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Abstract: The serine/threonine protein kinase C (PKC) family was first identified as intracellular receptor(s) for the tu-

mor promoting agents phorbol esters. Thirty years after the discovery of PKC, the role of specific PKC isoforms has been 

described in relationship with an altered pattern of expression in different types of cancer and a good number of small 

molecule inhibitors (inhibitory peptides, antisense oligonucleotides or natural compounds) targeting PKC are now avail-

able. Despite all these achievements and a huge amount of basic research studies on the biochemical regulation of PKC, 

there has been a delay in clinical trials with drugs targeting PKC function. This delay is easily explained taking into ac-

count the extreme biological complexity of the PKC family of isoforms and the incomplete understanding of the specific 

role of each PKC isozyme in different types of cancers. Some of the difficulties in developing pharmacological com-

pounds selectively tuning the different PKCs have started to be overcome. In this review, the growing evidences of the 

role of the PKC isoforms �, �II, �, �, � and � is in promoting or counteracting tumor progression will be discussed in rela-

tionship with promising therapeutic perspectives. 
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INTRODUCTION 

 More than thirty years ago, Nishizuka et al. described for 
the first time an enzymatic activity, later called protein 
kinase C (PKC), working as intracellular receptor for the 
phorbol esters [1-3] and for the PKC lipidic ligand diacyl-
glycerol (DAG) mimickers are present in the croton oil and 
used as tumor promoter agents in the “Berenblum-Mottram” 
skin carcinogenesis mouse model [4, 5]. At present ten PKC 
isozymes have been discovered and they have been classified 
in three subfamilies according to the functional domain 
composition: classic/conventional (cPKCs: PKC-�, PKC-�I, 
PKC-�II and PKC-�), novel (nPKCs: PKC-�, PKC-�, PKC-	 
and PKC-
) and atypical (aPKCs: PKC-� and PKC-�). In 
addition, PKC-related kinases with similar regulatory prop-
erties have been described, but for clarity we are not going to 
consider them in this review: they are known as PKC-related 
kinases (PRK/PKN) [reviewed in 6] and PKD (including 
PKC-� and PKC-�) [reviewed in 7].  

 All PKCs family members share a common structure 
(Fig. (1)): a cell membrane targeting N-terminal regulatory 
domain linked by a flexible hinge segment to the C-terminal 
catalytic domain. The cPKCs regulatory domains C1 and C2 
confer binding to the lipid second messenger DAG, phorbol 
esters and phosphatidylserine (PS) as well as to Ca

2+
. Simi-

larly, nPKCs contain the C1 domain and a novel C2 domain; 
they are regulated by DAG but not by Ca

2+
. In contrast, the  
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C1 domain of the aPKCs does not bind nor DAG or Ca
2+

[8]. 
Major regulatory mechanism of the aPKCs is the protein-
protein interaction mediated by the Phox/Bem1 domain 
(PB1) and the carboxy-terminal domain. HSP90 and 
mTORC2 are two examples of the regulatory proteins [9, 
10]. The plasma membrane recruitment is regarded as a key 
event for the activation of all PKCs that already lost the in-
hibitory conformation due to the occupation of the active site 
by the pseudosubstrate sequence. Indeed, PKC phosphory-
lates its substrate only in the membrane bound, open, active 
conformation and this happens only after the interaction with 
Ca

2+
/DAG for cPKCs/nPKCs or/and phosphorylation of the 

activation loop by PDK1 and eventually of the hydrophobic 
motif by mTORC2 for aPKCs [reviewed in 11].  

 PKC isozymes can redistribute differently inside the cell 
in response to apoptotic stimuli through intrinsic localization 
sequences or specific-scaffolding protein binding [12-15]. 
Spatial regulation of PKC isozymes seems to be functional 
to the phosphorylation of substrates present only in specific 
subcellular districts, i.e. lipid rafts, endosomes, nucleoli, 
nucleus, Golgi, mitochondrion. An example of the impor-
tance of the nature of the regulatory molecule(s) bound by 
PKC for the intracellular localization is given by PKC-� 
which translocates differently to the Golgi or mitochondrion, 
the nucleus or the membrane accordingly as it binds respec-
tively ceramide, DAG or RACKs (Receptor for Activated C 
Kinases) protein [reviewed in 16].  

