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About the maximum entropy principle in non
equilibrium statistical mechanics
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Abstract
The maximum entropy principle (MEP) apparently allows us to derive, or justify, fundamental results of equilibrium statistical
mechanics. Because of this, a school of thought considers the MEP as a powerful and elegant way to make predictions in
physics and other disciplines, which constitutes an alternative and more general method than the traditional ones of statistical
mechanics. Actually, careful inspection shows that such a success is due to a series of fortunate facts that characterize the
physics of equilibrium systems, but which are absent in situations not described by Hamiltonian dynamics, or generically
in nonequilibrium phenomena. Here we discuss several important examples in non equilibrium statistical mechanics, in
which the MEP leads to incorrect predictions, proving that it does not have a predictive nature. We conclude that, in these
paradigmatic examples, the “traditional” methods based on a detailed analysis of the relevant dynamics cannot be avoided.
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1. Introduction
Statistical mechanics has been constructed, in the second half
of the 19-th century, by Maxwell, Boltzmann and Gibbs on the
basis of the assumed microscopic dynamics, and additional
hypothesis (as ergodicity). On the other hand there is today
a radically anti-dynamical point of view, according to which
statistical mechanics were nothing else but a form of statistical
inference, rather than a theory of objective physical reality.
Here with statistical inference it is understood the process of
deducing properties of an underlying probability by means of
some general criterion. Under this light, probabilities measure
the degree of truth of a logical proposition about the state of
the system, rather than describing the state of a system as
such.

In this context, Jaynes [1, 2, 3] proposed the maximum
entropy principle (MEP) as the general rule for finding the

probability of a given event when only partial information is
available. Let us briefly summarize the main points. If the
mean values of m independent functions fi(x), where x is a
vector which describes the state of the system, are given:

ci = 〈 fi〉=
∫

fi(x)ρ(x)dx , i = 1, ...,m , (1)

the MEP rule determines the probability density ρ of the
events compatible with these mean values, by maximising the
“entropy”

H =−
∫

ρ(x) lnρ(x)dx , (2)

under the constraints ci = 〈 fi〉. For independent functions
f1, . . . , fm we mean that it is not possible to find a1, . . . ,am 6= 0
such that

m

∑
j=1

a j f j(x) = 0. (3)

Using the maximization method of the Lagrange multipliers
one easily obtains

ρ(x) =
1
Z

exp
m

∑
i=1

λi fi(x) (4)

where λ1,λ2...λm depend on c1,c2, ...,cm. For instance, for
systems with a fixed number of particles subjected to the
unique constraint that their mean energy is fixed, the MEP
leads to the canonical distribution in a very simple fashion.
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As a technical but rather important detail, we note that
the above result holds only if x is the vector of the canoni-
cal coordinates (i.e. positions and momenta of the particles).
Analogously, for systems of varying numbers of particles,
the grand canonical distribution is obtained by additionally
constraining the mean number of particles.

Many find in these facts an unquestionable evidence for
the validity of the MEP. We do not share such an opinion:
the success of the MEP in deriving the correct probability
distribution in equilibrium statistical mechanics is just a matter
of fortunate coincidence, related to the choice of canonical
coordinates. Thus, the weakest technical aspect of the MEP
approach is the dependence of the results on the choice of the
variables.

There is another and more important objection to the MEP:
our ignorance cannot be credited to add knowledge about real
phenomena. As a matter of fact, in spite of the optimistic
claims of the MEP enthusiasts, to the best of our knowledge
MEP has only produced different, although sometimes more
elegant, derivations of results that were already previously
known.

For simplicity’s sake, consider a scalar random variable
X , ranging over a continuum, whose probability distribution
function is pX . It is easy to realise that the “entropy”

HX =−
∫

pX (x) ln pX (x)dx (5)

is not an intrinsic quantity of the phenomena concerning X .
With a different parametrization, i.e. using the coordinates
y = f (x) with an invertible function f , rather than x, the
entropy of the same phenomenon would now be given by

HY =−
∫

pY (y) ln pY (y)dy, (6)

with pY (y) = pX ( f−1(y))/| f ′(x = f−1(y)|. Therefore, one
has

HY = HX +
∫

pX (x) ln | f ′(x)|dx, (7)

so the MEP gives different solutions if different variables are
adopted to describe the very same phenomenon.

