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Abstract. T-cell acute lymphoblastic leukemia (T-ALL) is a 
heterogeneous neoplastic disorder of immature hematopoietic 
precursors committed to the T-cell lineage. T-ALL comprises 
about 15% of pediatric and 25% of adult ALL cases. Even if 
the prognosis of T-ALL has improved especially in the child-
hood due to the use of new intensified treatment protocols, the 
outcome of relapsed patients who are resistant to conventional 
chemotherapeutic drugs or who relapse is still poor. For this 
reason, there is a need for novel and less toxic targeted thera-
pies against signaling pathways aberrantly activated in T-ALL, 
such as the phosphoinositide 3-kinase (PI3K)/Akt/mammalian 
target of rapamycin (mTOR). Small molecules designed to 
target key components of this signaling axis have proven 
their efficacy both in vitro and in vivo in pre-clinical settings 
of T-ALL. In particular, different classes of mTOR inhibi-
tors have been disclosed by pharmaceutical companies, and 
they are currently being tested in clinical trials for treating 
T-ALL patients. One of the most promising approaches for the 
treatment of T-ALL seems to be the combination of mTOR 
inhibitors with traditional chemotherapeutic agents. This 
could lead to a lower drug dosage that may circumvent the 
systemic side effects of chemotherapeutics. In this review, we 
focus on the different classes of mTOR inhibitors that will 
possibly have an impact on the therapeutic arsenal we have at 
our disposal against T-ALL.
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1. Introduction

Acute lymphoblastic leukemia (ALL) is caused by the uncon-
trolled clonal proliferation of immature lymphoid cells which 
accumulate in the bone marrow (BM) and other body sites. 
The neoplastic lymphoblasts display an impaired differenti
ation program, are blocked at various maturation steps and are 
resistant to apoptotic stimuli and cell death. ALL accounts for 
approximately 20% of acute leukemias in the adult, however 
it is the most common malignant disease in the childhood (1). 
The clinical management of ALL is challenging, especially in 
the adults, even though current therapies can induce a complete 
remission in 65‑90% of patients. Nevertheless, patients who 
are refractory to induction therapy or relapse after induction 
face a poor prognosis (2). ALL can be classified in two main 
subgroups, namely B-cell and T-cell ALL (B-ALL and T-ALL, 
respectively) (3).

T-ALL is an aggressive form of leukemia which arises in 
the thymus from T-cell progenitors expressing immature T-cell 
immunophenotypic markers (4,5). T-ALL accounts for 10‑15% 
and 25% of pediatric and adult ALL, respectively. In the child-
hood, cure rate for T-ALL patients reaches 70‑75%. In the adults, 
the cure rate remains low: 30‑40% for adults below 60 years of 
age and 10% above this age (6,7). By immunophenotyping, it 
is possible to distinguish three subtypes of T-ALL, i.e., early, 
cortical and mature, which reflect different stages of healthy 
thymocyte differentiation. This classification is prognostically 
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relevant, as early and mature T-ALLs have a poorer outcome 
than cortical T-ALL (8).

Recent findings have documented that T-ALL is an 
extremely heterogeneous disease, characterized by chromo
somal rearrangements causing aberrant expression of 
transcription factors (Myb; TAL/SCL; HOX) (9,10), altered 
expression of oncogenes (10), somatic gene mutations (11,12), 
multiple signal transduction pathway impairment (13-16) and 
microRNA dysregulation (17‑19).

Activating mutations in Notch-1, the master regulator of 
T-cell development, are found in more than 60% of T-ALL 
patients, independently of the subtype (20). All of these 
alterations impact on T-ALL cell proliferation, differentiation, 
survival and drug-resistance (21).

In general, leukemia pathogenesis, treatment resistance 
and relapse are thought to be caused by leukemic stem cells 
or leukemia initiating cells (LICs) (22). LICs are character-
ized by asymmetric cell division and self-renewal capacity, 
unlimited repopulating potential and production of partially 
differentiated cells. Whereas the bulk of leukemic cells rapidly 
proliferate, LICs are mainly quiescent (23). This feature is 
associated with chemoresistance, as conventional chemo-
therapy strategies mainly target rapidly dividing cells (24).

The phenotype of T-ALL LICs is still under discussion. 
Cox et al (25) reported that either CD34+/CD4- or CD34+/CD7- 
cells were capable of serial engraftment in NOD/SCID mice 
(25). Afterwards, the leukemia initiating potential in xeno-
grafts of the CD7+/CD1a- subset of primary T-ALL samples 
was found to be superior to other subsets (26). The importance 
of CD34 as a marker of LIC activity in T-ALL patients has 
nevertheless been documented by independent groups (27,28). 
However, it has been shown that also CD34-/CD7+ T-ALL 
cells displayed LIC proprieties, although at lower levels than 
CD34+ cells (28). The above-outlined discrepancies could well 
reflect differences among distinct molecular T-ALL subtypes. 
Nevertheless, these studies have disclosed the complexity of 
LICs in human T-ALL.

