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Short-term forecasts of streamflow
in the UK based on a novel hybrid
artificial intelligence algorithm

Fabio Di Nunno, Giovanni de Marinis & Francesco Granata™

In recent years, the growing impact of climate change on surface water bodies has made the analysis
and forecasting of streamflow rates essential for proper planning and management of water resources.
This study proposes a novel ensemble (or hybrid) model, based on the combination of a Deep Learning
algorithm, the Nonlinear AutoRegressive network with eXogenous inputs, and two Machine Learning
algorithms, Multilayer Perceptron and Random Forest, for the short-term streamflow forecasting,
considering precipitation as the only exogenous input and a forecast horizon up to 7 days. A large
regional study was performed, considering 18 watercourses throughout the United Kingdom,
characterized by different catchment areas and flow regimes. In particular, the predictions obtained
with the ensemble Machine Learning-Deep Learning model were compared with the ones achieved
with simpler models based on an ensemble of both Machine Learning algorithms and on the only Deep
Learning algorithm. The hybrid Machine Learning-Deep Learning model outperformed the simpler
models, with values of R? above 0.9 for several watercourses, with the greatest discrepancies for

small basins, where high and non-uniform rainfall throughout the year makes the streamflow rate
forecasting a challenging task. Furthermore, the hybrid Machine Learning-Deep Learning model has
been shown to be less affected by reductions in performance as the forecasting horizon increases
compared to the simpler models, leading to reliable predictions even for 7-day forecasts.

Abbreviations

1 Indicator function

IstQ First quartile of the daily streamflow rate
2nd Q Second quartile of the daily streamflow rate
3rdQ Third quartile of the daily streamflow rate
4thQ Fourth quartile of the daily streamflow rate
ANFIS Adaptive Neuro Fuzzy Inference System
ANN Artificial Neural Network

Al Artificial intelligence

b Bias in NARX model

BO Bayesian optimization

BR Bayesian regularization

BI-LSTM  Bidirectional Long Short-Term Memory
BRF Boruta Feature Selection

BPNN Back-Propagation Neural Network
BRNN Bayesian Regularization Neural Network
BWNN Bootstrap Wavelet Neural Network

CNN Convolutional Neural Network

CVq, Coeflicient of variation of the daily streamflow rate
DL Deep Learning

ESP Ensemble Streamflow Prediction

f, Sigmoid activation function

FFNN Feed-Forward Neural Network

GRU Gated Recurrent Unit

GWO Grey Wolf Optimization

h Hidden nodes in NARX model
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IWD Intelligent Water Drop

LASSO Least Absolute Shrinkage and Selection Operator
LM Levenberg-Marquardt

LSTM Long Short-Term Memory

ML Machine Learning

MLR Multiple-Linear Regression

n Number of neurons in NARX model
NARX Nonlinear AutoRegressive network with eXogenous inputs
OLS Ordinary Least Squares

PSO Particle Swarm Optimization

Qa Mean streamflow rate

Q, Measured streamflow rate for the ith data
Q Predicted streamflow rate for the ith data
Qax Maximum daily streamflow rate

Quean Mean daily streamflow rate

Qedian Median daily streamflow rate

Quin Minimum daily streamflow rate

R(tgp) Impurity at each node in RF model

RF Random Forest

SCG Scaled Conjugate Gradient

sgn(-) Sign Function

Skewq Skewness of the daily streamflow rate
SVM Support Vector Machine

SVM-LF  Support Vector Machine with Linear kernel function
SVM-RF  Support Vector Machine with Radial basis kernel function

SVR Support Vector Regression
s Number of samples

t Forecast horizon

tre Node in the RF model

UK United Kingdom

w Weight in NARX model

WANN Wavelet Artificial Neural Network
WSVM Wavelet Support Vector Machine

x(t) Value of the exogenous input at time ¢ in the NARX model
Vi Target variable in the ith unit in the RF model

Vo Mean target variable in the node tz;

y(t) Target at time ¢ in the NARX model

Oq Standard deviation of the daily streamflow rate

River discharge forecasting plays an essential role in flood protection and water resources planning and man-
agement. River flows are increasingly influenced by the climate changes observed in recent decades, which are
leading to increasingly frequent flood and drought events'. In this scenario, optimal water resource management
cannot disregard the prediction of river flows in the short and long term. However, while for the long term the
considerable uncertainty of forecasts means that only trends can be reliably defined, for the short term it is
possible to obtain even very accurate forecasts. These predictions can be conducted using different approaches,
including physically based models, which consist of various mathematical equations used to describe hydrological
processes>?, and conceptual models, which describe the same processes based on simplified equations and empir-
ical relationships between parameters*. However, the high uncertainty and complexity associated with hydrologi-
cal processes and weather-climate factors affecting river basins have led researchers to increasingly use data-
driven approaches, in particular Artificial Intelligence (AI) algorithms, which guarantee fast processing without
the need to define complex analytical relationships between input and target variables®. Al algorithms have been
widely applied in recent years to tackle various hydrological problems®’. Among these, several Machine Learning
(ML) algorithms were used for the prediction of streamflow rate®-'2. In addition, to improve streamflow predic-
tions, in the last few years researchers have moved towards the development of so-called hybrid or ensemble
models, based on the combination of different individual ML and optimization algorithms. Li et al."* compared
three different ML algorithms: Back-Propagation Neural Network (BPNN), Support Vector Regression (SVR),
and Adaptive Neuro Fuzzy Inference System (ANFIS), for the daily streamflow rate prediction for the Yuetan
Basin, China. In particular, the authors applied the wavelet threshold de-noising method as pre-processing for
time series. Then, both BPNN and SVR were combined with the Particle Swarm Optimization (PSO) algorithms.
They showed how the PSO-SVR model showed a better overall performance compared to both PSO-BPNN and
ANFIS models. Pham et al.” proposed a hybrid model based on a ML algorithm, the Multi-Layer Perceptron
(MLP), and an Intelligent Water Drop optimization algorithm (MLP-IWD) for the river flow rate forecasting
of the Vu Gia Thu Bon River, Vietnam. The authors compared the predictions made with the individual MLP
algorithm and the ensemble MLP-IWD, showing how hybridization led to a marked increase in performance.
Saraiva et al.!* presented a comparative analysis of two ML models: Artificial Neural Network (ANN) and Sup-
port Vector Machine (SVM), coupled with wavelet transform and data resampling with the bootstrap method,
applied for the daily streamflow rate forecasting for Sobradinho Reservoir, Brazil. The authors showed that the
best combination was the BWNN, obtained combining Bootstrap (B), Wavelet (W) and Neural Network (NN),
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highlighting the advantages of the ensemble approach. Tyralis et al.'* developed a super ensemble model for
one-step-ahead daily streamflow forecasting on 511 basins located in USA, based on 10 different ML algorithms.
The super ensemble learning algorithm outperformed all individual ML algorithms, with, however, NN which
provided the best prediction among the 10 individual algorithms. Kumar et al.'® compared the performance of
two data-driven techniques, a Wavelet ANN (WANN) and a SVM with linear and radial basis kernel functions
(SVM-LF and SVM-RF), for the daily discharge prediction of a Perennial River, India. The authors showed how
SVM-RF outperformed both WANN and SVM-LF models. Kumar et al.” also compared the performance of five
different data-driven techniques: ANN, WANN, SVM, Wavelet SVM (WSVM) and Multiple-Linear Regression
(MLR), for the forecasting of daily suspended sediment concentration in Indian Rivers, with the WSVM that
outperformed the other four techniques.