In order to avoid such an unpleasant dependence on the
choice of variables, Jaynes later proposed a more sophisticated
version of the MEP, in terms of the relative entropy:

H̃ =−
∫

ρ(x) ln
[

ρ(x)
q(x)

]
dx , (8)

where q is a given probability density. Of course, H̃ depends
on q; but, at variance with the entropy, it does not depend
on the chosen variables. On the other hand, one must decide
how to select q, and this issue is equivalent to the problem of
choosing the “proper variables”. Therefore, even this more
elaborate method is non-predictive, and we see no reason to
pursue the MEP approach further in the field of statistical me-
chanics. For a detailed discusson on the MEP in equilibriun

statistical mechanics see [4, 5, 6, 7, 8, 9].
The aim of the present paper is to discuss some non standard
topics of statistical physics, namely fluid mechanics and non
equilibrium problems, showing how the statistical features
are determined by precise dynamical behavior and cannot be
predicted (even at a qualitative level) by inference ideas as in
the MEP.
In Section 2 we discuss the statistical mechanics of fluids:
only in the inviscid case, which is for many aspects similar
to the Hamiltonian systems, MEP is able to give the correct
result. On the contrary, in the more interesting situation, of
turbulent flows MEP is not able to select the correct statistical
features which are selected only by some physical aspects of
the dynamics.
Section 3 is devoted to the non equilibrium statistical mechan-
ics. In some cases the MEP can predict the proper results
but only using the relevant variables and constraints. Such
assumptions, in terms of inference, are not natural at all. In
particular the claimed success of the MEP for the fluctuation
relations is due to serious confusion between formulae that
are only apparently similar while, in reality, they describe
completely different physical situations. The last Section is
devoted to our concluding remarks.

2. Statistical fluid mechanics and MEP
In spite of the fact that, in general, a fluid (even in absence of
viscosity) does not obey Hamiltonian equations, it is easy to
develop an equilibrium statistical mechanical treatment for the
Euler equation in perfect analogy with the micro-canonical
formalism used in standard Hamiltonian systems.

Let us consider a perfect fluid, i.e. with zero viscosity, and
without external forcing, in a cube of edge L with periodic
boundary conditions, so that the velocity field can be expanded
in Fourier series as

u j(x, t) = L−3/2
∑

n1,n2,n3

ei(k1x+k2y+k3z)v j(k, t) (9)

where
k =

2π

L
(n1,n2,n3)

with n j integer numbers. We introduce an ultraviolet trunca-
tion v j(k) = 0 for |k|> KM , being KM the maximum allowed
wave vector.

Because of the incompressibility condition (∇ · u = 0)
and the fact that the velocity field u(x, t) is real the variables
{v j(k, t)} are not independent, e.g. one has

3

∑
j=1

k jv j(k, t) = 0 and v j(−k, t) = [v j(k, t)]? , (10)

where ? denotes complex conjugation. Therefore it is useful
to introduce a new set of variable {Xn(t)} replacing v j(k, t)
and obeying an ordinary differential equation:

dXn

dt
= ∑

m,`

Mn,m,`XmX` , n = 1,2, ....N ∼ K3
M . (11)
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from the Euler’s equation we have the following properties:
where Mn,m,` = Mn,`,m and Mn,m,`+Mm,`,n +M`,n,m = 0: for
details see [10, 11]. Because of the introduction of the ultravi-
olet truncation, we have a finite system of equations, therefore
one avoids the infinite energy problems of the classical field
theory.

Since Eq. (11) conserves the volume in the phase space
(Liouville theorem)

∑
n

∂

∂Xn

dXn

dt
= 0 (12)

and in addition one has the (energy) conservation law

1
2 ∑X2

n = E ,

it is straightforward, following the usual approach of equi-
librium statistical mechanics, to derive the microcanonical
distribution:

Pmc({Xn}) ∝ δ

(1
2 ∑X2

n −E
)
. (13)

In addition, the N→ ∞ limit yields the canonical distribution

Pc({Xn}) ∝ exp
[
−
(

β

2 ∑X2
n

)]
(14)

and therefore

< X2
n >=

2E
N

=
1
β

(15)

The previous procedure can be easily generalized to the two-
dimensional case in which there is a second conserved quan-
tity, the enstrophy (the quantity related to the kinetic energy
in the flow model that corresponds to dissipation effects in the
fluid):

Ω =
1
2 ∑

n
k2

nX2
n . (16)

Because of this, the microcanonical distribution should be
defined on the surface in which both energy and enstrophy
are constant, and in the large N limit, we have the canonical
distribution

Pc({Xn}) ∝ exp
[
−
(

β1

2 ∑X2
n +

β2

2 ∑k2
nX2

n

)]
(17)

and therefore

< X2
n >=

1
β1 +β2k2

n
. (18)

Detailed numerical simulations show that systems described
by inviscid ordinary differential equations, such as Eq.(11),
with quadratic invariants, for which the Liouville theorem
holds, are ergodic and mixing if N is large. Then arbitrary
initial distributions of {Xn} evolve towards the Gaussian (14)
or (17), see [11].

