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Abstract

Background: Factors determining the shape of the human rib cage are not completely understood. We aimed to quantify
the contribution of anthropometric and COPD-related changes to rib cage variability in adult cigarette smokers.

Methods: Rib cage diameters and areas (calculated from the inner surface of the rib cage) in 816 smokers with or without
COPD, were evaluated at three anatomical levels using computed tomography (CT). CTs were analyzed with software, which
allows quantification of total emphysema (emphysema%). The relationship between rib cage measurements and
anthropometric factors, lung function indices, and %emphysema were tested using linear regression models.

Results: A model that included gender, age, BMI, emphysema%, forced expiratory volume in one second (FEV1)%, and
forced vital capacity (FVC)% fit best with the rib cage measurements (R2 = 64% for the rib cage area variation at the lower
anatomical level). Gender had the biggest impact on rib cage diameter and area (105.3 cm2; 95% CI: 111.7 to 98.8 for male
lower area). Emphysema% was responsible for an increase in size of upper and middle CT areas (up to 5.4 cm2; 95% CI: 3.0
to 7.8 for an emphysema increase of 5%). Lower rib cage areas decreased as FVC% decreased (5.1 cm2; 95% CI: 2.5 to 7.6 for
10 percentage points of FVC variation).

Conclusions: This study demonstrates that simple CT measurements can predict rib cage morphometric variability and also
highlight relationships between rib cage morphometry and emphysema.
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Introduction

Anthropometric variables such as height, weight, sex, and age

affect rib cage dimensions and morphology [1,2,3,4]. However

there is limited data on the range of rib cage morphometric

variability as previous investigations have been performed in small

study populations [1,2,3,4,5,6]. Obtaining geometric data on the

rib cage may be useful for biomechanical and surgical applications

and may also increase the understanding of the relationships

between rib cage morphometry, anthropometric parameters and

thoracic abnormalities [6,7,8,9].

Besides anthropometric factors, several lung diseases are

independent determinants of the rib cage variability

[5,10,11,12,13,14]. Notably, chronic obstructive pulmonary dis-

ease (COPD) is a multi-compartmental disease which may cause

hyperinflation of the lungs and musculoskeletal abnormalities

[10,11,15,16,17]. As a consequence, COPD is likely to produce

complex changes in the rib cage dimensions and shape

[5,15,18,19]. This has been suggested by previous investigations

based on clinical assessment and chest radiographic techniques

[20,21].

However, the clinical assessment cannot quantify rib cage

functional abnormities and measurements using conventional

radiographic techniques are relatively inaccurate and hampered

by the superimposition of bone and soft tissues. Recent technical

developments allow a 3D reconstruction of the ribs from lateral

and frontal chest radiographs, but these tools are not widely

available [6,22]. In contrast, CT may provide simple and precise

measurements, which are capable of capturing rib cage changes

due to several factors such as COPD.

The objective of this study was to assess the impact of

anthropometric factors and COPD on the rib-cage variability

using CT measurements in a large cohort of smokers.

Methods

The study population consisted of 816 Caucasian patients (age

range 39–86 years, mean 58.466.9 years, 559 men, 257 women).
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This cohort comprised two separate groups: 1) 725/816 (88.8%)

subjects (485 men, 240 women, age range 49–75 years, mean 57.3

years65.7) consecutively recruited by a lung cancer screening trial

(MILD trial), between September 2005 and May 2006; 2) and 91/

816 (9.9%) COPD patients (74 men, 17 women, age range 39–86

years, mean 67.4 years68.2), who had undergone clinico-

functional evaluation, but were not part of the lung cancer

screening trial.

Eligibility criteria for the MILD trial included: men and women

aged 49 to 75 years who had at least 20 pack-years of cigarette

smoking and who currently smoked or smoked within the previous

10 years, with no history of cancer within the previous 5 years.