Among the deregulated signaling pathways that have 
been identified in T-ALL, the phosphoinositide 3-kinase 
(PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling 
network has been reported to be active in a high percentage 
(75‑80%) of patients, where it portends a poorer prognosis (29).

Over the last 10 years, mTOR has become an attractive 
therapeutic target in cancer patients, as several small molecule 
mTOR inhibitors have been developed and are being tested 
as monotherapy in clinical trials (30‑32). Moreover, the use 
of targeted drugs combined with traditional anticancer agents 
could increase treatment efficacy, by lowering the required 
dosage of chemotherapeutic drugs and limiting their systemic 
side effects (33). In this review, we will describe the poten-
tial of several strategies for mTOR inhibition to improve the 
outcome of T-ALL patients.

2. The PI3K/Akt/mTOR pathway

mTOR is a 289‑kDa serine/threonine (Ser/Thr) kinase 
which belongs to the phosphoinositide kinase-related 
family of protein kinases (PIKK) (34). The PIKK family 
includes ataxia telangiectasia mutated (ATM), ataxia telan-
giectasia- and RAD3-related (ATR), human suppressor of 

morphogenesis in genitalia-1 (hSMG-1) and the catalytic 
subunit of DNA-dependent protein kinase (DNA-PK) (35).

mTOR collects input from several signal transduction 
networks, such as the PI3K/Akt, the Ras/Raf/mitogen-activated 
protein kinase (MEK)/extracellular signal-regulated kinase 
(ERK) and the AMP-activated protein kinase (AMPK) 
pathways, for regulating several physiological events. Indeed, 
mTOR is involved in cell cycle progression, cell survival, 
translation, metabolism, motility, autophagy and ageing (36). 
mTOR is the catalytic subunit of two distinct multi-protein 
complexes known as mTOR complex 1 (mTORC1) and mTOR 
complex 2 (mTORC2), both of which are characterized by 
their different partner proteins and their substrate specificity 
(36) (Fig. 1).

mTORC1 is composed of the regulatory associated protein 
of mTOR (Raptor, a scaffolding protein), mammalian Lethal-
with-Sec-Thirteen 8 (mLST8), proline-rich Akt substrate of 
40‑kDa (PRAS40), FK-506 binding protein 38 (FKBP38) and 
DEP-domain-containing mTOR interacting protein (Deptor). 
mTORC1 is sensitive to rapamycin and its derivatives (rapalogs) 
(37). Multiple exogenous stimuli regulate mTORC1 activity, 
including growth factors such as insulin and insulin-like 
growth factor-1 (IGF-1), stress signals, cellular energy status 
and amino acids (38).

mTORC1 activation is mainly regulated by PI3K/Akt 
signaling. Akt phosphorylates 200‑kDa tuberous sclerosis 2 
(TSC2 or hamartin). TSC2 is a GTPase-activating protein 
(GAP) that associates with TSC1 (tuberous sclerosis  1 or 
tuberin) for inactivating the small G  protein Rheb (Ras 
homolog enriched in brain). Once TSC2 is phosphorylated 
by Akt, the GAP activity of the TSC1/TSC2 complex is 
repressed, allowing Rheb to accumulate in a GTP-bound state. 
As a consequence, Rheb-GTP upregulates the protein kinase 
activity of mTORC1 (39). Furthermore, Akt phosphorylates 
PRAS40 at Thr246. Phosphorylated PRAS40 dissociates from 
mTORC1 in response to growth factors, as well as glucose 
and nutrients, and thereby releases the inhibitory function of 
PRAS40 on mTORC1 (40).

mTORC1 positively regulates cell growth and prolifer
ation by promoting many anabolic processes and by limiting 
catabolic processes such as autophagy (41) (Fig. 1). Regarding 
protein translation, mTORC1 phosphorylates components 
of the protein synthesis machinery, such as p70 S6 kinase 
(p70S6K) and eukaryotic translation initiation factor 
4E-binding protein 1 (4E-BP1). In turn, p70S6K phosphory-
lates the 40S ribosomal protein S6 (S6RP), leading to active 
translation of mRNA involved in ribosome biogenesis (42), 
while 4E-BP1 interacts with the eukaryotic initiation factor 4E 
(eIF4E), which critically regulates cap-dependent mRNA 
translation (43). Once phosphorylated by mTORC1, 4E-BP1 
releases eIF4E, which then associates with eIF4G to stimulate 
translation initiation (44,45).

In addition to its role in protein translation, activation 
of mTORC1 triggers metabolic changes that are critically 
important in carcinogenesis, such as mitochondrial bioge
nesis and oxidative metabolism, aerobic glycolysis and 
de novo lipogenesis (41). mTORC1 controls mitochondrial 
biogenesis and oxidative metabolism by regulating the inter-
actions between the transcription factor yin-yang 1 (YY1) and 
the peroxisomal proliferator-activated receptor γ (PPARγ) 
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coactivator 1 (PGC‑1), thereby preventing the coactivation 
of YY1 (46).