In the inviscid case, the Liouville theorem implies that
the “natural” variables are {Xn}, and the success of the MEP
to derive the canonical distribution is quite obvious. The
reason is the same as for the statistical mechanics of Hamilto-
nian systems. We additionally remark that in usual statistical
mechanics, one only uses the energy conservation and the
Liouville theorems, while the full Hamiltonian structure plays
no role.

Let us now discuss the more interesting case of real fluids,
where a viscosity and forcing are present. Particularly inter-
esting is the fully developed turbulence, where the Reynolds
number Re =UL/ν (being U and L the typical velocity and
length respectively) is very high. At variance with naive expec-
tations on the statistical features of turbulence, based on the
incorrect assumption that Re→ ∞ is equivalent to ν = 0, the
scenario is very different [10]. In 3D, instead of equipartion,
we have Kolmogorov’s law i.e. E(kn) ∼ k2

n < X2
n >∼ k−5/3

n ,
therefore

< X2
n >∼ k−11/3

n . (19)

The previous law can be understood in terms of a cascade
mechanism: see [10, 11].

Let us note that, using MEP and imposing the (natural)
constraint

∑
n
< X2

n >= const, (20)

we obtain Eq.(15) i.e. the same result of the inviscid case.
Because of the presence of the viscosity and because of

the inapplicability of the Liouville theorem, in fully developed
turbulence there are no “natural” variables.

2.1 Statistical features of turbulent models
In order to understand of the difference between the cascade
mechanism and the “equipartition” scenario a numerical study
is unavoidable. On the other hand, a numerical simulation
of the Navier–Stokes equations in the limit Re >> 1 is a
prohibitive task. If the interest is only for a study of the scaling
behavior, one can use simplified dynamical models, the so
called shell models (SM), which, in spite of their apparent
simplicity, reproduce many statistical features observed in
experiments and in detailed numerical simulations [11, 12,
13].

The basic idea of the SM is to implement a dynamical
(energy or other quantities) cascade model in terms of a set
of complex variables un, n = 1, ...,N representing the velocity
fluctuations in a shell of wave-numbers kn < |k|< kn+1. The
wave-numbers are chosen geometrically spaced kn = k02n

therefore the number of variables needed to describe the iner-
tial range physics, is not too large. In this way, the spatial and
vectorial structure of the original problem is completely disre-
garded. Then, some insights are used to derive the equations
ruling the set of variables {un}. A basic source of inspira-
tion is the Navier-Stokes equation (NSE) written in Fourier
space, where the modes interact in triads (see e.g. Eq. (11)):
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only three modes are involved at the same time. In this way,
we simplify the complexity of the equations by retaining the
triad structure and eliminating some interactions. Due to the
hierarchical organization of the characteristic times associ-
ated with the different scales, we can assume that only close
modes, i.e. variables referring to close scales, can interact.
The justification for this is that distant modes (say kn and
km with |m− n| � 1) have so different timescales that the
resulting interaction would be very weak. This assumption is
known as the hypothesis of locality of the cascade, and can
be substantiated with refined analysis of the NSE.

According to the previous ideas we can introduce a set of
ordinary differential equations:

dun

dt
=−νk2

nun +g(α)
n (un,un±1,un±2)+ fn, (21)

where fn is the external forcing, the term−νk2
nun corresponds

to the dissipation, while the term g(α)
n (...) includes the nonlin-

ear terms, and the parameter α determines the conservation
laws in the inviscid limit ν = 0 , fn = 0:

dun

dt
=−νk2

nun+ikn

(
anu∗n+1u∗n+2+

bn

2
u∗n−1u∗n+1+

cn

4
u∗n−1u∗n−2

)
+ fn ,

(22)

with n = 1, ...,N, b1 = bN = c1 = c2 = aN = aN−1 = 0.
Given the conservation of energy ∑n |un|2 when ν = fn =

0, one has the constraint an +bn+1 + cn+2 = 0, and the time
scale can be fixed applying the condition an = 1. This leaves
one free parameter δ :

an = 1 , bn =−δ , cn =−(1−δ ) . (23)

In the inviscid limit, the systems possesses a second conserved
quantity:

∑
n

kα
n |un|2 , (24)

where α and δ are linked by the relation 2α = 1/(1−δ ) [11].
The cases δ = 1/2 and δ = 5/4 correspond the 3d and 2d
turbulence respectively.