Further details of MILD eligibility criteria have been previously

described [23]. The original IRB approval and informed consent

allowed use of MILD data for future research. Informed consent

was obtained from all MILD participants for their information to

be stored in the MILD database and used for research.

COPD patients were prospectively recruited in a tertiary care

centre to participate in a study assessing the COPD-related

emphysema phenotypes. This study was approved by the

University Hospital of Parma’s IRB which allows retrospective

use of data for research purposes; informed consent was obtained

from all patients for their information to be stored in the hospital

database and used for research. All patients met GOLD criteria

[compatible history and symptoms along with post-bronchodilator

forced expiratory volume in one second (FEV1)/forced vital

capacity (FVC) #0.7] [24].

Pulmonary function testing
FEV1 and FVC were measured according to the American

Thoracic Society (ATS) and European Respiratory Society (ERS)

guidelines in MILD participants [25]. MILD participants with a

pre-bronchodilator FEV1/FVC less than 0.7 (171/725, 23.5%)

were defined as having modified COPD (mCOPD). MILD

subjects with mCOPD were classified according to the GOLD

stages (which ranks disease severity on a scale from 1–4, stage 4

being the most severe stage) as follows: 97 (56.7%) subjects with

GOLD stage 1, 61 (35.7%) with GOLD stage 2, 12 (7%) with

GOLD 3, 1 (0.6%) with GOLD stage 4 mCOPD. The 91 patients

with COPD after post-bronchodilator spirometry were classified

according to the GOLD stages as follows: 4 (4.4%) with GOLD

stage 1, 47 (51.6%) with GOLD stage 2, 32 (35.2%) with GOLD

stage 3, 8 (8.8%) with GOLD stage 4

CT protocol
MILD participants were evaluated by using a 16-detector row

CT scanner (Somatom Sensation 16, Siemens Medical Solutions,

Forchheim, Germany), whereas COPD patients were studied with

a 64-detector row CT scanner (64, Siemens Medical Solutions,

Forchheim, Germany). All CT scans of the whole lung were

acquired during one deep inspiratory breath-hold without the use

of the intravenous contrast medium. Both scanners were calibrated

daily using air to ensure measurements were accurate and

consistent for all examinations. Standard CT parameters were

used for both scanners: kV 120, effective mAs 30, individual

detector collimation 0.75 mm, gantry rotation time 0.5 s, pitch

1.5.

Rib cage analysis
The assessment of the rib cage morphometry was performed on

CT reconstructions as follows: 1-mm-thick sections with a

reconstruction increment of 1 mm and a soft kernel (B30f).

The first consecutive 100 CTs of the MILD cohort were

transferred into two identical personal computers and reviewed,

independently, by two operators (AP and DC, two residents with 2

years of experience in chest imaging) in order to evaluate the inter-

operator variation related to rib cage morphometry assessment.

The rib cage morphometry was assessed by using a Dicom viewer

software validated for clinical purpose (OsiriX, 3.5.1 Imaging

Processing Software 64 bit format). For each CT, internal rib cage

measurements were taken at three anatomical levels as follows: 1)

1st sternocostal joint (upper level), 2) manubrio-sternal joint

(middle level), and 3) xiphisternal joint (lower level) (Fig. 1A).

These three anatomical levels were selected as they were shown to

display the greatest inter-individual variability [26,27].

Rib cage diameters, which best describe rib cage morphometry,

were selected by an anatomist (MV, with 10 years of experience in

research on rib cage morphometry) and a chest radiologist (NS)

with expertise in anatomic and radiologic rib cage morphometry.