Moreover, as the great potential of Deep Learning (DL) algorithms in the prediction of time series is now well
known, a number of researchers have developed streamflow prediction models based on them in recent years.
Fu et al.'® proposed a DL model based on LSTM to predict the streamflow of the Kelantan River, Malaysia. They
compared the performance of the LSTM model with that of a classical neural network with back-propagation
and found a higher accuracy of the LSTM model in predicting both regular flow and rapid fluctuations in the
dry and rainy seasons, respectively. Le et al." presented a comparative analysis of six DL models, including:
Feed-Forward Neural Network (FFNN), Convolutional Neural Network (CNN), and four Long Short-Term
Memory (LSTM) -based models, applied for streamflow forecasting in the Red River basin, Vietnam. They also
compared the performance of two simpler LSTM and Gated Recurrent Unit (GRU) models, with only one hid-
den layer, with two more complex models, the Stacked-LSTM model and the Bidirectional LSTM (Bi-LSTM)
ones. The authors indicated how the LSTM models outperformed both FFNN and CNN models. However, the
higher complexity of the Stacked-LSTM and Bi-LSTM models did not lead to a significant performance increase
compared to the simpler LSTM models. Ahmed et al.?® proposed a hybrid model based on the LSTM algorithm,
used in conjunction with the Boruta Feature Selection (BRF) algorithm for the optimal choice of predictors,
and applied it to the prediction of streamflow forecasting in six rivers in the Murray Darling Basin, Australia.
They compared the performance of the BRF-LSTM model with other ML/DL -based models: individual LSTM,
GRU, Recurrent Neural Network (RNN) and SVR, with the BRF-LSTM model that outperformed all the other
models. Granata et al.?! proposed a comparison between two different models for the daily streamflow forecast-
ing: an ensemble model based on Random Forest (RF) and Multilayer Perceptron (MLP), hybridized using the
Stacking ML technique, and a Bi-directional Long Short-Term Memory (Bi-LSTM) network, where for both the
hyperparameters were optimized based on a Bayesian process. The authors showed how the ensemble model
outperformed the Bi-LSTM network in predicting peaks of flow rates, with also computation times significantly
shorter. Wegayehu and Muluneh? also compared three DL algorithms: Stacked-LSTM, Bi-LSTM and GRU, with
the classical MLP network for one-step daily streamflow forecasting for the rivers Abay and Awash, Ethiopia.
They showed how both MLP and GRU algorithms outperform S-LSTM and Bi-LSTM on a nearly equal basis. A
comprehensive review of the hybrid artificial intelligence and optimization modelling for streamflow forecasting
was provided by Hassan Ibrahim et al.?.

Current literature, including a recent study by the authors mentioned above?, shows that reliable streamflow
prediction models can be obtained using both hybrid ML and DL algorithms. Hence the idea of a possible ML-DL
hybridisation with the aim of improving forecasts for both periods with ordinary flow rates and during flood
events. Moreover, a further essential aspect is the forecasting horizon, which is a key element in the management
of flood events. Accordingly, the performances of the developed models were assessed for forecast horizons
up to 7 days. In this work, a novel prediction model was therefore developed based on the hybridization of a
particular DL-RNN algorithm, the Nonlinear AutoRegressive network with eXogenous inputs (NARX), with
the two algorithms RF and MLP. To the authors’ knowledge, no study in the literature proposes a hybrid model
based on NARX, MLP and RF for the streamflow rate forecasting. NARX networks have proven to be a valuable
tool for forecasting time series of several hydrological quantities*’. On the other hand, RF and MLP considered
individually do not represent excellent solutions to the problem of forecasting hydrological time series, however,
their combination can in some cases even outperform a very powerful algorithm such as LSTM networks?!.

From this perspective, the prediction made with the hybrid NARX-MLP-RF model were compared with the
ones achieved with both a model based on the single NARX algorithm and another based on the hybridization
of MLP and RE Model training, testing and subsequent comparisons were conducted as part of a large regional
study, which considered the daily flow rates of 18 watercourses throughout the United Kingdom (UK). The
regional scope of the comparative study represents a further innovative aspect, as UK is characterized by basins
with both very different extents and characteristics of rainfall and flow regimes. Therefore, this study can provide
insights into the usefulness of implementing more or less complex hybrid models depending on the features of
each river.