As far as aerobic glycolysis is concerned, mTORC1 
promotes it through induction of a transcriptional program 
affecting metabolic glycolytic gene targets of hypoxia-inducible 
factor 1α (HIF1α) (47,48).

Regarding lipid synthesis, mTORC1 activates the trans
cription factors sterol regulatory element binding protein 1 
(SREBP1) and PPARγ which are necessary and sufficient for 
the differentiation of preadipocytes and lipid accumulation (41).

mTORC1 negatively regulates autophagy, a complex 
catabolic process that sustains cellular metabolism through 
recycling of cellular components during growth unfavorable 

conditions. Nevertheless, autophagy has also been associ-
ated with promoting cell survival during nutrient or hypoxic 
stress and may promote cancer cell survival (49). mTORC1 
suppresses the kinase activity of unc-51-like kinase 1 (ULK1), 
thus preventing the ULK1/autophagy-related gene 13 (Atg13)/
FIP200 complex formation (50) that plays an essential role at the 
early stages of autophagosome formation (51).

mTORC2 comprises rapamycin-insensitive companion of 
mTOR (Rictor), mLST8, stress-activated protein kinase-inter-
acting protein 1 (SIN1), protein observed with Rictor (Protor), 
and Deptor, and is generally described as being insensitive to 
rapamycin/rapalogs. Nevertheless, it has been demonstrated 
that long-term rapamycin treatment leads to dissociation of 

Figure 1. The PI3K/Akt/mTOR pathway. PI3K generates PtdIns(3,4,5)P3 from PtdIns(4,5)P2. PtdIns(3,4,5)P3 attracts to the plasma membrane PDK1 
which phosphorylates Akt at Thr 308. Full Akt activation requires Ser 473 phosphorylation by mTORC2. Active Akt inhibits TSC2 activity through direct 
phosphorylation. TSC2 is a GTP-ase activating protein (GAP) that functions in association with TSC1 to inactivate the small G protein Rheb. Akt-driven 
TSC1/TSC2 complex inactivation allows Rheb to accumulate in a GTP-bound state. Rheb-GTP then upregulates mTORC1 activity. However, mTORC1 is 
controlled by Akt also through PRAS40 phosphorylation. The activation mechanisms of mTORC2 are not fully understood yet, but they require PI3K activity. 
Arrows indicate activating events, while perpendicular lines indicate inhibitory events. 4E-BP1, eukaryotic initiation factor 4E-binding protein 1; Deptor, 
DEP-domain-containing mTOR interacting protein; eIF4E, eukaryotic initiation factor 4E; FKBP38, FK-506 binding protein 38; mLST8, mammalian lethal-
with-sec-thirteen 8; mTOR, mammalian target of rapamycin; mTORC1, mTOR complex 1; mTORC2, mTOR complex 2; PDK1, phosphoinositide-dependent 
kinase 1; PI3K, phosphoinositide 3-kinase; PKCα, protein kinase C α; PRAS40, proline-rich Akt substrate of 40‑kDa; Protor, protein observed with Rictor; 
PtdIns(4,5)P2, phosphoinositide (4,5) bisphosphate; PtdIns(3,4,5)P3, phosphoinositide (3,4,5) trisphosphate; PTEN, phosphatase and tensin homolog deleted on 
chromosome ten; p70S6K, p70S6 kinase; Raptor, regulatory associated protein of mTOR; Rheb, Ras homolog enriched in brain; Rictor, rapamycin insensitive 
companion of mTOR; S6RP, S6 ribosomal protein; SGK, serum- and glucocorticoid-stimulated kinase; SIN1, stress-activated protein kinase-interacting 
protein 1; TSC1, tuberous sclerosis 1; TSC2, tuberous sclerosis 2.
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mTORC2 with resulting inhibition of Akt feedback phospho
rylation at Ser 473, in primary leukemic cells both in vitro and 
in vivo (52). mTORC2 is mainly activated by growth factors 
through PI3K/Akt, and controls several downstream AGC 
kinases such as Akt itself, serum- and glucocorticoid stimulated 
kinase (SGK) and protein kinases Cα (PKCα) (53‑55) (Fig. 1). 
Therefore, mTORC2 regulates cell proliferation, but it is also 
involved in the spatial control of cell growth via cytoskeleton 
regulation, through actin fibers, paxillin, RhoA, Rac1 and 
PKCα (56).