Electronic calliper measurements were taken for each of these

diameters within each hemithorax as follows (Fig. 1): dorsal

transverse diameter (D1 - from the most dorsal point of the rib and

the apex of the vertebral spinous process); ventral transverse

Figure 1. Examples illustrating the rib cage measurements. (A) Rib cage measurements were taken at three anatomical levels as follows: 1)
sternal articulation of the first rib (upper level), 2) manubrio-sternal joint (middle level), and 3) xiphisternal joint (lower level). The areas burdens were
manually traced by using a freehand electronic caliper (green line) along the inner surface of the rib cage. (B) For each hemithorax, several rib cage
diameters (D) were measured by using the electronic caliper. To better display them, the diameters are shown separately. On the left side: D1 (from
the most dorsal point of the rib and the apex of the vertebral spinous process); D2 (from the most ventral point of the rib cage to the sternal
midpoint); D3 (from the most lateral point of the rib cage to the most lateral point of D4). On the right side: D4 (from the apex of vertebral spinous
process to the lowest point of D3); D5 (from the most ventral point to the most dorsal point of the rib cage) diameters. (C) Haller’s index was
obtained by assessing the ratio between the mid-antero-posterior diameter (from the inner surface of the sternum to ventral surface of the vertebral
body) and the global transverse diameter (from the most external mid-point of the rib of one side to the opposite one).
doi:10.1371/journal.pone.0068546.g001
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diameter (D2 - from the most ventral point of the rib cage to the

sternal midpoint); lower antero-posterior diameter (D3 - from the

most lateral point of the rib cage to the most lateral point of D4);

maximal transverse (D4 - from the apex of vertebral spinous

process to the lowest point of D3) maximal antero-posterior (D5 -

from the most ventral point to the most dorsal point of the rib

cage) diameters (Fig. 1B). The Haller’s index [28] - the ratio

between the maximum transverse diameter of the chest (between

the inner rib margins) and the minimum antero-posterior diameter

(from the anterior aspect of the spine to the inner surface of the

sternum) – was taken at the lower anatomical level to evaluate for

the presence of pectus excavatum (Fig. 1C). A Haller’s index

greater than 3 was considered consistent with pectus excavatum.

In addition, the total area included within the rib cage was also

measured for each CT section. The areas burdens were manually

traced by using the freehand electronic caliper along the inner

surface of the rib cage (Fig. 1A).

After evaluating inter-operator variability for the measurements

of the rib cage diameters and areas (see Results section and Table

S1), the remaining study cases (n = 716) were independently

reviewed by A.P. (350 CTs) and D.C. (366 CTs).

The operators also reviewed the CTs for the presence of

interstitial lung disease or skeletal abnormality (e.g. extremely

severe scoliosis) that could potentially influence the rib cage

morphometry. No specific criteria were provided to the operators

for these interpretations.

Emphysema assessment
CT imaging data was reconstructed for the detection of

pulmonary nodules (1-mm-thick sections with a reconstruction

increment of 1 mm and a sharp kernel [medium-sharp kernel -

B50f]) and transferred to a personal computer running Mevis-

PULMO software (version 1.4, Fraunhofer MEVIS, Bremen,

Germany). A quantitative analysis of emphysema was performed

by one operator (NS). A 363 kernel-based axial Gauss smoothing

algorithm was applied to minimise the noise in sharp kernel

images. For the whole lung, emphysema extent was defined as the

percentage of lung voxels less than or equal to -950 Hounsfield

units (HU) [29].

Statistical analysis
Inter-operator variability for the rib cage measurements were

evaluated by the Bland and Altman method [30].

Differences between left and right hemithoraces measurements

were assessed by the Student’s paired t-test. The baseline

characteristics of the study population were compared according

to the presence or absence of COPD (i.e. patients with COPD vs.

MILD subjects with mCOPD vs. MILD subjects without COPD)

by using Chi-square test and analysis of variance (ANOVA) as

appropriate.

Univariate linear regression analysis was used to examine the

relationship between anthropometric factors, smoking history,

functional data and emphysema %, and both rib cage areas and

averaged (left and right) diameters. Multivariate linear regression

was performed, entering univariate variables in a stepwise manner

at the 0.05 significance level and removing them at the 0.10 level,

in order to select factors most strongly associated with rib cage

measurements. The selected factors were age, gender, body mass

index (BMI), emphysema %, FEV1% and FVC%. We considered

the goodness of fit of linear models by estimating the coefficient of

determination (R2). Derived prediction equations were used to

generate normal predicted values based on individual character-

istics.

