivalent permittivity, in terms of the quantities (9).  

Note that for two matrices A and B, the relation 𝐀 ≤ 𝐁 means 
that the eigenvalues of 𝐀 − 𝐁 are all non-positive. 

To identify the above two values of permittivity, it is 
necessary to study the variation of the sign of the following 
index associated to the matrices 𝐗𝟏 and 𝐗𝟐 defined in (6)-(7):   
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 Here 𝐗෩ denotes any of the matrices 𝐗𝟏 or 𝐗𝟐 referred to the 
original inhomogeneous line with permittivity, 𝜀(𝒓), whereas 
𝐗கത  is the corresponding matrix associated to a line with a 
uniform value of permittivity, 𝜀(𝒓)= 𝜀.̅  

 Given its expression (10), it is easy to realize that the index 
is bounded: |𝑠ௐ| ≤ 1. In addition, it can be proven [13] that the 
sign index 𝑠ௐ is equal to +1  for  𝜀̅ ≤ 𝜀ଵ̅, to 1  for 𝜀 ̅ ≥ 𝜀ଶ̅, and 
it is |𝑠ௐ| < 1 when 𝜀ଵ̅ < 𝜀̅ < 𝜀ଶ̅ . As a consequence, the 
requested values of the permittivity 𝜀ଵ̅ and 𝜀ଶ̅ can be identified 
as the extremals of the transition region |𝑠ௐ| < 1.  

In order to bound the original line in agreement with the 
inequalities in (9), the above study must be performed both for 
the matrices  𝐗𝟏  and 𝐗𝟐  in (6)-(7). This study provides two 
intervals: (𝜀ଵ̅ଵ, 𝜀ଶ̅ଵ) for  𝐗𝟏,  (𝜀ଵ̅ଶ, 𝜀ଶ̅ଶ) for  𝐗𝟐. The final values 
will be given by the extremals of the set obtained by the union 
of the two intervals: 

             𝜀ଵ̅ = 𝑚𝑖𝑛 {(𝜀ଵ̅ଵ, 𝜀ଶ̅ଵ) ∪ (𝜀ଵ̅ଶ, 𝜀ଶ̅ଶ)},    (11) 

             𝜀ଶ̅ = 𝑚𝑎𝑥 {(𝜀ଵ̅ଵ, 𝜀ଶ̅ଵ) ∪ (𝜀ଵ̅ଶ, 𝜀ଶ̅ଶ)}.    (12) 

Note that the proposed technique only requires the 
knowledge at a single frequency point of any of the terminal 
matrices Z  or Y  of the original inhomogeneous system, either 
provided by simulations or measurements. As for the equivalent 
homogeneous models corresponding to a uniform permittivity, 

,  the required matrices can be easily obtained by applying the 
MTL model.  
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III. ANALYSIS OF A GRAPHENE INTERCONNECT 

A. A microstrip embedding a graphene contact 

The graphene interconnect analyzed here has been described 
in [15] and is here briefly recalled. The interconnect is a single 
microstrip with the signal line made by two copper traces, where 
a small gap between the traces is filled by graphene, in form of 
nanoplatelets, by using the technique shown in [16]. The 
microstrip layout is given in Figure 2, with its geometrical 
parameters reported in Table I. An FR4 dielectric has been used, 
with relative permittivity between 4.17 and 3.92 in the 
considered frequency range (up to 10 GHz). The graphene 
embedded in the gap is shown in Fig.3.  

A procedure to retrieve equivalent electrical parameters for 
this graphene interconnect has been presented in [15], based on 
the joint use of measurements and simulations. Specifically, an 
equivalent relative permittivity in the range from 23 to 40 is 
found, by matching the computed and measured scattering 
parameters in the microwave range, see Fig.5. The simulations 
come from an equivalent model implemented with a commercial 
tool (CST, [17]), assuming a uniform value for the permittivity. 

In the following, we use the proposed approach as an 
alternative way to find these equivalent permittivity values. 

 
Fig. 2. The analyzed microstrip: cross section (left); upper view (right). 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Atomic microscope picture of the graphene nanoplatelets lying in the 
microstrip gap. Inset: the realized microstrip, with the gap highlighted. 

Table 1. Values of the geometrical parameters for the microstrip. 