In spite of their (apparent) naive character, the shell mod-
els are non trivial at all and maintain all the difficulties of
the NSE. Remarkably for δ = 1/2 the shell model shows the
same rich statistical features observed in labs and direct nu-
merical simulations of the NSE, e.g. the anomalous scaling
of the structures functions and the shapes of the probability
distribution of many relevant quantities. Let us note that the
agreement holds also at the quantitative level.

The great advantage of shell models is that the number
of shells N necessary to mimic the cascade mechanism of
fully developed turbulence is relatively small, because of the
geometrical progression in kn we roughly have N ∼ ln(Re).
We have thus a chaotic dynamical system with a reasonably
small number of degrees of freedom where methods of deter-
ministic chaos can be used to link the statistical description to
the dynamical properties.

In the past years shell models attracted the attention of
many scientists with different aims: the possibility to perform
detailed numerical computation on a model for the energy
cascade to test ideas or conjectures, e.g. in the context of pre-
dictability. Also, they have been used to investigate analytic
methods (to test some ideas for the closure problem), develop-
ing rigorous results, understanding the link between dynami-
cal properties in phase space and more standard quantities (in
traditional turbulent literature) such as structure functions and
velocity probability distribution.

Although only the cases δ = 1/2 and δ = 5/4 correspond
to real physical situations (3D and 2D, respectively), it is
interesting to study the model also for other values of δ : see
[11]. Let us discuss only the case δ > 1 corresponding to real
α .

In order to determine the main statistical features, we can
follow two different statistical arguments:

a) equipartition, i.e. (kα
n +const.)< |un|2 >= const which,

for for large kn implies < |un|2 >∼ k−2ζ
n where ζ =

α/2

b) cascade á la Kolmogorov (see e.g. [11]), obtaining
< |un|2 >∼ k−2ζ

n , where ζ = (α +1)/3

Actually, numerical simulations (see [11, 12]) show, apart
small corrections due to intermittency, ζ = (α+1)/3 if α < 2,
and ζ = α/2 for α > 2, i.e.

ζ = max{α +1
3

,
α

2
} . (25)

In short, we can say that for α < 2 the most important mecha-
nism is the cascade (à la Kolmogorov), while for α > 2 the
equipartition mechanism has the leading role for the scaling.
Let us present the physical argument [11]: neglecting inter-
mittency we assume the simple scaling un ∼ k−h

n , therefore
by dimensional arguments, the typical time at scale kn is τn ∼
unkn∼ kh−1

n . Assuming a generalized α-entrophy cascade one
has a constant rate for the generalized α-enstrophy transfer,
i.e. kα

n |un|2/τn ∼ const. Therefore one obtains h = (1+α)/3
corresponding to ζ = (α +1)/3.

In the previous argument one has

τn ∼ k(α−2)/3
n ,

such a scaling is contradictory for α ≥ 2, because it implies
that the turn-over time τn does not decrease as k−1

n decreases.
Therefore we have an unrealistic result: it is not possible to
stop the cascade with a dissipative mechanism whose charac-
teristic time is τ

(d)
n ∼ k−2

n , i.e., at variance with the case α < 2,
it is not possible to find a kdiss = kn∗ such that

τn∗ ∼ τ
(d)
n∗ .

As consequence of the failure of the cascade mechanism, for
α ≥ 2, it is reasonable to expect an equilibrium statitical
scenario, with ζ = α/2.
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The previous phenomenological argument is well con-
firmed by numerical computations, see [11, 12].

The above results on the dependence on ζ from α origi-
nate from genuine physical arguments and it is hard to believe
that they could be obtained by mere inference arguments.

3. Non–equilibrium examples

In this section we discuss the MEP approach in the case of
non-equilibrium systems. Dewar [14, 15] claimed that the
MEP can be used to obtain the probability distributions for
general non–equilibrium systems.

For sake of simplicity, let us consider discrete times,
1,2,3,... and let

TN = {x1,x2, . . .xN} (26)

be a trajectory segment of length N in the phase space or state
space of a given system of interest. One would like to identify
the steady state probability density p(TN) about this trajectory
segment in the state space of trajectory segments. The method
stemming from the MEP relies on the maximization of the
corresponding “entropy”:

HN =−
∫

p({x1,x2, . . .xN}) ln p({x1,x2, . . .xN}) dx1 . . .dxN

(27)

under the constraints concerning M observables:

c j,N =< f j,N > , j = 1,2, ...,M (28)

where f j,N = f j,N(TN): the scalars c j,N , f j,N play the same
roles as c j, f j did in Section 1, and the notation stresses the
fact that they refer to trajectories of length N in the original
phase space or state space. The MEP immediately leads to

p(TN) = e−∑
M
j=1 λ j f j(TN) (29)

where the values {λ1,λ2, ..,λM} are determined by those of
{c1,N ,c2,N , ..,cM,N} in Eq. (28).