A p value less than 0.05 was considered statistically significant.

All statistical analyses were performed using SAS Release 9.1 (SAS

Institute Inc., Cary, North Carolina).

Results

The inter-operator mean differences ranged from 0.03 mm to

24.9 mm and from 20.7 cm2 to 21.1 cm2 for the diameters and

the areas respectively over the first 100 consecutive MILD CTs.

Detailed inter-operator mean differences and levels of inter-

observer variation for each rib cage measurement are summarized

in the Table S1.

The baseline characteristics of the study population, stratified

for the presence or absence of COPD are given in Table 1. There

were three cases (0.4%) with interstitial lung disease consistent with

usual interstitial pneumonia (UIP), although this was limited in

extent. There were no major spinal abnormalities. For each

anatomical level, both area and most diameters were different

among the three subgroups (Table 1). The rib cage areas of

subjects with COPD or mCOPD were significantly higher than

those of normal subjects (p,.0001 to 0.03). No Haller’s index

greater than 3 was recorded.

Differences between right and left diameters ranged from

0.7 mm to 4 mm (p,0. 0001 to 0.017; Table 2). The greatest

asymmetry was recorded for D2 and D5, which were larger on the

right side at the lower and the upper anatomical level, respectively.

A regression model which included gender, age, and, emphy-

sema%, FEV1%, and FVC% fit best with the rib cage

measurements. Table 3 shows the partial regression coefficients

(b) for all the included model variables. Overall, the coefficients

were greater for the rib cage measurements at the lower

anatomical level, explaining up to 64% of rib cage variation.

Gender was the strongest predictor of both diameter and area at

all CT levels - rib cage measurements were greater for men with

the most striking gender difference (105.3 cm2, 95% CI: 111.7 to

98.8) reported for the lower rib cage area. Gender was the only

independent predictor of the Haller’s index, although this

Table 2. Differences between left and right side of each
measures in all subjects, with the p-value of the difference.

DIAMETERS Section Mean SD p-value*

D1 U 1.10 5.0 ,.0001

M 1.13 4.3 ,.0001

L 2.12 4.6 ,.0001

D2 U 20.02 12.7 0.967

M 0.00 13.4 0.998

L 24.01 16.0 ,.0001

D3 U 20.83 7.6 ,.0001

M 20.16 8.6 0.587

L 21.72 13.7 ,.0001

D4 U 21.55 7.2 ,.0001

M 20.38 7.3 0.139

L 20.75 8.9 0.017

D5 U 22.65 9.7 ,.0001

M 21.29 5.4 ,.0001

L 0.67 6.3 0.003

Notes: SD = standard deviation;
*p-value was estimated by paired t-test.
doi:10.1371/journal.pone.0068546.t002
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Table 3. Partial regression coefficient (b) and 95% confidence intervals (95%CI) of area variation at different lung sections by
selected variables.

U M L

b 95%CI b 95%CI b 95%CI

Areas Gender1 26.0 (30.8,21.2) 45.0 (50.5,39.6) 105.3 (111.7,98.8)

Age 0.4 (0.0,0.7) 0.3 (20.1,0.7) 0.5 (0.0,0.9)

BMI 20.4 (20.7,0.0) 0.2 (20.2,0.7) 2.8 (2.3,3.3)

Emphysema%* 3.9 (1.8,6.0) 5.4 (3.0,7.8) 2.4 (20.4,5.3)

FEV1%** 21.5 (23.2,0.3) 20.2 (22.2,1.8) 20.4 (22.7,2.0)

FVC%** 1.3 (20.6,3.2) 2.8 (0.7,4.9) 5.1 (2.5,7.6)