A 
(mm) 

B 
(mm) 

W 
(mm) 

H 
(mm) 

L 
(mm) 

t 
(µm) 

50 20 1.0 0.5 0.1 14 
 
Table 2. Velocity, characteristic impedance and p.u.l. energy for case-study 1. 

microstrip v (108 m/s)  Z0 (Ω) U (pJ/m)  
Original 1.78 94.48 29.65 

Equivalent 1.78 94.35 29.56 
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Fig. 4.  Comparison between simulated vs measured scattering parameters, for 
retrieving the equivalent electrical permittivity [15].  

 
 
Fig. 5.  Behavior of the sign indexes associated to the matrices 𝐗𝟏  and 𝐗𝟐 
versus the equivalent relative permittivity, for the case-study 1 (microstrip 
without gap and without graphene). The transition region reduces to a single 
point, corresponding to the desired value of the equivalent permittivity.  
 

B. Homogenization of the graphene microstrip 

In order to introduce the procedure, let us first refer to the 
microstrip in Fig.2 without graphene (case-study 1), assuming a 
copper trace without gap, and considering the geometrical 
parameters in Table 1. The relative permittivity ranges from 1 
(the external region of the microstrip) to 4.17 (the maximum 
value of the FR4 dielectric). These extremal values are taken as 
starting points for the identification procedure. 

The TL parameters for a single microstrip are known in a 
closed form [4], and thus the matrices 𝐗𝟏 and 𝐗𝟐 in (6)-(7) may 
be easily computed. The homogenization procedure targets 
contemporarily the above two matrices, by deriving the 
corresponding sign indexes, defined as in (10). Figure 5 shows 
the behavior of the two sign indexes, as a function of the 
equivalent relative permittivity: the transition region reduces to 
a single value: 𝜀௥̅ଵ = 𝜀௥̅ଶ = 2.82,  which is in agreement with 
the value, 𝜀௥̅ = 2.80 , provided by classical semi-analytical 
approximations available for a single microstrip, e.g. [18].  
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Fig. 5.  Behavior of the sign indexes associated to the matrices 𝐗𝟏  and 𝐗𝟐 
versus the equivalent relative permittivity, for case-study 2 (graphene 
microstrip). The transition region is here an interval.  

 
Table 3. Equivalent permittivity values for case-study 2, with Ref. [15] 

 
  𝜺ത𝟏 𝜺ത𝟐 

This paper 26.5 39.5 
Ref. [15] 23 40 

 
 
Table 2 summarizes the results of the comparison between 

the propagation properties of the two lines (the per-unit-length 
energy refers to the application of a voltage of 1V at one line 
end, with the other one short-circuited). 

Let us now apply the procedure to the graphene microstrip 
(case-study 2): in this case, the relative permittivity range is 
much wider, since the graphene composites may exhibit 𝜀௥ of 
the order of hundreds [15]. For the graphene microstrip the 
procedure starts from the knowledge of the measured scattering 
parameters, see Fig.4. The scattering matrix S is equivalent to 
any other matrix representation of the TL: for instance, S is 
related to the impedance matrix Z as follows [4]-[5]: 

            𝐒 = [𝐙 + 𝐙଴]ିଵ[𝐙 − 𝐙଴].   (13) 

As a consequence, the measured results provide the 
reference matrices 𝐗෩ to be used in (10). In this case, there is no 
analytical solution to be used for computing the homogeneous 
cases. To this purpose, in the following we use the numerical 
results provided by the same simulation tool used for Fig.5.  

Figure 6 shows the behavior of the two sign indexes, as 
functions of the equivalent permittivity: in this case, the 
transition region is the union of two intervals. Indeed, by 
applying (11) and (12) we obtain the equivalent values of 
permittivity reported in Table 3, compared to those retrieved in 
[15] with a different technique.  

IV. CONCLUSIONS 

In this paper, a novel technique has been proposed to derive 
equivalent homogeneous transmission line macromodel, starting 
from interconnects characterized by non-uniform spatial 

distribution of the permittivity. The technique is based on the 
study of the sign of an index associated to the terminal matrices. 
The technique has been successfully applied to a microstrip 
embedding a graphene contact, by using the scattering matrix to 
compute the sign index. The equivalent permittivity values 
derived here (26.5-39.5) are comparable to those obtained in 
literature by using a different identification technique (23-40).   