INVOLVEMENT OF PKC ISOZYMES IN TUMORI-
GENESIS  

 A large body of evidences sustains unquestionably that 
the serine/threonine PKC isozymes are involved in tumor 
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progression and metastasis. Each PKC isoform is unique in 
its contribution to cancer development and progression. The 
study of the altered expression in different human cancers, in 
in vivo and in vitro models of overexpression or downregula-
tion of the different isozymes resulted in noteworthy 
achievements for some PKCs and in particular for the cPKCs 
�, �II, the nPKCs � and � and both the aPKCs � and � [re-
viewed in 17]. PKCs play either as oncogenes or tumor sup-
pressors in human cancer development (Table 1). There is 
evidence of aberrant expression of PKC isoforms in different 
types of cancer [18-44] but an important limitation of these 
histopathological studies is represented by the low number of 
the examined samples, which affects the statistical signifi-
cance of the association between the levels of PKCs total 
protein/trascripts and the risk of cancer develop-
ment/progression.  

 In this respect, the role of different PKCs mostly comes 
from studies in cancer cell lines or animal models, and two 
major examples are offered by PKC-� and PKC-�. In vitro
studies reported that PKC-� promotes the survival and pro-
liferation of different tumour cell models [45, 46], and in 
vivo confers a tumorigenic and metastatic invasiveness phe-
notype in nude mice [47, 48]. Differently, PKC-� seems to 
have possible tumor-inhibitory characteristics except in the 
brain and pancreatic cancer, where it is more pro-oncogenic 
[36]. This supposition is strongly corroborated by in vitro
and in vivo studies where PKC-� knockdown promotes a 
trasformed phenotype by loss of its pro-apoptotic influence 
[49-54]. Of note, in vivo, a potential mechanism by which 
phorbol esters can promote malignant transformation is by 
inducing the depletion of PKC-� [52]. Animal models have 
provided important information on the role of PKC-� and 

Fig. (1). Schematic representation of the functional domain composition of the three PKC subfamilies: classic (cPKCs), novel 
(nPKCs), atypical (aPKCs). PKCs family members share a common structure: a cell membrane targeting N-terminal regulatory domain 

linked by a flexible hinge segment to the C-terminal catalytic domain. The cPKCs regulatory domains C1 and C2 confer binding to the lipid 

second messenger DAG, phorbol esters and phosphatidylserine (PS) and Ca
2+

. The nPKCs contain the C1 domain and a novel C2 domain 

(C2*) regulated mostly by DAG but not by Ca
2+

. RACK (Receptor for Activated C Kinases) protein can bind C2 domain of activated cPKCs 

and nPKCs. Major regulatory mechanism of the aPKCs is the protein-protein interaction mediated by the PB1 and the carboxy-terminal do-

main. The C1 domain of the aPKCs (C1*) does not bind DAG. Drugs inhibiting selectively PKC isozymes and their target domains are also 

indicated. 
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PKC-� in promoting and inhibiting carcinogenesis, respec-
tively. As an example, the strikingly different pattern of re-
sponses triggered by the PKC isoforms cited above has been 
shown in models of skin carcinogenesis [55-57].  

ROLES OF PKC-� AND PKC-� IN CELL CYCLE 
REGULATION, APOPTOSIS AND AUTOPHAGY 

 The anti-cancer strategy targeting PKC underwent to 
critical review after the early dogma, that PKCs were mito-
genic kinases, was proved to be only partially correct. In-
deed, it is true that tumorigenic effects of PKC (Table 2) are 
strictly dependent on individual isozyme, cell-type and sub-
cellular localization. It is still controversial and the overview 
of the mechanisms with which the specific PKC isozymes 
control cell-cycle events. Generally they are considered as 
key negative regulators of the cell cycle at two stages, G1 
phase and at G2/M transition (Cdk1-cdc2) [reviewed in 58]. 
Attenuation of G1/S transition through p21/Cip1 induction 
has been demonstrated for PKC-� in non-small lung cancer 
cells [34]. More complex is the role of PKC-�, which down-
regulates the expression of cyclins A, D1 and E or up-
regulates p27 and p21 in correlation to its cleavage status 
and related nuclear traslocation [58].  

 Regarding the role of PKC in apoptosis and survival, 
PKC-� and PKC-� offer one of the clearest examples of the 
isozyme-specificity of the downstream effects (Table 2). 
Early studies in hematopoietic cells showed the over-
expression of PKC-�, but not PKC-�, protects cells from 
apoptosis induced by cytokine depletion through the induc-
tion of the anti-apoptotic protein BCL-2 [59]. The major role 
of protecting normal hematopoietic cells from deprivation of 
serum and/or growth factors was independently confirmed 
by our group in a factor-dependent hematopoietic cell line 
[60] and, more recently, by a different group of investigators 
on primary hematopoietic cells [61]. A strong link between 
PKC-� and suppression of apoptosis has been confirmed by 
many studies on a variety of different tumour cells types [34, 
36, 62-65] as a key event in the context of cancer. PKC-�
silencing induces apoptosis in glioma cells and primary 
glioma cultures, basally overexpressing this kinase [62]. At 
variance to factor-dependent hematopoietic cells [59], no 
significant correlation between PKC-� levels and BCL-2 or 
BAX (BCL2-associated X protein) expression was found in 
glioma cells. Rather, it was shown that PKC-� depletion re-
duces total Akt expression [62] and that PKC-� over-
expression prevents apoptosis induced by tumour-necrosis 
factor (TNF)-related apoptosis-inducing ligand (TRAIL), a 

