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ABSTRACT The detection of contaminants in several environments (e.g., air, water, sewage systems) is of
paramount importance to protect people and predict possible dangerous circumstances. Most works do this
using classical Machine Learning tools that act on the acquired measurement data. This paper introduces
two main elements: a low-cost platform to acquire, pre-process, and transmit data to classify contaminants
in wastewater; and a novel classification approach to classify contaminants in wastewater, based on deep
learning and the transformation of raw sensor data into natural language metadata. The proposed solution
presents clear advantages against state-of-the-art systems in terms of higher effectiveness and reasonable
efficiency. The main disadvantage of the proposed approach is that it relies on knowing the injection time,
i.e., the instant in time when the contaminant is injected into the wastewater. For this reason, the developed
system also includes a finite state machine tool able to infer the exact time instant when the substance
is injected. The entire system is presented and discussed in detail. Furthermore, several variants of the
proposed processing technique are also presented to assess the sensitivity to the number of used samples
and the corresponding promptness/computational burden of the system. The lowest accuracy obtained by
our technique is 91.4%, which is significantly higher than the 81.0% accuracy reached by the best baseline
method.

INDEX TERMS Water Pollution, Language Models, Causal Models, Low-Cost Sensors

I. INTRODUCTION

The task of accurate environmental monitoring is a pressing
worldwide issue which is bound to become increasingly
more important in the near future. There are many aspects
that should be kept under control and concern the quality
of the air, soil, and water [1, 2]. In fact, their continuous
monitoring would allow targeted and timely actions aimed at
restoring optimal conditions following dangerous events such
as the appearance of pollutants. In this context, monitoring

wastewater (WW) is particularly important [3]. WW is the
water that has already been used for some purpose (civil or
industrial uses) and must be subjected to purification before
being returned to the natural cycle. To function at their best
and effectively, the purification systems must know a priori
the type of substances mixed with the water. It follows that
a purification system for water for industrial use will be
different from a purification plant for water for civil use.
Hence, there is a strong need for protocols to promptly
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detect incompatible substances, to guarantee the correct and
effective operation of purification plants[4].

Currently, this is solved by organizing periodic monitoring
activities at particular points of the water path, which are car-
ried out by the control institutes in charge using specialized
laboratory instruments. Although this is an effective method,
the quality of the water between two consecutive checks
is unknown, and the checks may be not frequent enough
to promptly identify problems. The ideal solution would
combine automated continuous and distributed early warning
monitoring, alongside periodic manual checks carried out by
the control institutes.

To solve the problems of cost and installation of a dis-
tributed and continuous monitoring system, it is necessary
to resort to low-cost and IoT-ready systems [5], which are
able not only to collect environmental data but also to process
them relying on centralized data collection and elaboration
points.

In this context, the data collected from the sensors need
to be processed by an algorithm that is used to analyze and
forecast the presence (or absence) of polluting substances in
the WW. Current state-of-the-art systems for this task rely on
machine learning algorithms such as decision trees [6, 7].

In this paper, we propose a novel system based on deep
learning, and in particular on causal generative models devel-
oped for natural language tasks, for the detection and classi-
fication of pollutants in WW, starting from the data collected
by a multisensory system based on SENSIPLUS (Sensichips
srl, Pisa, Italy) [8]. Note that the present paper does not
present the infrastructure necessary for data transport as any
solution based, for example, on MQTT or message queuing
protocols could be used for this purpose.

The effectiveness of the proposed classifier is tested
against a set of state-of-the-art baselines on a dataset created
in collaboration with Sensichips s.r.l. and made available
to the scientific community [9]. Results show that the pro-
posed methodology outperforms the baseline methods and
its effectiveness allows for practical usage of the developed
methodology.

II. RELATED WORK
The monitoring of wastewater is a widely discussed topic
in the scientific literature. In particular, several kinds of
technologies contribute to developing sensors that discrim-
inate and classify undesired substances to ensure an adequate
water quality level. Some of the authors developed systems
able to monitor both water and air thanks to the SENSIPLUS
platform [10, 11, 12, 13]. The monitoring outputs can vary,
ranging from a classification of the pollutants to a simple
binary decision on the presence of contaminants in general.
Precise solutions to specific problems are often preferred to
the development of generic monitoring system that can work
properly in very wide contexts. As an example, Lim [14]
describes a system to detect pollutants in the WW frame-
work, although the distinction between different substances
is missing and the technologies appear outdated nowadays.

