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Abstract. We study the properties of the rook complex R of a polyomino P seen as inde-
pendence complex of a graph G, and the associated Stanley-Reisner ideal IR. In particular,

we characterise the polyominoes P having a pure rook complex, and the ones whose Stanley-

Reisner ideal has linear resolution. Furthermore, we prove that for a class of polyominoes the
Castelnuovo-Mumford regularity of IR coincides with the induced matching number of G.

1. Introduction

Polyominoes are two-dimensional objects obtained by joining edge by edge squares of same size.
Originally, polyominoes appeared in mathematical recreations [6], but it turned out that they have
applications in various fields, for example, theoretical physics and bio-informatics. Among the
most popular topics in combinatorics related to polyominoes one finds enumerating polyominoes
of given size, including the asymptotic growth of the numbers of polyominoes, tiling problems, and
reconstruction of polyominoes. The actual research on polyominoes under an algebraic point of view
focuses on the study of the polyomino ideal, a quadratic binomial ideal associated to the geometry
of polyominoes (see [12, 14, 10, 11, 2, 15, 13, 3]). In the last three papers, the authors compute
some algebraic invariants of the polyomino ideal by studying the rook polynomial

∑n
i=1 rit

i, i.e.
the polynomial whose coefficient ri represents the number of distinct ways of arranging i rooks
on squares of a polyomino P in non-attacking positions. The degree of such polynomial is called
rook number and it is denoted by r(P). The rook arrangements described above give rise to a
simplicial complex, called rook complex. In this paper, by focusing on the rook complex, we study
polyominoes under a monomial point of view, as described below.

Let ∆ be a simplicial complex on vertices {1, . . . , n} and let R = K[x1, . . . , xn] be the polynomial
ring on n variables over a field K. The Stanley-Reisner ideal or face ideal, denoted by I∆, is known
to be the ideal generated by the square-free monomials {xi1 , . . . , xir} such that {i1, . . . , ir} /∈ ∆.
Let G be a graph on vertices {1, . . . , n} and let R = K[x1, . . . , xn] be the polynomial ring on n
variables over a field K. The edge ideal of G, denoted by I(G), is the ideal of R generated by all
square-free monomials xixj such that {i, j} ∈ E(G). Edge ideals of graphs have been introduced
by Villarreal [17] in 1990, where he studied the Cohen–Macaulay property of such ideals. Many
authors have focused their attention on such ideals (e.g.[7], [4]).

The two above concepts have a nice relationship. If ∆ is the independence complex of G, i.e.
the simplicial complex of the independent sets of G, then it holds I(G) = I∆. For such a reason,
it is reasonable to study the Stanley-Reisner ideal of the rook complex of polyominoes. Let P be
a polyomino, let R be its rook complex and let IR be the Stanley-Reisner ideal of R. Let GP be
the graph on the cells of P having R as independence complex. It follows that V (GP) = {C}C∈P
and

E(GP) = {{C,D} : C and D lie on the same row or column}.
Some challenging problems in the modern research are the classification of Cohen-Macaulay rings

and the study of the minimal free resolution and Castelnuovo-Mumford regularity. In Section 3,
we characterise the polyominoes having a pure rook complex, i.e. all the maximal faces have the
same cardinality, because the pureness is a necessary condition for the Cohen-Macaulayness. For
the aim of studying minimal free resolution, in Section 4 we characterise the polyominoes for which
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I(GP) has linear resolution in terms of the chordality of the complement graph ḠP (see Theorem
2.1). We call such polyominoes brush polyominoes because of their nice structure: a long interval
(the handle) with dominoes as bristles. In Section 5 we consider brush polyominoes with longer
bristles and for this class we prove that the Castelnuovo-Mumford regularity of I(GP) coincides
with the induced matching number of GP .

2. Preliminaries

In this section we recall some concepts and notations on graphs and on simplicial complexes
that we will use in the article.

2.1. Polyominoes. In this subsection, we recall general definitions and notation on polyominoes.
Let a = (i, j), b = (k, `) ∈ N2, with i ≤ k and j ≤ `. The set [a, b] = {(r, s) ∈ N2 : i ≤ r ≤

k and j ≤ s ≤ `} is called an interval of N2. Moreover, if i < k and j < `, then [a, b] is called a
proper interval, and the elements a, b, c, d are called corners of [a, b], where c = (i, `) and d = (k, j).
In particular, a, b are the diagonal corners and c, d are the anti-diagonal corners of [a, b]. The
corner a (resp. c) is also called the left lower (resp. upper) corner of [a, b], and d (resp. b) is the
right lower (resp. upper) corner of [a, b]. A proper interval of the form C = [a, a+ (1, 1)] is called
a cell. The corners of C are called the vertices of C. The set of vertices of C is denoted by V (C).
The edge set of C, denoted by E(C), is

{{a, a+ (1, 0)}, {a, a+ (0, 1)}, {a+ (1, 0), a+ (1, 1)}, {a+ (0, 1), a+ (1, 1)}}.

We denote by `(C), the left lower corner of a cell C.
Let P be a finite collection of cells of N2, and let C and D be two cells of P. Then C and D are

said to be connected, if there is a sequence of cells C = C1, . . . , Cm = D of P such that Ci ∩ Ci+1

is an edge of Ci for i = 1, . . . ,m− 1. In addition, if Ci 6= Cj for all i 6= j, then C1, . . . , Cm is called
a path (connecting C and D). A collection of cells P is called a polyomino if any two cells of P are
connected. We denote by V (P) = ∪C∈PV (C) the vertex set of P and by E(P) = ∪C∈PE(C) the
edge set of P. In particular, a polyomino could be also seen as a connected bipartite graph. Note
that, if a, b ∈ V (P), then a and b are connected in V (P) by a path of edges. More precisely, one can
find a sequence of vertices a = a1, . . . , an = b such that {ai, ai+1} ∈ E(P), for all i = 1, . . . , n− 1.
The number of cells of P is called the rank of P, and we denote it by rkP. We also define the
lower left corner of P as `(P) = min{`(C) : C ∈ P}. Each proper interval [(i, j), (k, l)] in N2 can
be identified as a polyomino and it is referred to as rectangular polyomino, or simply as rectangle.
If s = k − i and t = l − j we say that the rectangle has size s× t. In particular, given a rectangle
of P we call diagonal cells the cells A,B such that `(A) = (i, j) and `(B) = (k − 1, l − 1) and
antidiagonal cells the cells C,D such that `(C) = (i, l − 1) and `(D) = (k − 1, j).