R2 20.6% 31.7% 64.0%

D1 Gender1 3.90 (4.71,3.09) 4.90 (5.68,4.12) 7.21 (8.06,6.35)

Age 20.08 (20.14,20.02) 20.07 (20.13,20.01) 20.01 (20.08,0.05)

BMI 20.06 (20.12,0.01) 0.00 (20.06,0.06) 0.00 (20.07,0.07)

Emphysema%* 0.24 (20.12,0.59) 0.13 (20.21,0.47) 0.13 (20.25,0.50)

FEV1%** 20.01 (20.31,0.29) 0.04 (20.25,0.32) 0.13 (20.18,0.45)

FVC%** 0.13 (20.18,0.45) 0.15 (20.15,0.45) 0.27 (20.06,0.61)

R2 12.0% 18.5% 28.3%

D2 Gender1 8.12 (9.34,6.89) 3.98 (5.32,2.63) 8.87 (10.53,7.22)

Age 20.07 (20.16,0.03) 20.11 (20.21,20.01) 20.04 (20.17,0.08)

BMI 0.17 (0.07,0.27) 0.17 (0.06,0.28) 0.12 (20.02,0.25)

Emphysema%* 20.37 (20.91,0.17) 20.58 (21.17,0.01) 20.69 (21.42,0.04)

FEV1%** 0.09 (20.35,0.54) 0.13 (20.37,0.62) 0.61 (0.00,1.21)

FVC%** 0.15 (20.33,0.63) 0.09 (20.44,0.61) 0.41 (20.24,1.06)

R2 22.0% 8.3% 16.7%

D3 Gender1 3.68 (5.08,2.28) 5.05 (6.64,3.46) 11.83 (13.63,10.04)

Age 0.04 (20.07,0.14) 20.01 (20.13,0.11) 0.05 (20.08,0.19)

BMI 20.10 (20.21,0.02) 20.02 (20.15,0.11) 0.36 (0.22,0.51)

Emphysema%* 0.75 (0.14,1.37) 1.08 (0.38,1.78) 0.61 (20.18,1.40)

FEV1%** 20.12 (20.63,0.39) 0.16 (20.43,0.74) 0.30 (20.36,0.96)

FVC%** 0.05 (20.49,0.60) 0.12 (20.50,0.74) 0.35 (20.35,1.05)

R2 6.6% 7.4% 23.9%

D4 Gender1 6.30 (7.74,4.86) 7.77 (8.94,6.60) 14.50 (15.70,13.30)

Age 20.10 (20.20,0.01) 20.12 (20.21,20.03) 20.05 (20.14,0.03)

BMI 20.15 (20.26,20.03) 20.03 (20.13,0.06) 0.29 (0.20,0.39)

Emphysema%* 1.02 (0.39,1.65) 1.01 (0.49,1.52) 0.19 (20.34,0.71)

FEV1%** 20.07 (20.59,0.46) 0.23 (20.20,0.66) 0.34 (20.11,0.78)

FVC%** 0.33 (20.23,0.89) 0.39 (20.07,0.85) 0.77 (0.30,1.24)

R2 12.0% 22.3% 47.7%

D5 Gender1 7.55 (9.51,5.58) 12.27 (14.23,210.31) 26.08 (28.26,23.89)

Age 0.28 (0.13,0.43) 0.30 (0.16,0.45) 0.29 (0.13,0.45)

BMI 20.11 (20.27,0.05) 0.10 (20.06,0.25) 0.75 (0.57,0.93)

Emphysema%* 1.44 (0.58,2.29) 1.55 (0.69,2.40) 0.87 (20.08,1.83)

FEV1%** 20.76 (21.48,20.04) 20.23 (20.94,0.49) 20.55 (21.35,0.25)

FVC%** 0.52 (20.25,1.28) 0.93 (0.17,1.70) 1.29 (0.44,2.14)

R2 17.5% 24.5% 51.2%

Notes: numbers in bold characters are statistically significant;
1male as compared with female;
*5 percentage points variation;
**10 percentage points variation.
doi:10.1371/journal.pone.0068546.t003
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association was weak (0.11, 95% CI: 0.07 to 0.15 for women as

compared to men). Although age and BMI had a similar impact

on rib cage measurements at the upper and middle levels, the

impact of BMI was greater for the lower area measurement which

increased as BMI increased (Table 3).

