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Abstract We classify path polyominoes which are level and pseudo-Gorenstein.
Moreover, we compute all level and pseudo-Gorenstein simple thin polyomi-
noes with rank less than or equal to 10. We also compute the regularity of the
pseudo-Gorenstein simple thin polyominoes in relation to their rank.
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1 Introduction

The ideals generated by a subset of 2-minors of an m × n matrix of inde-
terminates are an intensively-studied class of binomial ideals, due to their
applications in algebraic statistics. Among these ideals, one finds the determi-
nantal ideals, see, for instance, [2] and its references to original articles, the
ladder ideals introduced by Conca in [4], and the ideals of adjacent minors
introduced by Hoşten and Sullivan in [13]. More recently two new classes of
ideals of this kind were introduced: the binomial edge ideals by Herzog et al.
in [9], and independently by Ohtani in [16] and polyomino ideals by Qureshi
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in [17]. A nice survey on these ideals is the book [10]. We recall that poly-
ominoes arise from two-dimensional objects obtained by joining edge by edge
unitary squares (see [7]). Over the last few years, algebraic properties of poly-
omino ideals have been investigated. Within them, one of the nicest result
is that simple polyominoes, roughly speaking polyominoes without holes, are
Cohen-Macaulay domains (see [11,19]).

Moreover, under the assumption that the polyomino P is simple and thin,
namely it does not contain a square tetromino as subpolyomino, the first and
second authors, described the Hilbert-Poincaré series of S/IP (see Section 2
for the definition of the ring) in terms of the rook complex defined on P (see
[20]). Thanks to this observation, they characterized the Gorenstein simple
thin polyominoes. Until now only some other cases of Gorenstein polyominoes
are known (see [1,3,6,17,18]).

There are two interesting generalizations of Gorenstein rings: level rings
(see [24]) and pseudo-Gorenstein rings (see [5]). Observing that a ring is Goren-
stein if and only if the canonical module is a cyclic module, and hence generated
in a single degree, the two generalizations naturally arise. In fact, if one only
requires that the generators of the canonical module are of the same degree,
then the ring is called level, and if one requires that there is only one generator
of least degree, then we call it pseudo-Gorenstein. A first study on this topic
on binomial edge ideals has been carried on by the first and third authors (see
[22]).

As stated by Herzog and others (see [5]), since pseudo-Gorenstein rings
can be identified by the property that the leading coefficient of the numerator
polynomial of the Hilbert series is equal to 1, pseudo-Gorenstein rings are
much easier accessible than level rings. This assertion is in particular true for
simple thin polyominoes. In fact they can be described by the existence of
a unique configuration of non-attacking rooks of maximum cardinality (see
Lemma 1).

Most of our paper is dedicated to the classification of level (see Theorem 10)
and pseudo-Gorenstein (see Theorem 4) simple polyominoes that are paths.

After giving the necessary preliminaries (see Section 2), in Section 3 we
give a complete description of pseudo-Gorenstein path polyominoes in terms
of the non-existence of odd stair, where a stair is a sequence of intervals of
length 2 inside the path.

To reach the next goal, that is the classification of path polyominoes that
are level, in Section 4 we prove that the socle of the ring S/IP modulo some
linear forms is generated in the same degree. We prove that the non-attacking
rooks defined on P play a fundamental role on the description of the patho-
logical behavior of the stairs. In particular, we prove that any path polyomino
without stair is level. By some technical lemmas we describe all pathological
stairs, namely the bad stairs, whose existence in the path polyomino make it
non-level. These are the ones having length 4,6, or length greater than or equal
to 8. Thanks to bad stair we obtain the classification of path polyominoes that
are level (see Theorem 10).
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In the last section, we focus on simple thin polyominoes. We share the
computation that has been done regarding the classification of Gorenstein,
level and pseudo-Gorenstein simple thin polyominoes. The result of the com-
putation is downloadable from [21]. Inspired by this computation and from
the results on path polyominoes, we describe the regularity of the pseudo-
Gorenstein simple thin polyominoes in relation to their rank (see Theorem
11), and we also present a conjecture on level simple thin polyominoes.

Acknowledgment: The third author thanks the University of Messina for
the hospitality where this project has been started and the National Board for
Higher Mathematics (NBHM), Department of Atomic Energy, Government of
India, for financial support through Postdoctoral Fellowship.

2 Polyominoes and Rook complex

Let a = (i, j), b = (k, ℓ) ∈ N2, with i ≤ k and j ≤ ℓ, the set [a, b] = {(r, s) ∈
N2 : i ≤ r ≤ k and j ≤ s ≤ ℓ} is called an interval of N2. If i < k and j < ℓ,
[a, b] is called a proper interval, and the elements a, b, c, d are called corners
of [a, b], where c = (i, ℓ) and d = (k, j). In particular, a, b are called diagonal
corners and c, d anti-diagonal corners of [a, b]. The corner a (resp. c) is also
called the left lower (resp. upper) corner of [a, b], and d (resp. b) is the right
lower (resp. upper) corner of [a, b]. A proper interval of the form C = [a, a +
(1, 1)] is called a cell. Its vertices V (C) are a, a+(1, 0), a+(0, 1), a+(1, 1). The
sets {a, a+(1, 0)}, {a, a+(0, 1)}, {a+(1, 0), a+(1, 1)}, and {a+(0, 1), a+(1, 1)}
are called the edges of C. Let P be a finite collection of cells of N2, and let C
and D be two cells of P. Then C and D are said to be connected if there is
a sequence of cells C = C1, . . . , Cm = D of P such that Ci ∩ Ci+1 is an edge
of Ci for i = 1, . . . ,m− 1. A collection of cells P is called a polyomino if any
two cells of P are connected. We denote by V (P) = ∪C∈PV (C) the vertex set
of P. The number of cells of P is called the rank of P, and it is denoted by
rk(P).

A polyomino Q is called a subpolyomino of a polyomino P if each cell
belonging to Q also belongs to P, and we write Q ⊆ P. A proper interval [a, b]
is called an inner interval of P if all cells of [a, b] belong to P. We say that a
polyomino P is simple if for any two cells C and D of N2 not belonging to P,
there exists a sequence of cells C = C1, . . . , Cm = D such that Ci /∈ P for any
i = 1, . . . ,m.

We say that two vertices a, b ∈ V (P) are diagonally opposite, or simply
opposite, if they are either diagonal or antidiagonal corners of an inner interval
of P.

A maximal inner interval [a, b] of P with a = (i, j), b = (k, ℓ) and either
k − i = 1 or ℓ − j = 1 is identified as a row or column of cells, called cell
interval. Let P be a simple polyomino. We say that a cell C of P is a leaf if
there exists an edge {u, v} of C such that {u, v} ∩ V (P \ {C}) = ∅. We call
the vertices u and v leaf corners of C.



4 Giancarlo Rinaldo et al.

We say that a polyomino P is thin (see [15], [20]) if P does not contain the
square tetromino (see Figure 1) as a subpolyomino.

Fig. 1: The square tetromino

In a thin polyomino, any maximal interval is a cell interval. For k ∈ N,
k rooks on the cells of a polyomino P are said to be non-attacking if they
do not lie on the same row or column of cells of P, pairwise. The maximum
number of non-attacking rooks is called the rook number of P, denoted by
r(P). We identify the rooks that can be placed on P with the cells of P. The
set RP of sets of non-attacking rooks is a simplicial complex and it is called
rook complex. Let rk be the number of configurations of k-non attacking rooks.
The polynomial

rP(t) =

r(P)∑
k=0

rkt
k

is called the rook polynomial of P. We denote by F(RP) the set of facets of
the rook complex RP .

We recall the following notation from [23]. Let C = {I1, . . . , Is} be the set
of the cell intervals of P.

Definition 1 Let P be a polyomino. A subset A ⊆ C is called a partition of
P if

1. ∀I, J ∈ A we have I ∩ J = ∅;
2.

⋃
I∈A I = P.

Definition 2 An interval I = {C1, . . . , Cm} ∈ C is called embedded if there
exists F = {D1, . . . , Dm} ∈ RP such that for any i ∈ {1, . . . ,m} the set
{Ci, Di} is attacking.

Remark 1 Let I ∈ C be a non-embedded interval. Then any facet F ∈ RP is
such that F ∩ I ̸= ∅.

Definition 3 Let A be a partition of P. If no interval of A is embedded then
A is called super partition. Moreover we call P superpartitionable.

With the help of superpartitions one can characterize the polyominoes having
a pure rook complex RP .

Theorem 1 ([23], Theorem 3.10) Let P be a polyomino. The following are
equivalent:
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(1) RP is pure and has dimension r − 1;
(2) P admits a super partition A with |A| = r.