Table 1. Expression of the Different PKC Isoforms in Human Tumours 

Cancer PKCs isoforms with Increased Expression PKCs isoforms with Decreased Expression 

Skin  �, �, � [17,42] 

Colon �II,�, � [17,18] �, �, �II, �, 	 [17,43] 

Liver � [19]  

Esophagus � [20]  

GIST 
 [17]  

Pancreas �, �, � [22] �, � [21,22] 

Bladder �, � [23] �, � [17,23] 

Kidney �, 	, � [24] � [24] 

Prostate �, �, � [25] � [17] 

Ovary � [26,27] � [17,44] 

Endometrium � [29]  

Breast �, � [30-32] �, 	 [17] 

Lung �, 	 [33,34]  

Head-Neck � [35]  

Thyroid  � [17] 

Brain �, �, � [17,36] � [17] 

DLBCL �II [37] � [17] 

CML � [38]  

B-CLL �II, �, �, � [17,39-41]  

T-Cell Leukemia  �, � [17] 
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death inducing ligand belonging to the TNF superfamily of 
cytokines [63, 64]. Although obtained in in vitro models, 
these findings are particularly relevant since phase I and 
phase II clinical trials indicate that both recombinant TRAIL 
and antibodies to TRAIL receptors are usually well tolerated 
and are promising new anticancer biotherapeutic agents [66, 
67]. Therefore, the inherited resistance of cells expressing 
high levels of PKC-� to TRAIL-based therapy suggests that 
compounds able to inhibit PKC-� activity should sensitize to 
TRAIL cytotoxicity [68]. Further evidences of the PKC and 
TRAIL interplay consists in the existence of an autocrine 
apoptotic loop through the PKC-�-triggered secretion of 
TRAIL in prostate cancer cells [69]. 

 Recent findings support the thesis of a role for PKCs in 
promoting/inhibiting autophagy in a cell-type dependent way 
(Table 2). Studies reported autophagy induction after PKC-�
activation in phorbol-treated rat hepatocytes [70] as well as 
after PKC-� activation in human leukemic cells treated with 
anti-neoplastic drugs [71, 72]. On the other hand, PKC-�
inhibits autophagy in pancreatic cancer cells [73]. In keeping 
with these observations, some groups have reported induc-
tion of autophagy upon treatment with specific PKC-� in-
hibitors [74]. Coward et al. reported autophagy post-
treatment with non-inducing apoptosis doses of safingol, a 
drug inhibiting PKC-� but probably also PKC-� [75]. A hy-
pothetical involvement of PKCs in autophagy promo-

Table 2. Examples of Opposite Effects of PKC-� and PKC-� in Different Mammalian Cell Types 

Biological Effect Cell Type References 

PKC-�:

Non-Small Cell Lung Cancer [34] 

Vascular Endothelial Cells  [58] 

Vascular Smooth Muscle Cells  [58] 

Intestinal Epithelial Cells  [58] 

Keratinocytes  [58] 

Anti-proliferative 

Fibroblasts  [58] 

Head And Neck Squamous Cell Carcinoma [47] Anti-apoptotic/pro-metastatic 

Breast Cancer [31] 

Skin Cancer [56, 57] 

Brain Tumors [36] 

Thyroid Cancer [17] 

Melanomas [63] 

Lung Cancer [34] 

Anti-apoptotic 

Ovarian Carcinomas [66] 

Pro-apoptotic Glioma Cells [36, 62] 

Pro-autophagic Leukemic Cells [71, 72] 

PKC-�:

Intestinal Epithelial Cells [Crypts]  [58] 

Leukemic Cells [58] 

Fibroblasts [58] 

Vascular Smooth Muscle Cells  [58] 

Anti-proliferative 

Microvascular Endothelial Cells [58] 

Skin Cancer [56, 57] Pro-apoptotic 

Prostate Cancer [69] 

Pro-apoptotic/Anti-autophagic Fibrosarcoma Cells [74] 

