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Abstract
This study deals with the evaluation of the longitudinal and transverse coupling imped-
ance of a charge travelling in a drift tube with a perfectly electric conductive angular strip.
The problem is formulated in the particle frame as dual series equations, and efficiently
solved through the representation of the unknown in terms of Neumann series. Then, the
electric parameters are obtained in the pipe frame through the Lorentz transforms. The
presented solution can be adopted as the general methodology in case of angular dis-
continuities in particle accelerators.

1 | INTRODUCTION

Modern particle accelerators require an even higher primary
beam energy, in order to investigate unexplored mass regions
and to search for the very rare events that would be associated
with new particles. This requires even higher dimensions, more
powerful magnets and better control systems [1–4].

One critical aspect in the design and control of particle
accelerators is the beam instability. This is caused by the inter-
action between the particle beam and the surrounding structure
that is the electromagnetic interaction between the beam and the
currents induced on the inner walls of the particle accelerator.
This can lead to phenomena such as the frequency shift (change
of the betatron or synchrotron frequency), the increase of a
small initial disturbance, the bunch instability, or a change of the
particle distribution, e.g. bunch lengthening [5–8]. The shape of
the different elements constituting the particle accelerator af-
fects the kind of disturbance that can be produced on the par-
ticle beam, so their design is essential to ensure the proper
performance of the machine [9].

The synthetic design parameter commonly adopted in
literature to take into account the effect of a structure on a
travelling particle is the coupling impedance [10–12]. This
parameter is proportional to the energy lost by the travelling
charge due to the interaction with the specific surrounding

structure, or equivalently to the energy to be spent to keep the
charge speed at constant nevertheless the surrounding structure.
For structures invariant along the charge travelling direction, per
unit length coupling impedance has to be introduced [11],
whose longitudinal and transverse components can be defined as

Zk r;φ; kð Þ ¼ −
1
q
1
L

∫
L=2

−L=2
Ez r;φ; z;ωð Þejkz=βdz ð1aÞ

Z⊥ r;φ; kð Þ ¼
1
k
∇⊥Zk r;φ; kð Þ ð1bÞ

L being a unitary length, Ez r;φ; z;ωð Þ the z‐component of
the electric field in the frequency domain, k the wavenumber,
and the charge q is moving at constant velocity v¼ βc along
the z axis. The second equation in Equation (1) is known as the
Panofski‐Wenzel theorem [13].

For complex geometries, numerical tools are adopted to
compute the coupling impedance, leveraging on the powerful
computing resources that are currently available. Although
such a methodology allows getting results in a reasonably short
time; for very complex structures, it often does not allow to
fully appreciate the dependence of the quantities of interest as
a function of the parameters of the problem. On the other
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hand, analytical or semi‐analytical methods, although suitable
for more canonical geometries, still play a valuable role in this
field allowing a better understanding of the physics of some
phenomena [14, 15]. Modal analyses are often adopted for
closed structures [16], diffractive methods for high‐frequency
solutions and integral formulations for open geometries or in
presence of edges [16–19]. Validation methods are based on
the measurement of the coupling impedance using a wire as a
source current instead of a travelling charge [20–22].

Most of the studies in the literature concern axial‐
symmetrical geometries, which also represent most of the
existing geometries. In fact, the axial symmetry avoids that
the electromagnetic interaction between the structure and the
beam tends to deviate the latter from the axis. However,
there are also some structures without axial symmetry in par-
ticle accelerators. In the present study, we consider the prob-
lem of a travelling particle in a pipe in which there is an angular
strip, as illustrated in Figure 1. Although the angular strip is in
axis with the pipe, its limited angular width creates an asym-
metry in the structure. The method used can be easily gener-
alised to other problems of non‐axial‐symmetrical structures.

Being the structure that is ideally indefinite along the axis of
the cylindrical pipe, for such a problem, an electrostatic model
can be adopted in the particle frame. The problem is formulated
in terms of dual series equations (DSE), as a result of the
transformation of the singular integral equation (IE) to the
domain of discrete Fourier transform. DSEs are then reduced to
the resolution of a linear system. Once the electromagnetic
quantities are computed, their values in the angular strip frame
can be obtained by means of Lorentz transforms.

In order to distinguish the spatial and electromagnetic
quantities, we adopt the primed notation in the particle frame
(e.g. z0) and the unprimed notation in the pipe frame (e.g. z).
Additionally, we use the apex/subscript q to refer to the par-
ticle quantities, p to the pipe and s to the angular strip.

2 | FORMULATION OF THE PROBLEM

Let us consider the geometry shown in Figure 1: a perfectly
conducting angular strip Ss ¼ fr ¼ a; jφj ≤ φa; zg at distance
a from the axis and covering an angular sector of 2φa, inside a
cylinder Sp ¼ fr ¼ b;φ; zg at distance b > a from the axis. A
travelling charge q moves parallel to the angular strip's axis,

placed at (rq, φq), at constant speed v¼ βc, being c the speed
of light in free space.