Let us recall some definitions from commutative algebra which will be used
through out the paper. Let M be a finitely generated graded S-module, where
S is a polynomial ring over an arbitrary field K. Let m be the homogeneous
maximal ideal in S. Then the socle of M is defined as Soc(M) := (0 :M m) =
{z ∈ M | mz = 0}.

Two important homological invariants, projective dimension and Castelnuovo-
Mumford regularity can be computed directly from the Betti table. Let βi,i+j(M)
be the graded Betti numbers of M . Then the projective dimension of M is de-
fined as pdim(M) := max{i : βi,i+j(M) ̸= 0 for some j} and the Castelnuovo-
Mumford regularity (or simply, regularity) of M is defined as reg(M) :=
max{j : βi,i+j(M) ̸= 0 for some i}. We now recall the definition of a level
ring which is intermediate between Cohen-Macaulay and Gorenstein.

Definition 4 Let T be a graded Cohen-MacaulayK-algebra with p = pdim(T )
and r = reg(T ). Then T is called level if βp,p+i(T ) = 0 for i < r.

Let P be a polyomino. Let K be an arbitrary field and S = K[xv : v ∈
V (P)]. The binomial xaxb − xcxd ∈ S is called an inner 2-minor of P if [a, b]
is an inner interval of P, where c, d are the anti-diagonal corners of [a, b]. We
denote by M the set of all inner 2-minors of P. The ideal generated by M in S
is said to be the polyomino ideal of P and it is denoted by IP . The properties
of IP and S/IP arise from combinatorial properties of P.

Let us consider simple thin polyominoes. In [20], the authors study simple
thin polyominoes and prove the following:

Theorem 2 (Theorem 1.1) Let P be a simple thin polyomino such that the
reduced Hilbert-Poincaré series of S/IP is

HPS/IP (t) =
h(t)

(1− t)d
.

Then h(t) is the rook polynomial of P.

In the same article, the authors introduce a property that is fundamental to
characterize Gorenstein simple thin polyominoes.

Definition 5 Let P be a simple thin polyomino. A cell C of P is single if there
exists a unique maximal inner interval of P containing C. If any maximal inner
interval of P has exactly one single cell, we say that P has the S-property.

Theorem 3 Let P be a simple thin polyomino. Then the following conditions
are equivalent:

(1) S/IP is Gorenstein;
(2) P has the S-property.

We now give the definition of the main object of the paper.
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Definition 6 A simple polyomino P is called a path if P = {C1, . . . , Cℓ} such
that

1. Ci ∩ Ci+1 is a common edge for all i = 1, . . . , ℓ;
2. Ci ̸= Cj for all i ̸= j;
3. For all i ∈ {3, . . . , ℓ − 2} and j /∈ {i − 2, i − 1, i, i + 1, i + 2}, one has

Ci ∩ Cj = ∅.
We denote a path polyomino by P = C1C2 · · ·Cℓ. If I1, . . . , Is are the maximal
intervals of P, then we denote by lk the length of Ik, say lk = |Ik| for k ∈
{1, . . . , s}.

An example of path polyomino is shown in Figure 2.

C1

Cℓ

Fig. 2: A path polyomino P

3 Pseudo-Gorenstein path polyominoes

We start this section by the following notion that is fundamental for the char-
acterization of pseudo-Gorenstein, and level, path polyominoes.

Definition 7 Let S be a path polyomino as in Definition 6 and let C =
{I1, . . . , Iλ} be the set of its cell intervals. Then S is called a stair, if λ ≥ 3
and li = 2 for all 1 < i < λ. The length of the stair is λ and S has odd
(resp. even) length if λ is odd (resp. even). We denote by Sλ the stair with
l1 = 2 = lλ and by S̃λ a stair with l1 > 2 or lλ > 2.

A path polyomino P has a stair S, if S is a stair subpolyomino of P, and
S is not a subpolyomino of any stair of greater length contained in P. Given
a path polyomino P, we say that P has no odd stairs if P has no stairs of odd
length.

For some examples of stairs see Figure 3 and Figure 8. The following is a
consequence of [20].

Lemma 1 Let P be a simple thin polyomino. Then S/IP is pseudo-Gorenstein
if and only if there exists a unique configuration of non-attacking rooks of
maximum cardinality.
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Remark 2 Let P be a simple thin polyomino such that S/IP is pseudo-Gorenstein.
Then any interval has at most one single cell. Moreover, let F ∈ F(RP) be
the unique facet of maximum cardinality of the pseudo-Gorenstein ring S/IP .
Then F contains all single cells of P. Indeed, suppose Di is a single cell con-
tained in the interval Ii and let Ci ∈ F with Ci ∈ Ii. Then

(F \ {Ci}) ∪ {Di}

is a facet. That is Ci = Di.

Theorem 4 Let P be a path polyomino with C = {I1, I2, . . . , Is}. Then S/IP
is pseudo-Gorenstein if and only if either P is a cell or the following conditions
hold:

1. l1 = ls = 2 and lk ≤ 3 for all 2 ≤ k ≤ s− 1;
2. P does not have odd stairs.

Proof The case P is a cell is obvious being a principal ideal. Hence from now
on we assume P is not a cell. We observe that if s = 1 and rkP > 1, then P
is not pseudo-Gorenstein.

⇒) Since P is not a cell, then s > 1. Moreover, by Remark 2, every interval
has at most one single cell, and since P is a path, then l1 = ls = 2 and
lk ≤ 3. That is (1) holds. Now, assume that F ∈ F(RP) is the unique facet
of maximal cardinality. Let Ih+1, Ih+2, . . . , Ih+ℓ be intervals of an odd stair,
with first interval Ih+1, last interval Ih+ℓ and ℓ odd. Then we may assume
that {Ch, Ch+1} ⊆ Ih+1, {Ch+2, Ch+3} = Ih+3, {Ch+4, Ch+5} = Ih+5,. . .,
{Ch+ℓ−1, Ch+ℓ} ⊆ Ih+ℓ, and P ′ = ChCh+1 · · ·Ch+ℓ is a subpath of P. By the
definition of stair, the cells Ch, Ch+ℓ are single and, since F is unique, then by
Remark 2 it follows that Ch, Ch+ℓ are in F . Now,

G = (F \ P ′) ∪ {Ch, Ch+2, . . . , Ch+ℓ−1}

has the same cardinality of F and it is a facet, too. Hence F is not unique.
That is (2) holds, too.

⇐) By the Lemma 1, we need to prove that there exists a unique config-
uration of non-attacking rooks of maximum cardinality. We claim that if (1)
and (2) are satisfied then P = C1 · · ·C2m+1 and the unique maximal facet
is F = {C1, C3, . . . , C2m+1}. Suppose there are not even stairs, namely P
does not contain any stair. Then P is Gorenstein and F has only single cells:
C1 of the interval I1 = {C1, C2}, C3 of I2 = {C2, C3, C4}, and so on, end-
ing with C2m+1 in Is = {C2m, C2m+1}. Now, suppose that P has at least
an even stair and without loss of generality that the first even stair is in the
first ℓ intervals that is I1 = {C1, C2}, I2 = {C2, C3}, and so on until the
last one that is Iℓ = {Cℓ, Cℓ+1, Cℓ+2} with ℓ even. Since F is maximal, then
Cℓ+1 must belong to F . Moreover, F having maximum cardinality contains
{C1, C3, . . . , Cℓ−1, Cℓ+1}. Using induction on the number of even stairs the
assertion easily follows.

By the proof of Theorem 4, we obtain the following
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Corollary 1 Let P be a path polyomino such that S/IP is pseudo-Gorenstein
with P = C1C2 · · ·Cℓ. Then ℓ = 2r(P) − 1, namely ℓ is odd, and the unique
facet of maximum cardinality is

F = {C1, C3, . . . , Cℓ}.

Example 1 We consider the stairs S4 of Figure 3 and S5 of Figure 7. The rook
number of S4 and S5 is 3. The stair S4 has the unique facet {C1, C3, C5}, while
the stair S5 has the two facets {C1, C3, C5} and {C2, C4, C6}.

C1 C2

C3 C4

C5

Fig. 3: The stair S4

4 Gröbner basis and levelness of path polyominoes

We start this section by defining a labelling that induces in a natural way an
ordering strictly related to the cell labelling C1, . . . , Cℓ of the path. This fact,
with the choice of a linear system of parameters, gives us a natural way to
describe the socle of the polyomino ideal modulo the linear system of param-
eters.

Notation 5 Let P be a path polyomino with cells C1, C2, . . . , Cℓ. For any
i ∈ {1, . . . , ℓ}, we call Pi the subpath on the cells C1, C2, . . . , Ci. Then, we
relabel the vertices of V (P) as {a, a1, b1, . . . , aℓ, bℓ, b} such that

– a, a1 are leaf corners of C1, and b1 is the opposite corner of a1 in C1;
– for any i ∈ {2, . . . , ℓ}, ai is leaf corner of Ci−1 in Pi−1, and bi is the leaf

corner of Ci in Pi opposite to ai.
– b is the leaf corner of Cℓ different from bℓ.