Anti-autophagic Pancreatic Cancer Cells [73] 
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tion/inhibition is important since established tumours depend 
on this mechanism to survive under starvation, oxidative 
stress and hypoxia [reviewed in 76]. On the other hand, it is 
also true that some anti-cancer drugs induce selective type of 
autophagy to kill tumour cells or to prevent malignant tras-
formation of cells accumulating stressed mithocondria and 
misfolded proteins. Of interest, Chen et al. reported evi-
dences of a time-regulated role of PKC-� in autophagy-
apoptosis crosstalk [77]: under hypoxic-condition, PKC-�
activates "functional selective autophagy" by promoting 
JNK1-mediated Bcl-2 phosphorylation and dissociation of 
the Bcl-2/Beclin 1 complex; after prolonged hypoxic stress, 
instead, PKC-� is cleaved by caspase-3, and translocates as 
constitutively active catalytic fragment of PKC-� (PKC-�CF) 
to the nucleus where it serves a feed-forward function for the 
reciprocal PKC-� and caspase-3 proteolytic activation. Thus, 
PKC mostly induces autophagy, as observed for PKC-� , 
PKC-� and PKC-� and only PKC-� seems to be able to 
counteract this cellular mechanism. 

FIRST GENERATION OF PKC MODULATORS EN-
ROLLED IN CLINICAL TRIALS OF HUMAN CAN-
CERS: ENZASTAURIN AND BRYOSTATIN-1 

 Since PKC oncogenic activity has been demonstrated in 
human cancer, newly characterized drugs inhibiting selec-
tively PKC isozymes (Fig. (1)) caught great interest for pos-
sible clinical trials. Among the miriad of PKC inhibitors, 
enzastaurin and bryostatin-1 are the most considered (Table 
3).  

Enzastaurin 

 Enzastaurin is an analogue of staurosporine, the best-
known pan-PKC inhibitor in in vitro models [78]. 
Staurosporine is an alkaloid produced by Streptomyces bac-
teria, which is served as lead compound for the synthesis of 
more PKC-selective analogues, i.e. 7-hydroxystaurosporine/ 
UCN-01 [79], ruboxistaurin/LY333531 [80] sotrastaurine/ 
AEB071 [81], N-benzoyl-staurosporine/midostaurin/PKC412/ 
CGP41251 [82-83] and enzastaurin/LY317615 [84]. Enzas-
taurin is a specific PKC-� inhibitor only at low concentra-
tion, while at higher concentrations it also inhibits other iso-
forms i.e. PKC-� [84]. Initially developed as possible anti-
angiogenetic drug, enzastaurin was considered for anti-
cancer therapy after preclinical evidences of therapeutical 
effects against both solid and hematological malignancies 
[84-94]. Enzastaurin is metabolyzed by cytochrome 450-3A 
in major and minor metabolites, comparably active in pre-
venting substrate phosphorylation as competitors for PKC-�
ATP binding site. For the first clinical trial in 47 patients 
with advanced cancer, Carducci et al. [86] pre-selected a 
target mean steady state concentration based on the free frac-
tion of drug that produced 90% PKC-� inhibition (IC90) in
vitro, considering 95% of plasma protein binding, equivalent 
to a dose of 525 mg/die, necessary to yield a plasma concen-
tration of approximately 2�M. Despite all the following tri-
als adopted this recommended dose as estimated to be effec-
tive in vivo, there are no published results that confirm a real 
PKC-� inhibition in cancer cells of patients treated with this 
dose of enzastaurin. Most of the clinical trials agree in at-
tributing to this drug a favourable toxicity profile up to 900 
mg/die, sometimes even with less side effects, both in mono-