In this respect, the MEP method does not differentiate
equilibrium from non–equilibrium steady states; once the
trajectory of interest is identified, everything proceeds in the
same way for both situations. This is indeed in line with
considering the maximum entropy as a inference technique,
which is then expected to work regardless of the physics and of
the specific properties of the objects under investigation. The
difficulties one meets in such a completely general approach
to non–equilibrium systems are as above:

a) the identification of the stationary state, i.e. of the
suitable variables for describing it;

b) the identification of the observables, i.e. of the relevant
functions { f j} in Eq. (28).

Cover and Thomas [16] in Chapter 11 of their well known
book, express these ideas quite plainly:
Implicit in the use of the maximum entropy methods in physics
is a sort of AEP (asymptotic equipartition property) that says
that all the micro states are equally probable.
In Section 12.6 of [16], the reader can find a clear discussion
of Burg’s maximum entropy theorem, which states that the
stochastic process {x1,x2, ....,xN} satisfying

< xnxn+k >=Ck , k = 1,2, .., p, (30)

where the correlation function Ck is known, and enjoying the
maximum entropy rate

h = lim
N→∞

1
N

HN , (31)

is the Gaussian Markov process obeying

xn =
p

∑
k=1

Akxn−k +σzn, (32)

with {zn} i.i.d. Gaussian variables of zero mean and unitary
variance, and {Ak} and σ chosen so that Eq.(30) is satisfied.
Then, one has

p({x1,x2, ....,xN})=
1
K
×exp− 1

2σ2 ∑
n

(
xn−∑

p
Apxn−p

)2

,

(33)

where K is the normalization constant.
Arguably, in the simplest case one assumes

〈xnxn+k〉= ak < x2 > , with 0 < a < 1, (34)

and the process maximizing h is a discrete time Langevin
equation, of form:

xn = axn−1 +σzn (35)

with σ2 =< x2 > (1−a2). As well known, the corresponding
probability density p is then given by [21]

p({x1,x2, ....,xN})=
1
K

exp
[
− 1

2σ2 ∑
n
(xn−axn−1)

2
]
. (36)

Despite being technically simple, this result reveals the serious
limitations in which the MEP inevitably incurs.

For instance, Dewar [14, 15] using the MEP approach
obtains

p({x1,x2, ....,xN}) = e−∑ j ∑n λ jg j(xn) (37)

but with values {λ1,λ2, ..,λM} derived from constraints that
are sums of functions of the variable x at a given time. Conse-
quently, one cannot account for a sum of functions of xn and
xn−1. One may insist, and define the state at time n in terms of
a two components array such as yn = (xn,xn−1). In that case,
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indeed, the MEP approach might work, if proper constraints
are imposed, and one could claim that this is done in analogy
with the celebrated Onsager-Machlup work [17]. In this paper
on fluctuations and irreversible processes, the authors pose a
difficult question:
how do you know you have taken enough variables, for it to
be Markovian?
Similarly, Ma [18], page 29, observes:
the hidden worry of thermodynamics is: we do not know
how many coordinates or forces are necessary to completely
specify an equilibrium state.

But it is rather plain that the analogy does not stand, be-
cause the state at time n for the present system is merely given
by xn, and there is no a priori reason to adopt yn = (xn,xn−1)
as a description of the state. One could equally reasonably opt
for any other pair of variables. In a sense, such choices would
be like deciding that the harmonic oscillator is described by
x,dx/dt and d2x/dt2, instead of x,dx/dt only.

3.1 Fluctuation relations
Dewar [14, 15] used the information theoretic approach to
non–equilibrium statistical mechanics also in order to derive
one of the most popular results of the past decades: the fluc-
tuation relations (FR) which deals with the probabilities of
a trajectory and its (time) reversed one. This is a symmetry
relation of the probability of second law “violating” phase-
space paths [19, 20, 21]. Dewar’s derivation seems to imply
that the FR is a generic property of the MEP’s probability
distributions, involving constraints on anti-symmetric func-
tions, independently of any physical interpretation that may
be associated to the phenomenon and to the constraints. Phys-
ically, it would then suffice to apply the MEP to the entropy
production of those macroscopic fluxes that vary under the
imposed constraints, and that would amount to selecting the
most probable macroscopic flux configuration. In this case,
one denotes by fk the thermodynamic fluxes contributing to
the entropy production.