Thanks to the labelling of Notation 5, we are able to define a set of linear
polynomials that we prove is a system of parameters (see Proposition 1).

Notation 6 Let L = (xa, xa1 − xb1 , . . . , xaℓ
− xbℓ , xb) ⊆ S. Let ϕ : S → R =

K[y1, . . . , yℓ] be the map such that ϕ(xa) = ϕ(xb) = 0 and ϕ(xai
) = ϕ(xbi) = yi

for 1 ≤ i ≤ ℓ. Then it can be noted that S/(IP+L) ≃ R/JP , where JP = ϕ(IP).
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To prove the levelness of R/IP we use Gröbner basis techniques and for
this aim we first focus on in(IP) induced by the labelling of Notation 5. We
consider the graded reverse lexicographic order < on S such that xb1 > xa1

>
· · · > xbℓ > xaℓ

> xb > xa.

a

a1

b1 b2

a2

b3

a3

a4 a5 a6

b4

b5

b6 a7 b

b7

Fig. 4: Path labelled as in Notation 5

Definition 8 We say that a path polyomino P = C1C2 · · ·Cℓ has a change of
direction at Ci with 1 < i < ℓ, if Ci−1 ∩ Ci+1 ̸= ∅.

Remark 3 From Notation 5, if there is no change of direction at Ci−1, then Ci

has leaf corners ai+1 and bi, and other corners ai and bi−1 in the polyomino
Pi. The leaf corners of Ci+1 are ai+2 and bi+1 with the other corners either
{ai, ai+1} or {ai+1, bi} or {bi−1, bi} (see Figure 5).

Ci

bi−1 bi

ai ai+1

Fig. 5: The labelling of the cell Ci

Lemma 2 Let P be a path polyomino as in Notation 5. Then M, the set of
inner 2-minors of P forms a reduced Gröbner basis of IP .

Proof Let f, g ∈ M be such that gcd(in(f), in(g)) ̸= 1. Let f = f+ − f− and
g = g+ − g− with f+ = in(f) and g+ = in(g). We divide two cases :

1) gcd(f−, g−) ̸= 1;
2) gcd(f−, g−) = 1;

In case 1), f and g are inner 2-minors contained in the same maximal interval,
in particular the two intervals agree on an edge, and by definition, their S-
polynomial reduces to 0.
In case 2), let I1 and I2 be the inner intervals associated to f and g respectively,
clearly u ∈ I1 ∩ I2 with gcd(f+, g+) = xu. We claim |I1 ∩ I2| > 1. In fact,
if I1 ∩ I2 = {u}, then u is corner of a cell Ci such that there is a change of
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direction at Ci, and Ci−1 is a cell of I1 and Ci+1 is a cell of I2. We say that
Ci−1 has diagonal corners u,w and antidiagonal corners v, t, while Ci+1 has
diagonal corners u, p and antidiagonal corners z, q with v, u, z lying on the
same edge intervals, and u, t, q ∈ Ci. Let c be the fourth corner of Ci. We
claim that p = ai + 2. We divide two cases:

i) ai = t;
ii) ai = v.

In case i), we have that z = bi because it is the corner of Ci opposite to t,
hence c = ai+1, q = bi+1 and p = ai+2.
In case ii), we have that c = bi because it is the corner of Ci opposite to v,
hence z = ai+1, q = bi+1 and p = ai+2.
In both cases, we have proved p = ai+2, hence the claim follows, moreover the
latter implies that u is opposite to ai+2 in I2 that is the least variable in I2
and xu ̸ |g+ (See Figure 6).

v

u

z

Fig. 6: The diagonals represent the leading monomials

The claim tells us that |I1 ∩ I2| > 1, that is I1 and I2 have an edge in
common, say {u, v}. Moreover let f = xuxt −xvxw and g = xuxz −xpxq with
p lying on the same edge of u. Without loss of generality, we assume that u, v
are corners of the interval I1, and that {u, v} is edge of the cell Ci = {u, v, p, c}
in the interval I2, and there is a change of direction at Ci. We have, I2 \ {Ci}
has associated inner 2-minor g′ = xvxz − xcxq and I1 ∪ {Ci} has associated
inner 2-minor f ′ = xtxp − xwxc. By taking the S-polynomial, we get

S(f, g) = xzxvxw − xtxpxq.

Since w, t, q, z are extremal variables and xt| in(f) and xz| in(g), then we
should identify the least variable of between xq and xw.

We divide into two cases that depend on the orientation of the polyomino:

1. {u, v} is edge of Ci−1;
2. {u, v} is edge of Ci+1.

In case (1), z, q is edge of some Ck with k > i, and by construction we have
q = ak+1, in(S(f, g)) = xzxvxw, and S(f, g) can be reduced modulo g′ to
obtain

xzxvxw − xtxpxq − xwg
′ = xwxcxq − xtxpxq = xqf

′ → 0.
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In case (2), w, t is edge of some Ck with k > i, and by construction we have
w = ak+1, in(S(f, g)) = xtxpxq, and S(f, g) can be reduced modulo f ′ to
obtain

xtxpxq − xzxvxw − xqf
′ = xwxcxq − xzxvxw = xwg

′ → 0.

Lemma 3 Let P be a path polyomino as in Notation 5. Then

1. xaixaj /∈ in(IP) for any i, j;
2. xai

xbj ∈ in(IP) ⇒ i ≤ j;
3. xbixbj ∈ in(IP) with i < j ⇒ there is a change of direction at Ci;
4. Let f = f+ − f− be a generator of IP . If f

+ = xuxbi with either xu > xbi

or u = ai, then xai+1
|f−.

Proof (1). Without loss of generality assume j < i that is xaj
> xai

. Let I
be an inner interval of P having opposite corners ai and aj and u, v ∈ V (P).
From Notation 5, we have that i ≥ j + 2 because aj and aj+1 lie on the same
edge. If I is only one cell, then i = j + 2 and {u, v} = {bj+1, aj+1}. If I has
cells D1, . . . , Dk, then u and ai are leaf corners of Dk, hence u = bi−1. That
is xu, xv > xai

and xai
xaj

is not a leading monomial.
(2). If i > j, by similar arguments to (1), one can show that xaixbj /∈ in(IP).
(3). If xbixbj ∈ in(IP) with i < j, since bj is opposite to both bi and aj , then
aj is on the same edge interval of bi. Since aj is the leaf corner of Cj−1 and
the other one is bj−1, then bi is also opposite to bj−1. By proceeding in this
way, we have that the cell Ci+1 has opposite corners bi and bi+1, and v, ai+2

for some v ∈ V (P). By definition, bi must be a corner of Ci, and from Remark
3 ai+2 /∈ Ci, hence b, v is an edge of Ci, by definition ai+1 is a leaf corner of
Ci, it is opposite to bi+1 and hence is opposite to v, that is v ∈ Ci−1.
(4). By construction, bi is the leaf corner of Ci. Since u and bi are opposite
corners, then ai+1 lies on the same edge intervals of u and bi, hence xai+1

|f−.

From now to the end of the section, let P = C1C2 · · ·Cℓ be a path poly-
omino with rk(P) = ℓ and C = {I1, . . . , Is} be its set of cell intervals. Since
a path polyomino is a simple one, by [11, Corollary 2.2], S/IP is a Cohen-
Macaulay domain. We now study the levelness of S/IP . To prove S/IP level,
by [24, Chapter III, Proposition 3.2], it is enough to show that for every ho-
mogeneous system of parameters θ1, . . . , θd of S/IP , all elements of the graded
vector space Soc(S/(IP + (θ1, . . . , θd))) have the same degree. So for this,
we first find homogeneous system of parameters of S/IP and then study the
Soc(S/(IP + (θ1, . . . , θd))).

From now on, we consider R/JP of Notation 6, and therefore let “<” denote
the graded reverse lexicographic order in R induced by y1 > · · · > yℓ.

Proposition 1 Let P be a path polyomino as in Notation 5. Then

xa, xa1
− xb1 , . . . , xaℓ

− xbℓ , xb

is a linear system of parameters for S/IP .



12 Giancarlo Rinaldo et al.

Proof Let L = (xa, xa1 − xb1 , . . . , xaℓ
− xbℓ , xb), and let R and JP be as in

Notation 6. Let us consider the graded reverse lexicographic order “<” in R
induced by y1 > · · · > yℓ. We claim that y2i ∈ in(JP) for all i = 1, . . . , ℓ.
From Notation 5, we have that for any i = 1, . . . , ℓ, ai and bi are opposite
corners, and ai+1 is on the same edge intervals of both bi and ai. Hence, there
exists an inner 2-minor in IP of the form xaixbi − xai+1xv for some v ∈ V (P).
The image in R/JP of such a binomial is y2i − yi+1yj for some j. We have
that y2i ∈ in(JP) which implies that in(JP) is (y1, . . . , yℓ)-primary and hence,
lengthR(R/ in(JP)) < ∞. Therefore, lengthS(S/(L+IP)) = lengthR(R/JP) <
∞ and hence the assertion follows.