It is useful to introduce a temporal and a spatial Fourier
transform

FðωÞ ¼ ∫
þ∞

−∞
f ðtÞe−jωtdt f ðtÞ ¼

1
2π

∫
þ∞

−∞
FðωÞejωtdω ð2Þ

ef ðwÞ ¼
1
2π

∫
þ∞

−∞
f ðzÞejwzdz f ðzÞ ¼ ∫

þ∞

−∞

ef ðwÞe−jwzdw ð3Þ

For clarity of notation, we specify that we use the notation
f ðz; tÞ in time and space domain, Fðz;ωÞ when introducing a
time Fourier transform and ef ðw; tÞ when introducing a spatial
Fourier transform.

It is convenient to formulate the problem in the particle
frame since, as anticipated in the previous section, an elec-
trostatic formulation can be adopted. The expression of the
electric field due to a charge in a perfectly conductive cylin-
drical pipe can be expressed, as shown in the appendix, as

e0r;qp ¼ −q
Xþ∞

m¼−∞
ejm φ0−φqð Þ ∫

þ∞

−∞

∂Gqp
m

∂r0
r0; rq;w
� �

e−jwz0dw ð4Þ

e0φ;qp ¼ −
j2q
r0
Xþ∞

m¼−∞
mejm φ0−φqð Þ ∫

þ∞

−∞
Gqp

m r0; rq;w
� �

e−jwz0dw

ð5Þ

e0z;qp ¼ jq
Xþ∞

m¼−∞
ejm φ0−φqð Þ ∫

þ∞

−∞
wGqp

m r0; rq;w
� �

e−jwz0dw ð6Þ

where

Gqp
m r0; rq;w
� �

¼
1

4π2ϵ0
⋅

⋅

Km wr0ð Þ Im wrq
� �

−
Im wrq
� �

Im wbð Þ
Km wbð Þ Im wr0ð Þ;

r0 ≥ rq

Km wrq
� �

Im wr0ð Þ −
Im wrq
� �

Im wbð Þ
Km wbð Þ Im wr0ð Þ;

r0 ≤ rq

8
>>>>>>><

>>>>>>>:

ð7Þ

F I GURE 1 Geometry of the problem
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A charge density σ0s r0 ¼ a;φ0; z0ð Þ is induced on the angular
strip. The components of the electric field generated by such
charge density can be expressed, in analogy with the previous
expressions, as

e0r;s ¼ −2πa
Xþ∞

m¼−∞
ejmφ0 ⋅

⋅ ∫
þφa

−φa

∫
þ∞

−∞
eσs φ00;w
� � ∂Gqp

m
∂r0

r0; a;wð Þ e−jwz0e−jmφ00dwdφ00

ð8Þ

e0φ;s ¼ −
j4πa
r0

Xþ∞

m¼−∞
mejmφ0 ⋅

⋅ ∫
þφa

−φa

∫
þ∞

−∞
eσs φ00;w
� �

Gqp
m r0; a;wð Þ e−jwz0e−jmφ00dwdφ00

ð9Þ

e0z;s ¼ 2πaj
Xþ∞

m¼−∞
ejmφ0 ⋅

⋅ ∫
þφa

−φa

∫
þ∞

−∞
eσs φ00;w
� �

wGqp
m r0; a;wð Þ e−jwz0e−jmφ00dwdφ00

ð10Þ

being eσs φ00;w
� �

the spatial transform of σs φ00; z00
� �

according
to Equation (3). It is worth noting that the above expressions
do not represent the electric field of an angular strip in the free
space, but of an angular strip in the pipe. This is evident by
observing that the fields e0φ;s and e0z;s vanish on the pipe by
construction, since Gqp

m b; a;wð Þ ¼ 0.
Being the surfaces that are perfectly conducting, the

boundary condition to be verified is the tangential components
of the electric field that vanish on them, namely