Let T
(+)

N be a trajecotry of length N and probability
p

T
(+)

N
, along which there is a positive entropy production,

expressed by σ = ∑
m
k=1 λk fk(T

(+)
N ). Such a trajectory can

be paired with a trajectory T
(−)

N of probability p
T

(−)
N

, cor-

responding to the opposite entropy production, −σ . Using
MEP, Dewar then obtains the following relation — cf. Eq.(12)
in Ref.[14, 15] —

p
T

(+)
N

p
T

(−)
N

= exp

{
m

∑
k=1

λk fk

(
T

(+)
N

)}
, (38)

which is apparently very general, because rather than en-
tropy production for a non–equilibrium thermodynamic sys-
tems, one could have considered any process with n outcomes
{1, ...,n}, whose events can be grouped in pairs (i+, i−), such
that the fk’s obey fk(i−) =− fk(i+). The result would have
been identical, proving the incredibly general applicability of
the FR.

Dewar then observes that: a common explanation for these
relationships lies in the hypothesis that the trajectories have
a Gibbs-type probability distribution. Maximal Entropy pro-
vides the natural formalism in which Gibbs-type distributions
emerge, whether or not they refer to physical systems. Thus
the fluctuation theorem is not confined to physical systems
alone but arises in a (potentially large) class of statistical
inference problems involving constraint functions which are
anti-symmetric.

To connect Dewar’s result with the FR of non–equilibrium
statistical physics, one has to take a sample space whose n
elements are the possible trajectories of a non–equilibrium
system. This implies that the state space (for a stochastic
process) is finite, or that the phase space (for a deterministic
system) admits a finite generating partition.

Granting all that, it nevertheless appears that Dewar’s Eq.
(38) does not distinguish the numerous different situations
that may arise, and always yields the same expression (38)
even in the cases in which it is incorrect. Therefore, this MEP
approach has no predictive value. In particular, Eq. (38) incurs
in a systematic error which is far from harmless, because it
puts on the same footings two physically completely different
questions and the correspondingly different experiments:

1) Measurements concerning the properties of non–equilibrium
steady states;

2) Measurements concerning the properties of equilibrium
states.
This formally appears in the fact that, even when it does hold,
a steady state FR does not look like Eq. (38) in general, but it
contains a correction term cN that must turn negligible when
N grows:

p
T

(+)
N

p
T

(−)
N

= exp

{
m

∑
k=1

λk fk(T
(+)

N )+dN

}
. (39)

In the standard cases in which the steady state FR holds, dN is
of order O(1) compared to the order O(N) of the sum in Eq.
(39), hence it is indeed negligible for large N. However, dN
is related to the decay of correlations of microscopic events
in the steady state, and when the relevant correlations do not
decay sufficiently fast, it may get large with N producing
expressions that do not resemble Eq. (38) — cf. [20, 21, 22,
23, 24] — at variance with the MEP approach.1

As a matter of fact, a relation like Eq. (38) lacking the
correction term dN , can be verified, but as a transient relation.
Transient relations are very interesting tools, used to obtain
equilibrium properties of given collections of system, by doing
non–equilibrium work on them [21]. In a sense, transient
FR close the circle with the Fluctuation Dissipation Theorem
which does the opposite, obtaining non–equilibrium properties
from equilibrium experiments.

1Note that the N is not required to be large for the system to reach a
steady state; dN is present within the steady state dynamics. Also, one
cannot consider the collection of infinitely long trajectories (N = ∞) because,
apart from those corresponding to the average entropy production, their
probabilities vanish and the ratio on the left hand side of (39) has no meaning.
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One could then argue that a correction of order O(1) on a
term of order O(N) should be neglected in general, and that
Eq. (38) could be accepted in practice in all circumstances.
However, this is a gross error. Apart from the above observa-
tions, there are at least three further major differences in the
physics described by steady state and transient FR:

• there is no indication in the MEP procedure that N
should be large, therefore the accuracy of the supposed
approximation of the correct FR cannot be estimated;

• the probability p appearing in the transient FR is the
equilibrium probability and not the steady state proba-
bility, so that p in Eq.(38) intended as a transient rela-
tion and p in Eq.(39) are totally different objects;

• transient FR describe the statistics of different experi-
ments starting in the same equilibrium state but with
different initial microscopic state, as in the case of pro-
tein stretching or of colloidal particles dragged in water.
Consequently, transient FR do not need to describe any
given single object, in general, and they do not even
need to tend to any steady state expression when N
grows. Differently, steady state FR describe the fluctua-
tions of a single non–equilibrium system in its steady
state [19, 20, 21].