Proposition 2 Let P be a path polyomino. Then the generators of JP form
a Gröbner basis. Moreover,

in(JP) = (yiyj : ∃ k ∈ [s], Ci, Cj ∈ Ik).

Proof Let f ′ = ϕ(f), g′ = ϕ(g) be two generators of JP with f, g ∈ IP and
f = f+ − f−, g = g+ − g−, where the map ϕ is defined in Notation 6.
We have to consider S(f ′, g′) in the cases gcd(in(f ′), in(g′)) ̸= 1, that is
deg(gcd(in(f ′), in(g′))) ∈ {1, 2}.
If deg(gcd(in(f ′) in(g′))) = 2, namely in(f ′) = in(g′) = yiyj with i < j, then
from Lemma 3, xbj | in(f) and xbj | in(g), that is without loss of generality we
assume that in(f) = xai

xbj and in(g) = xbixbj but this cannot happen because
ai and bi are opposite corners and the polyomino is thin.
If gcd(in(f ′), in(g′)) = ϕ(gcd(in(f), in(g))), then S(f ′, g′) = ϕ(S(f, g)) → 0.
If gcd(in(f ′), in(g′)) ̸= ϕ(gcd(in(f), in(g))) = 1, then xai

| in(f) and xbi | in(g).
That is in(f) = xai

xbj for some j > i (if j = i we are in the previous case)
and in(g) = xuxbi with u ∈ V (P). From Lemma 3.(4), we get that

f = xai
xbj − xvxaj+1

,

for some v in V (P) with xv > xbi , xai
. One can observe that since ai and bj

are opposite corners as well as ai and bi, then there is no change of direction
at Ci, and it can not happen that u = bk with k > i. Moreover, from Lemma
3.(1), also the case u = ak with k > i is not possible. Hence, we can only have
u = ak or u = bk for some k < i. From Lemma 3.(4), we get that xai+1

|g− and

g = xuxbi − xwxai+1
,

for some w in V (P). By construction, bj lies on the same edge interval of bi
as well as u lies on the same edge interval of ai, hence from j > i we get that
h1 = xai+1xbj −xbixaj+1 and h2 = xuxv−xwxai are generators of IP . We have

f ′ = yiyj − ϕ(xv)yj+1 g′ = ϕ(xu)yi − ϕ(xw)yi+1

h′
1 = ϕ(h1) = yi+1yj − yiyj+1, h′

2 = ϕ(h2) = ϕ(xu)ϕ(xv)− ϕ(xw)yi

hence
S(f ′, g′) = yjϕ(xw)yi+1 − ϕ(xu)ϕ(xv)yj+1

by reducing modulo h′
1 we get

S(f ′, g′) = yiyj+1ϕ(xw)− ϕ(xu)ϕ(xv)yj+1 = yj+1h
′
2.
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Remark 4 Let P be a path polyomino. Then yiyj ∈ in(JP) with j ≤ i if and
only if the cells Ci and Cj are attacking.

Corollary 2 The standard monomials in R/JP , namely the monomials not
in in(JP), are the squarefree monomials

u = yi1yi2 · · · yis′ with i1 < i2 < · · · < is′ ,

where s′-rooks are placed in the non-attacking cells Ci1 , . . . , Cis′ of P.

Proof If two rooks are placed in the non-attacking cells Cij , Cik with ij ≤ ik,
then Cij and Cik do not belong to the same interval. By Remark 4, yijyik /∈
in(JP) for 1 ≤ j ≤ s′ − 1. Therefore, u /∈ in(JP).

Suppose two rooks are placed in the cells Cij , Cik with ij ≤ ik so that they
can attack each other and yijyik divides our monomial. Then there exist m
such that ij , ik ∈ Im. Then it is reducible by

yijyik − yij−1yik+1,

hence our monomial is not in the standard form. Contradiction.

Now we write all the monomial generators of JP which come from the first
cell interval and last cell interval. Let J0 and Js be the subideals of JP gen-
erated by monomials coming from the first and last cell intervals respectively.
Then

J0 = (yiyj : 1 ≤ i ≤ j ≤ l1 − i+ 1) and

Js = (yiyj : ℓ ≥ i ≥ j ≥ 2ℓ− i− (ls − 1)).

We also recall that the set of configurations of pairwise non-attacking rooks
is a simplicial complex denoted by RP . Moreover for F ∈ F(RP) we set

yF =
∏

Ci∈F

yi.

Lemma 4 Let P be a path polyomino. Then

Soc(R/ in(JP)) = (yF | F ∈ F(RP)).

Proof The socle of a monomial ideal is a monomial ideal. Let u be a monomial
of R \ JP . Since y2i ∈ in(JP), then u is squarefree and u = yF for some
F ∈ RP . Assume that F is not maximal, then there exists F ′ ∈ F(RP)
such that F ⊂ F ′ and let Ci ∈ F ′ \ F . Since Ci attacks no cell in F , then
uyi /∈ in(JP), contradicting the hypothesis.
Conversely, assume that F ∈ F(RP) and u = yF . Now we prove that for all
i ∈ {1, . . . , rkP}, uyi ∈ in(JP). Fix i ∈ {1, . . . , rkP}. Since F is maximal,
then the cell Ci is attacked by a cell Cj in F , hence it follows from Remark 4
that yiyj ∈ in(JP).

It is interesting to observe that the facets of maximum cardinality of F(RP)
induces also maximum degree elements (monomials) in Soc(R/JP), as pointed
out in Corollary 4.
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Corollary 3 Let P be a path polyomino. Then R/ in(JP) is level if and only
if RP is pure.

Since in(JP) level implies JP level and thanks to the relations between Soc(S/IP)
and Soc(R/JP), if RP is pure then also IP is level.

By using Theorem 1, we obtain the following characterization of path poly-
ominoes having R/ in(JP) level.

Theorem 7 Let P be a path polyomino with C = {I1, I2, . . . , Is}. Then R/ in(JP)
is level with r(P) = d if and only if the followings hold

1. s = 2d− 1.
2. for any 2 ≤ k ≤ s− 1 we have{

lk > 2 if k is odd

lk = 2 if k is even

Proof According to Corollary 3, R/ in(JP) is level if and only if RP is pure,
that is if and only if P admits a super partition A. We proceed by induction
on d. We start from d = 2. A contains two intervals, since I1 ∈ A, then I2 /∈ A
and s = 3. If I2 contains single cell then I2 ∈ A, hence |I2| = 2. We assume
d > 2 and the thesis holds true for d − 1. From similar arguments, one gets
that |I2| = 2 and that the polyomino P ′ = P \ I1 is super partitionable, with
partition A′ = A \ I1. Hence s − 2 = 2(d − 1) − 1, that is s = 2d − 1 and
lk > 2 for an odd k ∈ {4, . . . , s − 1} and lk = 2 for even k ∈ {4, . . . , s − 1}.
We prove that l3 > 2. If l3 = 2, then I3 = [Ci, Ci+1] and Ci−1 ∈ I1, Ci+2 ∈ I5
with Ci−1 (resp. Ci+2) attacking Ci (resp. Ci+1). That is I3 is an embedded
interval. Contradiction.

We now study the levelness of R/JP with the help of the following:

Lemma 5 Let I ⊆ R be an ideal with dim(R/I) = 0. Then for any monomial
ordering <, one has

in(Soc(R/I)) ⊆ Soc(R/ in(I)).

Proof Let u ∈ in(Soc(R/I)), then there exists g with in(g) < u such that
f = u + g and fyi ∈ I for all 1 ≤ i ≤ n. Then uyi ∈ in(I) for all 1 ≤ i ≤ n,
hence u ∈ Soc(R/ in(I)).

Lemma 6 Let P be a path polyomino, let F be a facet of RP . If there exists
k such that Ck ∈ F and

F ′ = (F \ {Ck}) ∪ {Ck−1, Ck+1}

is a facet of RP , then yF /∈ in(Soc(R/JP)).

Proof We consider ykyF . The relation y2k−yk−1yk+1 ∈ JP , that is ykyF reduces
to yF ′ . By Corollary 2, yF ′ /∈ in(JP). Hence yF /∈ in(Soc(R/JP)).
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Example 2 The stair S5 (see Fig (7)) is such that R/JP is level but R/ in(JP)
is not. In fact

F(RP)) = {{C1, C3, C5}, {C1, C3, C6}, {C1, C4, C6}, {C2, C4, C6}, {C2, C5}}.