The regulation of PI3K/Akt/mTOR axis is extremely 
complex, and this is due mainly to the existence of multiple 
feedback loops and direct activation mechanisms that place 
mTOR both upstream and downstream of several oncogenic 
pathways. Importantly, these regulation loops are relevant 
in vivo and influence therapeutic responses based on mTOR 
inhibition, contributing to the drug-resistance that can occur 
in mTOR-targeted therapies using rapamycin or rapalogs (45). 
When Akt activates mTORC1, a negative feedback circuit 
antagonizes the formation of mTORC2 and reduces Akt 
activity (57). Moreover, when activated, mTORC1 phosphory-
lates p70S6K, which in turn inhibits insulin receptor substrate 1 
(IRS-1) by phosphorylating it at multiple sites (Ser 307 and 
Ser 636/639), inducing its degradation and altering its local-
ization, all of which ultimately dampen PI3K/Akt/mTORC1 
activation (58‑61). mTORC1 is also capable of downregulating 
IRS-2 expression by enhancing its proteosomal degradation 
(62). Recent findings have also highlighted the existence of a 
rapamycin-sensitive, mTORC1/p70S6K-mediated phosphory-
lation of Rictor on Thr1135. This phosphorylative event exerts 
a negative regulatory effect on the mTORC2-dependent 
phosphorylation of Akt at Ser 473 in vivo (63).

PI3K/Akt/mTOR signaling is antagonized by phosphatases. 
Phosphatase and tensin homolog deleted on chromosome 10 
(PTEN) is a potent repressor of this pathway that removes 
3'-phosphate from phosphoinositide (3,4,5) trisphosphate 
[PtdIns(3,4,5)P3] to yield PtdIns (4,5) bisphosphate [PtdIns(4,5)
P2] (64), thus counterbalancing the action of PI3K (Fig. 1). Loss 
of PTEN, due to inactivating mutations or silencing, has been 
reported in a wide range of sporadic human cancers, including 
leukemias, and it has been correlated to cellular proliferation, 
cancer susceptibility and tumor progression (65). PTEN plays 
an important role in T-ALL pathophysiology (see below).

The lipid phosphatases, Src homology domain-containing 
inositol phosphatase (SHIP) 1 and 2, remove 5'-phosphate 
from PtdIns(3,4,5)P3 to yield PtdIns(3,4)P2 (66), and play 
a fundamental role in the inhibition of proliferation and 
survival of hematopoietic cells (67). Mutations of SHIP1, that 
is predominantly expressed in hematopoietic cells, have been 
implicated in the development of different blood disorders, 
including T-ALL (68). Also protein phosphatases, such as 
protein phosphatase 2A (PP2A), impact on PI3K/Akt/mTOR 
signaling, as PP2A dephosphorylates Akt at Thr308 (69).

3. Disregulated mTOR activity and T-ALL development

It is established that PTEN deletion led to T-ALL development 
in mice (70) and that rapamycin treatment of preleukemic mice 
prevented LIC formation and halted T-ALL development (71). 
Both mTORC1 and mTORC2 have been implicated in T-ALL 

pathophysiology. Regarding mTORC1, it has been documented 
that loss of mTORC1 activity caused by Raptor deficiency, 
eradicated T-ALL in a murine model of disease, suggesting 
that mTORC1 played a key role in T-ALL LIC survival (72). 
However, rapamycin was not sufficient for T-ALL eradication. 
This could be due to the fact that rapamycin is an incomplete 
blocker of mTORC1 outputs (73). Therefore, dual PI3K/mTOR 
inhibitors or ATP-competitive mTORC1/mTORC2 inhibitors 
(see below) could be more effective agents against T-ALL, as 
they efficiently targeted rapamycin-resistant mTORC1 activity 
in T-ALL cells (74‑76).

An important role for mTORC2 in T-ALL development 
is suggested by the findings of another group (77). It was 
documented that deletion of the mTORC2 component, Rictor, 
prevented leukemogenesis and hematopoietic stem cell (HSC) 
depletion after PTEN deletion in adult mice. These observa-
tions implicated an important role for mTORC2 activation in 
these processes. However, Rictor deletion (and hence mTORC2 
function inactivation) had little effect on the physiology of 
healthy (i.e., non-PTEN-deleted) HSCs. Moreover, PTEN dele-
tion from neonatal HSCs did not activate PI3K/Akt signaling 
or promote HSC proliferation/depletion or leukemogenesis. 
Therefore, it was concluded that PTEN is required in adult, 
but not neonatal, HSCs for inhibiting mTORC2 signaling 
downstream of PI3K/Akt (77). These findings could explain 
why B-ALL, where PTEN deletions are very uncommon (78), 
is a disease of the early childhood with a peak incidence at 
2‑5 years of age (79), whereas pediatric T-ALL, in which 
PTEN deletion/inactivation is quite frequently observed (80), 
displays an older mean age of presentation (approximately 
9‑10 years) (81).

4. Causes for PI3K/Akt/mTOR pathway activation in 
T-ALL

PI3K/Akt/mTOR pathway aberrant activation is a common 
feature in T-ALL, being detectable in 70‑85% of the patients 
(82) and is associated with a poorer outcome (80,83).