A polyomino P is called a subpolyomino of P ′, if all cells of P are contained in P ′. Given a
polyomino P, the smallest rectangle (with respect to its size) containing P as a subpolyomino, is
called the bounding box of P.

We say that a polyomino P is simple if for any two cells C and D of N2 not belonging to P,
there exists a path C = C1, . . . , Cm = D such that Ci /∈ P for any i = 1, . . . ,m. Roughly speaking,
a polyomino without a “hole” is called a simple polyomino. We say that a polyomino P is thin if
P does not contain the square tetromino (see Figure 1) as a subpolyomino.

Figure 1. The square tetromino
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An interval [a, b] with a = (i, j) and b = (k, `) is called a horizontal edge interval of P if j = `
and the sets {(r, j), (r+1, j)} for r = i, . . . , k−1 are edges of cells of P. If a horizontal edge interval
of P is not strictly contained in any other horizontal edge interval of P, then we call it maximal
horizontal edge interval. Similarly, one defines vertical edge intervals and maximal vertical edge
intervals of P. A polyomino P is called row convex if for any two of its cells with lower left corners
a = (i, j) and b = (k, j), with k > i, all cells with lower left corners (l, j) with i ≤ l ≤ k are
cells of P. Similarly, P is called column convex if for any two of its cells with lower left corners
a = (i, j) and b = (i, k), with k > j, all cells with lower left corners (i, l) with j ≤ l ≤ k are cells
of P. If a polyomino P is simultaneously row and column convex then P is called convex. Let
C : C1, C2, . . . , Cm be a path of cells and (ik, jk) be the lower left corner of Ck for 1 ≤ k ≤ m.
Then C has a change of direction at Ck for some 2 ≤ k ≤ m− 1 if ik−1 6= ik+1 and jk−1 6= jk+1. A
convex polyomino P is called k-convex if any two cells in P can be connected by a path of cells in
P with at most k change of directions. A cell interval is a path of cells with no change of direction.
We recall the construction of the rook complex RP . We identify rooks on the cells of a polyomino
with the cells themselves. Two cells C and D of a polyomino P are called attacking if they belong
to the same cell interval. Otherwise, we say that they are non-attacking. The elements of RP are
subsets of P containing pairwise non-attacking rooks (including ∅ and the singletons {C} for any
C ∈ P).

2.2. Graphs and simplicial complexes. Set V = {x1, . . . , xn}. A simplicial complex ∆ on the
vertex set V is a collection of subsets of V such that: 1) {xi} ∈ ∆ for all xi ∈ V ; 2) F ∈ ∆ and
G ⊆ F imply G ∈ ∆. An element F ∈ ∆ is called a face of ∆. A maximal face of ∆ with respect
to inclusion is called a facet of ∆.
The dimension of a face F ∈ ∆ is dimF = |F | − 1, and the dimension of ∆ is the maximum
of the dimensions of all facets. Moreover, if all the facets of ∆ have the same dimension, then
we say that ∆ is pure. Let d − 1 be the dimension of ∆ and let fi be the number of faces of ∆
of dimension i with the convention that f−1 = 1. Then the f -vector of ∆ is the (d + 1)-tuple
f(∆) = (f−1, f0, . . . , fd−1). The h-vector of ∆ is h(∆) = (h0, h1, . . . , hd) with

(1) hk =

k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1.

Similarly, one can express the entries of f -vector by the entries of the h-vector, in fact for i =
0, . . . , d

(2) fi−1 =

i∑
k=0

(
d− k
i− k

)
hk

It follows that f(R) = (f−1, . . . , fd−1) where fi−1 = ri and d = r(P). We recall the following
definitions:

link∆(F ) = {G ∈ ∆ : F ∩G = ∅ and F ∪G ∈ ∆}, del∆(F ) = {G ∈ ∆ : F ∩G = ∅}.

We define chain complex as follows:

C : 0→ Kfd−1
∂d−1−→ Kfd−2

∂d−2−→ . . .
∂0−→ K → 0

and by definition the i−th reduced homology group H̃i(∆;K) is

H̃i(∆;K) = ker(∂i)/im(∂i+1).

Let ∆ be a pure independence complex of a graph G. We say that ∆ is vertex decomposable
if one of the following conditions hold: (1) n = 0 and ∆ = {∅}; (2) ∆ has a unique maximal
facet {x0, . . . , xn−1}; (3) There exists x ∈ V (G) such that both link∆(x) and del∆(x) are vertex
decomposable and the facets of del∆(x) are also facets in ∆.

We say that ∆ is Cohen-Macaulay if for any F ∈ ∆ we have that dimK H̃i(link∆(F ),K) = 0 for any
3



i < dim link∆(F ). In particular, ∆ is Cohen-Macaulay if and only if R/I∆ is a Cohen-Macaulay
ring (see [1]). It is well known that

∆ Vertex Decomposable⇒ ∆ Cohen-Macaulay ⇒ ∆ Pure.