Hence RP is not pure and by Corollary 3, R/ in(JP) is not level. If R/JP is
not level there exists f ∈ Soc(R/JP) whose degree is strictly less than the rook
number of P. Moreover, in(f) = yF = y2y5 (see Lemma 4 and Lemma 5). But
F ′ = (F \ {C2}) ∪ {C1, C3} ∈ F(RP) and by Lemma 6, yF /∈ in(Soc(R/JP)).

C1 C2

C3 C4

C5 C6

Fig. 7: The stair S5

Proposition 3 Let P be a path polyomino. If reg(S/IP) = t, namely r(P) =
t, then nt+1 ⊆ JP , where n = (y1, . . . , yℓ) is the homogeneous maximal ideal
in R.

Proof Since P is a simple thin polyomino, by [20, Corollary 3.16], reg(S/IP) =
t = r(P), where r(P) is the rook number. Let u = yi1 · · · yit+1 ∈ nt+1 be any
element. Therefore by Corollary 2, u is not a standard monomial in R/JP .
This implies that there are at least two cells Cij , Cik in the attacking positions
with ij ≤ ik. If the two cells belong to the first cell interval (resp. the last cell
interval) u ∈ J0 (resp. u ∈ Js). Otherwise, there exists a binomial yijyik −
yij−1yik+1 ∈ JP , to reduce u in u1.

Moreover, since u1 has degree t + 1, as u, there are two cells in attacking
position induced by the support of u1, too. Then we apply the same procedure
again on u1 to get u2. We continue this process until we get ul ∈ J0 or ul ∈ Js
so that u ∈ JP . Thus, we have nt+1 ⊆ JP .

Corollary 4 Let P be a polyomino, let F be a facet of RP with |F | = r(P).
Then yF ∈ Soc(R/JP).

Corollary 5 Let P be a path polyomino with reg(S/IP) = 2. Then S/IP is
level.

Proof Since reg(S/IP) = 2, P is not a cell interval. Then it follows from the
description of monomial generators J0 ∪ Js of JP that y1yℓ /∈ JP and y2i /∈ JP
for 2 ≤ i ≤ ℓ− 1. This implies that yi /∈ Soc(R/JP) for 1 ≤ i ≤ ℓ. By Propo-
sition 3, Soc(R/JP) has generator of degree at most 2 and hence Soc(R/JP)
is generated in degree 2 only. Therefore, by [24, Chapter III, Proposition 3.2],
S/IP is level.
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Now we give another class of path polyominoes which are level.

Theorem 8 Let P be a path polyomino with l1, ls ≥ 2, and li ≥ 3 for 2 ≤ i ≤
s− 1. Then S/IP is level.

Proof We prove that S/IP is level, by proving that Soc(R/JP) is generated in
degree r(P). From Lemma 5 and Corollary 4 , we have

in(Soc(R/JP)) ⊆ Soc(R/ in(JP)),

and for any F ∈ F(RP) with |F | = r(P), yF ∈ in(Soc(JP)). Hence it is
sufficient to show that for any F ∈ F(RP) with |F | < r(P) it holds yF /∈
in(Soc(R/JP)). By construction any interval of P has a single cell and r(P) =
s. Since |F | < r(P), then F contains a non-single cell Ck. Since lk > 2, Ck−1

and Ck+1 are single cells, hence

F ′ = (F \ {Ck}) ∪ {Ck−1, Ck+1} ∈ F(RP)

and from Lemma 6 the claim follows.

Now we need some technical results to classify the levelness of S/IP .

Lemma 7 Let P be a path polyomino. Let F ∈ F(RP) be such that there
exists even h ≥ 2, k, and {Ck, Ck+2, Ck+4 . . . , Ck+h−2, Ck+h} ⊂ F (that is
Ck, . . . , Ck+h lie on a stair).

1. Assume that F ′ = (F \{Ck, Ck+h})∪{Ck−1, Ck+h+1} ∈ RP . Then for any
j ∈ {k, k + 1, . . . , k + h}

yjyF = yjyF ′ mod JP .

2. Assume that F ′′ = (F \ {Ck}) ∪ {Ck−1} ∈ RP . Then it follows

yk+h+1yF = yk+h+2yF ′′ mod JP

3. Assume that F ′′′ = (F \ {Ck+h}) ∪ {Ck+h+1} ∈ RP .Then it follows

yk−1yF = yk−2yF ′′′ mod JP .

Proof Without loss of generality, we assume that F = {Ck, Ck+2, . . . , Ck+h}.
(1). We proceed by induction on h. Moreover, to simplify the notation, all the
equalities are equalities modulo JP .
Let h = 2, then F = {Ck, Ck+2}. We prove that yjykyk+2 = yjyk−1yk+3 for
j = k, k + 1, k + 2.

– If j = k, then y2kyk+2 = yk−1yk+1yk+2 = yk−1ykyk+3.
– If j = k + 1, then ykyk+1yk+2 = yk−1y

2
k+2 = yk−1yk+1yk+3.

– If j = k + 2, then yky
2
k+2 = ykyk+1yk+3 = yk−1yk+2yk+3.
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Hence the assertion follows. We assume that h > 2 and the thesis holds true
for h − 2, that is the thesis holds true for any facet of h/2 cells of the form
{Dt, Dt+2 . . . , Dt+h−2}. We consider

F = {Ck, Ck+2, . . . , Ck+h−2, Ck+h}, F ′ = {Ck−1, Ck+2, . . . Ck+h−2, Ck+h+1}.

We prove that for any j ∈ {k, . . . , k + h}, yjyF = yjyF ′ modulo JP . We
consider

F1 = F \ {Ck+h}, and F ′
1 = (F1 \ {Ck, Ck+h−2}) ∪ {Ck−1, Ck+h−1},

and F1, F
′
1 are faces because F and F ′ are faces by hypothesis. By inductive

hypothesis, we have that for any j ∈ {k, . . . , k + h − 2}, yjyF1
= yjyF ′

1
and

hence

yjyF = yjyF1yk+h = yjyF ′
1
yk+h = yj

yF ′
1

yk+h−1
yk+h−1yk+h =

= yjyk−1yk+2 · · · yk+h−4yk+h−2yk+h+1 = yjyF ′ .

We are left with the cases j ∈ {k + h − 1, k + h}. If j = k + h − 1, then
yk+h−1yF is equal to

ykyk+2 · · · yk+h−2yk+h−1yk+h = ykyk+2 · · · y2k+h−2yk+h+1 = (yF1yk+h−2)yk+h+1.

We apply the inductive hypothesis and we get that yk+h−2yF1
= yk+h−2yF ′

1
,

that is

(yk+h−2yF1)yk+h+1 = yk+h−2yk−1yk+2 · · · yk+h−4yk+h−1yk+h+1 = yk+h−1yF ′ .

If j = k + h, then yk+hyF is equal to

ykyk+2 · · · yk+h−2y
2
k+h = ykyk+2 · · · yk+h−2yk+h−1yk+h+1 = (yF1

yk+h−1)yk+h+1.

We apply the inductive hypothesis and we get that yk+h−1yF1
= yk+h−1yF ′

1
,

that is

(yk+h−1yF1
)yk+h+1 = yk+h−1yk−1yk+2 · · · yk+h−4yk+h−1yk+h+1 =

yk−1yk+2 · · · yk+h−4y
2
k+h−1yk+h+1 = yk−1yk+2 · · · yk+h−4yk+h−2yk+hyk+h+1 =

yk+hyF ′ .

Since yjyF = yjyF ′ modulo JP , the assertion follows.
(2). We proceed by induction on h. If h = 2, then F = {Ck, Ck+2}. We

prove that yk+3ykyk+2 = yk−1yk+2yk+4. We have,

ykyk+2yk+3 = ykyk+1yk+4 = yk−1yk+2yk+4.

We assume that h > 2 and that the thesis holds true for any facet of h/2 cells
of the form {Dt, Dt+2 . . . , Dt+h−2}. We consider

F = {Ck, Ck+2, . . . , Ck+h}, F ′′ = {Ck−1, Ck+2, . . . Ck+h}.
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We prove that yk+h+1yF = yk+h+2yF ′ . We have

ykyk+2 · · · yk+h−2yk+hyk+h+1 = ykyk+2 · · · yk+h−2yk+h−1yk+h+2

by applying the inductive hypothesis on {Ck, Ck+2, . . . , Ck+h−2}, we get

ykyk+2 · · · yk+h−2yk+h−1yk+h+2 = yk−1yk+2 · · · yk+h−2yk+hyk+h+2 = yk+h+2yF ′′ ,

as desired.
(3). Similarly to (2).

Lemma 8 Let P be a path polyomino. Let F ∈ F(RP) be such that there exists
h ≥ 2, ℓ ≥ 2, k, and {Ck, Ck+2, . . . , Ck+h, Ck+h+3, Ck+h+5, . . . , Ck+h+ℓ+3} ⊂
F with Ck, . . . , Ck+h+ℓ+3 lying on a stair and such that F ′ = (F\{Ck, Ck+h+ℓ+3})∪
{Ck−1, Ck+h+ℓ+4} ∈ RP . Then for j ∈ {k + h+ 1, k + h+ 2}

yj(yF − yF ′) ∈ JP .