A different approach is taken by Lepot et al. [15], where
the presence of illegal connections in the sewage system is
monitored using an infrared camera. Ji et al. [16] present
an image processing system, intended to estimate the WW
amount without taking care of the distinction among sub-
stances. The cameras adopted to acquire images do not suffer
from sensors’ corrosion problems but they require a high
energy budget, thus making the system far from the low-
cost condition. There are other cases where the classification
accuracy is very high but the energy/cost constraints are not
taken into account. This is the case of Pisa et al. [17], who
developed a system to detect ammonium and total nitrogen
based on another one that is more broadly designed to detect
all components derived from nitrogen. Drenoyanis et al.
[18] propose an interesting portable device to monitor sewer
pumping station pumps in order to generate alarms whenever
anomalies are detected. The system is surely of great interest,
but it does not include any pollutant classification stage. In
terms of processing techniques, to the best of our knowledge,
this is the first work leveraging natural language processing
techniques, and in particular causal models developed for
natural language generation, for the task of detecting WW
pollution. Nevertheless, in literature we can find examples
of the usage of natural language processing techniques and
language models for non-canonical tasks. Language models
have been used in the medical domain after the application
of a “reverse encoding” (i.e., translating codes back to their
description) for the classification of diagnostic tests [19,
20, 21] and for diagnostic rule encoding [22]. Furthermore,
they have been used with a similar technique for the task
of human mobility forecasting [23, 24]. More in general,
transformer-based models originally designed for NLP tasks
have demonstrated successful applications in a wide variety
of non-NLP tasks [25], including: images [26, 27, 28], videos
[29, 30, 31], speech and audio recognition [32, 33], conver-
sational systems [34, 35], recommender systems [36, 37],
reinforcement learning [38, 39], graphs [40, 41], protein
structure predictions [42, 43], autonomous driving [44, 45],
and anomaly detection problems [46, 47].

III. SYSTEM AT A GLANCE
The proposed system is end-to-end and contains hardware
and software components, which are detailed in the follow-
ing.

A. HARDWARE
The hardware part of the acquisition chain can be seen in
Figure 1 where the following components are depicted: the
Smart Cable Water (SCW), that is the sensing element; the
SENSIBUS cable, a proprietary one-wire cable that allows
communication with and control of the SCW; and a Micro
Control Unit with an onboard firmware for controlling SCW,
gathering and transmitting data to the cloud.

The SCW is a low-cost multi-sensory proprietary system,1

1https://sensichips.com/smart-cable-water/
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FIGURE 1: The hardware acquisition chain at a glance.

(a) Front (b) Rear

FIGURE 2: Smart Cable Water with its Inter Digitated sen-
sors.

based on SENSIPLUS technology, capable of carrying out
Electrochemical Impedance Spectroscopy (EIS) and Voltam-
metry measurements. SENSIPLUS is a proprietary technol-
ogy of Sensichips s.r.l. developed in collaboration with the
University of Pisa [8].

The SCW is equipped with multiple sensors consisting of
6 Inter Digitated Electrodes (IDE) realized on a base made
of copper and functionalized with Gold, Oxide of Copper,
Platinum, Silver, Nickel, and Palladium (see Figure 2). These
sensitive elements, in conjunction with the EIS available on
the chip, constitute the sensors adopted for the collection of
the samples present in the dataset. In detail, measurements
have been performed on five of these sensors. The IDE
metalized with Platinum and Gold has been analyzed at
two specific frequencies: 200Hz and 78KHz, while Copper,
Silver, and Nickel only at 200Hz. Different stimulus frequen-
cies allow the exploitation of different frequency responses
since the interactions between the metals on the sensors
and the pollutants vary according to this parameter. In total,
12 quantities proportional to the capacity and resistance of
the IDEs were acquired. Table 1 reports the correspondence
between IDEs and frequencies.

B. ACQUISITION AND PRE-PROCESSING SOFTWARE
The software components of the elaboration chain can be
seen in Figure 3 where the following components are vis-
ible: the C API implemented as firmware for the MCU,
a Finite State Machine (FSM) for baseline acquisition and

TABLE 1: Sensors used in the experiments.

Acquisition Integer Value
IDE Frequency Proportional to

Platinum 78 kHz Resistance
Gold 78 kHz Resistance
Platinum 200 Hz Resistance
Platinum 200 Hz Capacitance
Gold 200 Hz Resistance
Gold 200 Hz Capacitance
Copper 200 Hz Resistance
Copper 200 Hz Capacitance
Silver 200 Hz Resistance
Silver 200 Hz Capacitance
Nickel 200 Hz Resistance
Nickel 200 Hz Capacitance

FIGURE 3: The software chain at a glance.

injection detection of substances, the classification system.
The MCU’s firmware controls the SENSIPLUS chip through
the SENSIBUS channel, collecting raw data and transmitting
it to the computational module. The computational module
(that could be a workstation connected through USB or
systems in the cloud connected with TCP/IP through Wi-Fi)
is responsible for running the FSM and the classification sys-
tem. The classification system is described in Section V-D,
while the FSM is described in the following.