Mutations in PI3K, Akt and PTEN have been described in 
T-ALL patients. Collectively, they were found in about 50% of 
44 T-ALL samples (84). However, while PI3K or Akt mutations 
are extremely rare (two and one case, respectively, in the above 
mentioned study), PTEN mutations occur more frequently in 
both adult and pediatric T-ALL (85,86). In adults, PTEN muta-
tions have been identified in 10% of patients in a study in which 
90 T-ALL cases were analyzed (87), whereas in children, 
PTEN was found mutated in 52 out of 301 (17.3%) patients 
(85). However, some PTEN mutations affected exon 7, and 
were predicted to truncate the C2 domain without disrupting 
the lipid phosphatase domain of PTEN (84). Therefore, these 
mutations should not impact on PI3K/Akt/mTOR signaling, 
even though this has never been documented.

Moreover, PTEN could be either deleted (84) or repressed 
due to several mechanisms. In T-ALLs displaying Notch-1 
activation (50‑60% of cases), PTEN could be repressed 
through the hairy enhancer of Split-1 (HES-1), a downstream 
target of Notch-1 signaling (88). Another Notch-1 target gene 
which negatively impacts on PTEN expression is c-Myc 
(89,90). Overexpression of miR-19 has also been documented 
in T-ALL patients and resulted in lower expression of several 
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genes controlling the PI3K/Akt/mTOR cascade, including 
PTEN (91).

However, in most pediatric T-ALL clinical samples, 
PTEN is expressed, but displays elevated phosphorylation 
at the C-terminal Ser/Thr cluster, due to phosphorylation by 
casein kinase 2 (CK2), and/or oxidation by reactive oxygen 
species (ROS). Phosphorylation and/or oxidation resulted in 
PTEN stabilization and functional inactivation, with ensuing 
overactivation of PI3K/Akt/mTOR signaling (92). Decreased 
activity of PP2A on Thr308 p-Akt could also account for 
PI3K/Akt/mTOR upregulation in PTEN-null T-ALL cells (93).

IGF-1/IGF-1R signaling plays an important role in the acti-
vation of the PI3K/Akt/mTOR cascade in T-ALL cells. Indeed, 
pharmacologic inhibition or genetic deletion of IGF-1R nega-
tively affected T-ALL cell proliferation and survival (94). 
Interestingly, IGF-1R is a Notch-1 target gene and Notch-1 
was required to maintain IGF-1R expression at high levels in 
T-ALL cells. Furthermore, a moderate decrease in IGF1-R 
signaling compromised T-ALL LIC activity (94).

Cytokines produced by the thymic/BM microenviron-
ment, including interleukin (IL)-4 (95) and IL-7 (96), could 
be involved in upregulation of PI3K/Akt/mTOR signaling in 
T-ALL. An important source for IL-7 could be represented 
by thymic epithelial cells (97). In this connection, it has been 
recently reported that ROS, produced through IL-7 signaling, 
are critical for activating PI3K/Akt/mTOR which in turn medi-
ates proliferation and survival of T-ALL cells (29). However, 
in T-ALL patients, increased signaling downstream of the 
IL-7 receptor α chain (IL-7Rα) could also be a consequence 
of gain-of-function IL-7Rα mutations, which were detected in 
about 9% of pediatric T-ALL patients (98).

CXC chemokine ligand  12 (CXCL12), referred to as 
SDF-1α (stromal cell-derived factor 1α), the ligand for the 
CXC chemokine receptor 4 (CXCR4), is another cytokine with 
the potential for activating PI3K/Akt/mTOR signaling (99). 
CXCL12 is produced by BM stromal cells in T-ALL patients 
(100) and it has been recently demonstrated to be involved 
in PI3K/Akt/mTOR activation and drug-resistance in T-ALL 
cells (101).

5. mTOR inhibitors

We will summarize the three main classes of mTOR inhibi-
tors that have been tested in pre-clinical models and/or entered 
clinical trials for treatment of T-ALL: rapamycin/rapalogs 
that are allosteric mTORC1 inhibitors; dual PI3K/mTOR 
inhibitors that target both PI3K and mTORC1/mTORC2; 
ATP-competitive, ʻactive-siteʼ mTORC1/mTORC2 inhibitors 
that target the catalytic site of mTOR (Fig. 2).

Rapamycin/rapalogs. Rapamycin (sirolimus), a natural 
compound discovered from the bacterium Streptomyces 
hygroscopicus in the Easter Island more than 30 years ago, 
is an allosteric mTORC1 inhibitor that at first interacts with 
the intracellular protein, FK506 binding protein 12 (FKBP12) 
(102). The rapamycin/FKBP12 complex results in the dissoci
ation of Raptor from mTORC1 and loss of contact between 
mTORC1 and its substrates (103). Therefore, rapamycin does 
not directly target the mTOR catalytic site and does not affect 
mTORC2 activity, except in some cell types after prolonged 

exposure (52). Since no other cellular protein has been iden-
tified as rapamycin targets and a cofactor (i.e., FKBP12) is 
required, rapamycin is a very selective mTORC1 inhibitor. 
Rapamycin is now FDA-approved as an immunosuppressive 
agent in solid organ transplantation.