Proof We assume that the equalities are modulo JP . We prove that for j ∈
{k+h+1, k+h+2}, yjyF = yjyF ′ . Let j = k+h+1, we obtain that yjyF is

ykyk+2 · · · yk+h(yk+h+1)yk+h+3yk+h+5 · · · yk+h+l+3.

We apply Lemma 7.(2) to get

ykyk+2 · · · yk+hyk+h+1 = yk−1yk+2 · · · yk+hyk+h+2,

and Lemma 7.(3) to get

yk+h+2yk+h+3yk+h+5 · · · yk+h+l+3 = yk+h+1yk+h+3yk+h+5 · · · yk+h+l+4.

Hence the thesis follows. The case j = k + h+ 2 similarly follows by applying
Lemma 7.(3) and Lemma 7.(2).

Proposition 4 Let P = Sλ such that λ = 4, 6 or λ ≥ 8. Then S/IP is not
level.

Proof If P is the stair Sλ, then |P| = λ+ 1.
If λ is even and λ ≥ 4, then λ = 2k and r(P) = k + 1. We consider F =
{C2, C4, . . . , Cλ} ∈ F(RP) and has cardinality k. Let F ′ = {C1, C4, C6, . . .,
Cλ−2, Cλ+1}. We prove that yF − yF ′ ∈ Soc(R/JP), namely that for any
j ∈ {1, . . . , λ+ 1}

yj(yF − yF ′) ∈ JP .

For j = 1, λ+ 1, it easily follows since y21 , y1y2 ∈ J0 ⊆ JP and yλyλ+1, y
2
λ+1 ∈

Jλ ⊆ JP , while for j ∈ {2, 3, . . . , λ} this is the case of Lemma 7.(1). Hence,
the first part of the assertion follows.

If λ is odd and λ ≥ 9, then λ = 2m− 1 and r(P) = m. We first deal with
the case m odd. We consider

F = {C2, C4}∪{C2k−1 : 4 ≤ k ≤ m} and F ′ = {C1, C5}∪{C2k−1 : 4 ≤ k ≤ m}.
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Since m is odd, then m − 3 = |{C2k−1 : 4 ≤ k ≤ m}| is even and m − 3 = 2t
for some t. We further consider

F ′′ = {C2k : k ∈ {1, 2, . . . ,m− t− 1,m− t+ 1, . . . ,m}}

F ′′′ = {C1} ∪ {C2k : k ∈ {2, . . . ,m− t− 2}}∪

∪{C2(m−t)−1} ∪ {C2k : k ∈ {m− t+ 1, . . . ,m}}.

We claim that for any j ∈ {1, . . . , λ+ 1} we have

yj(yF − yF ′ − yF ′′ + yF ′′′) ∈ JP .

From now on we deal with the cases j = 2h − 1 for h = 1, . . . ,m. The case
j = 2h equivalently follows.
Claim: Let

G = {C2k−1 : 4 ≤ k ≤ m}.

For j = 2h− 1 with 4 ≤ h ≤ m, we claim that

y2h−1yG = y2h−1yH mod JP , (1)

where, given

Gh = {C2k : 3 ≤ k ≤ h− 1} ∪ {C2k−1 : h+ 1 ≤ k ≤ m− h+ 3}∪

∪{C2k : m− h+ 4 ≤ k ≤ m},

and

H =

{
Gh if h ∈ {4, . . . , m−3

2 + 3}
Gm−h+4 if h ∈ {m−3

2 + 4, . . . ,m}
.

Proof of the claim: If 4 ≤ h ≤ m, then from Lemma 7.(1) we have

y2h−1yG = y2h−1yG′ mod JP

where G′ = {C6} ∪ {C2k−1 : 5 ≤ k ≤ m − 1} ∪ {C2m} = G4. Moreover, if
5 ≤ h ≤ m−1, then we can do the same argument for {C2k−1 : 5 ≤ k ≤ m−1}.
We can repeat the same argument until we get

y2h−1yG = y2h−1yGh
mod JP , (2)

where

Gh = {C2k : 3 ≤ k ≤ h− 1} ∪ {C2k−1 : h+ 1 ≤ k ≤ m− h+ 3}∪

∪{C2k : m− h+ 4 ≤ k ≤ m}.

This set makes sense for h ∈ {4, . . . , m−3
2 +3 = t+3}. If h ∈ {t+4, . . . ,m},

then h′ = m− h+ 4 ∈ {4, . . . , t+ 3}, and

y2h−1yG = y2h−1yGh′ mod JP .

This proves the claim.
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We want to compute yjyF , yjyF ′ , yjyF ′′ , yjyF ′′′ for j = 1, . . . ,m. Given
j ∈ {2h− 1, 2h}, for 4 ≤ h ≤ m we use Equation (2) to get

yjyF = yjy2y4yG = yjy2y4yGh

yjyF ′ = yjy1y5yG = yjy1y5yGh
.

We divide into three cases:

1. h < t+ 3;
2. h = t+ 3;
3. h > t+ 3.

(1). We have that for any h = {2, 3 . . . ,m−t−1 = t+2}, from Lemma 7.(1)
applied to the set {C2k : k ∈ {1, 2, . . . ,m−t−1}}, we have yj(yF ′′−yF ′′′) ∈ JP .
Hence we only should control that we have yj(yF − yF ′) ∈ JP . Moreover from
Lemma 7 and Lemma 8 for j = 2, . . . , 6, yj(yF − yF ′) ∈ JP . Since

h < t+ 3 ⇒ 2h < m+ 3 ⇒ h < m− h+ 3 ⇒ h+ 1 ≤ m− h+ 3,

then {C2k−1 : h+ 1 ≤ k ≤ m− h+ 3} ≠ ∅. Then C2h−2 and C2h+1 have a 3
step difference, that is we are in the hypotheses of Lemma 8, and from Lemma
8, we get

yjy2y4yGh
= yjy1y4

yGh

y2(m−h+3)−1
y2(m−h+3).

On the other hand, we compute

yjyF ′ = yjy1y5yG = yjy1y5yGh
.

Since
( h−1∏

k=3

y2k

)
|yGh

, then we apply Lemma 7.(3) to

y5

( h−1∏
k=3

y2k

)
= y4

( h−2∏
k=3

y2k

)
y2h−1

and hence
yjy1y5yGh

= yjy1y4
yGh

y2h−2
y2h−1.

Since
(m−h+3∏

k=h+1

y2k−1

)
|yGh

, then
(m−h+3∏

k=h

y2k−1

)
|y2h−1yGh

and since j ∈ {2h−

1, 2h}, we apply Lemma 7.(1) to get

yj

(m−h+3∏
k=h

y2k−1

)
= yjy2h−2

(m−h+2∏
k=h+1

y2k−1

)
y2(m−h+3),

hence

yjy1y4
yGh

y2h−2
y2h−1 = yjy1y4

yGh

y2h−2y2(m−h+3)−1
y2h−2y2(m−h+3) =
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= yjy1y4
yGh

y2(m−h+3)−1
y2(m−h+3).

Hence yj(yF − yF ′) = 0.
(2) In the case h = t+ 3, we have m − h+ 4 = m − t+ 1 = h+ 1 and hence
h− 1 = m− t− 1 and {C2k−1 : h+ 1 ≤ k ≤ m− h+ 3} = ∅. Therefore,

Gm−t = {C2k : 3 ≤ k ≤ m− t− 1} ∪ {C2k : m− t+ 1 ≤ k ≤ m}

and

yjyF = yjy2y4yGm−t
= yjyF ′′ .

Similarly, from Lemma 7.(3) we have y5
m−t−1∏
k=3

y2k = y4

(m−t−2∏
k=3

y2k

)
y2(m−t)−1

and

yjyF ′ = yjy1y5yGm−t
= y1y4

yGm−t

y2(m−t)−2
y2(m−t)−1 = yjyF ′′′ ,

That is yj(yF − yF ′ − yF ′′ + yF ′′′) = 0 modulo JP .
(3) In the case h > t+ 3, we set h′ = m− h+ 4, we have

Gh′ = {C2k : 3 ≤ k ≤ h′ − 1} ∪ {C2k−1 : h+ 1 ≤ k ≤ m− h+ 3}∪

∪{C2k : m− h′ + 4 ≤ k ≤ m},

hence and from Lemma 7.(3)

yj

( m−1∏
k=m−h′+4

y2k

)
= yj

( m−2∏
k=m−h′+4

y2k

)
y2m−1

and hence

yjy2y4yGh′ = 0

because y2m−1y2m|yjy2y4yGh′ . The same can be proved for yF ′ and since h ≥
m− t+ 1, then also for yF ′′ and yF ′′′ . This concludes the case m odd.
If m is even, then similar arguments hold, with

F = {C2, C4} ∪ {C2k−1 : 4 ≤ k ≤ m− 1} ∪ {C2m}

F ′ = {C1, C5} ∪ {C2k−1 : 4 ≤ k ≤ m− 1} ∪ {C2m},

and given m− 4 = |{C2k−1 : 4 ≤ k ≤ m− 1}| = 2t, we have

F ′′ = {C2k : k ∈ {1, 2, . . . ,m− t− 1,m− t+ 1, . . . ,m}}

F ′′′ = {C1} ∪ {C2k : k ∈ {2, . . . ,m− t− 3}} ∪ {C2(m−t−2)−1}∪

∪{C2k : k ∈ {m− t, . . . ,m}}.