The FSM is represented in Figure 4 and works in two steps:
• baseline extraction: a baseline signal is extracted to

normalize raw data;
• forwarding decision: for each sample, the FSM decides

whether to forward it to the classifier, also providing the
injection time.

The FSM generates the baseline signal bt by an Exponen-
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FIGURE 4: Finite State Machine.

tial Moving Average (EMA):

bt =


st t = 0

bt−1 t > 0, S ∈ {BS,BSP}
αst + (1− α) · st−1, t > 0, S ∈ {WT,BA,BT},

(1)

where st are the sensors’ raw data at time t; {WT, BA, BT,
BSP, BS} are the possible states of the FSM and correspond
respectively to {Wait, Baseline Acquisition, Baseline Track-
ing, Baseline Suspended, and Baseline Stopped}.

The α parameter in EMA is the reciprocal of EMAc that
has been empirically set to 25. The normalized signal f t

forwarded by the FSM, is evaluated as

f t =
st
bt
, (2)

where st is the raw data collected from sensors and the bt
is the baseline signal computed as described by Equation 1.
f t, st, and bt are n-dimensional vectors with n equal to the
number of sensors (see Table 1); the division in the equation
is element-wise.

Thanks to this baseline, the system can mitigate sensor
drift, environmental noise, signal spikes, and variability be-
tween sensors.

In the schema of the FSM reported in Figure 4, t is the
current time, τ is a threshold empirically set to 0.05, dt is the
Euclidean distance between f t and a vector of ones denoted
as u in the feature space.

When bt is equal to st in Equation 2, the f t vector is the
unit vector. As a consequence, the Euclidean distance has
been computed with respect to the unit vector, and dt equal

to zero means that the baseline signal bt is perfectly tracking
the sensors signals st:

dt = ‖f t − u‖ . (3)

The WT state is conceived to “fill” the EMA; the BA state
is reached automatically after EMAc samples. Through the
BA state, the FSM starts to follow the signal waiting for good
tracking. Good tracking is obtained by analyzing the distance
with the baseline. Once the variability of the distance, com-
puted as its mean plus three times the standard deviation, is
below a given threshold τ (empirically established to 0.05),
the system can move to the BT state. The system will then
check if a substance has been spilled in the water by checking
when the current distance is greater than τ . When the signal
moves away from the baseline, the state becomes BSP for a
while. Once the FSM moves to the BSP state, the system will
check that the current distance remains above the threshold
for five consecutive samples (BSP); otherwise, the system
comes back to the BT state (to avoid confusing the spill of a
substance with a measurement spike or noise). Finally, when
the FSM reaches the BS state, the current normalized sample
f t is forwarded to the classification module.

C. THE CLASSIFICATION MODULE
The proposed classification module is based on deep learn-
ing for natural language processing, and in particular on
Transformer-based [48] models. We employ T5 [49], which
is a large text-to-text language model pre-trained on a multi-
task mixture of unsupervised and supervised tasks, the former
being unsupervised de-noising objective tasks, while the
latter being text-to-text language modeling objective ones.
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For a complete overview of tasks and prompts please refer
to Raffel et al. [49, Appendix Section].

The T5 model architecture is similar to that of a general
Transformer model and it is composed of a stack of en-
coder blocks, which transform the input text into a latent
representation, and a stack of decoder blocks which translate
the latent distribution into a new output text. Each block
comprises a self-attention module, optional encoder-decoder
attention, and a feed-forward network. Since it is a text-
generation model, it takes a textual input and generates a
textual response.

We leverage the pre-training knowledge of the model, and
adapt it to the task of substance prediction by textifying
the raw sensors’ input and training the model to produce a
string stating the nomenclature of the pollutant present in
the wastewater. All the parts of the classifications module are
detailed in Section V.

IV. DATA
In this section, the acquisition process for dataset creation is
described in all its aspects.

A. SUBSTANCES
The dataset used in this work aims to identify pollutants in
WasteWater (WW), paying attention to spills of chemical
compounds that could compromise public safety and/or the
efficiency of purification systems. The acquisitions were
made in the laboratory to simplify data collection. Measure-
ments at experimental sites were excluded for two reasons: to
ensure safety due to biological risks related to the presence
of unknown bacteria or pollutants and to have controllable
measurement conditions. In fact, the composition of WW is
not stable over time, for example, due to atmospheric events
such as rain. In detail, all the samples were acquired between
2019 and 2021 in two different laboratories in Poland and in
Italy and were recently made public [9]. Table 2 reports the
substances used. The dataset consists of 10 acquisitions for
each substance (including the WW or background) and was
obtained using the measurement protocol described below.