Materials and methods
Case studies and dataset. The catchment areas of the 18 rivers investigated in this study cover a signifi-
cant and varied portion of the UK territory, from Scotland, where the Dee, Deveron, Spey, Tay, Nith, Teviot and
Tweed rivers were analyzed, to England, where the Thames, Test, Tamar, Trent Bure, Ribble and Leven rivers
were considered, and finally to Wales, where the Dee, Severn, Teifi and Wye rivers were studied (Fig. 1).

For each measurement station, the daily cumulative precipitation and average river flow rate from January
1, 1961, to December 31, 2017, were considered. Catchment area of each basin and daily streamflow statistics
were reported in Table 1. Figure 2 shows the average annual precipitation and the average annual discharge for
each measuring station. The rivers investigated show considerable variability in terms of:
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Area (km?) 161 1009 1381 962 248 798 1146 2028 2854 920 4589 898 1035 1122 9937 7472 699 4019
Qunean (m?/s) 115 31.08 37.76 16.88 14.30 28.50 34.12 43.66 65.71 2245 175.25 28.82 10.92 20.77 62.36 84.71 16.05 73.13
(Ql:;;:)” 1.01 19.24 27.23 1143 9.81 15.89 16.90 2420 50.20 11.70 135.70 18.19 9.58 12.15 37.90 59.30 10.26 44.70
Qo (M) 11.8 521.0 860.8 387.7 1910 467.1 765.0 462.0 1031.0 484.0 1965.0 4472 36.8 554.8 581.0 982.0 306.7 7810
Quin (m?/s) 0.38 275 354 2.06 0.11 L15 1.88 171 11.28 0.58 23.07 0.73 3.78 141 0.01 14.70 1.85 343
Y (m?/s) 0.60 30.86 36.38 19.14 13.70 3459 4642 50.01 5215 28.86 140.47 3036 4.87 27.02 68.31 72.59 17.16 80.97
Skewq 0.72 115 0.87 0.85 0.98 1.09 L1l 117 0.89 L12 0.84 1.05 0.82 0.96 107 105 101 105
CVq 0.52 0.99 0.96 L13 0.96 121 1.36 L15 0.79 129 0.80 1.05 0.45 1.30 L10 0.86 107 L11
1stQ 0.79 10.55 17.03 6.74 4.25 7.36 8.60 11.60 33.54 5.09 77.33 847 7.39 6.15 14.90 39.70 593 2244
2ndQ 1.01 19.24 27.23 1143 9.81 15.89 16.90 24.20 50.20 11.70 135.70 18.19 9.58 12.15 37.90 59.30 10.26 44.70
3rdQ 1.33 40.21 45.05 19.87 20.20 3594 39.80 54.50 79.41 27.70 227.50 39.22 1325 2413 82.00 99.40 19.59 88.80
4hQ 11.8 521.0 860.8 387.7 1910 467.1 765.0 462.0 1031.0 484.0 1965.0 4472 36.8 554.8 581.0 982.0 306.7 7810

Table 1. Catchment area and streamflow rate statistics for each basin. where: Area=catchment area,

Qinean = mean daily streamflow rate, Q.qi,, = median daily streamflow rate, Q,,,, = maximum daily

streamflow rate, Q,,;,=minimum daily streamflow rate, o, = standard deviation of the daily streamflow rate,
Skewq, = skewness of the daily streamflow rate, CV, = coefficient of variation of the daily streamflow rate, 1st
Q=first quartile of the daily streamflow rate, 2nd Q=second quartile of the daily streamflow rate, 3rd Q =third
quartile of the daily streamflow rate, 4th Q=fourth quartile of the daily streamflow rate.

e Catchment area, ranging from 161 km?, for Bure at Ingworth (eastern England), to 9937 km? for Thames at
Kingston (southern England).

® Precipitation over the catchment area, ranging from an average annual precipitation (P,,,.,) of 696 mm, for
Bure at Ingworth, to 2277 mm for Leven at Newby Bridge (northern England). Low P, ., values were also
observed for Thames at Kingston and Trent at Colwick, in southern and central England, equal to 723 mm
and 769 mm, respectively, while high P, .. values were observed for the Scotland rivers of Tay at Ballathie
(northern Scotland) and Nith at Friars Carse (southern Scotland), with P, ..; of 1499 mm and 1533 mm,
respectively.
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Figure 2. Average annual precipitation and streamflow rate.

e Streamflow rate: the lowest average annual discharge Q,,,,.1 Was observed for Bure at Ingworth, equal to
1.15 m?/s, while the highest Q.. Was observed for Tay at Ballathie, equal to 175.25 m?*/s. It should be
noted that, despite Thames at Kingston has the largest catchment area of the 18 rivers, a Qa1 0f 62.36 m*/s
was observed, which was in line or even lower than other rivers with much smaller basins but with higher
precipitations.