Furthermore, the most serious difficulty lies again with the
choice of the functions fk. Analogously to the previous gen-
eral discussion, also in the case of the fluctuation relations
one should know beforehand the correct variables by which
the state of a system must be described, as well as the relevant
observables. Unfortunately, in many circumstances a proper
set of variables does not even exist [25], and one may pass
from a situation in which the steady FR holds (correlations
decay fast and dN turns negligible with increasing N) to one in
which it does not (dN remains comparable to the other terms)
by merely changing parameters which play no role in the MEP
approach [26, 27].

3.2 A working example
The above remarks for deterministic dynamics have stochastic
counterparts. Therefore, let us conclude this section consider-
ing a simple model, in which similar difficulties are encoun-
tered, as first pointed out by Farago for systems in unbounded
potentials [28]. In particular, let us consider an overdamped
Langevin process, describing a Brownian particle, dragged in
a liquid by a moving harmonic potential with a constant ve-
locity v∗, which is relevant e.g. for the optical trap experiment
[29]:

dx(t)
dt

=− [x(t)− x∗(t)]+ζ (t) . (40)

Here x(t) is the position of the particle at time t, x∗(t) = v∗t
the position of the minimum of the potential, ζ (t) is a white
noise term representing the thermal bath, and kBT = 1. Then,

the work done in a time τ is

Wτ =−v∗
∫

τ

0
[x(t)− x∗(t)]dt . (41)

In this context, Van Zon and Cohen [30] considered the energy
balance

Wτ = Qτ +∆Uτ . (42)

where Qτ is the dissipated heat and ∆Uτ the potential energy
of a colloidal particle. They then observed that in a comoving
frame Wτ is Gaussian with variance 2〈Wτ〉. As this property
perists asymptotically in τ , they could conclude that the steady
state FR holds for the total work.

Differently, the PDF of the potential energy is exponential
at equilibrium, P(∆U) ∼ exp(−const.∆U), and is expected
to remain exponential even away from equilibrium. Conse-
quently, the small fluctuations of heat are expected to coincide
with those of the total work, because the contribution of the
potential energy is only O(1), while large heat fluctuations
are more likely to be generated by large fluctuations of the
potential energy, thus they are not distributed like work.

As a result, the expression in the large τ limit for the heat
FR takes the standard form

Pτ(Qτ)

Pτ(−Qτ)
≈ eQτ (43)

only for Qτ ∈ [0,〈Q〉). For Qτ ∈ [〈Q〉,3〈Q〉), there is a com-
plicated nonlinear function of Qτ and Wτ in the exponential,
and for Qτ > 3〈Q〉 one eventually obtains

Pτ(Qτ)

Pτ(−Qτ)
≈ e2〈Q〉 (44)

where 〈·〉 is the steady state average.
This result, due to the insufficiently rapid decay of the

PDF of heat, as opposed to that of the PDF of work, means
that two perfectly analogous quantities from the the MEP
standpoint, the work and the dissipated energy, are in fact
described by two substantially different FR, at variance with
the MEP predictions.

Furthermore, Baiesi et al. [31] generalized the result of
[30], providing necessary conditions for the potential V and
for its motion x∗(t), which are required by the total work
to satisfy the steady state FR. In particular, numerical tests
showed that the steady state FR does not hold for the total
work if x∗ moves at constant velocity and V is not symmetric.
Similar observations are reported in [32, 33].

As one may obtain non-symmetric potentials by changing
one parameter in the model of [30], without affecting the par-
ity of the total work, here we have another example in which
the MEP approach is bound to make incorrect predictions.

The fact is that there are infinitely many different forms
for the FT, each of which depends on specific details of the
systems under consideration. It would be quite a surprise that
any method generically based on an equipartition property
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treats properly such a plethora of different situations, espe-
cially considering that a typical feature of non–equilibrium
systems, even close to equilibrium, is the absence of equipar-
tition [34]. As shown in many papers, this fact affects in
vastly different fashions different observables and, to date, we
have no way to point out which observables are most affected,
except by direct investigation.

4. Concluding remarks
Apparentlu, the MEP approach may look like an elegant and
powerful way to make statistical inference in non–equilibrium
situations. However, detailed analysis reveals a serious diffi-
culty, which makes non-predictive the MEP method: it allows
the derivations of the correct expressions only when they are
already known.

On the other hand, in the non–equilibrium cases, one
cannot proceed without knowledge of the dynamics, which
tends to be highly complex. In other words, the constraints
one should impose, even in the cases in which this can be
done, should be related to the dynamics.