B. THE DATASET
To create the dataset which is used in the experimental part of
this paper, we employed a measurement system composed of
a PC as control device, a micro-controller2 which manages
the communication between the PC and the multi-sensor
system, and the SCW that acquires the sensor’s signals.
The different substances have been injected into a beaker
containing 300ml of WW, where the SCW is immersed. A
magnetic stirrer was used to simulate the movement of the
WW, ensuring the same conditions for each measurement
session. The rotation of the anchor, 25mm long, was set at 50
rpm in such a way as to reduce the presence of air bubbles that
could make the measurement noisy (turbulent regime). The
acquisition of the samples present in the dataset was carried

2ESP8266 https://www.wemos.cc/en/latest/d1/d1_mini.html

TABLE 2: Substances used in the experiments.

Substance Description

Wastewater pH=7.4, conductivity=1.341mS
Acetic acid CH3COOH
Acetone C3H6O
Ammonia NH3

Ethanol C2H5OH
Formic acid CH2O2

Hydrochloric acid HCl
Hydrogen peroxide H2O2

Phosphoric acid H3PO4

Sodium hypochlorite NaClO
Sulphuric acid H2SO4

out according to a measurement protocol divided into two
steps:

1) initially 600 samples are collected in WW, in warm-up
mode;

2) subsequently, the substance of interest was injected,
and an additional 1000 samples are collected.

This protocol was repeated ten times for each substance
(ten acquisitions for each substance). A total of 1600 samples
are collected for each substance and for each acquisition,
with an acquisition rate of about 1.6 seconds, for an overall
run time of about 40 minutes for acquisition (Figure 5).

V. EXPERIMENTS
A. PROBLEM FORMULATION
We have the measurements obtained on 10 substances plus
the background substance (i.e., WW). To obtain definitive
and stable results and avoid randomness and bias, our experi-
ment utilizes the k-fold validation methodology. Specifically,
we implement a 10-fold validation process whereby we rotate
the experiment used for testing purposes from 1 to 10 and
utilize the remaining experiments for training. This approach
ensures that the samples from every experiment are used for
testing once and that the overall performance metrics are
averaged across all 10 test sets. As such, we are able to
achieve a robust and reliable evaluation of our models’ effec-
tiveness. For each substance we have 600 samples collected
in the so called “warm-up mode”, which means that in that
period of time the monitoring sensors have been exposed
to WW only. Then, we also have 1000 samples collected
after substance injection, which means that in this period
of time the sensors have been exposed to both wastewater
and the specific substance (if injected). Following the k-
fold technique detailed above, for each substance (including
WW), 9 acquisitions have been used as training set and 1
acquisition has been used as the test set. The effectiveness
of the models is thus evaluated on the the average of the test
acquisitions, and only on the 1000 samples collected after
the warm-up phase. Details on the composition of the dataset
folds can be found in Table 3.

B. METRICS
To evaluate the performances of the model, we rely on
different effectiveness metrics, aimed at measuring different

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3277535

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.wemos.cc/en/latest/d1/d1_mini.html


Roitero et al.: Detection of Wastewater Pollution through Natural Language Generation with a Low-Cost Sensing Platform

FIGURE 5: Example of acquired signals. The figure shows a subset of the signals present in the dataset. In detail, there are two
features collected on four different substances. For each substance, there are nine experiments.

TABLE 3: Number of samples by substance. For each ac-
quisition, 600 samples are collected in Wastewater and 1000
samples after a substance injection. The training set of each
fold is composed of 9 acquisitions for each substance, while
the test set comprises of 1 acquisition.

Substance Training set Test set

Wastewater (600·10·9 +
1600 · 9)

(600·10·1+
1600 · 1)

Acetic acid (1000 · 9) (1000 · 1)
Acetone (1000 · 9) (1000 · 1)
Ammonia (1000 · 9) (1000 · 1)
Ethanol (1000 · 9) (1000 · 1)
Formic acid (1000 · 9) (1000 · 1)
Hydrochloric acid (1000 · 9) (1000 · 1)
Hydrogen peroxide (1000 · 9) (1000 · 1)
Phosphoric acid (1000 · 9) (1000 · 1)
Sodium hypochlorite (1000 · 9) (1000 · 1)
Sulphuric acid (1000 · 9) (1000 · 1)

Total samples 158,400 17,600

aspects of the models effectiveness. We use the following
notation for the set of correctly and incorrectly identified
sampled:

• TP (True Positives): samples correctly identified as be-
longing to a substance of interest.

• TN (True Negatives): correctly identified negative sam-
ples, i.e., samples collected in WW.

• FP (False Positives): samples collected in WW, but
classified as one of the 10 substances of interest.

• FN (False Negatives): samples collected in presence of
substance of interest but classified as WW.

Furthermore, we use the following notation to denote the
metric averaging method:

• metricm: micro averaged metric; we aggregate the con-
tributions of all classes to compute the average metric.

• metricM: macro averaged metric; we compute the metric
independently for each class and then take the average,
hence treating all classes equally.