e0z;sðr
0 ¼ a;φ0; z0Þ þ e0z;qpðr

0 ¼ a;φ0; z0Þ ¼ 0 ð11Þ

e0φ;sðr
0 ¼ a;φ0; z0Þ þ e0φ;qpðr

0 ¼ a;φ0; z0Þ ¼ 0 ð12Þ

for every ðφ0; z0Þ ∈ Ss.
Considering the expressions Equations (10) and (6) and

performing an inverse Fourier transform along z, Equa-
tion (11) leads to

Xþ∞

m¼−∞
ejmφ0Gqp

m a; a;wð Þ ∫
þφa

−φa

eσs φ00;w
� �

e−jmφ00dφ00¼

¼ −
q

2πa

Xþ∞

m¼−∞
ejm φ0−φqð ÞGqp

m a; rq;w
� �

ð13Þ

for jφ0j ≤ φa.
Considering the expressions Equations (9) and (5) and

performing an inverse Fourier transform again along z,
Equation (12) leads to

Xþ∞

m¼−∞
me jmφ0 ∫

þφa

−φa

eσs φ00;w
� �

Gqp
m a; a;wð Þe−jmφ00dφ00 ¼

¼ −
q

2πa

Xþ∞

m¼−∞
mejm φ0−φqð ÞGqp

m a; rq;w
� �

ð14Þ

It is trivial to observe that Equation (14) can be obtained
by deriving Equation (13) with respect to φ0. Therefore, if
Equation (13) is satisfied for every φ0, then Equation (14) is
verified as well.

In order to ensure the uniqueness of the solution, it is also
necessary to impose another condition in the complementary
domain, that is

eσs φ00;w
� �

¼ 0 ∀ jφ00j > φa ð15Þ

Equations (13) and (15) constitute a system of dual series
equations (DSE). To efficiently solve the problem, it is possible
to represent the unknown in terms of Neumann series [23]:

eσ0sðφ
0;wÞ¼

¼

−
q

2π2aφa

X∞

n¼0
jneσnðwÞ

Tn φ0=φað Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − φ0=φað Þ
2

q ; φj j ≤ φa

0 ; φj j > φa

8
>><

>>:

ð16Þ

where Tnð⋅Þ is the Chebychev polynomial of order n [24]. With
such a normalisation, dimensionless expansion coefficients are
obtained in the transformed domain.

The chosen representation takes origin from the more
generical Neumann series, particularised for this problem [23].
It automatically matches the right edge behaviour, thus regu-
larising the method and reducing the computational effort for
the numerical evaluation of the solution.

In addition, the chosen current density representation
already vanishes outside the angular strip. Then, by taking
advantage of the relevant integral [23].

∫
þφa

−φa

Tn φ0=φað Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − φ0=φað Þ
2

q ejmφ0dφ0 ¼ φaπj
nJn mφað Þ ð17Þ

and by substituting the representation Equation (16) into
Equation (13), it is found that

X∞

n¼0
eσn wð Þ

Xþ∞

m¼−∞
ejmφ0 Jn mφað ÞGqp

m a; a;wð Þ ¼

¼
Xþ∞

m¼−∞
ejm φ0−φqð ÞGqp

m a; rq;w
� �

ð18Þ
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By projecting Equation (18) on the same representation
basis and integrating over φ0, in the end it can be found

X∞

n¼0
eσn wð Þ

Xþ∞

m¼−∞
Jn mφað Þ Jr mφað ÞGqp

m a; a;wð Þ ¼

¼
Xþ∞

m¼−∞
Jr mφað ÞGqp

m a; rq;w
� �

e−jmφq ð19Þ

In such a way, the solution of the DSE Equations (13)–(15)
is converted into a linear system in the form

Aeσ¼ b ð20Þ

whose solution allows to evaluate the expansion coefficients
eσn. The terms of the symmetric matrix A can be expressed
with some manipulations as

Anr ¼

¼

δ0n δ0r G
qp
0 a; a;wð Þþ

þ2
Xþ∞

m¼1
Jn mφað Þ Jr mφað ÞGqp

m a; a;wð Þ ; nþ r even

0 ; nþ r odd

8
>>>>>><

>>>>>>:

ð21Þ

δnr is the Kronecker symbol. The elements of the known term
are

br ¼

¼

δ0r G
qp
0 a; rq;w
� �

þ

þ2
Xþ∞

m¼1
cos mφq

� �
Jr mφað ÞGqp

m a; rq;w
� �

r even

−2j
Xþ∞

m¼1
sin mφq

� �
Jr mφað ÞGqp

m a; rq;w
� �

r odd

8
>>>>>>>>><

>>>>>>>>>:

ð22Þ

These results allow us to make several considerations about
the solution. The fact that the terms Anr are null when nþ r is
odd implies that the matrix A can be split into two submatrices,
allowing the unknown coefficients even and odd to be calcu-
lated separately. Moreover, since φq ¼ 0 the odd coefficients of
br are zero; similarly,the odd coefficients of σn are also zero.
Therefore, we find what is expected by the symmetry of the
problem in the formulation, i.e. when the particle is on the axis
of symmetry of the angular strip, the induced current on the
strip is an even function. Finally, since all the terms of Anr are
real, while the br are real for r even and imaginary for r odd,
the coefficients σn are also real for n even and imaginary for n
odd. Given the equation (16), this implies that the expression
of the induced current is always real.