Emphysema% influenced diameters and areas more than

FEV1% and FVC% at the upper anatomical level (Table 3).

Specifically, for an emphysema increase of 5%, upper and middle

areas respectively increased by 3.9 cm2 (95% CI: 1.8 to 6.0) and

5.4 cm2 (95% CI: 3 to 7.8) respectively. The effect of emphyse-

ma% did not substantially change when adjusted only for age,

gender and BMI. Rib cage changes according to the proportional

increase of emphysema% are displayed in Fig. 2.

The selected model showed a proportional relationship between

FVC% and both middle and lower areas (Table 3). Specifically, for

a 10% decrease in FVC%, the middle area decreased by 2.8 cm2

(95% CI: 0.7 to 4.9) and lower area by 5.1 cm2 (95% CI: 2.5 to

7.6).

FEV1% was not significantly related with most measurements

(p.0.05), and this was true even for values lower than 50%

predicted (as found by a post-hoc subanalysis). However, by

eliminating the potential confounding interaction with emphysema

extent and FVC% (i.e. by adjusting only for gender, age and BMI),

the effect of decreasing FEV1% on the rib cage lower area was

similar to that observed for FVC%: for a 10% decrease of FEV1%,

the lower area decreased of 2.8 cm2 (95% CI: 1.5 to 4.2). The

relationship between rib cage variation and functional decline is

exemplified in Fig. 3.

Predicted rib cage measurements based on individual charac-

teristics as derived by the model’s prediction equations can be

calculated using the online interactive File S1.

Discussion

To the best of our knowledge, this is the first normative study

which provides ranges of rib cage morphometry in a large series of

adult smokers as well as novel data about rib cage variation due to

anthropometric and lung disease-related factors.

In line with prior investigations assessing rib cage diameters on

the chest radiograph, we found that gender had the strongest

impact on rib cage dimension [3,4]. Bellemare et al. reported that

cross-section areas as well as anterior–posterior and transverse

diameters were significantly smaller in females than in males with

the same anthropometric characteristics as assessed at anatomical

levels similar to those of the current study. Such a difference is

explained by a greater inclination of the ribs in females [4].

At upper and middle levels, the impact of emphysema% on rib

cage morphometry was greater than that of age and BMI. To our

knowledge this is the first study evaluating the relationship

between emphysema and rib cage morphometric variability. This

was made possible by CT, which is considered the gold standard

for quantifying extent of emphysema. The effect of increasing

emphysema % on rib cage morphometry was striking - rib cage

area as well as both antero-posterior and maximal transverse

diameters at the upper-middle levels increased as emphysema %

Figure 2. Example showing the independent effect of emphy-
sema. Two overlapping upper (second level) CT slices of two different
male subjects with similar demographic characteristics: the subject with
the smaller area (green line) had an emphysema extent of 2.1%,
whereas the one with the larger area (red line) had an emphysema
extent of 35%.
doi:10.1371/journal.pone.0068546.g002

Figure 3. Rib cage morphometric differences between a normal 58-year-old male smoker (A) and a 61-year-old male COPD patient
with severe emphysema (B). Both detailed measurements and the 3D reformation display the main morphologic differences: larger upper rib
cage dimensions and smaller lower rib cage dimensions in COPD. Overall, the morphometric changes in COPD contribute to the ‘‘barrel chest’’
configuration.
doi:10.1371/journal.pone.0068546.g003
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increased. We speculate that the bony rib cage undergoes chronic

adaptation to more severe emphysema in the upper lobes.