• metricW: weighted metric; each class contribution is
weighted by the relative number of samples available
for such a class.

We also compute the following metrics:
• Accuracy, defined as

Acc =
TP + TN

TP + FP + TN + FN
;

• Matthews Correlation Coefficient MCC for multi-
classification (also called Rk statistic), defined as

MCC =
(TP · TN)− (FP · FN)√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
;

• Precision, defined as

Prec =
TP

TP + FP
;

• Recall, defined as

Rec =
TP

TP + FN
;

• F1-Score, defined as

F1 = 2 · Prec · Rec
Prec + Rec

.

C. BASELINE METHODS
A set of learning algorithms was selected and applied to
the collected dataset to compare the proposed solution with
standard Machine Learning techniques and obtain a reference
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baseline. The choice was made to have a sufficiently ex-
haustive representation of different approaches with different
complexity. As a result, we adopted algorithms belonging
to the following categories: boosting, bagging, tree-based,
instance-based, kernel-based, Artificial Neural Networks,
and ensemble classifies.

As for the boosting algorithm, we selected AdaBoost [50]
with different types of weak classifiers: decision stump, J48
tree [51] and a more complex Random Forest [52]. For the
Bagging [53] we selected REPTree, a simple tree learner
that uses the information gain heuristic to choose an attribute
and a binary split on numeric attributes (faster than C4.5)
[54]. For decision tree-based algorithms, we have chosen
Random Forest [52]. The classic k-nearest neighbors algo-
rithm (KNN) [55] has been selected for the instance-based
algorithms, Support Vector Machines (SVM) [56] for kernel-
based algorithms, and a Multi Layer Perceptron (MLP) for
the Artificial Neural Networks category algorithms [57].
Finally, a majority vote between MLP, KNN, SVM and
RandomForest for ensemble-based algorithms.

The selected ML algorithms were preliminarily optimized
through a grid search on their respective hyperparameters.
Table 4 shows, for each algorithm, which hyperparame-
ters were selected. The WEKA (Waikato Environment for
Knowledge Analysis – version 3.8.6) implementation of
these algorithms was used in the experimental phase [58].
The input of the ML algorithms is represented by the feature
vector calculated in Equation 2 and therefore contains the
instantaneous measurement of all the sensors identified in
Table 4, following normalization with respect to the baseline.

D. TEXTIFICATION OF THE INPUT

In contrast to the baseline methods, our proposed T5 model
requires textual input to be trained for natural language gen-
eration. For this reason, we first need to define a methodology
to describe the input features (i.e., the observations of the
set of sensors) in natural language. To this aim, we rely
on the so called “textification” (or prompting) of the input
features, an approach that has been successfully applied in
the medical domain, in particular in the automatic encoding
and prediction of diagnostic texts [19, 20, 21], as well as in
human mobility forecasting [23, 24].

This transformation essentially takes an array of floating
point values corresponding to the input features and translate
it into a text, which will be then the input of our model.

Our approach works as follows. First, let us recall that
each measurement is made of 1600 timestamps, t ∈ [1, 1600]
indicating the warm-up phase where the sensors are exposed
to wastewater only, injection time happening at t = 600, and
t ∈ [601, 1600] indicating the phase after injection, where
sensors are exposed to wastewater and the substance.

For each acquisition (out of the 10 present in each training
set), we sample two timestamps: tb in the warm-up phase,
and ta after the injection phase. Then, we create a piece of
text with the following pattern, for each of the sensors:

the {capacitance/resistance} of {sensor}
at {frequency} is {value}

By linking together the text for all the sensors and adding
contextual information, we then create a text with the follow-
ing pattern:

at time tb (600− tb before injection),
the {capacitance/resistance} of {sensor}
at {frequency} is {value},
. . .
at time tb (ta − 600 after injection),
the {capacitance/resistance} of {sensor}
at {frequency} is {value},
. . .

where tb and ta are the sampled timestamps, and the other
variables (such as {capacitance/resistance} are depending on
the specific sensor used. Let us make it clear by reporting a
real full example, where tb = 582 and ta = 1141:

at time 582 (18 before injection),
the Resistance of Platinum at 78kHz is 0.0444,
the Resistance of Gold at 78kHz is 0.0151,
. . .
the Capacitance of Nickel at 200Hz is 0.002.

at time 1141 (541 after injection)
the Resistance of Platinum at 78kHz is 0.783,
the Resistance of Gold at 78kHz is is 0.9439,
. . .
the Capacitance of Nickel at 200Hz is 0.992.

We repeat the process for all the acquisitions present in
our dataset. Note that the proposed methodology allows to
sample multiple tb points to predict the substance present
at ta; in this case, the final prediction is obtained by taking
the mode (i.e., majority voting) over the different predictions
made by the model for the same acquisition.