Let F be the minimal free resolution of R/I(G). Then

F : 0→ Fp → Fp−1 → . . .→ F0 → R/I(G)→ 0

where Fi =
⊕
j

R(−j)βi,j . The βi,j are called the Betti numbers of F. For any i, βi =
∑
j βi,j is

called the i-th total Betti number. The Castelnuovo-Mumford regularity of R/I(G), denoted by
reg R/I(G) is defined as

reg R/I(G) = max{j − i : βi,j 6= 0}.
Let G be a graph. A collection C of edges in G is called an induced matching of G if the edges

of C are pairwise disjoint and the graph having C as edge set is an induced subgraph of G. The
maximum size of an induced matching of G is called the induced matching number of G and we
denote it by ν(G). The complement graph Ḡ of G is the graph whose vertex set is V (G) and whose
edges are the non-edges of G. We conclude the section by stating some known results relating
chordality and induced matching number to the Castelnuovo-Mumford regularity. The first one is
due to Fröberg ([5, Theorem 1])

Theorem 2.1. Let G be a graph. Then regR/I(G) ≤ 1 if and only if Ḡ is chordal.

The second one is due to Katzman ([9, Lemma 2.2]).

Theorem 2.2. For any graph G, we have regR/I(G) ≥ ν(G).

3. Pureness of R

In this section, we characterize the polyominoes having a pure rook complex. For this aim,
in the following definition, we introduce partitions on polyominoes. From now on, given two cell
intervals I and J , we write I ∩ J to denote the common cells of I and J . We denote by C the set
of all maximal cell intervals of P.

Definition 3.1. Let P be a polyomino. A subset ∅ 6= A ⊂ C is called a partition of P if

(1) ∀I, J ∈ A we have I ∩ J = ∅;
(2)

⋃
I∈A I = P.

Example 3.2. A polyomino admits at most two partitions, one horizontal and one vertical. In
Figure 2, the polyomino P1 admits two partitions, the polyomino P2 admits one partition and the
polyomino P3 admits no partition.

P1 P2 P3

Figure 2. We highlight with a thick line the horizontal cell intervals and with a
dashed line the vertical cell intervals

Definition 3.3. A cell interval I = C1C2 · · ·Cm ∈ C is called embedded if there exists F =
{D1, . . . , Dm} ∈ R such that for any i ∈ {1, . . . ,m} the set {Ci, Di} is attacking.

Remark 3.4. Let I be a non-embedded interval. Then any facet F ∈ RP is such that F ∩ I 6= ∅.
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Definition 3.5. Let A be a partition of P. If no interval of A is embedded then A is called super
partition.

Example 3.6. We consider the polyominoes in Figure 2. The partition of the polyomino P2 and
the horizontal partition of P1 are super partitions, while the vertical one is not a super partition
because any vertical cell interval is embedded. In particular referring to Figure 3, {E,C} embeds
the interval AD, {D,C} embeds the interval BE and {D,B} embeds the interval CF .

A B

D E

C

F

Figure 3. All of the vertical intervals of P1 are embedded

We have seen that polyominoes could have at most two partitions, moreover we have the fol-
lowing.

Proposition 3.7. A polyomino P has two super partitions if and only if P is a square.

Proof. If P is the n× n square, then it has two partitions given by the n rows and the n columns.
Moreover, any interval can be attacked at most on n− 1 cells, that is, the two partitions have no
embedded intervals.

Conversely, let A and B be two super partitions of P. Let I1 = C1C2 · · ·Cn ∈ A with a free
edge interval, without loss of generality the uppermost one. Let J1, . . . , Jn ∈ B be such that
I1 ∩ Ji = {Ci}. Let m = mini{|Ji|}, t ∈ {1, . . . , n} be such that |Jt| = m and let I1, . . . , Im ∈ A
be the rows covering the intervals J1, . . . , Jn. We claim m = n.
If m < n, for any subset {i1, . . . , im} ⊂ {1, . . . , n} \ {t} it holds that F = {D1, . . . , Dm} ∈ R,
where Dk = Ik ∩ Jik . Namely, Jt is embedded and B is not a super partition of P.
If m > n, for any k ∈ {1, . . . , n} let Dk = Ik+1 ∩ Jk, then F = {D1, . . . , Dn} attacks all the cells
of I1.That is I1 is embedded and A is not a super partition of P. That is m = n.
Moreover, if there exists a k such that Jk = D1D2 · · ·Ds with s > n, then let F be a configuration
on the n× n square containing Ck. The configuration F ′ = F \ {Ck} ∪Dn+1 is non-attacking and
covers I1, that is A is not a super partition of P. The latter shows that I1, . . . , In are the only
intervals of the partition A. By a similar argument, J1, J2, . . . , Jn are the only intervals of B, that
is P is the n× n square. �

Proposition 3.8. Let P be a non-square polyomino with unique super partition A. Then for any
J ∈ C \ A, J is embedded.

Proof. Given J ∈ C \ A with J = B1B2 · · ·Bm, one can focus on the polyomino P = PJ given by
I1, . . . , Im ∈ A such that for any k ∈ 1, . . . ,m Ik ∩ J = Bk. We proceed by induction on m. Let
m = 2 and assume that J = B1B2 is not embedded. That is, if D1 ∈ I1 attacks B1 and D2 ∈ I2
attacks B2, D1 and D2 are attacking, hence there are no other cells in P except B1, B2, D1, D2

and P is the 2× 2 square. Contradiction. Let m > 2. We assume that for any polyomino P ′ with
super partition B, any interval J ′ in C′P \ B with |J ′| < m is embedded. We consider I1. By the
definition of polyomino PJ , I1 has a free edge interval, without loss of generality assume the super
partition is made by horizontal intervals and the free edge is the uppermost one, and it contains
the cell B1 of J . Assume I1 = C1C2 · · ·Cn and Ct = B1 for 1 < t ≤ n (if B1 = C1, apply the
following arguments to the cell Cn). Let J1 = D1D2 · · ·Dl with D1 = C1 and by construction
l ≤ m. We consider the polyomino P ′ given by P \ (I1 ∪ J1). We divide two cases:

(1) P ′ is a square;
(2) P ′ is not a square.
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In case (1), since P ′ contains J \ B1, then P ′ is a (m − 1) × (m − 1) square and assume its
cells are {Aij}i,j∈{2,...,m}. We prove that the length l of J1 is equal to m and that C2 and A22

are on the same column, by proving that Im = DmAm2Am3 · · ·Amm. By contraposition, assume
Im = Am2Am3 · · ·Amm and a set F ∈ RP′ with |F | = m − 1 containing the cell Bm ∈ Im. Then
F ′ = (F \{Bm})∪{B1} ∈ RP since B1 ∈ I1. We have that F ′ attacks the interval Im ∈ A, that is A
is not a super partition. This leads to a contradiction. In particular from Am2Am3 · · ·Amm ⊂ Im
and Im \ J1 = Am2Am3 · · ·Amm, we obtain Im = DmAm2Am3 · · ·Amm. Moreover, by similar
arguments, if the length n of I1 is less than m, one can find an embedding for I1, given by the set
{D2, A32, . . . , An+1n}. That is n ≥ m. If n = m, then P is the m ×m square, that contradicts
the hypothesis, hence n > m. That is, the m ×m square is a subpolyomino of P. Therefore, if
F ∈ RP is a set of m non-attacking rooks on such a square containing B1, that is F \B1 embeds
J \B1, then F ′ = (F \ {B1} ∪ {Cn}) embeds the interval J .

In case (2), the set A′ = {I2 \ {D2}, . . . , Il \ {Dl}, Il+1, . . . , Im} is a partition of P ′. We prove
that A′ is a super partition. If one of the intervals Il+1, . . . , Im is embedded, then it is embedded
in A, contradiction. If an interval Ik \Dk is embedded by a configuration F ′ ∈ RPP ′ , then D1∪F ′
embeds Ik in P, and this is a contradiction. That is A′ is a super partition of P ′. Moreover, the
interval J {B1} has cardinality m− 1 and by induction hypothesis is embedded by a configuration
F ′ ∈ RP′ , and F ′ ∪ {D1} is an embedding for J as desired. �

Lemma 3.9. Let P be a polyomino and let I, I ′ ∈ C be such that I is embedded and there exists
J ∈ C with J ∩ I 6= ∅ and J ∩ I 6= ∅. Then there exists an embedding F of I such that F ∩ I ′ 6= ∅.

Proof. Let G = {D1, D2, . . . , Dl} be an embedding of I = C1C2 · · ·Cl and assume G ∩ I ′ = ∅.
Assume that J ∩ I = Cj and J ∩ I ′ = D. Then we claim F = G \ {Dj} ∪ {D} ∈ RP . If D is
attacked by a Dk ∈ G, then Dk ∈ I ′, that is G ∩ I ′ 6= ∅. Hence, F is an embedding for I with
F ∩ I ′ 6= ∅ as desired. �

We now prove the main theorem of this section

Theorem 3.10. Let P be a polyomino. The following are equivalent:

(1) RP is pure and has dimension d− 1;
(2) P admits a super partition with |A| = d.

Proof. (2) ⇒ (1). Assume P has a super partition A with |A| = d. By contraposition, assume
that RP is not pure, that is there exists a facet F with |F | = t < d. Let I1, . . . , It ∈ A be the
intervals containing the t cells of F . Since t < d, then A \ {I1, . . . , It} 6= ∅, that is, there exists
I ∈ A \ {I1, . . . , It} that is embedded by F . Hence, A is not a super partition. Contradiction.

(1) ⇒ (2). Assume that RP is pure and has dimension d − 1. We divide the proof in the
following steps:

• We prove that P admits a partition A;
• If E ⊆ A is the set of the embedded intervals of A, then either E = ∅ or E = A.
• In the case A = E , P admits a super partition B.

Existence of A. By contraposition, assume that P admits no partition, that is there exists a
vertical interval I with a single cell C and a horizontal interval with a single cell D. Since P is a
polyomino, the cells C and D are k-connected with k odd and let C1, C2, . . . , Ck be the changes of
direction. We consider the set F = {C = C0, C2, C4 . . . , Ck−1, D = Ck+1} that lies in RP , because
for any i ∈ {2, 4, . . . , k − 1} Ci only attacks Ci−1 and Ci+1. Since RP is pure, then there exists
G ∈ RP such that |F ∪ G| = d. We now consider F ′ = {C1, C3, . . . , Ck} ∈ RP and we claim
that F ′ ∪ G ∈ RP . If A ∈ G attacks Ci with i = 1, 3, . . . , k, then A attacks either Ci−1 ∈ F or
Ci+1 ∈ F , that is F ∪G /∈ RP . Contradiction.
We prove that F ′ ∪G is maximal, i.e. any cell A of P is attacked by a cell of F ′ ∪G. Since F ∪G
is maximal, then for any A ∈ P there exists B ∈ F ∪G attacking A. If B ∈ G, then B ∈ F ′∪G. If
B ∈ F , then B = Ci for i ∈ 0, 2, . . . , k + 1 and either Ci−1 or Ci+1 in F ′ attacks B, and hence A.
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We showed that F ′ ∪G with |F ′ ∪G| < |F ∪G| is maximal, hence RP is not pure. Contradiction.
Hence, P admits a partition A and since dimRP = d− 1, then |A| ≥ d.