2.1 | Computational enhancement

Although equation (20) formally solves the problem, unfor-
tunately equation (21) has a very slow convergence that affects
the numerical computation.

For high values of m, the following approximation is valid
for n + r even [24]

Jn mφað Þ Jr mφað ÞGqp
m a; a;wð Þ≃

≃
−1ð Þ

nþr
2

8π3φaϵ0
1 −

a
b

� �2m
� �

1þ sin 2mφað Þ

m2

ð23Þ

and in general

Jr mφað ÞGqp
m a; rq;w
� �

≃
1

25=2π5=2φ1=2
a ϵ0

⋅

⋅
rmq
am

−
rmq a

m

b2m

� �
cos mφa − rπ=2 − π=4ð Þ

m3=2

ð24Þ

Additionally, it is known that

X∞

m¼1
xm

sin myð Þ

ms ¼
j
2
Lis xe−jy� �

− Lis xejy
� �� �

ð25Þ

X∞

m¼1
xm

cos myð Þ

ms ¼
1
2
Lis xe−jy� �

þ Lis xejy
� �� �

ð26Þ

Lis ⋅ð Þ being the polylogarithmic function of index s. Note that
Equations (25) and (26) are the sum of real function, so their
sums are real even if expressed as the sum of complex func-
tions [26].

Therefore, Equation (20) can be rewritten as

A0 þ A∞� �
eσ¼ b0 þ b∞ ð27Þ

where, remembering that the matrix must be calculated only
for nþ r even

A0
nr ¼ δ0n δ0r G

qp
0 a; a;wð Þ þ

þ 2
Xþ∞

m¼1

"

Jn mφað Þ Jr mφað ÞGqp
m a; a;wð Þ þ

−
−1ð Þ

nþr
2

8π3φaϵ0
1 −

a
b

� �2m
� �

1þ sin 2 mφað Þ

m2

#

ð28Þ

A∞
nr ¼

−1ð Þ
nþr
2

8π3φaϵ0
π2

6
− Li2

a2

b2

� ��

þ

þ
j
2
Li2 e−j2φa
� �

− Li2 ej2φa
� �� �

þ

−
j
2

Li2
a2

b2
e−j2φa

� �

− Li2
a2

b2
ej2φa

� �� ��

ð29Þ
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and for r even

b0r ¼ δ0r G
qp
0 a; rq;w
� �

þ

þ 2
Xþ∞

m¼1
cos mφq

� �
"

Jr mφað ÞGqp
m a; rq;w
� �

þ

−
−1ð Þ

r=2

25=2π5=2φ1=2
a ϵ0

rmq
am

−
rmq a

m

b2m

� �
cos mφa − π=4ð Þ

m3=2

#

ð30Þ

b∞
r ¼

−1ð Þ
r=2

16π5=2φ1=2
a ϵ0

⋅

⋅ 1þ jð Þ Li3=2
rq
a
e−j φa−φqð Þ

� �
− Li3=2

rqa
b2
e−j φa−φqð Þ

� ���

þ

þ Li3=2
rq
a
e−j φaþφqð Þ

� �
− Li3=2

rqa
b2
e−j φaþφqð Þ

� ��

þ

þ 1 − jð Þ Li3=2
rq
a
ej φa−φqð Þ

� �
− Li3=2

rqa
b2
ej φa−φqð Þ

� ��

þ

þ Li3=2
rq
a
ej φaþφqð Þ

� �
− Li3=2

rqa
b2
ej φaþφqð Þ

� ���

ð31Þ

and for r odd

b0r ¼ −2j
Xþ∞

m¼1
sin mφq

� �
"

Jr mφað ÞGqp
m a; rq;w
� �

þ

−
−1ð Þ

ðr−1Þ=2

25=2π5=2φ1=2
a ϵ0

rmq
am

−
rmq a

m

b2m

� �
cos mφa − π=4ð Þ

m3=2

#

ð32Þ

b∞
r ¼

−1ð Þ
ðr−1Þ=2

16π5=2φ1=2
a ϵ0

⋅

⋅ −1 − jð Þ Li3=2
rq
a
e−j φa−φqð Þ

� �
− Li3=2

rqa
b2

e−j φa−φqð Þ
� �

þ

��

− Li3=2
rq
a
e−j φaþφqð Þ

� �
þ Li3=2

rqa
b2

e−j φaþφqð Þ
� ��

þ

þ 1 − jð Þ Li3=2
rq
a
ej φa−φqð Þ

� �
− Li3=2

rqa
b2

ej φa−φqð Þ
� �

þ

�

− Li3=2
rq
a
ej φaþφqð Þ

� �
þ Li3=2

rqa
b2

ej φaþφqð Þ
� ��

ð33Þ

It is worth noting that Equations (29), (31) and (33) do not
depend by the parameter w. On one hand, it means that they
can be computed just once even if it is necessary to perform a
sweep over w, thus further reducing the computational effort.