Rapamycin derivatives (rapalogs) display an improved 
bioavailability when compared to rapamycin, and include 
CCI-779 (temsirolimus), RAD001 (everolimus) and AP23573 
(ridaforolimus). The orally available RAD001 is more effica-
cious than rapamycin, as it has a higher affinity to FKBP12 (104).

Rapamycin has been tested in vitro in pre-clinical models 
of T-ALL, where it induced apoptosis and/or cell cycle 
arrest and synergized with chemotherapeutic drugs (doxo-
rubicin, idarubicin, dexamethasone) (105‑107). Interestingly, 
rapamycin synergized with the glycolysis inhibitor, 3-BrOP 
in T-ALL cell lines, where the combined treatment induced 
apoptosis (108). It was concluded that when ATP is depleted 
by glycolysis inhibition, blocking mTORC1 may further limit 
nutrient uptake, which resulted in additional cytotoxicity.

CCI-779 was able to block in vitro IL-7-induced prolifer
ation, survival and cell cycle progression of primary T-ALL 
cells, and synergized with both doxorubicin and dexametha-
sone (109).

The Pediatric Preclinical Testing Program (PPTP) 
evaluated rapamycin against T-ALL cell lines and xenografts. 
Rapamycin induced regression in the two T-cell ALL xeno-
grafts studied during PPTP (110).

However, the efficacy of rapamycin/rapalogs as broad-
based monotherapies for acute leukemia treatment has not 

Figure 2. Targets of mTOR inhibitors. Allosteric mTOR inhibitors (rapamycin 
and rapalogs) associate with FKBP12 leading to dissociation of Raptor from 
mTORC1 complex and loss of contact between mTORC1 and its substrates. 
Dual PI3K/mTOR inhibitors target both PI3K and mTORC1/mTORC2. 
ATP-competitive mTORC1/mTORC2 inhibitors target the catalytic site of 
the enzyme, thus acting on both mTORC1 and mTORC2. FKBP12, FK506 
binding protein 12; mTOR, mammalian target of rapamycin; mTORC1, mTOR 
complex 1; mTORC2, mTOR complex 2; PI3K, phosphoinositide 3-kinase; 
PtdIns(4,5)P2, phosphoinositide (4,5) bisphosphate; PtdIns(3,4,5)P3, phospho
inositide (3,4,5) trisphosphate; TSC1, tuberous sclerosis 1; TSC2, tuberous 
sclerosis 2.
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been as promising as initially expected. Indeed, several 
mechanisms emerged as barriers to anti-leukemic activity 
of this class of mTORC1 inhibitors which could explain the 
mostly disappointing results of clinical trials (111,112).

The rapamycin/rapalog modest effects on leukemic cells, 
could be due to several reasons. Firstly, these drugs have only a 
poor pro-apoptotic activity, being mainly cytostatic. Secondly, 
they do not target all the mTORC1 outputs. In particular, 
phosphorylation of 4E-BP1 is usually resistant to rapamycin/
rapalogs (73,113,114). This is a very critical issue, as 4E-BP1 
controls the cap-dependent translation of mRNAs coding 
for critical factors which regulates cell survival and prolif-
eration in cancer cells. These include c-Myc, cyclin-dependent 
kinase-2 (CDK-2), cyclin D1, signal activator and transducer 
of transcription-3 (STAT-3), B-cell lymphoma 2 (Bcl-2), 
Bcl-xL, survivin, myeloid cell leukemia-1 (Mcl-1), ornithine 
decarboxylase (45,82). Thirdly, upregulation of PIM protein 
kinase activity has been shown to contribute to resistance to 
rapamycin (115). Indeed, PIM1 protein kinase phosphorylates 
PRAS40 at the same amino acidic residue (Thr246) as Akt 
and, by doing so, activates mTORC1 (116). Moreover, PIM2 
protein kinase phosphorylated 4E-BP1 at Ser 65 residue and 
this phosphorylative event was documented to be essential for 
oncogenic protein translation independent of mTORC1 activity 
in acute myelogenous leukemia cells (113). Interestingly, a 
small molecule inhibitor of PIM protein kinases (SMI-4a) 
was cytotoxic to T-ALL cell lines through the induction of a 
G1 phase cell cycle arrest, and apoptosis (117). SMI-4a treat-
ment reduced mTORC1, but not mTORC2, activity. However, 
it upregulated MEK/ERK signaling, possibly due to mTORC1/
p70S6K inhibition (117).