therapy and in combination with conventional chemothera-
peutic drugs [86, 95-103]. This is very important for patients 
with advanced cancers who are unable to receive chemother-
apy because of comorbidities or debilitation. Recently, Kre-
isl et al. [104, 105] reported controversial data regarding 
unacceptable toxicities in patients treated for recurrent glio-
mas. Since it is unlikely that enzastaurin will enter into the 
clinical practice as single pharmacological agent, it is par-
ticularly noteworthy that this molecule displays a strong syn-
ergistic in vitro cytotoxicity when combined with borte-
zomib and a moderate synergistic or additive cytotoxicity 
when combined with melphalan or lenalidomide in multiple 
myeloma (MM) cell models and retains cytotoxicity when 
MM cell lines were co-cultured with multipotent mesenchy-
mal stromal cells [90, 91]. Besides being active in MM, 
some preliminary evidences indicate that enzastaurin also 
shows significant in vitro and in vivo anti-tumoral activity in 
Waldenstrom’s macroglobulinemia, a low-grade lym-
phoplasmocytic lymphoma [92]. The observations that en-
zastaurin enhances the in vitro antitumor activity of borte-
zomib, rituximab, fludarabine and dexamethasone strongly 
supports the potential therapeutic value of using enzastaurin 
in combination with these agents [93, 94]. Overall, the re-
sults of the clinical trials testing enzastaurin suggests that 
therapeutical strategies including this drug, increases pro-
gression-free survival rate in diffuse large B-cell lymphoma 
(DLBCL), recurrent high grade gliomas, non-chemonaive 
non-small cell lung cancer, relapsed/refractory mantle cell 
lymphoma (MCL [89,99,105]. The results of two clinical 
trials enrolling patients for innovative therapeutical treatment 
combining or not enzastaurin with conventional therapy, 
revealed that these combinations do not have superior clini-
cal efficacy compared with, respectively, lomustine against 
recurrent intracranial gliomas [101] or pemetrexed against 
advanced non-small cell lung cancers [103]. Although no 
direct evaluation of PKC-� inhibition has been performed in 
the patient samples enrolled in the mentioned clinical trials, 
GSK-3� inhibition has been tested as potential biomarkers 
[105].  

 In the next future, several data coming from ongoing/just 
completed phase I/II clinical trials for the treatment of hema-
tological malignancies, brain tumours and metastatic solid 
cancer could offer new insights on the enzastaurin anti-
cancer activity. Great interest is also for the results of a 
phase III-advanced clinical trial testing relapse-prevention by 
enzastaurin in a small subset of patients who achieved remis-
sion after R-CHOP chemotherapy (rituximab, cyclophos-
phamide, doxorubicin, vincristine and prednisolone) 
[www.clinicaltrials.gov, accessed August 25, 2010]. The 
European Medicines Agency already recognized to enzas-
taurin the orphan drug status for the treatment of patients 
with DLBCL where PKC-�II mRNA levels demonstrated 
prognostic for the relapse of the disease after R-CHOP 
treatment [37]. 

Bryostatin-1 

 Differently from enzastaurin, bryostatin-1 is a natural 
compound, a macrocyclic lactone derived from the symbion-
tic proteobacterium Candidatus Endobugula sertula, which 
potently binds the regulatory domain of novel and classical 
PKC isoforms in a tightly time-regulated way [106-114]. 
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Phase I/II clinical trials report that bryostatin-1 has a quite 
favourable toxicity profile but minimal single-agent activity 
during the treatment of solid cancer as well as hematological 
malignancies [115-121]. The best anti-cancer response has 
been obtained in metastatic renal cell carcinoma where 
weekly bryostatin-1 monotherapy produced partial remission 
in 25% of patients [122]. This is the reason why the most 
recent clinical trials concentrate on bryostatin-1 as part of an 
anti-cancer polychemotherapy, generally associated with 
dose-dependent non-hematological toxicities [123-132]. 
Moderately active bryostatin-1 combinations have been re-
ported, such as: with vincristine for the treatment of Non-
Hodgkin lymphoma (NHL) relapsing after autologous stem 
cell transplant achieving 31% (2 of 13 patients) of overall 
response [126]; with full dose of fludarabine against indolent 
lymphomas and CLL [131]; with gemcitabine versus refrac-
tory non-hematological cancers [127]. Therapeutical ap-
proaches, revealed as not effective, combined bryostatin-1 
with paclitaxel for the treatment of advanced pancreatic car-
cinoma [130], with IL2 against renal cell carcinoma [123], 
with cisplatin versus advanced/recurrent cervix cancers 
[132]. 

Bryostatin-1 Analogues: An Example of Function-
Oriented Synthesis of Natural Compound Analogues for 
PKC Modulation 

 Two major problems delaying clinical advancement of 
bryostatin-1 are the low yields from the natural source and 
the difficulties in selectively modifying this molecule to ob-
tain analogues possibly with superior effects in containing 
cancer cells growth [133]. Thus, Wender et al. [134] chose a 
function-oriented synthesis approach obtaining bryologs, 
tetrahydropyranyl analogues keeping oxycarbocyclic ring of 
bryostatin-1, via a highly efficient, functional-group-tolerant, 
and stereoselective prins-driven macrocyclization. In con-
trast to the natural bryostatins, the C7 region of the bryologs 
can play a significant role in binding affinity and could be 
potentially exploited for improved pharmacological function 
such as PKC selectivity [135]. Bryologs, exhibiting nanomo-
lar and picomolar activities in PKC affinity assays as well as 
in cellular antiproliferation assays [136], represent the possi-
bility that bryostatin-1-like modulators of novel and classic 
PKC isoforms meet finally the clinical need. Currently clini-
cal trials of these compounds are not yet ongoing. 