Also in this case one can verify that

yj(yF − yF ′ − yF ′′ + yF ′′′) ∈ JP .
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Let P be a stair of length λ with λ = 4, 6 or λ ≥ 8 and C = {I1, . . . , Iλ} be its
set of cell intervals. If l1 = 2 = lλ i.e., P = Sλ, then by Proposition 4, S/IP is
not level. Next we consider the case when l1 > 2 or lλ > 2 i.e., P = S̃λ.

Corollary 6 Let P = S̃λ be a stair of length λ with λ = 4, 6 or λ ≥ 8 and
C = {I1, . . . , Iλ} be its set of cell intervals. Let l1 > 2 or lλ > 2. Then S/IP is
not level.

Proof Let I1 = {C1, . . . , Cl1}, Ii = {Cl1+i−2, Cl1+i−1} for 2 ≤ i ≤ λ − 1 and
Iλ =
{Cl1+λ−2, Cl1+λ−1, . . . , Cl1+λ−3+lλ}. Also let Fi = {Cl1 , Cl1+2, . . . , Cl1+2i} for
i ≥ 1.
Claim: yjyFi = yj−1yF ′

i
, where F ′

i = (Fi \ {Cl1+2i})∪ {Cl1+2i+1} for 2 ≤ j ≤
l1.
Proof of the claim: Let 2 ≤ j ≤ l1. Then

yjyFi
= (yjyl1)yl1+2 · · · yl1+2i = yj−1(yl1+1yl1+2) · · · yl1+2i

= yj−1yl1(yl1+3yl1+4) · · · yl1+2i

= · · ·
= yj−1yl1yl1+2 · · · (yl1+2i−1yl1+2i)

= yj−1yl1yl1+2 · · · yl1+2i−2yl1+2i+1 = yj−1yF ′
i
.

Let us consider the stair Sλ with cells {Cl1−1, Cl1 , . . . , Cl1+λ−2, Cl1+λ−1} of
length λ. First we assume that λ is even and λ ≥ 4. Consider F = {Cl1 , Cl1+2, . . . ,
Cl1+λ−2} and F ′ = {Cl1−1, Cl1+2, Cl1+4, . . . , Cl1+λ−4, Cl1+λ−1}. Then by the
proof of Proposition 4, we have that yj(yF −yF ′) ∈ JP for all l1+1 ≤ j ≤ l1+
λ−3. For j = 1, it is clear that yjyF , yjyF ′ ∈ J0 ⊆ JP . Let 2 ≤ j ≤ l1. Then by
the Claim, we have yjyF = yj−1yF ′′ , where F ′′ = (F \{Cl1+λ−2})∪{Cl1+λ−1}.
Also, we have

yjyF ′ = (yjyl1−1)yl1+2 · · · yl1+λ−4yl1+λ−1 = yj−1yF ′′ .

Therefore, yj(yF − yF ′) ∈ JP for all 1 ≤ j ≤ l1. Similarly, one can show that
yj(yF − yF ′) ∈ JP for all l1 + λ − 2 ≤ j ≤ l1 + λ − 3 + lλ. Thus we get
yj(yF − yF ′) ∈ JP for all j, hence yF − yF ′ ∈ Soc(R/JP).

Now assume that λ is odd and λ = 2m−1 such that m is odd. We consider
as in the proof of Proposition 4

F = {Cl1 , Cl1+2} ∪ {Cl1+2k−3 : 4 ≤ k ≤ m},

F ′ = {Cl1−1, Cl1+3} ∪ {Cl1+2k−3 : 4 ≤ k ≤ m},

F ′′ = {Cl1−2+2k : k ∈ {1, 2, . . . ,m−t−1,m−t+1, . . . ,m}} and F ′′′ = {Cl1−1}∪

{Cl1−2+2k : k ∈ {2, . . . ,m− t− 2}} ∪ {Cl1+2(m−t)−3}∪

∪{Cl1−2+2k : k ∈ {m− t+ 1, . . . ,m}}.

Note that y1yF , y1yF ′ , y1yF ′′ , y1yF ′′′ ∈ JP . Let 2 ≤ j ≤ l1. Then yjyl1yl1+2 =
yj−1yl1yl1+3 and yjyl1−1yl1+3 = yj−1yl1yl1+3 which further implies that yj(yF−
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yF ′) ∈ JP for 2 ≤ j ≤ l1. Let F
′′
1 = {Cl1−2+2k : k ∈ {1, 2, . . . ,m−t−1}} ⊆ F ′′.

Then by Claim, for 2 ≤ j ≤ l1, we have yjyF ′′
1

= yj−1yF ′′
2
, where F ′′

2 =
(F ′′

1 \{Cl1+2(m−t)−4})∪{Cl1+2(m−t)−3}. Also, for F ′′′
1 = {Cl1−1}∪{Cl1−2+2k :

k ∈ {2, . . . ,m − t − 2}} ∪ {Cl1+2(m−t)−3} ⊆ F ′′′, we have yjyF ′′′
1

= yj−1yF ′′
2
.

Therefore, yj(yF ′′ − yF ′′′) ∈ JP for 1 ≤ j ≤ l1. Similarly, one can show that
yj(yF −yF ′), yj(yF ′′ −yF ′′′) ∈ JP for all l1+λ−2 ≤ j ≤ l1+λ−3+ lλ. Hence,

yj(yF − yF ′ − yF ′′ + yF ′′′) ∈ JP ∀j.

This completes the proof.

Definition 9 A stair P of length λ with λ = 4, 6 or λ ≥ 8 is called a bad
stair.

Theorem 9 Let P be a path polyomino containing a bad stair. Then S/IP is
not level.

Proof Assume that P contains a bad stair Sλ or S̃λ. Here, we show that if P
contains S̃λ, then S/IP is not level. The case when P contains Sλ is similar.
According to Corollary 6, S̃λ is not level, hence let fλ ∈ RS̃λ

/JS̃λ
such that

fλ ∈ Soc(RS̃λ
/JS̃λ

) and deg(fλ) < r(S̃λ). The stair S̃λ is embedded in P
in some intervals Ik+1, Ik+2, . . . , Ik+λ with Ik+1 = {Ck+1

1 , Ck+1
2 , . . . , Ck+1

rk+1
}

where l(Ik+1) = rk+1. Let Q be the collection of cells having maximal intervals
C \ {Ik+1, . . . , Ik+λ}, in particular it is the union of two path polyominoes P1

and P2. Let yGi ∈ Soc(RPi/JPi) with deg yGi = r(Pi). We now show that

yG1
yG2

fλ ∈ Soc(R/JP).

Since fλ ∈ Soc(RS̃λ
/JS̃λ

), then it follows from the proof of Corollary 6 that

for all Cj ∈ S̃λ \{Ck+1
1 }, we have yjfλ ∈ JS̃λ

⊆ JP . Also for similar reason, we

can show the claim of Corollary 6 for yj where Cj = Ck+1
1 . Therefore, we can

conclude that yjfλ ∈ JP for all Cj ∈ S̃λ. This implies that yj(yG1
yG2

fλ) ∈ JP
for all Cj ∈ S̃λ. Let Cj ∈ Pi be any cell. Then yjyGi

∈ JPi
⊆ JP for all Cj ∈ Pi

and i = 1, 2. Therefore, yj(yG1
yG2

fλ) ∈ JP for all Cj ∈ P1 ⊔ P2, and hence

yG1yG2fλ ∈ Soc(R/JP). Since deg(yG1yG2fλ) < r(P1)+r(P2)+r(S̃λ) = r(P),
by Corollary 4, Soc(R/JP) has elements of at least two different degrees. Thus,
R/JP is not level and hence, S/IP is not level, too.