It is worth mentioning that the MEP approach is also
adopted in situations more complex than those concerning
physical problems such as the ones discussed above. Biol-
ogy, for instance, provides countless examples in which the
details of the relevant dynamics are not understood, hence
it is often claimed that uninformed inference, of the MEP
kind, is necessary. However, the maximization of the entropy
is not appropriate to describe a living organism, since living
organisms are not in equilibrium with the environment and
they are characterized by a degree of order higher than that of
the environment [35, 36]. This kind of order persists in time
thanks to the energy and matter exchange of one organism
with its environment. In non–equilibrium situations, correla-
tions prevent the system from reaching the possible maximum
entropy. Studies such as [38, 39] show that biomolecules are
in general not in a state of maximal entropy precisely due to
correlations among different components, as it is evident e.g.
in the emergence of the so–called ternary or quaternary struc-
ture of proteins from the initial codified segments of amino
acids, that ultimately allow biological functions.

One may thus argue that the MEP should be replaced by
an analogous inference principle suitable to characterize this
exchange. For instance, Prigogine’s minimum entropy produc-
tion principle correctly describes the system-environment ex-
change for stationary states in the linear regime of irreversible
thermodynamics. The principle asserts that the steady–state
configuration minimizes the entropy production [37]. The
principle also suggests that the evolution will promote or-
ganisms that minimize their entropy production in their own
environment, rather than maximizing the entropy. These or-
ganisms should turn out to be precisely those that are able to
exert more control on the environment. However, the mini-
mum entropy production principle does not possess an abso-
lute generality. It fails as a system is taken farther and farther
away from equilibrium, i.e. when it is driven towards higher

and higher dissipations. Therefore it suffers from the same
difficulties of the MEP and, analogously to the MEP, it cannot
be used as a general inference principle.

Acknowledgments
We thank Erik Aurell, Sergio Chibbaro ad Owen Jepps for
useful discussions

References
[1] Jaynes, Edwin T. Information Theory and Statistical Me-

chanics, Physical Review 106: 620–630 (1957)
[2] Jaynes, Edwin T. Information Theory and Statistical Me-

chanics II, Physical Review 108: 171–90 (1957)
[3] Jaynes, Edwin T. Information Theory and Statistical Me-

chanics, in K. Ford (Ed.), Statistical Physics, New York,
Benjamin Inc.: 181–218 (1963)

[4] Chibbaro, S., Rondoni, L., and Vulpiani A. Reductionism,
Emergence and Levels of Reality: The Importance of
Being Borderline, Heidelberg, Springer (2014).

[5] Chibbaro, S., Rondoni, L., and Vulpiani A. On the Foun-
dations of Statistical Mechanics: Ergodicity, Many De-
grees of Freedom and Inference, Comm. Theor. Phys. 62
469 (2014)

[6] Uffink, J. Can the Maximum Entropy Principle be Ex-
plained as a Consistency Requirement? Studies in His-
tory and Philosophy of Modern Physics 26 223 (1995).

[7] Uffink, J. The Constraint Rule of the Maximum Entropy
Principle, Studies in History and Philosophy of Modern
Physics 27, 47 (1996)

[8] Shimony, Abner, The Status of the Principle of Maximum
Entropy, Synthese 63 35. Search for a Naturalistic Point
of View, Cambridge, University Press.

[9] Friedman, K. and Shimny, A. Jaynes’s Maximum Entropy
Prescription and Probability Theory, J. Stat. Phys.3 381
(1971)

[10] Frisch, U., Turbulence: The Legacy of A. N. Kolmogorov,
Cambridge University Press (1995).

[11] T. Bohr, M.H. Jensen, G. Paladin and A. Vulpiani, Dy-
namical Systems Approach to Turbulence, Cambridge
University Press (1998).

[12] P.D. Ditlevsen and I.A. Mogensen Cascades and statisti-
cal equilibrium in shell models of turbulence Phys. Rev.
E 53, 4785 (1996)

[13] M.H. Jensen, G. Paladin and A.Vulpiani ”Intermittency
in a cascade molel for 3-dimensional turbulence” Phys.
Rev. A 43, 798 (1991)

[14] Dewar, R. Information Theory Explanation of the Fluc-
tuation Theorem, Maximum Entropy Production and
Self–Organized Criticality in Non–Equilibrium Station-
ary States, J. Phys. A36 631 (2003).



About the maximum entropy principle in non equilibrium statistical mechanics — 9/9

[15] Dewar, R. Maximum Entropy Production and the Fluctu-
ation Theorem, J. Phys. A38 L371 (2005)

[16] Cover, T.M. and Thomas, J.A. Elements of Information
Theory, Wiley, New York (1991)

[17] Onsager, L. and Machlup, S. Fluctuations and Irre-
versible Processes, Physical Review 91 1505 (1953)

[18] Ma, Shang–Keng, Statistical Mechanics, Singapore,
World Scientific (1985)
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