On the other hand, it means that the quality of the approxi-
mation depends on such a parameter that is the smaller w is,
the better is the approximation. This will be discussed again in
Section 4.

3 | COUPLING IMPEDANCE

Once the induced current density on the angular strip is
computed, in order to evaluate the coupling impedance, it is
possible to compute the electromagnetic field and so the
coupling impedance.

According to the previous decomposition, the z‐
component of the total electric field is the sum of the quan-
tities Ez;qp and Ez;s. However, in order to calculate the coupling
impedance, it is necessary to subtract from the total field the
contribution of the field produced by the charge itself.

Therefore, the expression of the electric field to be
calculated for the evaluation of the coupling impedance can be
expressed as

Ez r;φ; z;ωð Þ ¼ Ez;p r;φ; z;ωð Þ þ Ez;s r;φ; z;ωð Þ ð34Þ

In the particle frame, the field E0z;p has the same expression
of using Equation (6) instead the kernel Equation (56), while
the field E0z;s is expressed according to Equation (10).

At first, it is necessary to perform a change of reference, in
order to express the electric field in the pipe frame. This can be
easily performed by the Lorentz transforms [27]. Considering
that the charge travels parallel to the z‐axis, the transforms
areas follows:

e0z ¼ ez; q0 ¼ qγ; σ0 ¼ σγ; r0 ¼ r; φ0 ¼ φ; z0 ¼ γ z − vtð Þ:

ð35Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
is the Lorentz factor.

By applying the Lorentz transform to the field e0z;p and then
Equation (2) in the pipe frame in the frequency domain, it is
found

Ez;p ¼
j2πqk

β

Xþ∞

m¼−∞
ejm φ−φqð ÞGp

m r; rq; κ
� �

e−jkz=β ð36Þ

being k¼ ω=c and κ ¼ k=βγ.
With similar operations, it can be found that

Ez;s ¼ −
jqπk

β

Xþ∞

m¼−∞
ejmφGqp

m r; a; κð Þ⋅

⋅
X∞

n¼0
eσnðκÞJn mφað Þ e−jkz=β

ð37Þ

Therefore, considering the definition Equation (1) and the
electric fields Equations (36) and (37), the longitudinal
coupling impedance can be finally expressed as
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Zk;q r;φ; kð Þ ¼

¼ −
jπk
β

Xþ∞

m¼−∞
ejmφ

 

2e−jmφqGp
m r; rq; κ
� �

þ

− Gqp
m r; a; κð Þ

X∞

n¼0
eσnðκÞJn mφað Þ

!

ð38Þ

By applying the Panofski‐Wenzel theorem Equation (1b), it
is also possible to evaluate the two components of the trans-
verse impedance

Z⊥;r r;φ; kð Þ ¼

¼ −
j2π
β

Xþ∞

m¼−∞
ejmφ e−jmφq

∂Gp
m

∂r
r; rq; κ
� �

�

þ

−
∂Gqp

m
∂r

r; a; κð Þ
X∞

n¼0
eσnðκÞJn mφað Þ

!
ð39Þ

Z⊥;φ r;φ; kð Þ ¼

¼
2π
rβ

Xþ∞

m¼−∞
mejmφ

 

e−jmφqGp
m r; rq; κ
� �

þ

−Gqp
m r; a; κð Þ

X∞

n¼0
eσnðκÞJn mφað Þ

!
ð40Þ

3.1 | Special case: particle on the axis

The previous expressions of the longitudinal and transverse
impedance have general validity. However, they are usually
computed under particular conditions.

Under normal operating conditions, the travelling charge
moves in a particle accelerator along the pipe axis. So, the most
important and also generally considered condition for the
analyses is rq ¼ 0.

Additionally, the coupling impedance itself is evaluated
along the pipe axis, i.e. r ¼ 0.

In such conditions, it has to be considered that

Gp
m 0; 0; κð Þ ¼

−
1

4π2ϵ0
K0 bκð Þ
I0 bκð Þ

; m¼ 0

0 ; m > 0

8
><

>:
ð41Þ

Gqp
m 0; a; κð Þ ¼

¼

1
4π2ϵ0

K0 aκð Þ −
I0 aκð Þ
I0 bκð Þ

K0 bκð Þ
� �

; m¼ 0

0 ; m > 0

8
><

>:

ð42Þ

Then Equations (38), (39) and (40) reduce to

Zk 0; kð Þ ¼ −
j2πk

β
Gp

0 0; 0; κð Þ − eσ0ðκÞG
qp
0 0; a; κð Þ

� �
ð43Þ

Z⊥;r 0;φ; kð Þ ¼
jκ

2πϵ0β
ejφ⋅

⋅ K1 κað Þ −
I1 κað Þ
I1 κbð Þ

K1 κbð Þ
� �

X∞

n¼0
eσnðκÞJn φað Þ

ð44Þ

Z⊥;φ 0;φ; kð Þ ¼ −
κ

2πϵ0β
ejφ⋅

⋅ K1 κað Þ −
I1 κað Þ
I1 κbð Þ

K1 κbð Þ
� �

X∞

n¼0
eσnðκÞJn φað Þ

ð45Þ
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F I GURE 2 Convergence of the term A00 with different computational methods. Parameters: β¼ 0:9; b¼ 10 cm, a¼ 8 cm, φa ¼ 45°
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Considering that bx ¼ brcosφ − bφsinφ, the two expressions
of the transverse coupling impedance can be combined into
one directed along the bx axis as

Z⊥;x 0;φ; kð Þ ¼
jκ

2πϵ0β
⋅

⋅ K1 κað Þ −
I1 κað Þ
I1 κbð Þ

K1 κbð Þ
� �

X∞

n¼0
eσnðκÞJn φað Þ

ð46Þ

Such a result is coherent with the symmetry of the
structure.

4 | NUMERICAL RESULTS

Before showing some calculations of the coupling impedance,
it is worth discussing about the efficiency of the proposed
method.
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F I GURE 3 Coefficients σn for different values of κb. Parameters: β ¼ 0:9; b¼ 10 cm, a¼ 8 cm, φa ¼ 45°; rq ¼ 0
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F I GURE 4 Coefficients σn for different distances of the particle from the angular strip. Parameters: β ¼ 0:9; b¼ 10 cm, a¼ 8 cm,
φa ¼ 45°;φq ¼ 30°; κb¼ 1
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First, it is worthy to discuss the advantage of rewriting the
problem as in Equation (27). Therefore, as an example, we
consider the element A0;0 of the system matrix, which is also
the most relevant one. We consider a pipe with a radius
b = 10 cm and an angular strip of radius a = 8 cm and semi‐
amplitude φa = 45°. We compute the partial sums of Equa-
tion (21) and the sum of Equations (28) and (29) as the
function of m, evaluating the relative error with respect to the
asymptotic values computed with 109terms. The results are
shown in Figure 2 in the cases of κb¼ 1 and κb¼ 10. To reach

a relative error of 10−6 about 1.000.000 terms are required
computing the whole series, while less than 1.000 are required
analytically subtracting the asymptotic part. Additionally, as
expected, the benefit of the approximation slightly decreases as
κ increases, still providing an excellent improvement even at
higher frequencies.

Then, we discuss about the efficiency of the method and
the convergence of the series σn. The proposed method turns
out to be extremely efficient in the case of greater real interest,
that is rq ¼ 0, about 10 coefficients are enough to correctly
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)|/
q
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r
q
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r
q
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F I GURE 5 Charge density eσ0sðφ0; κÞ for different distances of the particle from the angular strip. Parameters: β¼ 0:9; b¼ 10 cm, a¼ 8 cm,
φa ¼ 45°;φq ¼ 30°; κb¼ 1
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F I GURE 6 Longitudinal coupling impedance for different amplitudes of the strip. Parameters: β ¼ 0:9; b¼ 10 cm, a¼ 8 cm
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reconstruct the current density. This is illustrated in Figure 3
for different values of b kappa. It is worth noting that in such a
condition, as expected, the odd coefficients are zero.

The number of coefficients slightly increases as the particle
is closer to the angular strip; in Figure 4, the coefficients are
shown for different positions of the particle. The effect can be
better understood in Figure 5, where the function eσ0sðφ0; κÞ is
shown in the same conditions. It is evident that as the particle
approaches the strip, the charge density exhibits a behaviour
that tends towards a singularity, which requires more co-
efficients to be reconstructed. However, even when the particle

is very close to the strip, which is a condition far from reality,
the method is found to be very efficient. In these simulations,
we have chosen φq ≠ 0 to show the appearance of odd co-
efficients too.

The, we show some calculations of the coupling imped-
ance, in the case of main interest rq ¼ 0 and r ¼ 0. According
to the considerations of the previous section, all the plots are
related to the imaginary part of the coupling impedance, and
the real part being null.