 

ACKOWLEDGMENTS 

This research was partially funded by EU H2020, under the 
Project TERASSE, H2020-MSCA-RISE, 823878 

REFERENCES 
[1] R.E. Collin, Field Theory of Guided Waves, N. York: McGraw-Hill 1960. 

[2] Y. L. Chow, J. J. Yang, D. G. Fang, G. E. Howard, “A closed-form spatial 
Green's function for the thick microstrip substrate,” IEEE Trans. on 
Microwave Theory and Techniques, Vol.39, pp.588-592, Mar 1991.  

[3] A.Maffucci, G. Miano, F. Villone, “Full-wave transmission line theory,” 
IEEE Trans. on Magnetics, Vol.39, pp.1594-1597, 2003. 

[4] C.R. Paul, Analysis of Multiconductor Transmission Lines, Wiley, 1994.   

[5] G. Miano, A. Maffucci, Transmission Lines and Lumped Circuits, San 
Diego: Academic Press, 2001. 

[6] B. Gustavsen and A. Semlyen, “Rational approximation of frequency 
domain responses by vector fitting,” IEEE Trans. Power Del., vol. 14,  pp. 
1052–1061, Jul. 1999. 

[7] P. Triverio, S. Grivet-Talocia, and A. Chinea, “Identification of Highly 
Efficient Delay-Rational Macromodels of Long Interconnects From 
Tabulated Frequency Data,” IEEE Trans. Microwave Theory and 
Techniques, vol. 58, pp. 566–577, Mar. 2010. 

[8] E. Bogatin, Signal Integrity, New Jersey: Prentice Hall, 2004. 

[9] D. Vande Ginste, D. De Zutter, D. Deschrijver, T. Dhaene, P. Manfredi, 
F. Canavero, “Stochastic Modeling-Based Variability Analysis of On-
Chip Interconnects,” IEEE Trans. on Components, Packaging and 
Manufacturing Tech., Vol.2, pp.1182-1192, Jul. 2012. 

[10] A. Todri-Sanial, J. Dijon, A. Maffucci, Carbon Nanotubes for 
Interconnects. The Netherlands: Springer, 2016. 

[11] G. Y. Slepyan,  A. Boag, V. Mordachev, E. Sinkevich, S. Maksimenko, 
P. Kuzhir, G.  Miano, M.E. Portnoi, A. Maffucci, “Nanoscale 
Electromagnetic Compatibility: Quantum Coupling and Matching in 
Nanocircuits,” IEEE Trans. on Electromagnetic Compatibility, vol.57, 
no.6, pp.1645-1654, Dec. 2015. 

[12] J. S. Ochoa and A. C. Cangellaris, “Homogenization Technique for 
Transmission Lines with Random Permittivity Profiles,” Proc. of 17th 
IEEE Work. on Signal and Power Integrity, Paris, France, May 2013.  

[13] A. Maffucci, A. Vento, S. Ventre, A. Tamburrino, “A Novel Technique 
for Evaluating the Effective Permittivity of Inhomogeneous Interconnects 
Based on the Monotonicity Property”, IEEE Trans. on Components, 
Packaging and Manufacturing, Vol.6, pp.1417-1427, Set. 2016 

[14] Z. Zhou and K. L. Melde, “A Comprehensive Technique to Determine the 
Broadband Physically Consistent Material Characteristics of Microstrip 
Lines,” IEEE Trans. on Microwave Theory and Techniques, Vol.58,  
pp.185-194, Jan 2010. 

[15] S. Bellucci, A. Maffucci, S. Maksimenko, F. Micciulla, M. D. Migliore, 
A. Paddubskaya, D. Pinchera and F. Schettino, “Electrical Permittivity 
and Conductivity of a Graphene Nanoplatelet Contact in the Microwave 
Range,” Materials, vol.11, p.2519-1-11, Dec. 2018. 

[16] A. Maffucci, F. Micciulla, A. Cataldo, G. Miano, S. Bellucci, “Bottom-
up Realization and Electrical Characterization of a Graphene-Based 
Device,” Nanotechnology, Vol.27, p.095204-1-9, 2016. 

[17] CST Microwave Studio, https://www.cst.com   
[18] E. Hammerstad and Ø. Jensen, “Accurate Models for Microstrip 

Computer-Aided Design,” Proc. of Symposium on Microwave Theory and 
Techniques, pp. 407-409, Jun. 1980.

15            20             25            30             35             40            45            

EQUIVALENT PERMITTIVITY (εr) 