The set E of embedded intervals. Let ∅ ⊆ E ⊆ A be the set of embedded intervals of A. We
claim that either E = ∅ or E = A. If ∅ 6= E 6= A, let I ∈ A \ E be a non-embedded interval
and let I ′ ∈ E , and since A is a partition, there exists C ∈ I and C ′ ∈ I ′ such that C and C ′ are
2k-connected with k ≥ 1 with intervals I1 = I, . . . , Ik = I ′ ∈ A. without loss of generality one can
assume that k = 1, in fact if I2 is embedded then take I ′ = I2, otherwise take I = I2. That is,
assume I and I ′ are 2-connected, that is, there exists J ∈ C such that J ∩ I 6= ∅ and J ∩ I ′ 6= ∅.
From Lemma 3.9, there exists an embedding F of I ′ such that F ∩ I 6= ∅. Let G be a facet of RP
containing F and let G′ = G\{A}∪Cj . We observe that G′∩I = ∅ that is either I is embedded or
by Remark 3.4, there exists a facet Ḡ with Ḡ∩ I 6= ∅ containing G′, that are both contradictions.
Hence either E = ∅ or E = A. In the case A = ∅, we have that A is a super partition and |A| = d
due to Remark 3.4.

The case E = A. Any interval of A is embedded, that is |A| > d and, in particular, no interval
of A has single cells, therefore P admits another partition B. Assume that A contains rows and
B contains columns. We claim that B contains no embedded intervals. By contraposition, assume
that J = C1C2 · · ·Cl ∈ B is embedded by F = {D1, . . . , Dl} and let I1, . . . , Il be its rows. Since
l ≤ d and |A| > d, then there exists I ∈ A that is embedded by a facet G containing F . That
is, a cell Cj of J is 2k-connected to a cell D of I with k ≥ 1 by a path with columns given by
J1, J2 . . . , Jk and changes of directions L1, L2 . . . , L2k. We may assume that k = 1. In fact, if
one of the rows of J1 is embedded, then Cj is 2-connected to a cell D′ of an embedded interval.
Otherwise, from Lemma 3.9, one can choose F such that J1 ∩ F = {Dk}. Since G is maximal and
J1 has no embedded rows, any cell of J1 \ {Dk} is attacked by a cell of G, that is G \ {Dk} ∪ {Ck}
is an embedding of J1 and the cell L2 ∈ J1 is 2(k − 1)-connected to the cell D of I. That is,
we assume Cj ∈ J and D ∈ I are 2-connected and we prove that there exists F̄ embedding of I
such that F ∩ F̄ 6= ∅. For this aim, let F ′ be an embedding for I and assume F ′ ∩ F = ∅. Let
J ′ be such that J ′ ∩ Ij 6= ∅ and J ′ ∩ I 6= ∅. From Lemma 3.9 applied to J, J ′ and Ij ,we can
choose F such that F ∩ J ′ = {Dj}. Moreover, since I is embedded, then J ′ ∩ F ′ = {D′}. Take
F̄ = F ′ \ {D′} ∪ {Dj}, that is F ∩ F̄ 6= ∅. Let G′ be a maximal face containing F̄ ∪ F , then a
cell A ∈ F ∩ F̄ attacks a cell C ∈ J and D ∈ I, that is the face G′ \ {A} ∪ {C,D} is maximal
and |G′ \ {A} ∪ {C,D}| > G′, contradiction to the pureness of RP . This shows that B contains
no embedded intervals, hence |B| = d and it is a super partition of P and by Remark 3.4 one has
|B| = d. �

We recall the graph GP is such that V (GP) = {C}C∈P and

E(GP) = {{C,D} : C and D lie on the same row or column}.
Furthermore, the complement graph ḠP has edge set

E(ḠP) = {{C,D} : C and D are non-attacking}.
An example of a polyomino P with the graphs GP and ḠP can be found in Figure 4.

4

1 2 3

5

6

(A) P

5

2 3

6

1

4

(B) GP

5 2

3 6

1 4

(C) ḠP

Figure 4. A polyomino P and the graphs GP and ḠP
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We observe that a partition on P induces a clique partition in the associated graph GP . More-
over, if such partition is super then the graph GP is said to be localizable (see [8]). For a graph
G, if ∆(G) is pure, then we say that G is well-covered. Hence, Theorem 3.10 can be rephrased as
follows:

Theorem 3.11. Let GP be a graph associated to a polyomino P. Then the following are equivalent:

(1) GP is well-covered;
(2) GP is localizable.

4. Chordality of ḠP

In this section we characterize the polyominoes P for which the graph ḠP is chordal. In view
of Theorem 2.1, we obtain information on the minimal free resolution of IR. We recall that the
neighbourhood of vertex v ∈ V (G) of a graph G is defined as NG(v) = {w ∈ V (G) : {v, w} ∈ E(G)}.
We start with the following result.

Lemma 4.1. Let P be a polyomino and let γ = {A1, . . . , An} with n ≥ 3 be an induced cycle of
Ḡ. Then n ∈ {3, 4, 6}.

Proof. We assume n > 6. Since γ is induced, then A3, A4, A5, A6 ∈ NG(A1). Moreover, {A3, A5},
{A4, A6} ∈ E(G), that is there exists a cell interval I of P containing A1, A3, A5 and a cell interval
J of P containing A1, A4, A6, as shown in Figure 5. We have that {A3, A6} ∈ E(Ḡ) and γ is not
induced. Hence an induced cycle in Ḡ has length less than or equal to 6.