EMERGING NATURAL MOLECULES THAT AF-
FECT PKC-DEPENDENT PATHWAYS AND SHOW 
POTENTIAL APPLICATIONS IN CANCER THER-
APY 

 Increasing literature reports the effects of natural prod-
ucts, or derivatives, as activator or inhibitor of PKC-
dependent pathways. Naturally derived products, in particu-
lar herbal extracts, have been widely used in the past to treat 
a variety of human diseases including cancer and are attract-
ing considerable attention in modern medicine. Resveratrol 
is an example of these compounds already in oncological 
clinical trials. Resveratrol (3,4',5-trihydroxy-trans-stilbene) 
is a compound primarily found in the skin of grapes as well 
as in other fruits and plants, known for the free radical scav-
enging and anti-tumour effects. Cancer chemopreventive 
activity of resveratrol was first published in 1997 [137]. Ex-

tensive in vitro studies revealed multiple intracellular targets 
of resveratrol, which affects cell growth, inflammation, 
apoptosis, angiogenesis, and invasion and metastasis [re-
viewed in 138]. Baur et al. summarized the numerous evi-
dences supporting the cancer-preventing and anti-cancer 
properties of resveratrol in various murine models of differ-
ent human cancers [reviewed in 139]. Moreover, analogues 
of this natural molecule are already available [140].  

 Resveratrol induces cell cycle block, apoptosis and auto-
phagy targeting cell cycle regulators, cyclins and checkpoint 
kinases (p21WAF1, p27KIP, INK, ATM/ATR) tumor sup-
pressors (p53 and Rb) as well as apoptotic and survival regu-
lators (Bax, Bak, PUMA, Noxa, TRAIL, APAF, survivin, 
Akt, Bcl-2 and Bcl-XL). Resveratrol also has nuclear targets 
that are the transcription factors NF-kB, AP-1, c-Jun, and c-
Fos. For the purpose of this review, it is particularly interest-
ing, that Atten MJ reported that resveratrol-treated gastric 
cancer cells show loss of membrane-associated PKC-� pro-
tein and a concomitant increase in cytosolic PKC-�, under-
going cell cycle arrest at the G2/M transition with accumula-
tion of p21 and p53 [141]. Similarly, treated prostate cancer 
cells undergo p53-induced apoptosis after PKC-� activation 
[142]. PKC modulation by resveratrol seems to be restricted 
to PKC-�, PKC-� and PKC-�I inhibition [143]. In addition, 
treatment with this PKC inhibitor sensitizes to TRAIL cyto-
toxic activity in cancer cells [144, 145]. Remarkably, res-
veratrol showed in vitro inhibition of invasiveness of cancer 
cells [146] and has great influence on angiogenesis by target-
ing VEGF, MMP-9 signalling [138]. Recently, some clinical 
trials started in order to assess chemopreventive activity of 
SRT501/resveratrol. The unique trial to test efficacy of res-
veratrol in combination with bortezomib for the treatment of 
MM has been suspended for unexpected safety events 
[www.clinicaltrials.gov, accessed August 25, 2010]. A phase 
I clinical trial in 11 healthy volunteers reported that con-
sumption of resveratrol did not cause serious adverse events 
and anticipated that even high-doses might be insufficient to 
elicit systemic levels commensurate with cancer chemopre-
ventive efficacy [147]. A phase I clinical trial enrolling pa-
tients with colorectal cancer and hepatic metastases has just 
been completed and another phase I/II in the same oncologic 
setting is recruiting in patients. To conclude, other results 
should be published from a phase I biomarker study of die-
tary grape-derived low dose resveratrol for colon cancer pre-
vention. 

