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SUMMARY

Some computational issues related to the identifi cation of modal parameters of structures are presented in this 
paper. Optimal estimation of modal parameters often requires the solution of an overdetermined linear system of 
equations. Hence the computation of a pseudo-inverse matrix is involved. In this paper the numerical performance 
of different algorithms for Moore–Penrose pseudo-inverse computation have been tested for modal analysis of a 
four-fl ue chimney of a thermoelectrical plant. The computational scheme herein adopted for parameter identifi ca-
tion is based on well-known modal properties and has a fast rate of convergence to solution. The computation of 
the Rayleigh damping coeffi cients a and b is an important step in the area of the modal superposition technique. 
The proposed approach can accurately predict damping ratios and all the eigenvectors without evaluating mass 
and stiffness matrices. Copyright © 2007 John Wiley & Sons, Ltd.

1. INTRODUCTION

Recently analytical and experimental modal analysis, or vibration system identifi cation, has become an 
increasingly popular technique. Developments in measuments have facilitated the acquisition of reli-
able experimental data. These procedures lead to extraction of the modal properties of a test structure 
(Ewins and Gleeson, 1982; Luk, 1987; Lagomarsino, 1993; Watanate et al., 1997; Mohammad et al., 
1995; Dovstam, 1997; Prells and Friswell, 2000; Adhikari and Woodhouse, 2001; Gaylard, 2001; Liu 
et al., 2001; Lee et al., 2004; He and Fu, 2004; Trombetti and Silvestri, 2006). The building response 
to dynamic excitation, such as wind or earthquake, can be evaluated using techniques such as the direct 
integration of equations of motion to modal analysis or the use of response spectra. In each case the 
availability of the stiffness, inertia and dissipative parameters is very important.

The objective of this paper is to test different methods for the numerical computation of the pseudo-
inverse matrix and to discuss their applicability in structural dynamics applications. The generalized 
inverse is a well-known tool in modern linear matrix theory. It is usually used to solve a set of over-
determined or undetermined simultaneous equations (To and Ewins, 1995) through the application 
of the least squares optimization criterion. As a numerical test, by means of the proposed method the 
modal damping ratios and the modal shape of a chimney have been estimated assuming Rayleigh 
damping.
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In the fi rst two sections the basic equations used for the mathematical setting of the identifi cation 
problems are briefl y deduced. The third section is dedicated to reviewing different approaches for 
computing the Moore–Penrose pseudo-inverse matrix. In the fourth section the numerical results for 
different cases are discussed.

2. FUNDAMENTAL EQUATIONS OF STRUCTURAL DYNAMICS

The equations of motion (Singiresu and Rao, 2004) of a linear viscous damped multi-degree-of-
freedom system in matrix form are

 m y c y k y F t[ ]{ } + [ ]{ } + [ ]{ } = ( ){ }�� �  (1)

By means of Laplace transformation of the response canonical equations of modal motion (de Silva, 
2000) assuming zero initial conditions, one obtains the transfer function

 H s H X X
X X

s s
r i k r

r
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i k r

r r rr
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( ) = ( ) =
( )

+ +[ ]= =
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1 2ζ ω ω
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between the excitation at the kth location and response at the ith location. Assuming Rayleigh damping, 
the damping matrix could be expressed as a linear combination of the mass and stiffness matrices

 c m k[ ] = [ ]+ [ ]α β  (3)

This type of damping is known as proportional damping. This condition is suffi cient to decouple the 
equations of motion (1), allowing the use of modal analysis. By means of equation (3) one obtains

 α ω β ζ ω+ =r r r
2 2  (4)

From

 ω ω ζd r rr = −1 2  (5)

equation (4) becomes

 α ω β ω ω+ = −r r Er q

2 2 22
,

 (6)

where wdr = wEr,q with wEr,q the experimental circular frequency of damped oscillation, obtained from 
the qth measurement and rth vibration mode.