A6

A1A3

A4

A5

Figure 5

If n = 5, then {A1, A3}, {A1, A4} ∈ E(G) and {A3, A4} /∈ E(G). That is there exists a cell inter-
val I of P containing A1 and A3 and a cell interval J containing A1 and A4. By similar arguments,
there exists a maximal cell interval I ′ 6= J containing A2 and A4. Since {A2, A5}, {A3, A5} ∈ E(G)
and {A2, A4} /∈ E(G), then A3 and A2 are 1-connected with change of direction at A5. This implies
that either {A1, A5} or {A4, A5} ∈ E(G) and γ is not a cycle. This proves that n ≤ 6 and n 6= 5
as desired. �

Remark 4.2. We highlight that a cycle γ = {A1, . . . , A6} of length 6 is given by the hexomino
in Figure 6. That is, whenever the above hexomino is a subpolyomino of P we have that Ḡ is not
chordal.

A1 A4

A3 A6

A5 A2

Figure 6
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We prove some results under the assumption that Ḡ is chordal.

Remark 4.3. If Ḡ is chordal, then any two cells in P are k-connected with k < 3. In fact, assume
that C,D ∈ P are k-connected with C1, . . . , Ck changes of directions and k > 3, that is C1 and Ck
lie on different cell intervals, hence {C,Ck, C1, D} is an induced 4-cycle of Ḡ.

Proposition 4.4. Let Ḡ be a chordal graph and assume that there exists J ∈ C such that |J | > 2.
Then for any I ∈ C \ {J} one has |I| = 2.

Proof. By contraposition, assume that there exists I ∈ C \ {J} such that |I| > 2. We distinguish
two cases:

(1) I ∩ J 6= ∅;
(2) I ∩ J = ∅.

In case (1), let I ∩ J = {C}. It follows that |I \ {C}| ≥ 2 and |J \ {C}| ≥ 2, that is there exist
C1, C2 ∈ I and D1, D2 ∈ J such that {C1, D1, C2, D2} is an induced 4-cycle of Ḡ, that is Ḡ is not
chordal.
In case (2), from Remark 4.3, a cell of I is at most 2-convex with a cell of J , that is let I1, . . . , Il
be intervals such that for any j ∈ {1, . . . , l} Ij ∩ I 6= ∅ and Ij ∩J 6= ∅. If l > 2, then the hexomino
of Figure 6 is a subpolyomino of P and from Remark 4.2 Ḡ is not chordal. That is either l = 1
or l = 2. In the former case there exist C1, C2 ∈ I \ (I1 ∩ I) and D1, D2 ∈ J \ (I1 ∩ J) such that
{C1, D1, C2, D2} is an induced 4-cycle of Ḡ, that is Ḡ is not chordal, while in the latter case there
exist C1, C2 ∈ I \ (I1∩I) and D1, D2 ∈ J \ (I2∩J) such that {C1, D1, C2, D2} is an induced 4-cycle
of Ḡ, that is Ḡ is not chordal. �

Corollary 4.5. Let P be a polyomino with a chordal Ḡ, then P is simple.

Proof. In fact, if P is non-simple, then it is multiply connected, that is, there exists a closed path
of cells. If such closed path has more than 4 intervals, then there are two cells that are k-connected
with k > 3, that is Ḡ is not chordal due to Remark 4.3. That is there are 4 intervals I1, . . . , I4.
Since P is non simple then we should have |I1| > 2 and |I2| > 2, that contradicts Proposition 4.4.

�

For the aim of classifying the polyominoes having a chordal Ḡ, we first characterize the simple
non-thin ones.

Lemma 4.6. Let P be a simple non-thin polyomino. Then Ḡ is chordal if and only if P is one of
the two polyominoes in Figure 7.

Figure 7

Proof. The graphs Ḡ associated to the polyominoes of Figure 7 are the graphs in Figure 8 that are
clearly chordal.

Figure 8
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We now assume that Ḡ is chordal and P strictly contains the square tetrominoQ = {C1, C2, C3, C4}
with {C1, C2} non-attacking and let C ∈ P \ Q. Let I be the cell interval containing C. If there
exists D ∈ I such that D /∈ {C1, C2, C3, C4}, then either {C,D,C1, C4} or {C,D,C1, C3} or
{C,D,C2, C3} or {C,D,C2, C4} is an induced 4-cycle of Ḡ. That is, if I \ C ⊆ {C1, C2, C3, C4},
assume I = {C,C2, C3}, as in Figure 9.

C1

C2C3

C4

C

Figure 9

We assume that there exists D ∈ P \ {C1, C2, C3, C4, C} and let J ∈ C be such that D ∈ J . It
follows that either |J | > 3 or J = {C,D} and J ∩ {C1, C4} = ∅. In the former case, both I and
J have cardinality greater than 3, contradicting Proposition 4.4. In the latter case, C1 and D are
3-connected contradicting Remark 4.3. That is, if Ḡ is chordal P is one of the two polyominoes in
Figure 7. �

We are left with the characterization of the simple thin polyominoes having a chordal Ḡ. We
introduce a new class of polyominoes.

Definition 4.7. A simple thin polyomino P such that C = {J, I1, . . . , Il} with 0 ≤ l ≤ |J | and for
any k ∈ {1, . . . , l} Ik ∩ J 6= ∅ is called a brush polyomino(see Figure 10A). If in addition for any
k ∈ {1, . . . , l} |Ik| = 2, then is P is called a short brush polyomino(see Figure 10B).

(A) A brush polyomino (B) A short brush polyomino

Theorem 4.8. Let P be a simple thin polyomino. Then Ḡ is chordal if and only if P is a short
brush polyomino.

Proof. Assume P is a brush polyomino and that {A1, A2, A3, A4} is an induced cycle of Ḡ with
A1 and A3 on a cell interval, and A2 and A4 on another cell interval. From the structure of P
it follows that one of A1 and A3 lies on J , say A3. Similarly, without loss of generality assume
A2 ∈ J , that is A2, A3 ∈ E(G) and Ḡ is not a cycle.
We now assume that P is a simple thin polyomino with a chordal Ḡ. From Remark 4.3, we have
that P is k-connected with k ≤ 2. We now distinguish two cases.