Proposition 5 Let P = Sλ be a stair of length λ. The followings are equiva-
lent:

1. S/IP is level;
2. λ = 2, 3, 5, 7.

Proof (1) ⇒ (2) follows from Proposition 4. Even if (2) ⇒ (1) can be showed
by direct computation, we want to give a direct proof. In the case λ = 2, 3,
the rook number is 2, hence the assertion follows from Corollary 5. For the
case λ = 5, 7, we will make use of Lemma 6. In fact we have to prove that any
F ∈ RP with |F | = r(P)− 1 satisfies the hypothesis of Lemma 6.
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A B

C D

E F

(A) The stair S5

A B

C D

E F

G H

(B) The stair S7

Fig. 8: The stairs S5 and S7

We refer to the labellings given in Figure 8. If λ = 5, then r(P) = 3 and the
unique facet of cardinality 2 is {B,E} and both B and E satisfy the hypothesis
of Lemma 6.
If λ = 7, then r(P) = 4 and the facets of cardinality 3 are

{A,D,G}, {B,D,G}, {B,E,G}, {B,E,H}.

The cells that satisfy the hypothesis of Lemma 6 are respectively D,G,B and
E.

Theorem 10 Let P be a path polyomino. The followings are equivalent:

1. S/IP is level;
2. P does not contain bad stairs.

Proof From Theorem 9, we have that (1) ⇒ (2). We now prove (2) ⇒ (1). If P
does not contain maximal interval of length 2, then by Theorem 8, it is level.
Hence assume it contains intervals of length 2. Since P does not contain bad
stair, if P contains a stair Sλ or S̃λ then it must be true that λ ∈ {2, 3, 5, 7}.
It is enough to show that there is no element of degree < r(P) in Soc(R/JP).
Let f ∈ Soc(R/JP) be an element of degree < r(P) with in(f) = u. Then by
Lemma 5, u ∈ in(Soc(R/JP)) ⊆ Soc(R/ in(JP)) which implies that u can be
written as u = yF for some F ∈ F(RP) with |F | < r(P). Therefore, F contains
a non-single cell Ck in the intersection of two intervals Ij and Ij+1. If both

intervals have a single cell, Ck−1 and Ck+1, that is Ij , Ij+1 is a stair S̃2, then we
are in the hypotheses of Lemma 6, (F \{Ck})∪{Ck−1, Ck+1} ∈ F(RP) which is
a contradiction by Lemma 6. Moreover, if one between Ij or Ij+1 has no single

cell, say Ij+1, then Ij+1 belongs to a stair Sλ (resp. S̃λ) with λ ∈ {3, 5, 7}. The
case λ = 3 can be eliminated by the following observation: since lj+1 = 2, then
lj , lj+2 > 2 and in particular, the cell Ck−1 in Ij is single, and one can take
(F \{Ck})∪{Ck−1, Ck+1} ∈ F(RP). Hence, we are left with the case λ ∈ {5, 7}.
Observe that F contains a facet F ′ ∈ F(RSλ

) with Ck ∈ F ′ and |F ′| < r(Sλ).
Then F ′ is one of the form given in the proof of Proposition 5. Therefore,
F ′ contains a Cm such that (F ′ \ {Cm}) ∪ {Cm−1, Cm+1} ∈ F(RSλ

). Hence,
(F \ {Cm}) ∪ {Cm−1, Cm+1} ∈ F(RP) which is a contradiction by Lemma 6.
This completes the proof.
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In Figure 9, we show an example of polyomino containing a bad stair S̃4,
given by the cells C3, . . . , C9, and hence not level.

C3 C4 C5

C6 C7

C8

C9

Fig. 9: A path polyomino containing a bad stair

5 Levelness and Pseudo-Gorensteinnes of simple thin polyominoes

In [14], we developed different routines to generate polyominoes and test their
primality. After a slight modification of the code provided in that paper, that
is possible to download from [21], we generated all simple thin polyominoes,
classifying them, by using Macaulay2 (see [8]), with respect to the following
properties:

(G) Gorenstein;
(PG) Pseudo-Gorenstein (not Gorenstein);
(L) Level (not Gorenstein);
(N) None of the above.

In Figure 13, we display all the non-path simple thin polyominoes of rank 6.
We observe that they are all level, but not Gorenstein.

Rank 4 5 6 7 8 9 10

Gorenstein 0 3 0 10 0 47 0
Level 4 7 26 65 230 684 2383

pseudo-Gorenstein 0 1 0 5 0 36 0
None of the above 0 0 1 2 20 48 302

Table 1: The partition of all simple thin polyominoes of rank less than or equal
to 10

In the website [21], it is possible to download all the simple thin polyomi-
noes, with respect to the previous partition, having rank in the set {4, . . . , 10}.

Remark 5 We observe that the polyominoes of rank 1, 2, and 3 are paths and
are studied in the previous sections. In particular, the single cell is Gorenstein,
the domino (the polyomino with 2 cells) is level, and there are 2 paths with
rank 3: one is level and the other is Gorenstein. By the Table 1 we observe that
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the pseudo-Gorenstein simple thin polyominoes have odd rank in the interval
≤ 10.

Inspired by Remark 5 and Corollary 1 we obtain the following

Theorem 11 Let P be a simple thin pseudo-Gorenstein polyomino. Then
rkP = 2r(P)− 1.

Proof We use induction on rkP. The cases rkP = 1, 2, 3, 4 are in Remark 5
and Table 1. Suppose by induction hypothesis that for a fixed k and for all P
such that 1 ≤ rkP ≤ k the equation holds. Now focus on the case rkP = k+1.
We recall that any simple thin polyomino has an interval, say I, that is called
either a tail or an endcut (see Definition 3.4 of [20]): in Figure 10 the endcut
(resp. tail) is the interval I with cells C and D. By removing I from P we
obtain the polyomino P ′, in both cases.

C

DD1 D2

P with endcut [C,D]

C

D2D1 D

P with tail [C,D]

D1 D2

The resulting polyomino P ′

Fig. 10

Now, suppose P is pseudo-Gorenstein. If I has more than one single cell,
then P is not pseudo-Gorenstein, hence the length of I is 2, as in Figure 10. Let
F be the unique configuration of non-attacking rooks of maximum cardinality
(see Lemma 1), we observe that C ∈ F . Moreover, call P ′ the polyomino P \ I
(see again Figure 10). We observe that P ′ is pseudo-Gorenstein, too. In fact,
if we have two distinct configurations of non-attacking rooks of maximum
cardinality in P ′, say F1 and F2, then F1 ∪ {C} and F2 ∪ {C} are distinct
configurations of non-attacking rooks of maximum cardinality in P, leading
to a contradiction. Hence, the unique configuration of non-attacking rooks of
maximum cardinality in P ′ is F ′ = F \ {C}.

Now, suppose rkP is even, then rkP ′ = rkP−2 is even, too. By induction
hypothesis P ′ is not pseudo-Gorenstein. Hence P is not pseudo-Gorenstein.

Let rkP = k+1 be odd. Then P ′ is pseudo-Gorenstein, and it has a unique
facet F of maximum cardinality. Moreover, its cardinality is k/2. Then, there
is a unique facet of maximum cardinality k/2 + 1 of P, that is F with the
single cell of I.
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As the rook number of a simple thin polyomino P coincides with the reg-
ularity of S/IP , we obtain the following

Corollary 7 Let P be a simple thin pseudo-Gorenstein polyomino. Then

reg(S/IP) =
rkP + 1

2
.

In Figure 11, we show an example of pseudo-Gorenstein simple thin poly-
omino. More examples can be found on the webiste [21]

Fig. 11: A pseudo-Gorenstein simple thin polyomino

Motivated by the observation that all the path polyominoes that satisfy
Theorem 8 have at least a single cell in any interval, and by computational
evidence (e.g. all of the polyominoes in Figure 13 but (1) and (6)), the following
conjecture naturally arises.

Conjecture 1 Let P be a simple thin polyomino such that any maximal interval
has a single cell. Then S/IP is level.

(1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13) (14)

Fig. 13: Simple Thin Polyominoes of Rank 6, that are not paths

In conclusion, it is of interest the following
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Question 1 Is it possible to generalize the concept of (bad) stair to characterize
level or pseudo-Gorenstein simple thin polyominoes?

Data Availability Statement The datasets generated during the current study are avail-
able in the first author’s repository, [21].

References

1. Andrei, C., Properties of the coordinate ring of a convex polyomino, Electron. J. Com-
bin., Vol. 28 (1), 2021, P1.45.

2. W. Bruns and U. Vetter, Determinantal Rings, Lecture Notes in Math., vol. 1327,
Springer-Verlag, Heidelberg, 1988.

3. C. Cisto, F. Navarra, R. Utano, Hilbert–Poincaré Series and Gorenstein Property for
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13. S. Hoşten and S. Sullivant, Ideals of adjacent minors, J. Algebra, Vol. 277, 615–642,

2004.
14. C. Mascia, G. Rinaldo and F. Romeo, Primality of multiply connected polyominoes,

Illinois Journal of Mathematics, Vol. 64 (3), 2020, pp. 291–304.
15. C. Mascia, G. Rinaldo and F. Romeo, Primality of polyomino ideals by quadratic
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