Forecasting algorithms.  Three artificial intelligence algorithms, NARX, MLP and RF, were considered to
develop models for predicting stream flows. Subsequently, the NARX-MLP-RF hybrid model was developed in
order to obtain even more accurate predictions and was compared with both the MLP-RF hybrid model and the
models based on the individual algorithms. The combination of algorithms was achieved by means of the stack-
ing technique, which allows hybrid models to be developed from multiple regression or classification models®.
Specifically, individual models were first developed on the training dataset, then, based on the results of each
model, a meta-learner was employed to develop the hybrid model. The Elastic Net algorithm?” was chosen as
the meta-learner in the present study. Elastic Net is a combination of two widely used regularized variants of
linear regression: the Least Absolute Shrinkage and Selection Operator (LASSO) and the Ridge Regression. The
main difference between LASSO and Ridge is represented by the penalty (or regularization) term. LASSO uses
the L, regularization, with the aim of selecting the largest number of explanatory variables by introducing an
absolute penalty to Ordinary Least Squares (OLS) regression. The L, regularization imposes sparsity among the
coefficients making the fitted model more interpretable. Ridge uses the L, regularization, which also introduces
a penalty in the OLS formulation, penalizing the square weights rather than the absolute ones. Moreover, the L,
regularization limits the size of the coefficient vector. Elastic Net represents an optimal trade-off between Ridge
and LASSO, with a penalty term which is a mix of the L, and L, regularizations®, allowing to keeps the feature
selection quality from the LASSO penalty as well as the effectiveness of the Ridge penalty”’. The parameters con-
sidered for the individual algorithms are reported in Sects. "NARX model architectures", "Multilayer Perceptron
(MLP)" and "Random Forest (RF)". Rainfall was used as an exogenous input for the prediction of the streamflow.
Furthermore, the time series were split with a 90-10% ratio for the training and testing stages, respectively. In
preliminary tests, this subdivision proved to be optimal to guarantee high performance even in the prediction
of flood peaks, while still preserving a sufficiently long testing period. Therefore, the period between January
1961 and March 2012 was considered for the training stage. Then, the subsequent period between April 2012
and December 2017 was considered for the testing stage. The Bayesian Optimization (BO) procedure was used
for the selection of the ML hyperparameters and the optimal number of lagged values®. In ML applications, the
BO process aims to build a probability model of the objective function in order to select the most promising
hyperparameters. For a detailed description of the BO procedure, please refer to the relevant literature®.

NARX model architectures. NARX is a particular RNN generally used for time series modeling, made up of
interconnected nodes that serve as artificial neurons, receiving one or more inputs and processing them via a
nonlinear activation function to produce an output. The NARX model can be formulated as:

y(®) = f(y(t = Dyt —=2).. .,y (t = fa),x(t = 1), x(¢ = 2),...,x(t — pa)) (1)

where x() and y(t) indicate the exogenous input (i.e., precipitation) and the target (i.e., streamflow rate) at time
t, respectively, pq and f; that represent the precipitation and flow rates lagged values, respectively. The NARX
architecture consists of three layers (Fig. 3). The first is the input layer, which receives the input parameters. The
second is the hidden layer, which represents the computational stage between input and output. The third is
the output layer, which provides the predicted value. Then, the estimated output was fed back as input value for
the iterative computation at the next instant®' (dashed line in Fig. 3). For the hidden layer, a sigmoid activation
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Input Layer Hidden Layer Output Layer

Figure 3. Sketch of the NARX architecture.

function f; was used, which is particularly suitable in neural networks trained through back-propagation algo-
rithms. Moreover, the sigmoid function is derivable, making easier the neural network weights learning®. For
the output layer, a linear activation function f, with one neuron n was used. Weight w and bias b were optimized
by means of the Bayesian Regularization (BR) back-propagation training algorithm®, which led to the best
predictions compared with the other two training algorithms preliminarily tested, the Levenberg-Marquardt
(LM) and the Scaled Conjugate Gradient (SCG). This agrees with previous literature studies that showed a slower
convergence with, however, better performances for BR with respect to LM and SCG*.

The BO procedure led to the optimal values of both optimal number of hidden nodes (h,, hy, h..., h,, in Fig. 3)
and of py and f;. The NARX process was stopped when one of the following conditions was met**: maximum
number of epochs, settled equal to 1000; LM adjustment parameter, settled equal to 1x 107'% error gradient
below a minimal value, settled equal to 1x 1077,

Multilayer Perceptron (MLP). MLP is a particular type of feedforward ANN®** with a similar structure to
NARX, with three types of layers: input, hidden, and output (Fig. 4). The input layer is made up of a set of
nodes corresponding to the input variables. One or more hidden layers contain neurons that process the values
included in the input layer based on a weighted linear sum followed by a non-linear activation function. Then,
the output layer gets the results from the last hidden layer, providing the expected values. Backpropagation
learning algorithm was used for the training of the MLP neurons. The optimal structure of the MLP network
for the present study includes one hidden layer, a neuron number equal to 10, and a Sigmoid activation func-
tion. Moreover, the optimal learning and momentum rates of the backpropagation algorithm were 0.3 and 0.2,
respectively.

Random forest (RF). Random Forest (Fig. 5) is an ensemble of regression tree algorithms?. Each tree is charac-
terized by root and internal nodes which, respectively, include the training data and indicate the input variables
conditions, and by leaves, which are the real values assigned to the target.

The development of a regression tree model consists of a recursive subdivision of the input data set into
subsets, where predictions for each subset were achieved through a multivariable linear regression model. The
growth of the trees is also an iterative procedure, where each subset is divided into small branches, assessing all
the possible split for each field and finding, for each stage, the subdivision in two separate partitions that leads
to the minimum squared deviation:

Input Hidden Output
Layer Layer Layer

Input x,

Input x,

Outputy

Input x;

Input x,

Figure 4. Sketch of the MLP architecture.
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Figure 5. Sketch of the RF architecture.

1
R(trp) = NGO Z (yi — ym(trp)) ©)

[135:3:

where N(¢) is the tgr node’s sample size, y; is the target variable in the i unit, and y,, is the mean target variable
in the node tgp. R(tgr) provides the “impurity” at each node. The algorithm stops when the minimum impurity
is reached or based on when a different stopping rule is encountered. In addition, overfitting risk is reduced
through a pruning process.

It should be noted that both MLP-RF and NARX-MLP-RF models were not particularly sensitive to the
number of trees, which was set equal to 100 for all rivers and models.

Evaluation of model performance. The performance of the models was evaluated as the forecast hori-
zon increased from 1 to 7 days ahead, based on five different evaluation metrics: the Coeflicient of determina-
tion (R?), RMSE, the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE) and the Mean
Directional Accuracy (MDA). A description of the evaluation metrics is reported in Table 2.

Results

Streamflow rate predictions on reference rivers. This section focuses primarily on flow forecasting
in three reference rivers, chosen to evaluate the performance of different forecasting models in areas of the UK
characterized by different rainfall regimes. The evaluation metrics for the training and testing stages, calculated
for all rivers, forecasting models and temporal horizon, are shown in Tables 3, 4 and 5. In addition, Figures from
6 to 10 show the comparison between measured and predicted flow rate during the testing stage, for the different
prediction models and forecast horizons.