3. IDENTIFICATION OF MODAL PARAMETERS

The equations deduced in the previous sections constitute the main blocks of the method for the 
identifi cation of modal parameters (Figure 1). In this section their use for such purpose is 
presented.

Since the mathematical approach adopted is essentially a least squares solution of a redundant 
system of linear equations, from our treatment nonlinear equations are excluded.
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Figure 1. Flow chart of the method for identifi cation of modal parameters

3.1 Rayleigh damping

From equation (6), the following system can be obtained:
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for q = 1, 2,  .  .  .  , Nq and mode r = 1, 2,  .  .  .  , Nr. By applying the least-squares optimality criterion, 
the redundant Nq × Nr equations system (7) is solved with respect to constants a and b. In this phase 
computation of the Moore–Penrose pseudo-inverse matrix has its main role.

3.2 Transmissibility function

From equation (2), λ1 = (2πf1)2, λ2 = (2πf2)2,  .  .  .  , λr = (2πfr)2,  .  .  .  , λNr = (2πfNr)
2 the square of the 

eigenvalues, the real component ℜ[Hik( f )] of the transmissibility function at response location ı and 
excitation location k of the chimney is
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The imaginary component ℑ[Hik( f )]of the transmissibility function at response location i and excita-
tion location k of the chimney is
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The modulus of the transmissibility function is then

 H f H f H fik ik ik( ) = ℜ ( )[ ] + ℑ ( )[ ]2 2  (10)

From equations (8) and (9) with f = f̂ 1, f̂ 2,  .  .  .  , f̂ Np, the following system can be obtained:

 A X b[ ]{ } = { }  (11)
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By applying the least-squares optimality criterion, the redundant Np × Nr equations system (11) is 
solved with respect to constants (XiXk)1, (XiXk)2,  .  .  .  , (XiXk)r,  .  .  .  , (XiXk)Nr. In this phase computation 
of the Moore–Penrose pseudo-inverse matrix has its main role.

4. THE MOORE–PENROSE PSEUDO-INVERSE MATRIX

This section, for completeness, summarizes the main properties of the Moore–Penrose pseudo-inverse 
matrix and the steps of the different algorithms tested during the dynamic simulations [18].
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4.1 Defi nitions

The main properties of the Moore–Penrose pseudo-inverse matrix [A]+ of a matrix [A] are

• ([A][A]+)T = [A][A]+

• ([A]+[A])T = [A]+[A]
• [A][A]+[A] = [A]
• [A]+[A][A]+ = [A]+

When [A] is a square matrix with full rank, then its pseudo-inverse coincides with the inverse. 
The Moore–Penrose pseudo-inverse matrix is associated with the least-squares solution of the linear 
system of equations

 A x b[ ]{ } = { }  (14)

where the number m of equations is not equal to the number n of unknowns and [A] does not neces-
sarily have full rank. In particular, the following cases are distinguished.

Overdetermined system of equations (m > n)
By requiring that [B] is

 h A x b≡ [ ]{ } = { } 2
2  (15)

is a minimum, one obtains

 A A x A bT T[ ] [ ]{ } = [ ] { }  (16)

Therefore, the solution of (1) can be stated as

 x A bT{ } = [ ] { }  (17)

is the right pseudo-inverse matrix.

Undetermined system of equations (m < n)
The solution is obtained imposing the minimum of the Euclidean norm

 g x≡ 2
2  (18)

with {x} subjected to (14). Thus, introducing the new objective function,

 ′ ≡ + { } [ ]{ } − { }( )g g x A x bT  (19)

the solution is achieved solving the system

 I A
A
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or

 x A b{ } = [ ] { }+  (21)

where

 A A A AT T[ ] = [ ] [ ][ ]( )+ −1
 (22)

is the left pseudo-inverse matrix.

4.2 The least-squares method

Since there is abundance of software procedures for computing the least-squares solution of a system 
of algebraic equations

 A x b[ ]{ } = { }  (23)

the computation of the pseudo-inverse can be reduced to such a solution. These procedures 
are often based on QR decomposition by means of Householder refl ections or GS 
orthogonalization. Let
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 bm
T{ } = { }0 0 0 1�  (25)

The procedure differs according to the dimensions of [A].