In Figures 6 and 7, we choose β¼ 0:9, showing the
behaviour of the longitudinal and transverse impedance as
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F I GURE 7 Transverse coupling impedance for different amplitudes of the strip. Parameters: β ¼ 0:9; b¼ 10 cm, a¼ 8 cm
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F I GURE 8 Longitudinal coupling impedance for different radii of the strip. Parameters: β¼ 0:9; b¼ 10 cm, φa ¼ 45°
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function of the strip amplitude. The blue line corresponds
to the case φa ¼ 0, that is the pipe in the absence of the
angular strip. As the strip's amplitude increases, the longi-
tudinal coupling impedance increases as well. This can be
justified considering that an even bigger structure is going
to be placed closer to the particle, and reducing the dis-
tance between the particle and the surrounding structure
increased the electromagnetic interaction and so the longi-
tudinal impedance. The transverse coupling impedance ex-
hibits a different behaviour as function of the strip's

amplitude. When φa ¼ 0, the transverse impedance vanishes
due to the angular symmetry. As the amplitude increases,
the transverse impedance increases until it reaches its
maximum for φa ¼ 90°. Then it decreases, as it has to
vanish again for φa ¼ 180° as the angular symmetry is
restored.

In Figures 8 and 9, we consider a strip semi‐amplitude
φa ¼ 30°, showing the behaviour of the longitudinal and
transverse impedance as function of the strip radius. As ex-
pected, the impedance significantly increases as the radius
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F I GURE 9 Transverse coupling impedance for different radii of the strip. Parameters: β ¼ 0:9; b¼ 10 cm, φa ¼ 45°
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F I GURE 1 0 Longitudinal coupling impedance for different charge speeds. Parameters: b¼ 10 cm, a¼ 8 cm, φa ¼ 45°
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decreases, the electromagnetic interaction being stronger be-
tween the charge and the strip.

Finally, in Figures 10 and 11 we choose a = 5 cm and
φa ¼ 30°, then performing a sweep on the charge speed. In
this case, it is found that the longitudinal coupling impedance
increases as the particle speed, while the transverse coupling
impedance decreases.

5 | CONCLUSIONS

In this study, a method for the analysis of electromagnetic
problems in the presence of non‐axial‐symmetrical and
edge structures has been applied to a canonical problem
relevant to accelerator physics: a charge travelling in a pipe
with an angular strip inside. Thanks to the proper choice
of the representation basis satisfying the edge conditions,
the proposed method allows to efficiently and accurately
compute the parameters of interest. The method can be
easily generalised to different kinds of non‐axial‐symmetrical
geometries.
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APPENDIX A

ELECTROSTATIC FIELD OF A CHARGE IN A
PIPE
In this appendix, we show how to calculate the scalar potential
and the electric field of an idle charge placed in a perfectly
conductive pipe. In order not to confuse the notation with the
previous formulation, all the spatial and electrical quantities are
primed, since this notation is used in the frame of the particle
where all the charges are stationary.

The distance in cylindrical coordinates can be expanded as
[28].

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21 þ r22 − 2r1r2 cos φ − φ0ð Þ þ z − z0ð Þ
2

q ¼

¼
1
π

Xþ∞

m¼−∞
ejm φ−φ0ð Þ∫

∞

−∞
Im wr1ð ÞKm wr2ð Þe−jw z−z0ð Þdw

ð47Þ

with r1 ≤ r2.
Therefore, the electrostatic potential produced by a charge

placed in rq;φq; 0
� �

in free space can be expressed as

V 0q ¼ q
Xþ∞

m¼−∞
ejm φ0−φqð Þ ∫

þ∞

−∞
Gq

m r0; rq;w
� �

e−jwz0dw ð48Þ

where

Gq
m r0; rq;w
� �

¼
1

4π2ϵ0
Km wr0ð Þ Im wrq

� �
; r0 ≥ rq

Km wrq
� �

Im wr0ð Þ; r0 ≤ rq

�

ð49Þ

The charge inside the pipe induces on the pipe surface a
charge density σ0p r0 ¼ b;φ0; z0ð Þ, producing a potential

V 0p ¼ b ∫
þ∞

−∞
∫
þπ

−π
σ0p φ00; z

0
0

� � Xþ∞

m¼−∞
ejm φ0−φ0ð Þ⋅

⋅ ∫
þ∞

−∞
Gq

m r0; b;wð Þe−jw z0−z00ð Þdwdφ00dz
0
0

ð50Þ

The pipe being perfectly conductive corresponds to
impose that the total scalar potential is constant. Since the
potential of one arbitrary point can be fixed at zero, we choose

such a condition on the pipe. Therefore, with some manipu-
lations, we obtain

∫
þ∞

−∞
∫
þπ

−π
σ0p φ00; z

0
0

� � Xþ∞

m¼−∞
ejm φ0−φ00ð Þ⋅

⋅ ∫
þ∞

−∞
Gq

m b; b;wð Þe−jw z0−z00ð Þdwdφ00dz
0
0 ¼

¼ −
q
b

Xþ∞

m¼−∞
ejm φ0−φqð Þ ∫

þ∞

−∞
Gq

m b; rq;w
� �

e−jwz0dw

ð51Þ

for every φ0; z0 on the pipe.
Considering that

∫
þπ

−π
ejmφ0e−jnφ0dφ0 ¼ 2πδmn ð52Þ

Then, with some manipulations, it is found that

∫
þ∞

−∞
∫
þπ

−π
σ0p φ00; z

0
0

� �
ej wz

0
0−mφ00ð Þdφ00dz

0
0 ¼

¼ −
q
b
e−jmφq

Gq
m b; rq;w
� �

Gq
m b; b;wð Þ

ð53Þ

This allows to express the induced charge density, with
some manipulations, as a Fourier series:

σ0p φ0; z0ð Þ ¼ −
4π2q
b

Xþ∞

m¼0
ejm φ−φqð Þ ∫

þ∞

−∞

Im wrq
� �

Im wbð Þ
e−jwz0dw

ð54Þ

Therefore, Equation (50) can be rewritten as

V 0p ¼ − q
Xþ∞

m¼−∞
ejm φ0−φqð Þ ∫

þ∞

−∞
Gq

m r0; b;wð Þe−jwz0dw ð55Þ

being

Gp
m r0; rq;w
� �

¼ −
1

4π2ϵ0
Im wrq
� �

Im wbð Þ
Km wbð ÞIm wr0ð Þ ð56Þ
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Finally, the scalar potential of a charge in a pipe can be
expressed as

V 0qp ¼ q
Xþ∞

m¼−∞
ejm φ0−φqð Þ ∫

þ∞

−∞
Gqp

m r0; b;wð Þe−jwz0dw ð57Þ

being

Gqp
m r0; rq;w
� �

¼
1

4π2ϵ0
⋅

⋅

Km wr0ð ÞIm wrq
� �

−
Im wrq
� �

Im wbð Þ
Km wbð ÞIm wr0ð Þ;

r0 ≥ rq

Km wrq
� �

Im wr0ð Þ −
Im wrq
� �

Im wbð Þ
Km wbð ÞIm wr0ð Þ;

r0 ≤ rq

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð58Þ

Therefore, the three components of the electric field of a
charge in a perfectly conductive pipe can be expressed as
follows:

e0r;qp ¼ − q
Xþ∞

m¼−∞
ejm φ0−φqð Þ ∫

þ∞

−∞

∂Gqp
m

∂r0
r0; rq;w
� �

e−jwz0dw ð59Þ

e0φ;qp ¼ −
j2q
r0
Xþ∞

m¼−∞
mejm φ0−φqð Þ ∫

þ∞

−∞
Gqp

m r0; rq;w
� �

e−jwz0dw ð60Þ

e0z;qp ¼ jq
Xþ∞

m¼−∞
ejm φ0−φqð Þ ∫

þ∞

−∞
wGqp

m r0; rq;w
� �

e−jwz0dw ð61Þ

APPENDIX B

RELATION WITH PREVIOUS WORKS
Some of the authors have already discussed in [19] the problem
of a particle travelling parallel to an angular strip in the free
space that is in the absence of the pipe. In this section, we
show how the previous work can be considered a special case
of the present formulation and the improvements in the pre-
sent formulation.

In order to consider the angular strip in the free space in
the present formulation, it is possible to consider the limit for
b→ ∞. In such a limit, Equation (7) tends to Equation (49).
Then, considering that

K0 w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21 þ r22 − 2r1r2cos φ − φ0ð Þ

q� �

¼

¼
Xþ∞

m¼−∞
ejm φ−φ0ð ÞIm wr1ð ÞKm wr2ð Þ

ð62Þ

with r1 ≤ r2, it is easy to verify that Equation (13) is a gener-
alisation of Equation (10) in [19].

However, the present work in not just a generalisation of
[19]. In the previous study, the adopted project scheme did not
benefit from the possible expansion of the potentials and fields
in cylindrical harmonics. The expansion (16) is just replaced
into the integral equation, which is directly projected on the
same expansion basis. Instead, in this study, the adoption of
the projection scheme based on Equation (17), allows to fully
take advantage of the Neumann series expansion, leading to a
more efficient and more accurate calculation of the coefficients
of the linear system Equation (21). It is trivial to verify that in
the actual formulation, in the case b→ ∞, adopting the same
projection scheme of [19], the same expression of A and b
would have been found.

ASSANTE ET AL. - 1359

 17518733, 2021, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/m

ia2.12181 by C
ochraneItalia, W

iley O
nline L

ibrary on [22/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Coupling impedance of a PEC angular strip in a vacuum pipe
	1 | INTRODUCTION
	2 | FORMULATION OF THE PROBLEM
	2.1 | Computational enhancement

	3 | COUPLING IMPEDANCE
	3.1 | Special case: particle on the axis

	4 | NUMERICAL RESULTS
	5 | CONCLUSIONS
	FUNDING