In this connection, the disappointing performances of 
rapamycin/rapalogs have been also ascribed to the feedback 
loops that lead to re-activation of either PI3K/Akt and/or 
MEK/ERK signaling upon mTORC1 inhibition (118‑121). 
However, it should be pointed out that the existence of these 
feedback loops has never been documented in T-ALL cells 
treated with rapamycin/rapalogs.

In agreement with pre-clinical studies, clinical trials with 
rapalogs combined with chemotherapy have provided more 
encouraging clinical results (122,123). Phase I/II clinical trials 
are ongoing in which CCI-779 is being tested in combina-
tion with intensive re-induction therapy (dexamethasone, 
mitoxantrone, vincristine and PEG-asparaginase) in children 
with relapsed T-ALL (ClinicalTrials.gov: NCT01403415). 
Also RAD001 has entered phase  I/II clinical trials for 
T-ALL, in combination with standard chemotherapy regi-
mens (ClinicalTrials.gov: NCT00968253; NCT01523977; 
NCT01403415).

Dual PI3K/mTOR inhibitors. PI3K and mTOR belong to the 
PIKK family of kinases, and share high sequence homology 
in their catalytic domains. Dual PI3K/mTOR inhibitors are 
ATP-competitive inhibitors that target the active sites of 
both the holoenzymes. The first compound of this class to be 
disclosed was the morpholinoquinazoline derivative, PI-103 
(124). Dual PI3K/mTOR inhibitors downregulate signaling 
both upstream and downstream of Akt, thus avoiding the 
issue of Akt re-activation which follows mTORC1 inhibition. 
These compounds are more powerful apoptotic inducers than 

rapamycin/rapalogs and inhibit rapamycin-resistant mTORC1 
outputs (125,126). They also target mTORC2 activity (127). 
PI-103 was cytotoxic to T-ALL cell lines and patient samples, 
where it inhibited 4E-BP1 phosphorylation, as well as onco- 
genic protein translation, more efficiently than rapamycin 
(74,75). Interestingly, Shepherd and coworkers have docume- 
nted that PI-103 treatment of T-ALL cell lines with activating  
Notch-1 mutations, caused a compensatory upregulation of 
Notch-1 signaling, as demonstrated by increased levels of 
c-Myc (128). PI-103 and a γ-secretase inhibitor (compound E, 
which targets Notch-1 signaling) synergized in inducing 
T-ALL cell death, thus providing a rational basis for the use 
of drug combinations that target both the signaling networks 
(128). Although PI-103 displayed low toxicity and was well 
tolerated in mouse xenografts (124), it did not enter clinical 
trials, mainly because of its rapid in vivo metabolism (129).

NVP-BEZ235 is an orally bioavailable imidazoquino-
line dual PI3K/mTOR inhibitor (130) that has entered a 
phase  I clinical trial for relapsed/refractory ALL patients 
(ClinicalTrials.gov:NCT01756118). NVP-BEZ235 inhibited 
the proliferation and induced apoptosis in T-ALL cell lines 
and primary lymphoblasts (114). The drug synergized with 
several chemotherapeutic agents (cyclophosphamide, Ara-C, 
dexamethasone) currently used for treating T-ALL patients 
(114,131). In this connection, it is very important to emphasize 
that NVP-BEZ235 also inhibited DNA-PK and ATM/ATR 
kinases, that are key players of DNA damage response (DDR) 
(132). Chemotherapeutic drugs, such as Ara-C and doxo-
rubicin, induce DDR and activate ATR (17,133). Therefore, 
abrogation of DNA repair by NVP-BEZ235 could potentiate 
the effects of traditional chemotherapeutic drugs.

NVP-BGT226 is another dual PI3K/mTOR inhibitor which 
has been tested in vitro against T-ALL cell lines and primary 
lymphoblasts (134). NVP-BGT226 was more powerful in 
inducing apoptosis than NVP-BEZ235. Nevertheless, a phase I 
clinical study of NVP-BTG226 in patients with advanced solid 
tumors, revealed that the drug displayed only a limited anti-
neoplastic activity and inconsistent target inhibition. This was 
probably due to the fact that efficacious plasma concentrations 
were not achieved at the maximum safety dose (135).

The main limit of dual PI3K/mTOR inhibitors is that these 
drugs, by inhibiting PIKK family of kinases, could also result 
in more toxic side effects than rapamycin/rapalogs (136), even 
if they seem to be well tolerated when administered orally 
(137,138).

ATP-competitive mTORC1/mTORC2 inhibitors. Due to the 
limited success of rapalogs in the treatment of leukemia, 
a new generation of mTOR inhibitors, which target the 
ATP-binding site of mTOR and inhibit the catalytic activity of 
both mTORC1 and mTORC2, were developed. Acting on both 
mTOR complexes, these compounds display stronger effects 
on cell growth, proliferation and survival than rapalogs, and 
they offer a more efficient alternative to rapalogs in the treat-
ment of T-ALL. Their use also minimize the re-activation 
feedback loops of Akt seen with rapamycin/rapalogs (139). 
This class of inhibitors displayed, in pre-clinical evalua-
tions, more potent anti-leukemic effects when compared with 
rapamycin/rapalogs. In particular, they strongly suppressed 
both mTORC1-dependent phosphorylation of p70S6K and 
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4E-BP1 (140,141) and mTORC2-dependent phosphorylation of 
Akt at Ser 473, without affecting PI3K (136,142).