Coefficient of determination
Evaluates the goodness of fit in a regression model. It ranges between 0 (the model does R?
not predict the outcome) to 1 (the model perfectly predicts the outcome)

o X (@-9h)’
Th@-Q) )

Root Mean Square Error
Root of total squared error between predicted and actual streamflow rate normalized by

the number of samples. It ranges between 0 and + e with lower values indicating more
accurate models

o (@-Qy)
RMSE = : @

Mean Absolute Error

Absolute error between the predicted and actual streamflow rate normalized by the num-
ber of samples. It ranges between 0 and + e with lower values indicating more accurate
models

MAE = an:l ‘Qs‘l"Q'A (5)

Mean Absolute Percentage Error

Relative error between predicted and actual streamflow rate normalized by the number
of samples

It ranges between 0 and + o with lower values indicating more accurate models

MAPE = — %1 o

Mean Directional Accuracy

Compares predicted and actual direction (increasing or decreasing), providing the prob-
ability that the forecasting model can detect the correct direction along the time series. It
ranges between 0 and 100%, with higher values indicating more accurate models

T L i) =sen(Qp )

S )

MDA =

Table 2. Evaluation metrics for NARX modeling. where Ql, = measured streamflow rate for the ith data
and Qp = predicted streamflow rate for the ith data, Qs = mean streamflow rate, n=number of samples,

sgn(-) =sign function, 1 =indicator function.
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Table 3. Evaluation metrics for NARX modeling.
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Table 4. Evaluation metrics for MLP-RF modeling.
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Table 5. Evaluation metrics for NARX-MLP-RF modeling.

Scientific Reports |

(2023) 13:7036 |

https://doi.org/10.1038/s41598-023-34316-3

nature portfolio




www.nature.com/scientificreports/

The first river considered was Tay at Ballathie, Scotland, with the second highest average annual precipitation
over the catchment area and the highest average annual flow rate among the 18 rivers analyzed (see Section “Case
studies and dataset”). The NARX-MLP-RF hybrid model outperformed both NARX and MLP-RF models. The
best performance was observed for the shortest forecast horizon t=1 day, with the NARX model outperforming
MLP-RF model for both training and testing stages. As can be seen in Fig. 6, NARX led to a more accurate predic-
tion of the peak flow rates. However, compared to MLP-RE, NARX showed a tendency to overestimate the flow
rates more frequently than MLP-RE Therefore, the NARX-MLP-RF hybrid model, combined the advantages of
both models, leading to more robust predictions compared with the two individual NARX and MLP-RF models.
As the forecast horizon increases, a decrease in accuracy was observed for all models. Specifically, for t=3 days
(Fig. 7), the difference in prediction accuracy between the NARX and MLP-RF models is more marked, with the
latter still showing a good ability to predict flow rate trends but with a more accentuated underestimation of the
peaks, compared to t=1 day. However, again the NARX-MLP-RF hybrid model resulted in the best forecasts,
although metrics were only slightly better than the individual NARX model. The worst predictions were observed
for t="7 days (Fig. 8), with NARX showing a significant over- and underestimation of flow rates compared to
shorter forecast horizons. Also, MLP-RF shows a decrease in performance with, however, a lower dispersion
compared to NARX, particularly for the medium-low values of flow rate (Figur 8b and d). Consequently, the
best prediction was obtained with the NARX-MLP-RF hybrid model, which showed a limited accuracy reduction
from a 3-day to 7-day ahead forecast horizon.
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Figure 6. 1-day ahead predictions for Tay at Ballathie: NARX (a, b); MLP-RF (¢, d); MLP-RF-NARX (e, f).

Scientific Reports|  (2023) 13:7036 | https://doi.org/10.1038/s41598-023-34316-3 nature portfolio



www.nature.com/scientificreports/

2500 2500 ‘
Tay at Ballathie Measured —— NARX Tay at Ballathie
| Testing stage - t = 3 days | Testing stage - t =3 days”
2000 _ 20001 NARX
2 <
2 1500 | E 1500 | &
E < A
o 1000 + £ 1000
£
o
500 500
0 - 0 N
04/2012 06/2013 08/2014 09/2015 11/2016 01/2018 0 500 1000 1500 2000 2500
Date (mm/yyyy) Quneasured (M/5)
(@) (b)
2500 2500 -
Tay at Ballathie Measured —— MLP-RF Tay at Ballathie
2000 | Testing stage - t =3 days 2000 | Testing stage - t=3 days’
_ MLP-RF
@ 1500 | E&/ 1500
& 4
= | Z | s aa
< 1000 O;'E:“IOOO & n A
500 500
0 L 0 L L
04/2012 06/2013 08/2014 09/2015 11/2016 01/2018 0 500 1000 1500 2000 2500
Date (mm/yyyy) Queasurea (m/5)
() (d)
2500 2500 -
Tay at Ballathie Measured —— MLP-RF-NARX gi’ﬁ;;g;;h‘et L, dayﬁ,/’
L Testing stage - t = 3 d: - o~ 7
2000 esting stage ays _ 2000 MLP-RF-NARX p
> P
@ 1500 E 1500 P
E 3
< 1000 %
o
500
0 L L
04/2012 06/2013 08/2014 09/2015 11/2016 01/2018 0 500 1000 1500 2000 2500
Date (mm/yyyy) Queasurea (m/5)
(e ®

Figure 7. 3-days ahead predictions for Tay at Ballathie: NARX (a, b); MLP-RF (c, d); MLP-RF-NARX (e, f).