The relationship between rib cage variation and COPD is

controversial [5,10,11,19,31,32,33]. It was traditionally believed

that patients with hyperinflation and COPD accommodate part of

the increased lung volume by expanding the rib cage [5,34]. By

matching seven normal with seven COPD subjects, Cassart et al.

showed an increase in antero-posterior but not in trasverse

diameters on CT such that the rib cage adopted a more circular

shape among subjects with COPD [5]. By contrast, other studies

measuring several diameters on chest radiography found that

when compared to sex-, age-, and height-matched normal

subjects, the rib cage of COPD patients remained normal in size

and shape, with the exception of an increase of cranio-caudal

diameter due to a caudal displacement of the diaphragm

[3,35,36]. We found that when adjusting for anthropometric

variables and emphysema%, decreasing FEV1% did not produce

any relevant change for rib cage areas. This suggests that in

COPD, the parenchymal destruction associated with emphysema

may have a greater impact on rib cage morphometric variability

than conductive airway abnormalities. This is in keeping with the

early observation that, for a given level of airflow obstruction,

patients with a emphysema dominant subtype are more likely

demonstrate a ‘barrel chest’ rib cage configuration, than those

with chronic bronchitis and/or small airways disease [37].

Nevertheless, we found significant relationships between FVC%

and FEV1% decrease (the latter when adjusted only for

anthropometric variables) and middle-lower rib cage areas and

lateral diameters reduction. It is well known that patients with

reduced lung function can display a reduced range of motion of

the diaphragm, thus impeding the ability of the rib cage to enlarge

during full inspiration. This observation is consistent with the so

called Hoover’s sign, so-called because of the inward motion of the

lateral diameter of the lower rib cage during the inspiratory phase

[38,39]. This has been attributed to direct diaphragmatic traction

on the lower rib cage margin, when the diaphragm is flattened in

conditions associated with hyperinflation [40,41]. COPD may

disadvantage the respiratory muscles by impairing their capacity to

generate force [17,42].

Our study has several limitations. Although large, our study

population size is still insufficient to fully explore ranges of rib cage

morphometry which are highly variable. Rib cage measurements

were obtained from CT examinations in a supine decubitus

position during deep inspiratory. Such conditions influence the rib

cage morphometry limiting transpositions or matching with

measurements directly taken from the body or the upright chest

radiography. CT data acquisitions were not spirometrically

controlled, which would have enabled a standardization of the

inspiratory level. The assessment of the functional associations

may be biased as for the majority of subjects functional

reversibility data were not available; however, the possibility that

these subjects were misclassified is minimal mainly based on their

heavy smoking history. Diameters and areas were measured only

at three pre-selected anatomical levels, but more sections are

needed to get more complete information of the entire rib cage.

Rib cage diameters might also be influenced by skeletal disease

(e.g. scoliosis, osteoporosis etc.) which was not fully assessed in the

present study. Nevertheless averaging left and right hemithoracic

measurements, should have reduced bias associated with skeletal

abnormalities. Furthermore, the mild degree of asymmetry

reported between left and right side suggests that severe scoliosis

was not frequent in our study population. The relatively low

prevalence of more severe GOLD stages limits the interpretation

of the relationship between airflow limitation and the rib cage

morphometry.

In conclusion, this study provides ranges of several rib cage

measurements in smokers with or without COPD. We have also

revealed an important independent relationship with emphysema.

Lastly, our statistical model can only partly explain the rib cage

variation, suggesting that there are other factors, which are

important and should be the focus of further studies.

Supporting Information

Table S1 Mean Differences, P-Values, Standard Deviations and

Associated Limits of Agreement (LOA) for the rib cage diameters

and areas.

(DOCX)

File S1 Instructions: users can change values in the green

column (above) and obtain a prediction of the rib cage

measurements in the three blue columns (below); the other file

sheets (i.e. areas, diameters and other measurements have not to

be removed because they include corresponding prediction

equations derived from the multivariate analysis).

(XLS)
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