PP-242 was one of the first mTORC1/mTORC2 ATP- 
competitive inhibitors to be disclosed (143). PP-242 displayed 
cytotoxic activity against T-ALL and was a potent repressor 
of cap-dependent mRNA translation in T-ALL cells, most 
likely via inhibition of the rapamycin-resistant phosphorylation 
of 4E-BP1 (75). PP-242 has not been developed into the 
clinic, however its derivative, MLN0128 (formerly INK128), 
has entered phase  I/II clinical trials for cancer patients, 
including hematological malignancies (e.g., ClinicalTrials.gov: 
NCT01058707; NCT01351350). MLN0128 displayed potent 
anti-leukemic activity in pre-clinical models of B-ALL (144).

Other mTORC1/mTORC2 ATP-competitive inhibi-
tors which have been successfully tested in  vitro against 
T-ALL cells include AZD-8055 and OSI-027 (75,76). Both 
of these drugs are being evaluated in clinical trials for indi-
viduals with lymphomas (ClinicalTrials.gov: NCT01194193; 
NCT00698243).

6. Conclusion

mTOR is activated in most T-ALL cell lines and primary 
samples, due to several mechanisms, which include PTEN 
gene deletion/suppression or PTEN protein phosphorylation/
oxidation. mTOR activation confers a poorer prognosis to 
T-ALL patients. Both mTORC1 and mTORC2 play an impor-
tant role in the pathophysiology of T-ALL, as they are involved 
in the proliferation/survival of T-ALL LICs.

Three main classes of mTOR inhibitors have been tested both 
in vitro and in vivo in pre-clinical settings of T-ALL: allosteric 
mTORC1 inhibitors (rapamycin/rapalogs), dual PI3K/mTOR 
inhibitors and ATP-competitive mTORC1/mTORC2 inhibitors. 
Some of these are now being tested, alone or in combination 
with chemotherapeutic drugs, in T-ALL patients. Therefore, in 
the future also T-ALL could be added to the growing list of disor-
ders where mTOR inhibition is beneficial to patient outcome.

7. Perspectives

A growing body of evidence has documented that mTOR is a 
key node of the PI3K/Akt/mTOR signaling pathway, which is 
by far one of the most commonly upregulated signal transduc-
tion cascades in human cancer (32). The literature reviewed in 
this article suggests that there is a strong rationale for targeting 
mTOR in T-ALL, including the fact that both mTORC1 and 
mTORC2 are important for T-ALL LIC survival (72). These 
findings suggest that mTOR inhibition, by targeting LICs, has 
the potential for eradicating T-ALL.

Could it be possible to specifically target mTOR signaling 
in T-ALL LICs, without affecting the functions of healthy 
HSCs? Indeed, evidence suggests that mTOR is important 
for the biology of normal HSCs (145). However, preliminary 
findings have indicated that there are subtle differences in 
how HSCs and LICs utilize the same signaling pathways. 
This has been demonstrated in murine LICs treated with 
rapamycin (146), where the drug did not affect HSCs, while it 
was cytotoxic to LICs. Some of the side effects of rapamycin/
rapalogs (anemia, leukopenia, thrombocytopenia) seem to 
indicate that this class of drugs does indeed affect normal 

hematopoiesis. However, these side effects are usually quite 
mild (147). The side effects of dual PI3K/mTOR inhibitors 
and of ATP-competitive mTORC1/mTORC2 inhibitors on 
healthy HSCs are at present not well known, although the only 
hematological toxicity which emerged from a phase I study of 
BGT-226 was anemia (148).

A major challenge in the clinical use of mTOR inhibitors 
remains the identification of patients who will likely respond 
to the treatment. For example, it has been recently documented 
that B-lymphoma cell lines which did not express 4E-BP1, 
were resistant to ATP-competitive mTORC1/mTORC2 
inhibitors (149).

Additional work is therefore required to identify and confirm 
predictive biomarkers of constitutive/acquired resistance and 
sensitivity to each drug in large scale clinical trials using homo-
geneous patient populations (32). Future studies could also benefit 
from a more thorough analysis of the entire PI3K/Akt/mTOR 
pathway and of its cross-talk with other signal transduction 
networks aberrantly activated in T-ALL, including the Notch-1 
pathway (85,86). All of these studies could provide the rationale 
for developing personalized pharmacological treatments, based 
on mTOR inhibitors, with or without chemotherapeutics or other 
targeted agents, aimed at T-ALL eradication.
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