The second river analyzed in detail is the Ribble in Samlesbury, England. It showed, during the spring, a
marked decreasing trend in both precipitation over the catchment area and streamflow. Figure 9 shows the
comparison between measured and predicted flow rate, for forecast horizons of 1 day and 7 days, and for the
NARX-MLP-RF hybrid model. Furthermore, the results for the individual models are shown in Tables 3 and 4. As
for the testing stage, the best predictions were obtained for a forecast horizon of 1 day with the NARX-MLP-RF
hybrid model, with R*=0.91. The NARX model (R?=0.90) resulted in slightly worse prediction than the hybrid
model, while still providing more accurate forecasts than the MLP-RF model (R?=0.85). Again, as the forecast
horizon increases, a reduction of the prediction accuracy was observed for the three different models. However,
for t=7 days, MLP-RF (R*=0.81) outperformed NARX (R?=0.77), which, however, still led to higher MDA
values, indicating a better ability to follow the flow rate trend (MLP-RF-MDA =62.84%, NARX-MDA =74.53%),
whereas the NARX-MLP-RF hybrid model combined the strengths of the individual models leading to better
predictions (R?=0.81 and MDA =76.31%).

The third reference river was the Thames at Kingston, in the south of England, which has the largest catchment
area among the 18 rivers. This case study shows overall very accurate predictions for the three different forecast
models and horizons. For t=1 day and for the testing stage, R? values of up to 0.98 were calculated for MLP-RF
and up to 0.99 for both NARX and the NARX-MLP-RF hybrid. The predictions became less accurate as the
forecast horizon increased while maintaining higher accuracy under the same conditions, compared to the two
previously investigated cases, with R? values up to 0.95 for MLP-RF and 0.98 for both NARX and NARX-MLP-RE,
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Figure 8. 7-days ahead predictions for Tay at Ballathie: NARX (a, b); MLP-RF (c, d); MLP-RF-NARX (e, f).

for t=3 days. A marked decrease was observed only for t =7 days for MLP-RF with R*=0.88. Both NARX and
NARX-MLP-RF showed an R? equal to 0.98, with a limited reduction in the other metrics (Fig. 10).

Overall, the high performance of the forecast models for the Thames at Kingston can be justified by particu-
larly gradual variations in the flow rates, which facilitate the predictions of peaks along the time series, linked to
the large catchment area and lower average rainfall compared to the rest of England, and with a homogeneous
distribution throughout the year. These factors make the hybridization of NARX and MLP-RF less relevant in
terms of forecast improvement. Conversely, forecast models for rivers with smaller catchments and higher but
less homogeneous rainfall throughout the year, as in the case of Ribble at Samlesbury, benefited more from
hybridization, with better forecasts and a lower reduction in performance as the forecast horizon increases.

One aspect investigated with special emphasis is the highest flow rates, which can represent critical scenarios
as they can lead to flooding. From this point of view, relative errors were calculated with reference to the first
decile of flow rates for the three different models and for different forecast horizons. The relative errors were
calculated as the difference between the predicted and measured values, divided by the measured values. His-
tograms with the frequency of the relative errors for the three reference rivers are shown in Figs. 11, 12 and 13,
respectively. For the Tay River at Ballathie (Fig. 11) and t=1 day, the relative errors were in the range —0.5+0.4,
with an almost symmetrical distribution for all three models. In particular, the NARX-MLP-RF ensemble model
showed the highest frequency of low relative errors, equal to 24% and 29% for relative errors between —0.1 and
0 and between 0 and 0.1, respectively. MLP-RE, on the other hand, showed a lower frequency of relative errors
between —0.1 and 0 and between 0 and 0.1, amounting to 19% and 23%, respectively. The NARX model showed a
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Figure 9. Predictions for Ribble at Samlesbury with MLP-RF-NARX model: t=1 day (a, b); t=7 days (c, d).
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Figure 10. Predictions for the Thames at Kingston with MLP-RF-NARX model: t=1 day (a, b); t=7 days (c, d).
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Figure 11. Frequency of the relative error for the tenth decile for Tay at Ballathie: t=1 day (a); t=3 days (b);
t="7 days (c).

similar frequency distribution to the NARX-MLP-RF ensemble model with, however, slightly lower frequencies
for lower relative errors. As the forecast horizon increases, the accuracy of the three models is reduced. Thus, a
decrease in frequency was observed for the lower relative errors, with a subsequent increase in frequency for the
higher relative errors. For t="7 days, the NARX-MLP-RF ensemble showed the highest frequency for the rela-
tive errors between —0.1 and 0, i.e., 25%, maintaining a rather symmetrical distribution. In contrast, the NARX
model showed a less symmetrical distribution with a frequency of around 20%, for relative errors between —0.3
and —0.2. Frequencies in the order of 20% were also observed for the MLP-RF model, both for relative errors
between —0.3 and —0.2 (as for NARX) and between —0.2 and —0.1. This result showed a tendency for the NARX
and MLP-RF models to underestimate peak flow rates.
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Figure 12. Frequency of the relative error for the tenth decile for Ribble at Samlesbury: t=1 day (a); t=3 days
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(b); t=7 days (c).

For the Ribble at Samlesbury (Fig. 12) and t=1 day, the relative errors were in the range -0.6-0.6. The
NARX-MLP-RF ensemble showed the highest frequency of low relative errors of 21% for both relative errors
and 0 and between 0 and 0.1, showing an almost symmetrical distribution. In contrast, MLP-RF
showed a lower frequency of relative errors between —0.1 and 0 and between 0 and 0.1. The latter also showed a
peak frequency of 17% for relative errors between —0.2 and —0.1, showing a more skewed distribution than the
NARX-MLP-RF ensemble model. The NARX model showed lower frequencies, compared to NARX-MLP-RE,
for the relative errors between —0.1 and 0 and between 0 and 0.1, amounting to 20% and 16% respectively. As the
prediction horizon increased, an increase in the variance of the relative error distributions was observed, with
a reduction in the frequencies corresponding to the lowest relative errors. In particular, the NARX model also
showed relative errors in the range between —0.9 and —0.8, but with a very low frequency of 2%. All three models

between —0.1
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Figure 13. Frequency of the relative error for the tenth decile for Thames at Kingston: t=1 day (a); t=3 days
(b); t=7 days (c).

showed a higher frequency of negative relative errors, indicating that underestimates of extreme flows exceed
overestimates in terms of frequency. However, the NARX-MLP-RF ensemble still showed a peak frequency of
18% for both the low relative errors between —0.1 and 0 and between 0 and 0.1.