(1) for any I ∈ C it holds |I| = 2;
10



(2) there exists J ∈ C such that |J | > 2.

In case (1), we have that |C| ≤ 3, in fact the only polyominoes satisfying the above property are
subpolyominoes of the skew tetromino in Figure 11. In fact, if C contains another cell interval I
with |I| = 2, then I contains C (resp. D) and another cell A that is 3-connected to D (resp. C).

C

D

Figure 11. The skew tetromino

In case (2), from Proposition 4.4, we obtain that ∀I ∈ C \ {J} one has |I| = 2. We are left with
proving that ∀I ∈ C \ {J} we have I ∩ J 6= ∅. Assume I ∩ J = ∅. Since I = {C1C2} and P is
simple thin, then there exists I1 ∈ C with |I1| = 2 such that I1 = {C2C} for some cell C ∈ J . Since
|J \ {C}| ≥ 2, then there exists D1, D2 ∈ J such that {C1, D1, C2, D2} is an induced 4-cycle of Ḡ,
that is Ḡ is not chordal. This leads to a contradiction. It follows that P is a brush polyomino. �

From Theorem 2.1 one obtains the following

Corollary 4.9. Let P be a simple polyomino. Then regR/I(GP) ≤ 1 if and only if P is a brush
polyomino or P is one of the polyominoes in Figure 7.

5. The Castelnuovo-Mumford regularity of pure brush polyominoes

In this section, we compute the Castelnuovo-Mumford regularity of R/I(GP) for the brush
polyominoes P that have a pure rook complex. For this, we call them pure brush polyominoes. We
are motivated by the following observations.

Remark 5.1. Let P be a simple thin polyomino. We observe that GP contains no induced cycles,
hence is chordal and by [18, Corollary 7.(2)] RP is vertex decomposable.

Corollary 5.2. Let P be a simple thin polyomino. Then the following are equivalent

(i) RP is pure;
(ii) RP is Cohen-Macaulay;
(iii) RP is vertex decomposable.

Therefore, if RP is pure and h(RP) = (h0, . . . , hr), then r = regR/I(G). Hence, for the rest of
the section we focus on the class of pure brush polyominoes (see Figure 12).
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Figure 12. A pure brush polyomino

If follows that a pure brush polyomino with dimRP = d− 1 is such that A = {I1, . . . , Id} with
|Ik| = `k for any k ∈ {1, . . . , d}, C = A ∪ {J} with |J | = d, and Ik ∩ J 6= ∅ for any k ∈ {1, . . . , d}.
Let ` = (`1, . . . , `d). We want to study the vectors f(RP) and h(RP) for a pure brush polyomino
P.

We recall that for 1 ≤ k ≤ d the k-th elementary symmetric polynomial in d indeterminates
X1, . . . , Xd is

ε
(d)
k (X1, . . . , Xd) =

∑
1≤i1<i2<...<ik≤d

Xi1Xi2 · · ·Xik .

For any 1 ≤ k ≤ d we set

σk = εk(`1, . . . , `d),

σ′k = εk(`1 − 1, . . . , `d − 1),

σ′′k = εk(`1 − 2, . . . , `d − 2).

Lemma 5.3. For any d ∈ N and 1 ≤ k ≤ d the following relations hold

(i) σ′k =
k∑
i=0

(−1)k−i
(
d−i
k−i
)
σi;

(ii) σk =
k∑
i=0

(
d−i
k−i
)
σ′i;

(iii) σ′′k =
k∑
i=0

(−1)k−i
(
d−i
k−i
)
σ′i.

Proof. We consider a subset {i1, . . . , ik} ⊆ {1, . . . , d} and we consider the number

(3) (`i1 − 1)(`i2 − 1) · · · (`ik − 1)

For any i ∈ {1, . . . , k} we set

σ
(k)
i = ε

(k)
i (`i1 , . . . , `ik),

hence, from Vieta’s formulas, Equation (3) becomes

k∑
i=0

(−1)k−iσ
(k)
i .
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We now consider

σ′k =
∑

1≤i1<i2<...<ik≤d

(`i1 − 1)(`i2 − 1) · · · (`ik − 1) =
∑

1≤i1<i2<...<ik≤d

k∑
i=0

(−1)k−iσ
(k)
i .

We observe that fixed {i1, . . . , ik} and A ⊆ {i1, . . . , ik} with |A| = i, the summand∏
a∈A

`a

appears
(
d−j
k−j
)

times in σ′k. That is

σ′k =
∑

1≤i1<i2<...<ik≤d

k∑
i=0

(−1)k−iσ
(k)
i =

k∑
i=0

(−1)k−i
(
d− j
k − j

)
σk,

and relation (i) follows. Similarly, relation (iii) follows.
Relation (ii) follows from Relation (i), as a comparision with the relation between Equation 1

and Equation 2. �

Moreover we have

Theorem 5.4. Let P be a pure brush polyomino with dimRP = d−1. Then the following relations
hold

(1) for all k ∈ {1, . . . , d}
fk−1 = σ′k + (d− (k − 1))σ′k−1;

(2) for all t ∈ {0, . . . , d}
ht = σ′′t + (d− (t− 1))σ′′t−1.

Proof. We prove relation (1), by first observing that for any i = 2, . . . , d we have

fk−1 = σk −

(
k−2∑
j=0

(
d− j
k − j

)
σ′j

)
.

We have that for any {i1, . . . , ik} ⊂ {1, . . . , d}, we have

`i1 · · · `ik
configurations of rooks. From this number for any 0 ≤ j ≤ k − 2 we have to subtract the
configurations that have exactly k − j cells on the common interval J . Fixed a subset A =
{a1, . . . , ak−j} ⊂ {i1, . . . , ik}, the configurations containing the cells in J ∩ {Ia1}, . . . , J ∩ {Iak−j

}
are ∏

t∈{i1,...,ik}\A

(`t − 1).