E. MODEL TRAINING AND INFERENCE
We develop our model using the PyTorch3 and HuggingFace4

frameworks. All the data and code used in the paper are made
available at: (to be inserted upon acceptance.)

We rely on the T5-base model,5 which is composed
of an encoder and decoder stacks comprising 12 blocks
each. Each block contains self-attention mechanisms, op-
tional encoder-decoder attention, and a feed-forward net-
work. The attention is of dimension 64, while embeddings
are of dimension 768. The final model has about 220 million
parameters.

3https://pytorch.org/
4https://huggingface.co/
5https://huggingface.co/t5-base
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TABLE 4: The selected hyper-parameters for the various ML algorithms employed.

Model Sub Model Parameter Selected value Description

K-NN – KNN 100 The number of neighbours to use
K-NN – algorithm BallTree BallTree algorithm for nearest neighbour search
K-NN – distance Euclidian The distance function to use for finding neighbours

SVM – kernelType RBF The type of kernel to use
SVM – cost 1 The cost parameter C for C-SVC
SVM – gamma 0 The gamma to use, if 0 then 1/max_index is used

AdaBoost – weightThreshold 100 Weight threshold for weight pruning
AdaBoost Decision Stump – – –
AdaBoost J48 confidenceFactor 0.25 The confidence factor used for pruning (smaller values incur more pruning)
AdaBoost J48 numDecimalPlaces 2 The minimum number of instances per leaf
AdaBoost Random Forest numIterations 100 The number of trees in the random forest.
AdaBoost Random Forest maxDepth 0 The maximum depth of the tree, 0 for unlimited.

MLP – hiddenLayers 20 This defines the hidden layers of the neural network
MLP – decay TRUE This will cause the learning rate to decrease
MLP – learningRate 0.3 The learning rate for weight updates
MLP – momentum 0.2 Momentum applied to the weight updates

Random Forest – numIterations 100 The number of trees in the random forest.
Random Forest – maxDepth 0 The maximum depth of the tree, 0 for unlimited.

Bagging – bagSizePercent 100 Size of each bag, as a percentage of the training set size
Bagging – numIterations 10 The number of iterations to be performed
Bagging REPTree minNum 2 The minimum total weight of the instances in a leaf
Bagging REPTree numFolds 3 Determines the amount of data used for pruning
Bagging REPTree noPruning FALSE Whether pruning is performed

We initialized the model weights with the pre-trained ones
of the original T5 model. To feed the textual input to the
model we used the custom prefix “predict:”, and we used
the strings “input:” and “target:” to discern between the
model input and the target. We train the model on a Linux
server equipped with 16x Intel(R) Core(TM) i7-10700 CPU
@ 2.90GHz, 64GB of RAM, and 2x NVIDIA Geforce RTX
3090 GPU GPUs for 3 epochs. As objective we use the
conventional multi-class cross-entropy loss function, where
the number of classes is equal to the size of the vocabulary,
defined as

L = − 1

B

B∑
b=1

|V |∑
k=1

ybk log(ŷ
b
k),

where the superscript b represents the batch and B is the
batch size, |V | is the vocabulary size, y represents the true
token to be predicted, and ŷ is the output probability distri-
bution over the vocabulary at each time-step.

To perform inference, we generate the output text using
beam search, thus generating token-by-token the output se-
quence by feeding the input via cross-attention layers to the
decoder, and auto-regressively generate the decoder output.
We set the early stopping parameter to true so that the beam
generation is finished when all beam hypotheses reached the
EOS (End-of-Sequence) token. Experimentally we found that
our fine-tuned model generates substance names for each
beam, so there was no need to implement a constrained beam
search to force the model to output only correct strings as
output (i.e., only produce one of the 10 substance names or
WW). Since we can augment the training set by sampling
multiple time stamps for each acquisition, we aggregate the

final predictions of the model using majority voting (i.e., the
mode function) to have a single prediction for each ta.

VI. RESULTS
A. EFFECTIVENESS

Table 5 shows the effectiveness metrics computed consid-
ering the average effectiveness score over each test set for
the baselines (upper part of the table) and for the proposed
approach (lower part of the table). Given that the proposed
methodology can be provided in input with multiple tb times-
tamps (see Section V-D), the lower part of Table 5 shows the
different effectiveness scores computed when sampling 1, 2,
5, 10, and 100 tb timestamps and aggregating the predictions
of the model.

As we can see by inspecting the table as a whole, the pro-
posed methodology outperforms the whole set of baselines
for all the considered metrics, even in the most restrictive
case where only one tb timestamp is provided (i.e., T5 (1-
sample)). This behavior is also visually shown in Figure 6,
which shows the value for the F1W metric on the test sets:
the different models are arranged along the x-axis, while the
y-axis shows the metric value, and the horizontal dashed line
represents the performance of the best baseline method. The
bars on top of each value represent the variance of the metric
over the different folds. The plots for the other metrics are
similar and thus not reported.