A lower variance in relative errors was observed for the Thames first-decile flow forecasts in Kingston
(Fig. 13), compared to the other two reference rivers. Specifically, for t=1 day, the NARX-MLP-RF ensemble
model showed frequencies of 57% and 35% for the lowest relative error between -0.1 and 0 and between 0 and 0.1,
respectively. Furthermore, the relative errors were generally within a narrow range, between —0.2 and 0.2. MLP-
RF showed a slightly worse situation, with a higher frequency of negative relative errors of 8% and 4%, between
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—0.2 and -0.1 and between —0.3 and —0.2, respectively. As the forecast horizon increased, the NARX-MLP-RF
model still showed an almost symmetric distribution, while both NARX and MLP-RF showed an increase in
the frequency of negative relative errors, resulting in a more asymmetric distribution that confirms a greater
underestimation of peak flows than the NARX-MLP-RF ensemble model.

Overall, the outcomes observed for streamflow rate prediction preformed on whole time series were in agree-
ment with what observed for the high flows. Actually, while for rivers like the Ribble, with smaller catchments and
higher but less homogeneous rainfall throughout the year, relative error ranges were quite wide, for rivers with
large catchments and more homogeneous rainfall like the Thames the relative error ranges were narrower, indicat-
ing a greater accuracy in the prediction of high flows. However, the hybrid NARX-MLP-RF model proves to be
the best, with the NARX and MLP-RF models leading to more asymmetrical distributions even over larger basins.
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Figure 14. NARX-MLP-RE testing stage: R*—MAPE (on the top) and RMSE—MDA (on the bottom). Maps
created using the Free and Open Source QGIS*.
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Streamflow rate predictions for the whole of UK. This section discusses the streamflow forecasts
performed with the hybrid NARX-MLP-RF model, with reference to the testing stage, for all investigated rivers.
Figure 14 provides a map with the different evaluation metrics, for R?~-MAPE and RMSE-MDA couples, as the
forecast horizon increases. Metrics are also shown in Table 5.

The R? coeflicient showed values ranging from 0.77 to over 0.99 for the 1-day forecasts. R? decreased as the
forecast horizon increased, in some cases dropping to values in the order of 0.7 for the 7-day forecast. However,
there is a marked territorial difference. For rivers in the south of the UK, an R? of over 0.8 was obtained, with
peaks as high as 0.95, even for 7-day forecast, while for rivers in Scotland, particularly those in the north-east,
lower values of 0.77 and 0.7 were obtained for the 1-day and 7-days ahead predictions, respectively. The MAPE
shows a trend in agreement with the R? values, with values between 1 and 26%, and increasing with the forecast
horizon.

The RMSE values were consistent with the R?> maps, with lower values for the rivers of England and Wales,
ranging from about 4 m?/s to 18 m?/s, and higher values for Scotland. The increase in RMSE as the forecast
horizon increased was most pronounced for the northern UK, with RMSE up to about 40 m*/s for 7-days ahead
predictions. However, many rivers of England and Wales were characterized by RMSE values between 4 m>/s
and 18 m?/s even for 7-days ahead predictions. In addition, MDA values between 64 and 88% were calculated,
showing a good ability of the forecasting model to follow the right direction along the streamflow time series.
A slight reduction was observed as the forecast horizon increases, with, however values between 64 and 70%
observed only for rivers in central and north-east Scotland, where the lowest R* values were also obtained.

Overall, the hybrid NARX-MLP-RF model resulted in good predictions for all rivers and forecast horizon.
However, the performance of the forecast model is highest for rivers with large basins and a homogeneous dis-
tribution of rainfall throughout the year, as observed for several English rivers, while it is lowest for rivers with
smaller basins, characterized by less homogeneous rainfall, where peak prediction is more challenging due to
the sudden variation in stream flow.

In order to provide an overview of how model performance changes with the forecast horizon, the percentage
increase in MAPE, from a 1-day to a 7-day forecast horizon was analysed and reported in Fig. 15.

In particular, the ensemble NARX-MLP-RF model showed the lower MAPE variations for most stations,
followed by the NARX model. Both showed MAPE variations of less than 10%. In contrast, MLP-RF showed
more marked MAPE variations, with a maximum value of 56% for Tamar at Gunnislake. However, for some
stations, MLP-RF also showed MAPE variation of less than 10%. For example, for Test at Broadlands, the MAPE
variation was 4.57%. However, for the same station, NARX and NARX-MLP-RF showed lower MAPE variations
of 3.60% and 2.90% respectively. It was noted that there is an appreciable correlation between the increase in
MAPE just considered and the CV of the flow time series (Fig. 15). The correlation is high for the NARX model
(r=0.82) and rather high for the NARX-MLP-RF ensemble model (r=0.72), whereas it is significantly lower for
the MLP-RF hybrid model (r=0.58).
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Figure 15. MAPE percentage increase as the forecast horizon increases: histogram for the 18 rivers (a); CV vs
MAPE percentage increase (b).
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This result demonstrates that while the decrease in accuracy of the forecast models, as the forecast horizon
increases, is proportional to the variability of the streamflow during the time series, and this decrease is much
less pronounced in the NARX model than in the hybrid RE-MLP one. However, this aspect needs further inves-
tigation and specific studies.

Discussion
The extensive study carried out on the streamflow of a large number of rivers in the United Kingdom allows the
following to be highlighted:

e The NARX-MLP-RF hybrid model outperformed both the NARX and MLP-RF models for all the investigated
rivers and for all forecast horizons. All models resulted in very accurate predictions in the south of UK, while
lower performance was observed in the north of UK.

® A reduction in performance was observed as the forecasting horizon increased, but this affected the NARX
and MLP-RF models more than the hybrid NARX-MLP-RF model.