Case m > n

(1) Solve m times the system

 A A x A bT T[ ] [ ]{ } = [ ] { }  (26)

(2) From the m solutions {x1}, {x2},  .  .  .  , {xm} one can form the pseudo-inverse matrix

 A x x x xm[ ] = { } { } { } { }[ ]+
1 2 2 �  (27)

Case n < m

(1) Solve m times the system

 I A
A
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 Also in this case the pseudo-inverse is given by equation (27). The square matrices in (26) and 
(28) are singular or ill conditioned. Thus their solution requires special care. As mentioned, an 
appropriate way to solve least-squares problems is by means of GS orthogonalization or House-
holder QR factorization.

4.3 Greville’s method

(1) Decompose the matrix [A]m×n into row vectors {ai},(i = 1, 2,  .  .  .  , m)

 A a a a aT T T
m
T[ ] = [ ]+

1 2 3 �  (29)

(2) Let matrix

 A
A
ai i n
i

i
[ ] = 



×

−1  (30)

 with [A1]1×m = {a1}1×m.
(3) For i = 2,  .  .  .  , m compute the matrices [A]+ as

 A A b d bi n i i i
T

i i
T[ ] = [ ] { } { } { }×

+
−

+
1  (31)

 where

 

d a A
c a d A

b
c

i i i i

i n i i i

i n
i

{ } = { }[ ]
{ } = { }−{ }[ ]

{ } =
{

× −( )
+

−
+

× −

×

1 1 1

1 1

1

}}
{ }{ }

≠( )

{ } =
{ }[ ]
+{ }{ }

=( )

[ ]

×
−
+

c c
c

b
d A

d d
c

A

i i
T i

i n
i i

T

i i
T i

0

1
01

1

1
++

+

=
{ }

{ }{ }
≠( )

[ ] = ≠( )

a

a a
a

A a a

T

i

1

1 1

1

1 1

0

0

 (32)

(4) After m repetitions [Am]+ gives the pseudo-inverse [Am]+
m×n of matrix [A].

5. MODAL TESTING OF CHIMNEY

The height of the studied chimney, w.r.t. ground placed at 4 m above sea level, is 200 m (Figure 2). 
The building is composed of the following parts:

• An external shell, made of reinforced concrete, with a height of 195·8 m and with diameter of section 
variable from 23·0 m (at the bottom) to 19·1 m. The foundation is a cylindrical structure (with a 
diameter of 55·0 m and 3·0 m thickness) and a series of poles (with a diameter of 1 m each) drilled 
in the ground to a depth of −56·0 m above sea level.

• Four internal fl ues, with a diameter of 5·0 m each, made of acid-repellent and insulated bricks. 
Each fl ue is divided into 10 portions of 17·0 m, except the highest one, which is substantially 
shorter, and each one is placed on a horizontal platform made of reinforced concrete that distributes 
the weight to the external shell. At the top of the chimney there is a cover platform at a height of 
197·0 m.
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The material of the chimney is isotropic with Young’s modulus E = 36 GPa, density r = 1500 kg/m3 
and Poisson coeffi cient n = 0·2.

Experimental tests for measurement of the dynamic response of the chimney have been performed 
using a shaker. The shaker used is a low-frequency-range machine (ISMES BF50/5), with the fol-
lowing features:

• maximum amplitude of generated force: 50 KN;
• maximum frequency of generated force: 5 Hz;
• structural mass (without inertial masses): 1840 kg.