Figure 7 shows the confusion matrix produced by the
most effective methodology, i.e., T5 (100-samples), shown
in the last row of Table 5. The confusion matrix reports the
distribution of test sample predictions, displaying the real
substances as rows and the predicted substances as columns.
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TABLE 5: Average effectiveness metrics computed over the test sets. metricm denotes the micro-averaged metric, metricM the
macro-averaged metric, and metricW the weighted metric.

Model Acc MCC Precm PrecM PrecW Recm RecM RecW F1m F1M F1W

AdaBoostM1_DecisionStump 0.418 0.208 0.418 0.004 0.192 0.418 0.111 0.418 0.418 0.031 0.267
AdaBoostM1_J48 0.802 0.767 0.802 0.720 0.744 0.802 0.732 0.802 0.802 0.718 0.765
AdaBoostM1_RandomForest 0.767 0.722 0.767 0.672 0.705 0.767 0.673 0.767 0.767 0.652 0.720
Bagging 0.764 0.718 0.764 0.687 0.720 0.764 0.672 0.764 0.764 0.649 0.721
knn 0.803 0.769 0.803 0.732 0.746 0.803 0.730 0.803 0.803 0.722 0.765
MLP 0.794 0.758 0.794 0.724 0.745 0.794 0.715 0.794 0.794 0.707 0.759
RandomForest 0.779 0.737 0.779 0.682 0.711 0.779 0.693 0.779 0.779 0.672 0.733
SVM 0.802 0.768 0.802 0.749 0.754 0.802 0.726 0.802 0.802 0.722 0.765
Vote 0.810 0.778 0.810 0.747 0.756 0.810 0.739 0.810 0.810 0.732 0.773

T5 (1-sample) 0.915 0.865 0.915 0.950 0.950 0.915 0.950 0.950 0.915 0.895 0.895
T5 (2-samples) 0.914 0.864 0.914 0.936 0.936 0.914 0.936 0.936 0.914 0.894 0.894
T5 (5-samples) 0.927 0.877 0.927 0.958 0.958 0.927 0.958 0.958 0.927 0.907 0.907
T5 (10-samples) 0.958 0.908 0.958 0.976 0.976 0.958 0.976 0.976 0.958 0.938 0.938
T5 (50-samples) 0.944 0.894 0.944 0.958 0.958 0.944 0.958 0.958 0.944 0.924 0.924
T5 (100-samples) 0.975 0.925 0.975 0.988 0.988 0.975 0.988 0.988 0.975 0.955 0.955
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FIGURE 6: Average effectiveness metrics computed on the
test sets for F1W. The dotted line represents the best baseline
method.

As we can see from the matrix, the model correctly classifies
almost all substances perfectly (the values on the diagonal
are close to 1000), with the exception of ammonia and phos-
phoric acid, where the model reaches an accuracy of about
0.8. In particular, we see that ammonia is often mistaken for
sodium hypochlorite (171 times out of 1000) and phosphoric
acid is mistaken for acetic acid (208 times out of 1000).
By investigating the dataset, we assume that this is probably
caused by the fact that the signals acquired by the sensors
show similar trends between the two pairs of substances. In
particular, the starting conditions before the time of injection
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FIGURE 7: Distribution of the real and predicted values for
the T5 (100-samples) model.

are extremely similar.
By focusing on the lower part of Table 5, we see that there

is a correlation between the number of timestamps measured
before the injection and the model effectiveness. More in
detail, we can see that, overall, the more timestamps tb we
provide to the model, the higher the effectiveness scores. This
behavior is also shown in Figure 8, which displays in the x-
axis the number of timestamps fed into the model, and in
the y-axis the value for the different effectiveness metrics.
This result suggests that practically, we should provide the
model with multiple samples from the warm-up phase to
get a more accurate prediction. This is due to the fact that
seeing more timestamps during warm-up allows the model to
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FIGURE 8: Average effectiveness metrics obtained when
varying the number of timestamps tb fed to the T5 model.

better capture the signal variance that might happen before
the substance is injected into the wastewater.

B. EFFICIENCY
The inference time has been measured over repeated exper-
iments on a NVIDIA Geforce RTX 3090 GPU. Disabling
batching, it takes the system on average 76 milliseconds to
perform one prediction (i.e., one full text-generation per-
formed with beam search and the early stopping parameter
enabled, see Section V for more details on the inference
process) for a timestamp, or 76 seconds for 1000 times-
tamps. The system can therefore output approximately 13
predictions per second. We can further reduce the inference
time by performing batched inference (the GPU used for the
experiments allows for batch sizes greater than 512 samples).

We also measured the inference time on the available
CPUs (16x Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz).
It takes the system on average 450 milliseconds to process
one sample.