® The hybridization of NARX and MLP-RF had a greater impact in improving the predictions obtained for
small basins with high and uneven precipitation throughout the year, which make peak forecasting more
challenging. Conversely, individual NARX and MLP-RF models led in most cases to satisfactory results,
without the need for hybridization, for large basins with a more gradual variation in flow rates.

Regarding the application of hybrid ML models for streamflow forecasting, Li et al.'* developed hybrid models
for the Yuetan Basin, China, achieving the best results with a PSO-SVR model, which showed a Nash-Sutcliffe
Efficiency (which has a mathematical expression almost identical to R?) of 0.82, lower than the R* values obtained
for several rivers investigated in this study. The super ensemble model proposed by Tyralis et al.’® resulted in
large differences, in terms of prediction accuracy, among the large number of investigated rivers in USA, with R
values mostly between 0.60 and 0.65. Lee and Ahn*® developed a stacking model based on four ML algorithms:
SVM, Gradient Boosting Machine (GBM), Cubist, and Bayesian Regularized Neural Networks (BRNN), for
the streamflow rate prediction in South Korea. The authors calculated values of NSE up to 0.48, also showing a
performance reduction as the forecast horizon increased, as observed in the present study. Kilinc and Yurtsever*’
also developed a hybrid DL model Based on Grey Wolf algorithm (GWO) and GRU for the daily streamflow
forecasting in two stations located in the Seyhan basin, Turkey. The authors showed the advantages of the hybridi-
zation based on DL algorithms, achieving accurate predictions with R? values up to 0.98. The results obtained by
Kilinc and Yurtsever*® are in line with the prediction obtained for several rivers investigated in the present study
for t=1 day. However, they did not perform an analysis with increasing time horizon, as made in the present
study. Granata et al.*!, who proposed a comparison between Bi-LSTM and a stacked MLP-RF model, obtained
very accurate predictions, also for the UK Trent River investigated in this study. However, they also showed a
reduction in prediction accuracy as the forecast horizon increased, already for the 3-days forecast.

A comparison was also made with literature studies investigating the impact of climatic factors and catchment
characteristics on the accuracy of river discharge forecasts. Xu et al.*! investigated the spatial and temporal scale
effects on the predictive performance of the monthly streamflow prediction, based on a hybrid DL model based
on the CNN and GRU algorithms applied to many watersheds around globe. The authors showed how the hybrid
DL model performs better on large drainage areas, in agreement with the present study. Moreover, the predictive
performance tends to get better also with the extension of a training period for the model, confirming how long
time series can lead to more accurate predictions. Harrigan et al.* evaluating the Ensemble Streamflow Predic-
tion (ESP) method for 314 catchments in the UK, exploring the relationship between basins characteristics and
ESP skill. The ESP method allows factors such as precipitation, potential evapotranspiration, temperature, soil
moisture, groundwater and snow for each basin to be included in the modelling. The authors showed how the
performance of the ESP model decayed exponentially with increasing forecast horizon, but large catchments
decayed at a slower rate. In addition, better performances were observed in the south and east of the UK, where
large and slower responding catchments are mainly located. Conversely, lower performances were observed
for the highly responsive catchments in the north and west. These outcomes are in agreement with the present
study. We showed that for large basins, such as for the Thames River in southern England, the models tested led
to accurate predictions for both ordinary and high flows, whereas for smaller basins, such as for the Ribble River
in Northern England, forecasts were less accurate and decayed in accuracy at a higher rate compared to larger
basins as the forecast horizon increased, particularly for the NARX and MLP-RF models.

Opverall, although the methodology has been tested on a significant number of rivers, UK weather and cli-
mate conditions have different features in comparison with warmer climates. In the future it will be interest-
ing to test the methodology in semi-arid and Mediterranean areas, where the seasonal pattern of rainfall is
more pronounced compared to UK. From this perspective, different ML or deep-learning algorithms could be
included, together with further exogenous inputs, in the forecast procedure in order to improve the reliability
of the streamflow rate forecasting. This could lead to overcoming the current limitations related to climate and
streamflow regimes on the one hand and the forecasting horizon on the other, moving from the current short-
term to the medium-term scenario.

Conclusion

A novel streamflow prediction model, for forecast horizons of up to seven days, was developed in this research
and applied to a regional study that considered 18 rivers throughout the UK. The proposed model was obtained
by stacking the NARX, RF, and MLP algorithms and used a BO procedure for tuning the hyperparameters.
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Daily precipitations were considered as the only exogenous input variable. The NARX-MLP-RF ensemble
model showed very good forecasting capabilities and outperformed both NARX and MLP-RF models, for all
rivers and forecast horizons. NARX-MLP-RF showed a lower reduction of accuracy as the forecasting horizon
increased, for both regular and extreme streamflow, compared to the NARX and MLP-RF models. In this regard,
for both the NARX-MLP-RF and NARX models, a significant correlation was found between the increase in
MAPE corresponding to the increase in the forecast horizon from 1 to 7 days and the CV of the flow time series.

In addition, NARX-MLP-RF has proven to be particularly suitable for providing accurate forecasts for rivers
with small catchment areas with highly variable rainfall and streamflow rate distributions over time., for which
the forecasting of the often-abrupt peaks is a challenging task. In particular, more accurate forecast values were
generally obtained for rivers in Wales and southern England.

Opverall, the accurate predictions made with the NARX-MLP-RF model make it a powerful tool for manag-
ing the risks associated with possible extreme flows involving frequent floods, and also for short-term water
management decision-making.

Data availability

Data from the National River Flow Archive, which is the primary archive of daily and peak river flows for the
United Kingdom, were used in the creation of this manuscript. Data are available at the following website: https://
nrfa.ceh.ac.uk. The elaborations were carried out mostly with the following software: MATLAB (https://mathw
orks.com), Microsoft Excel (https://www.microsoft.com/en-ww/microsoft-365/excel), and QGIS (https://qgis.
org/en/site).
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