The shaker has been placed at the top of chimney. At a position of 197·0 m a.s.l. the shaker excited 
the chimney by means of a sinusoidal load with variable frequency, along two orthogonal directions 
(Cavacece and Valentini, 2003). The response of the structure has been monitored at 30 different loca-
tions along the chimney. In particular, the 22 piezoelectric accelerometers and eight eight-dynamical 
seismometers have the following features:

• accelerometer type: Endeveco mod. 2262C-25; frequency response: linear from 0 up to 500 Hz; 
sensitivity: 9·81 cm/s/V;

• seismometer type: Teledyne mod.Geotech S-13; frequency response: linear from −1 up to 50 Hz; 
sensitivity: 0·00170 cm/s/V.

The experimental setup allows us to measure circular frequencies of damped oscillation and trans-
missibility functions. The measured circular frequencies of damped oscillation are summarized in 
Table 1. Natural circular frequencies wr are obtained by the fi nite element method (Cavacece and 
Valentini, 2003) (Table 2). The model of chimney has been meshed using four-node standard shell 
elements with 5 d.o.f. per node. Referring to Table 3, we can calculate ω ωr Er q

2 − , , right side of 
system (7) with Nr = Nq = 3.

Figure 2. Chimney
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The transmissibility functions have been computed for the nodal displacement at measurement 
locations. Experimental analysis leads to the values of the real part ℜ[H( f )] and of the imaginary 
part ℑ[H( f )] of the frequency response at the top of the chimney. Experimental results of the fre-
quency response at the top of the chimney have been evaluated referring to the values of frequency in 
Table 4.

6. COMPLETE MODAL DATA

Let us suppose that the modal data are complete in terms of the number of measured modes. For this 
application we have an overdetermined system of equations, where the number of equations m = 9 
is greater than the number of unknowns n = 2. Referring to Table 3, system (7), with Nr = Nq = 3, 
provides the following solutions:

Table 1. Experimental circular frequencies of damped oscillation

rth mode wEr,1 (rad/s) wEr,2 (rad/s) wEr,3 (rad/s)

1  1·2  1·213  1·238
2 10·04 10·034 10·022
3 21·960 21·953 21·972

Table 2. Natural circular frequencies

rth mode wr (rad/s)

1  1·257
2 10·053
3 22·054

Table 3. Right side of system

rth mode
2 2 2ω ωr Er q

−
,

(rad/s)

2 2 2ω ωr Er q
−

,

(rad/s)

2 2 2ω ωr Er q
−

,

(rad/s)

1 0·748 0·659 0·435
2 1·022 1·235 1·577
3 4·068 4·216 3·800

Table 4. Experimental values of frequency response

qth measure Frequency (Hz) Frequency response (ms−2N−1)

1 0·01 ℜ[H] = 0·01
2 0·1597 ℑ[H] = +0·25
3 0·194 ℑ[H] = −0·72
4 3·0 ℑ[H] = −0·0001
5 3·495 ℑ[H] = −0·1
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 α β= ⋅ = ⋅ × −0 583 7 065 10 3,  (33)

Damped oscillation frequencies and modal damping ratios are summarized in Table 5.

6.1 Modal shapes

Substituting modal damping ratio zr (Table 5) and those of frequency response (Table 4) into system 
(11), we obtain the following solutions:

 X X XT T T
2

1
2

2
2

30 432 2 746 3 744( ) = ⋅ ( ) = ⋅ ( ) = ⋅, ,  (34)

at the top of chimney (i = k = T) by means of the pseudo-inverse matrix (Figure 1).
In Figure 3 transmissibility functions obtained by the proposed methodology, experimental results 

and FEM ones are compared. Figure 4 shows the real and imaginary parts of the transmissibility 
fucntion deduced by the pseudo-inverse matrix. Referring to Table 6, elapsed CPU time obtained by 
proposed methods is compared.

Table 5. Circular frequencies of damped oscillation and modal damping ratio

rth mode wdr (rad/s) zr

1  1·219 2·366 × 10−1

2 10·032 6·453 × 10−2

3 21·962 9·113 × 10−2

.......
.

.

.

.

.

.

.

. . . . .