PKC-� INHIBITORY/TRANSLOCATION ACTIVA-
TORS PEPTIDES  

 Great efforts, in the last years, have been focused in the 
identification of specific functional mechanisms attributing 
to single PKC isozymes oncogenic or anti-cancer activity. 
Moreover, considering the very high homology between dif-
ferent PKC isoforms and substrates condivision, it has been 
difficult to identify chemical compounds selective as aimed.
In the recent years, the Mochly-Rosen’s group approached 
this issue in an innovative way: the new generation of PKCs 
modulators should have been short peptides (6-8 aminoacids 
long) derived from interaction sites between each PKC 
isozyme and its receptor [148]. This drug design project is 
based on the theory that PKC isozymes translocate from one 
cell compartment to another when activated by the appropri-
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ate signal with each isozyme translocating to a unique sub-
cellular site. They suggest that this unique localization is 
mediated by binding of each of the activated isozymes to 
their corresponding isozyme-specific anchoring proteins, 
termed RACKs (Fig. (1)). The newly generated PKC modu-
lators work selectively by inhibiting translocation and func-
tion of their corresponding isozymes at intracellular concen-
trations of 3-10 nM. Mochly-Rosen’s group identified 
among a pool of peptides mimicking the variable region V1 
containing the interaction sites for �RACKs, an activating 
(��RACK peptide, PKC-� aa85-92) [149] and an inhibitor 
(�V1-2, PKC-� aa14-21) PKC-� drug [150]. Some concerns 
about the PKC-� inhibitory peptide in anti-cancer therapy 
derives from the controversial data regarding variation of 
sensitivity to TRAIL-induced apoptosis. An increase of sen-
sitivity has been reported in HL-60 [68], whereas in imma-
ture erythroblasts, basally susceptible to TRAIL mediated 
cytotoxicity [151], treatment with PKC-� inhibitory peptide 
induces TRAIL resistance and intracellular PKC-� accumu-
lation [61]. These findings predict that an association of 
PKC-� inhibitory peptides plus recombinant TRAIL might 
induce anemia, which obviously would represent a serious 
side effect in patients affected by cancer. 

CROSS-TALK BETWEEN PKC AND P53 

 In a therapeutic perspective, it is of particular interest that 
a recent study demonstrating that murine double minute 2 
gene product (MDM2, HDM2 in humans) is a target of acti-
vated PKC-� [152]. MDM2 is an E3 ubiquitin ligase for p53 
and itself, that is over-expressed in many human tumors 
[153-155]. Although the MDM2 genes represent one of the 
major transcription targets of p53, MDM2 protein binds the 
p53 N-terminal trans-activation domain and negatively regu-
lates tumor suppressor function by compromising transcrip-
tional regulation and controls p53 half-life via ubiquitin-
dependent degradation [156, 157]. Any pharmacological 
strategy that disrupts the p53/MDM2 interactions tends to 
have transient effects and is counterbalanced by the strong 
feed-back loop regulating the reciprocal interactions of these 
proteins [158].  

 The interplay between the PKC and p53 intracellular 
signal transduction pathways is particularly noteworthy since 
several groups of investigators followed the important thera-
peutic strategy of restoring the p53 pathway targeting its 
main regulator MDM2 [159]. The first potent and selective 
small-molecule MDM2 antagonists, among a group of cis-
imidazoline compounds, was identified by Vassilev et al. 
[160]. The Nutlins have the ability to displace p53 from 
MDM2 in vitro with nanomolar potency (IC50=90nM for 
Nutlin-3a, the active enantiomer of Nutlin-3) [161]. Impor-
tantly, with this effect, Nutlins inhibit the p53/MDM2 inter-
action in the cellular context, leading to stabilization of p53 
and activation of the p53 pathway. Although originally 
tested on a variety of solid tumors [153], other studies have 
demonstrated that Nutlins show cytostatic/cytotoxic activity 
in hematological malignancies too, including acute myeloid 
leukemias [162-165] and block angiogenesis, at least in vitro
[166]. The original study performed by the group of Vassilev 
demonstrated that Nutlin-3a can be administered orally to 
nude mice bearing established human solid tumor xenografts 
for up to 3 weeks without systemic toxic effects [167], pro-

viding the first in vivo demonstration that activation of wild-
type p53 by pharmacological inhibitors of the p53/MDM2 
interaction is feasible and might be an effective approach in 
cancer therapy. RO5045337/RG7112, an oral formulation of 
Nutlin-3, is currently administered in phase I clinical trials 
enrolling both pediatric patients with acute lymphoblastic 
leukemia and adults with advanced solid cancer, hematologi-
cal neoplasms and liposarcomas [www.clinicaltrials.gov, 
accessed August 25, 2010]. 

CONCLUDING REMARKS 

 Despite years of research, the relative role of individual 
PKC isozymes in cancer are just beginning to emerge, a task 
that has been confounded by the heterogeneity in functional 
responses conferred by isozymes-specific regulation and the 
cell-type dependency of these effects. Still few research 
groups are focusing their efforts in studying the mechanisms 
that drives isozyme-specific compartmentalisation to access 
different substrates. It is fundamental that clinical investiga-
tors will study PKCs functions in cancer patient samples as 
well. The information about the overexpression or down-
regulation of PKC isozymes, provided with immunohisto-
chemical studies, are still insufficient in order to understand 
the real alteration of these kinase in human cancer. Currently 
integrative methodological approaches, based on techniques 
(i.e. real time PCR, immunofluorescence) which better quan-
tify the levels of expression of PKCs at mRNA level, or de-
scribe subcellular localization of the active kinases, are on-
going. In general, an integrative methodological approach is 
recommended [reviewed in 168]. A successful example of 
this is the characterization of the oncogenic role of PKC-� in 
human ovarian cancer, first highlighted with array-based 
comparative genomic hybridization and then validated with 
data regarding both RNA and protein expressions (RT-PCR, 
tissue array and WB) [27]. Proceeding from cancer cell lines 
and then studying patient biopsies, Nazarenko et al. investi-
gated with great detail PKC-� role in ovarian cancer [26]. 
When such approach is not feasible, at least combining a 
study of the phosphorylation status to the immunohistochem-
istry could be already informative of the role of a PKC iso-
form for the development of a specific cancer [32]. 