Let Sk−j be the set of cardinality k − j subsets of {i1, . . . , ik}. We consider∑
1≤i1<i2<...<ik≤d

∑
A∈Sk−j

∏
t∈{i1,...,ik}\A

(`t − 1).

Since the j elements of {i1, . . . , ik} \ A are fixed, then in the above sum any product
(
d−j
k−j
)

is

counted times, and their sum retrieves σ′j . Hence,

fk−1 =
∑

1≤i1<i2<...<ik≤d

`i1 · · · `ik −

(
k−2∑
j=0

∑
A∈Sk−j

∏
t∈{i1,...,ik}\A

(`t − 1)

)
=

=
∑

1≤i1<i2<...<ik≤d

`i1 · · · `ik −

(
k−2∑
j=0

∑
1≤i1<i2<...<ik≤d

∑
A∈Sk−j

∏
t∈{i1,...,ik}\A

(`t − 1)

)
=
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= σk −
k−2∑
j=0

(
d− j
k − j

)
σ′j .

According to relation (ii) of Lemma 5.3, we have that

fk−1 =

k∑
j=k−1

(
d− j
k − j

)
σ′j = σ′k + (d− (k − 1))σ′k−1.

To prove relation (2), we consider Equation (1), that is

ht =

t∑
k=0

(−1)t−k
(
d− k
t− k

)
fk−1 =

= (−1)t
(
d

t

)
f−1 +

t∑
k=1

(−1)t−k
(
d− k
t− k

)
fk−1.

By using relation (1), we obtain

= (−1)t
(
d

t

)
f−1 +

t∑
k=1

(−1)t−k
(
d− k
t− k

)
(σ′k + (d− (k − 1))σ′k−1) =

one observes that f−1 = σ′0 = 1

=

t∑
k=0

(−1)t−k
(
d− k
t− k

)
σ′k +

t∑
k=1

(−1)t−k
(
d− k
t− k

)
(d− k + 1)σ′k−1 = (∗).

We observe that

(d− k + 1)

(
d− k
t− k

)
= (d− k + 1)

(d− k)!

(t− k)!(d− t)!
· d− t+ 1

d− t+ 1
= (d− t+ 1)

(
d− k + 1

t− k

)
,

that is

(∗) =

t∑
k=0

(−1)t−k
(
d− k
t− k

)
σ′k + (d− t+ 1)

t∑
k=1

(−1)t−k
(
d− k + 1

t− k

)
σ′k−1 =

In the second sum, we substitue j = k − 1 and we obtain

=

t∑
k=0

(−1)t−k
(
d− k
t− k

)
σ′k + (d− t+ 1)

t−1∑
j=0

(−1)t−j+1

(
d− j

t− 1− j

)
σ′j .

By using relation (iii) of Lemma 5.3, we obtain that

ht = σ′′t + (d− t+ 1)σ′′t−1,

as desired. �

We reformulate the definition of induced matching number for the graph GP , denoted by ν(GP),
in terms of the intervals of P.

Definition 5.5. An induced matching is a set of edges {{A1, B1}, . . . , {An, Bn}} such that for
any j, k ∈ {1, . . . , n}, if {Aj , Bj} ⊂ Ij ∈ C and {Ak, Bk} ⊂ Ik ∈ C, then there is no J ∈ C such that

J ∩ Ij ⊂ {Aj , Bj} and J ∩ Ik ⊂ {Ak, Bk}.

For a polyomino P, we set S = {I ∈ C : I has at least 2 single cells}.

Lemma 5.6. Let P be a simple polyomino. Then

ν(GP) ≥ |S|.
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Proof. Let S = {I1, . . . , Im}. For any j ∈ {1, . . . ,m}, let Aj and Bj be two single cells of Ij . It
follows that

{{A1, B1}, . . . , {Am, Bm}}
is an induced matching, hence ν(GP) ≥ |S|. �

Corollary 5.7. Let P be a pure brush polyomino. Then

regR/I(GP) = ν(GP).

Proof. Let P be a pure brush polyomino with C = {J, I1, . . . , Id}. We recall that `k = |Ik| for any
k ∈ {1, . . . , d}. We observe that if lk ≥ 3 then Ik has two single cell. We distinguish two cases

(1) for any k ∈ {1, . . . , d} `k ≥ 3;
(2) there exists j ∈ {1, . . . , d} such that `j = 2;

In case (1), from Lemma 5.6 we have that d = ν(GP), that is from Theorem 2.2

ν(GP) ≤ regR/I(GP) ≤ d,
and the assertion follows.
In case (2), we relabel the intervals I1, . . . , Id in a way such that

`1, . . . , `t > 3 and `t+1 = . . . = `d = 2

for t < d. In this case we have ν(GP) = t+ 1. In fact, since S = {I1, . . . , It}, then we have t edges
in an induced matching. To this we add the unique edge arising from It+1. Combining the facts
Ik ∩J 6= ∅ for any k ∈ {1, . . . , d} and `t+1 = . . . = `d = 2, we obtain that the intervals I1, . . . , It+1

give rise to an induced matching. We prove that hk = 0 for k > t+ 1.
Let k > t+ 1. In any cardinality-k subset of `1 − 2, . . . , `d − 2 there is a 0, that is

σ′′k = σ′′k−1 = 0.

From relation (2) of Theorem 5.4, we obtain hk = 0 as desired. �

As a conclusion, in this paper we characterize the polyominoes having a pure rook complex.
It could be of interest finding a characterization for those polyominoes having a Cohen-Macaulay
(shellable, vertex decomposable) rook complex, and among them finding the Gorenstein ones.
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