Figure 3. Transmissibility function
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7. INCOMPLETE MODAL DATA

Let us suppose that the modal data are incomplete only in terms of the number of measured modes. 
If there is noise, structural identifi cation will be ill posed. In this context, the word noise has wide 
implications, as for example: any causal or random factors which should not or cannot be modelled; 
further information is not available; some information of the system has been lost; some vibration data 
cannot be analysed; the modal data are incomplete in terms of the number of measured modes.

When the second mode of the eigensolution is omitted, we have an overdetermined system of equa-
tions, where the number of equations m = 6 is greater than the number of unknowns n = 2. Referring 
to Table 3, we obtain the following solutions:

 α β= ⋅ = ⋅ × −0 602 7 037 10 3,  (35)

Damped oscillation frequencies and modal damping ratios are summarized in Table 7.

8. CONCLUSIONS

The generalized inverse, an elegant mathematical technique, provides only one solution to solve an 
overdetermined problem with or without noise. In this paper, the application of the generalized inverse 
allows us to determine modal damping ratios and modal shapes of a chimney.

.

.

.

.

.

.

.

.

.

.

.

. . . . . . .

Figure 4. Real and imaginary parts of the transmissibility function

Table 6. CPU time

Method CPU (time ratios)

Least squares Householder 1·0
Least squares Gram–Schmidt 2·0
Greville’s method 3·0
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Table 7. Circular frequencies of damped oscillation and modal damping ratio for 
incomplete modal data

rth mode wdr (rad/s) zr

1  1·219 2·438 × 10−1

2 10·032 6·529 × 10−2

3 21·962 9·124 × 10−2

The investigation is divided into two parts. In the fi rst part, we determine the modal damping 
ratios assuming Rayleigh damping. In the second part, the modal shapes and frequency response of 
displacement are computed. It is shown that Rayleigh damping can predict accurately the response 
of a chimney in a large frequency range, because the chimney has a symmetrical structure and the 
material of the chimney has linear elastic properties.

The generalized inverse, a very useful tool in linear matrix theory, has the following features:

(1) By using an overdetermined system of equations with complete modal data, we obtain modal 
damping ratios. In addition, the acquired signals and computed results of frequency response of 
displacement show good agreement.

(2) When the second mode of the eigensolution is omitted, the physical parameters, obtained by using 
the generalized inverse method, are quite similar to those obtained by using an overdetermined 
system of equations with complete modal data (Table 8). Therefore, the generalized inverse 
method minimizes the effect of noise in this mechanical system.

Table 8. Modal damping ratio

rth mode Complete modal data zr Incomplete modal data zr Error (%)

1 2·366 × 10−1 2·438 × 10−1 3·0
2 6·453 × 10−2 6·529 × 10−2 1·1
3 9·113 × 10−2 9·124 × 10−2 0·1

Table 9. Symbols

Symbol Description

[m] Mass(inertia) matrix
[c] Damping matrix
[k] Stiffness matrix
a, b Rayleigh damping coeffi cients
{y} Displacement response vector
{F(t)} Forcing excitation vector
q = 1, 2,  .  .  .  , Nq Measure
r = 1, 2,  .  .  .  , Nr Modal shape
(XiXk)r rth modal shape at response location i and excitation location k
f Frequency
wr rth natural circular frequency
fr rth natural frequency
wdr rth circular frequency of damped oscillation
fdr rth frequency of damped oscillation
wEr,q Experimental circular frequency, acquired for measure q and mode r
zi Modal damping ratio for the ith normal mode
[H(s)] Transfer function matrix
S Laplace variable: jw = j2pf in frequency domain
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(3) Application of the generalized inverse method in structural identifi cation is not completely 
successful using a set of simultaneous equations which is undetermined.

Finally, the generalized inverse method is a means for determining the least-squares solution of 
a set of simultaneous equations which is overdetermined. We demonstrate that this method leads to 
reliable results for modal damping ratios of a chimney with negligible damping. In fact, the response 
of the chimney obtained by this method shows good agreement with the experimental response of 
the chimney subjected to a generic wind periodic excitation and the response obtained by the fi nite 
elements method.
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