Such results provide evidence that we can use the trained
model and deploy it for real-time predictions, both in an
environment equipped with a GPU as well as in a machine
that is only powered by CPUs.

In addition to the inference efficiency, which is crucial
for deploying a model in real-world scenarios, it is important
to consider the computational cost and complexity of the
training phase in the proposed approach. T5 and other causal
models have millions or even billions of parameters, which
necessitate a large amount of data and computational power
to optimize. These models are typically trained using the
standard transformer architecture, which has a complexity of
O(N2d), where N is the sequence length and d is the hidden
dimension of the model [59]. This means that the number
of operations required to train the model grows quadratically
with the input sequence length and linearly with the model
hidden dimension.

Despite the high computational cost, pretrained models
can be repurposed for various tasks through finetuning,

which involves adapting a pretrained model to a specific
task by training it on a small amount of task-specific data.
This process is considerably less expensive than training
the model from scratch because most pretrained models are
already optimized for the underlying language modeling task.
In practice, finetuning a pretrained model usually entails
training it for just a few epochs, typically 3, which can take
anywhere from a few minutes to a few hours, depending
on the size of the task-specific dataset. For this work, we
obtained the model’s weights from the HuggingFace library
and conducted only the finetuning phase of the proposed
approach, which took approximately one hour on the GPU
architecture described above. Once finetuned, the model can
be used indefinitely for the specific task discussed in this
paper.

VII. DISCUSSION AND CONCLUSION
In this paper we studied the capabilities of natural language
processing models, especially generative causal models and
more in detail T5, for the task of detecting the presence of
polluting substances in wastewater. To this end, differently
from state-of-the-art machine learning models, we applied
a transformation of the input features called textification in
order to translate them into a textual form and be able to feed
them into a generative natural language model. The latter is
trained to classify each sample based on whether it contains
or not a polluting substance, and to identify it if present. We
experimentally evaluated the proposed methodology testing
its effectiveness against a set of state-of-the-art baselines,
and we measured its efficiency. Experimental results show
that the proposed methodology outperforms the baseline
methods, and its efficiency and effectiveness allow for its
deployment and for practical use.

Given that the purposed approach is non-conventional, and
it might seem strange or counter-intuitive at first sight, in the
following we discuss why such approach makes sense and
works in practice. Recent work demonstrated the vast ability
of transformers and attention based models to generalize on
a large variety of tasks, including those where the model has
not been trained on [60, 61, 62, 63], or even to tasks not
directly related to or not naturally expressed using natural
language processing, such as for example images [26, 27],
videos [29], reinforcement learning [39], and graphs [40].

The ability of transformer-based models for generalization
comes from the attention mechanism, and from the almost
task-agnostic training procedure. In fact it consists, in its
base form, in reconstructing part of the input item, being it
masked or perturbed using domain-specific techniques or to
predict the continuation of the input (if the masked part is the
last part of the input). Combined together, these techniques
allow the model to learn meaningful and -most importantly-
general latent relationships in input sequences, and the ability
to relate those to the network’s output. For example, networks
applied to texts show the ability to reconstruct missing text or
generate it from a prompt, for images and videos the ability
to reconstruct corrupted or missing images and frames, for
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graphs to learn complex graph sub-structures (i.e., arrange-
ments of set of nodes and edges), and so on. Besides those
specific abilities, network based on transformers and trained
with masking or causal objectives (i.e., predict masked parts
or predict the continuation of the input) show high gener-
alization abilities across tasks and domains. For the same
reason, we believe that the textual description gathered from
the sensors which we use to train our neural network allows
for accurate forecasting predictions for the possible polluting
substances present in wastewater.

Despite the promising results obtained with our approach,
there are some limitations that need to be reported. One of the
main limitations is that the proposed approach relies on the
knowledge of the injection time of the polluting substances.
This means that if the injection time is not known, the system
may not be able to accurately classify the contaminants in
wastewater. In this paper we solved this issue by relying on
a finite state machine which is able to accurately identify
injection time. Nevertheless, in future research we would
focus on developing integrated methods to overcome this
limitation and deploy an integrated single system.

Another limitation of the proposed approach is related to
the availability of data, since a certain amount of labeled data
is needed to train the deep learning model. Obtaining such
data requires access to polluting substances or contaminated
wastewater, and this can be difficult in practical situations.
Future work will investigate alternative ways to generate syn-
thetic data or explore transfer learning techniques to mitigate
the data scarcity issue.

Results of this work open to a new research direction that
will allow to tackle environmental tasks such as the analysis
and detection of polluting substances by means of language
models. Future work aims precisely at pursuing a broad
adoption of natural language based models on a variety of
domains and tasks related to the identification of substances.
Furthermore, it will also focus on studying the generalization
and explanation abilities of the model by leveraging zero
and few-shot learning techniques as well as interpretability
frameworks.
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