 Basic research provided selective PKC modulators with 
anti-cancer therapeutic value, several of which are currently 
used in clinical trials, i.e. enzastaurin and bryostatin-1. How-
ever the functional antagonism of PKC isozymes provides an 
ambiguous scenario for therapeutic opportunities, as PKC 
activators (of PKC-�) and inhibitors (of PKC-�) could both 
potentially act as anti-neoplastic drugs. Beside this, we 
should consider other factors limiting the success of first 
generation PKC modulators in anti-cancer therapeutical ap-
proaches. First of all, they are often not completely specific 
for single PKC isozymes, i.e. bryostatin-1. Second remark, 
clinical trials have offered limited information about the real 
PKC modulation in the treated patients. For this purpopose, 
several efforts are ongoing in order to identify surrogate 
markers that at least can monitor the efficacy of the adminis-
tered dose of PKC modulator. At present GSK-3� inhibition, 
VEGF plasma levels, release of IL6 and TNF-� by patients 
PBMCs stimulated or not in vitro with phytohemoagglutinin, 
are the biomarkers that performed best in monitoring enzas-
taurin or bryostatin-1 activity [168-169]. Furthermore, the 
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clinical trials provided limited information about the patients 
who have benefited from PKC inhibitor. We need a critical 
review of the positive and negative achievements of all the 
completed clinical trials, in order to reach a fine tuning of the 
several functions of PKCs in cancer progression, metastasis 
and neoangiogenesis. In addition, whereas PKCs have been 
extensively studied as phorbol-ester receptors, there is a gen-
eral assumption that tyrosine-kinase receptors equally trans-
locate and activate PKC isozymes through PLC-mediated 
DAG generation. Therefore the combination of an "up-
stream-downstream" therapeutical approach might reveal 
noteworthyly effective. 

 In conclusion, we need a better knowledge of the spatial-
regulated mechanisms underlying the PKC isozymes func-
tions. Only in this way, a function-oriented synthesis ap-
proach of new PKC modulators, potentially derived even 
from natural compounds, will provide tools for a fine PKC 
tunability in cancer patients enrolled in clinical trials. First 
generation of PKC inhibitors already provided encouraging 
results when combined with other anti-neoplastic drugs, 
hence combinations with TRAIL/p53-restoring pathway 
agents/tyrosine kinase receptor small molecules inhibitors 
could be explored in the next future. Together with a more 
systematic clinical investigation of cancer patients enrolled 
in clinical trials for PKC isozymes modulating drugs, a fu-
ture anti-cancer therapy including PKC isozyme targeting 
looks much closer. 
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ABBREVIATIONS 

Adv = Advanced 

aPKCs = Atypical PKCs 

CLL = Chronic Lymphocytic Leukemia 

CML = Chronic Myeloid Leukemia 

cPKCs = Classic/conventional PKCs 

DAG = Diacylglycerol 

DLBCL = Diffuse Large B-Cell Lymphoma 

ELISA = Enzyme Linked ImmunoSorbent Assay 

FACS = Flow cytometry analysis 

GE = Gastro-Esophageal 

GIST = Gastro-Intestinal Stromal Tumour 

HD = Higher Dose 

IHC = Immunohistochemistry 

IU = International Units 

Ka = Carcinoma 

mcg = Micrograms  

MCL = Mantle Cell Lymphoma 

MM = Multiple Myeloma, 

Mo = Months 

NHL = Non-Hodgkin Lymphoma 

nPKCs = Novel PKCs 

NSCLC = Non-Small Cell Lung Cancer 

Obj = Objective 

PB1 = Phox/Bem1 domain 

PFS = Progression Free Survival 

PKC = Protein kinase C  

PR = Partial Response 

Pts = Patients 

RCC = Renal Cell Carcinoma 

RT-PCR = Reverse Trascription Polymerase Chain Reac-
tion 

SCC = Squamous Cell Carcinoma 

WB = Western blot 
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