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Abstract. This contribution is focused on the nonlinear and ill-posed problem of
reconstructing the electrical conductivity starting from the free response of a conductor
in the magneto-quasi-stationary (MQS) limit. In this framework, a key role is played
by the Monotonicity Principle, that is a monotone relation connecting the unknown
material property to the (measured) free-response. The Monotonicity Principle is
relevant to develop noniterative and real-time imaging methods. The Monotonicity
Principle is a rather general principle found in many different physical problems.
However, each physical/mathematical context requires the proper operator showing
the MP to be identified. In turns, this calls for ad-hoc mathematical approaches
tailored to the specific frameworks. In this paper we discuss a monotonic relationship
between the electrical resistivity and the time constants of the free response for MQS
systems. Numerical examples are provided to support the underlying theory.

1. Introduction
In this article, which is derived from [1, 2, 3, 4], we analyze the inverse problem of
reconstructing the electrical conductivity from the free response of Maxwell equations
in the magneto-quasi-stationary (MQS) limit. In this limiting case fall the phenomena
in which (i) the displacement current appearing in the Ampère-Maxwell law can be
neglected, (ii) there is a conducting material and (iii) the magnetic energy of the system

∗ Author to whom any correspondence should be addressed. ORCID: 0000-0003-2462-6350.
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dominates the electrical energy [5]. The time-varying magnetic flux density in the MQS
limit is able to penetrate inside a conducting material inducing electrical currents and
it is known as eddy currents. In turn, the magnetic flux density, produced by the
induced eddy currents, can be measured using sensors external to the conductor, thus
enabling the tomographic capabilities (Eddy Current Tomography or Magneto Inductive
Tomography) of material properties, such as the electrical resistivity (or, equivalently,
conductivity) and magnetic permeability. Specifically, in this work we refer to the
response of the system when all sources have been switched off as the imaging of a
conductor’s electrical conductivity starting from the free response of the material. We do
not assume magnetic properties for the conducting material, but, however, the extension
to conductive and magnetic materials is straightforward.

Several models have been studied for Eddy Currents. Here we choose the following
integral formulation (non-magnetic materials) to study the free response on an Eddy
Current problem [6]:

⟨ηJ,w⟩ = −∂t ⟨AJ,w⟩ ∀w ∈ HL(Ω),

where J is the induced current density, Ω is the region occupied by the conducting
material, A is the compact, self-adjoint, positive definite operator:

A : v ∈ HL(Ω) 7→
µ0

4π

∫
Ω

v(x′)

||x− x′||
dV (x′) ∈ L2(Ω;R3), (1.1)

HL(Ω) is the functional space

HL(Ω) := {v ∈ Hdiv(Ω) | div(v) = 0 in Ω, v · n̂ = 0 on ∂Ω} ,

η is the electrical resistivity and µ0 is free space magnetic permeability.
The Monotonicity Principle (MP) plays a key role in inverse problems; it is based

on a monotonic relationship connecting the unknown material property to the measured
physical quantity. The MP is fundamental for developing non-iterative imaging methods
suitable for real-time imaging. It was introduced by A. Tamburrino and G. Rubinacci in
[7, 8, 9] and it has mainly been applied to inverse obstacle problems. In these framework,
the aim is to reconstruct the shape of defects in a given background and the method
determines whether or not a test inclusion is part of an defect. This test is highly
suitable for three main features: (i) the negligible computational cost for processing
a given test inclusion, (ii) the processing on different test inclusions can be carried
out in parallel, and (iii) the MP provides rigorous upper and lower bounds to the
unknown defect, even in the presence of noise (see [10] and references therein), under
proper assumptions. Subsequently, the MP was extended to many different settings
[2, 1, 11, 12, 13, 4, 14, 15, 16, 17, 18, 19, 20, 21]) and even to nonlinear materials [22].

The class of non-iterative imaging methods also includes the imaging methods based
on the MP. Colton and Kirsch introduced the first non-iterative approach named Linear
Sampling Method (LSM) [23], then Kirsch proposed the Factorization Method (FM)
[24]. Ikeata proposed the Enclosure Method [25] and Devaney applied MUSIC (MUltiple
SIgnal Classification), a well-known algorithm in signal processing, as an imaging method
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[26]. In [27], a non-iterative method based on the concept of topological derivatives is
proposed to find the shape of defects in an otherwise homogeneous material.

In this article, we prove that the electrical current density in the absence of the source
(source-free response) can be represented through a modal decomposition:

J (x, t) =

∞∑
n=1

cn jn(x)e
−t/τn(η) in Ω× [0,+∞[. (1.2)

In modal decomposition (1.2), jn(x) is a mode and τn(η) > 0 is the corresponding time
constant, ∀n ∈ N. Each mode and its related time constant depend on the electrical
resistivity η. In Proposition 2.1 we prove that the sequence of modes {jn}n∈N is a
complete basis. Moreover, we prove that τn(η) → 0 as n → ∞. Equation (1.2) allows
us to generalize the representation in [2, eq. (20)], valid for the discrete case, to the
continuous case.

Moreover, in Theorem 3.3, we prove the MP for the sequence of time constants
{τn(η)}n∈N:

η1 ≤ η2 ⇒ τn (η1) ≥ τn (η2) ∀n ∈ N, (1.3)

where η1 ≤ η2 means η1(x) ≤ η2(x) for a.e. x ∈ Ω. The time constants τn(η) appearing in
(1.3) must be ordered monotonically. Hereafter, we assume they are placed in decreasing
order.

The paper is organized as follows. In Section 2, we describe the inverse problem of
interest, together with the mathematical model of the underlying physics. In Section 3,
we prove the MP for time constants. In Section 4 we provide a discussion of the results
together with the imaging method and in Section 5 we provide some numerical examples.

2. Statement of the Problem
The model problem in Magnetic Induction Tomography (MIT) consists in studying the
electromagnetic fields to retrieve the spatial distribution of the electrical resistivity of a
prescribed material.

The time-varying electrical currents, that circulate in a proper set of coils (see Figure
1), generate an electromagnetic field. The time-varying currents produce a time-varying
magnetic flux density B(x, t) that induces an electrical field E(x, t) and, consequently,
an electrical current density J(x, t) in the conducting domain Ω [5]. The electrical
resistivity η affects the induced current density J(x, t) which, in turns, produces a
“reaction”magnetic flux density Beddy(x, t). In MIT the measurement of Beddy(x, t)
carried out externally to the conducting domain, makes it possible, in principle, to
reconstruct the unknown η.

Two types of measurements are related to Beddy. The first one consists in measuring
Beddy with a magnetic flux density sensor, the second consists in measuring the induced
voltage veddy(t) across a pick-up coil. It is worth noting that veddy = dφeddy/dt where
φeddy is the magnetic flux linked with the pick-up coil. Furthermore, these quantities
share the same set of time constants of J. Indeed, the applications of the Biot-Savart
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Figure 1. Representation of a typical Magnetic induction tomography. This Figure is
reproduced from [1] with the kind permission of Institute of Physics (IOP).

law to the source free response (1.2) yelds to:

Beddy (x, t) =
∞∑
n=1

cnbn(x)e
−t/τn(η) in Ω× [0,+∞[, (2.1)

veddy(t) =
dφeddy(t)

dt
=

∞∑
n=1

cnvne
−t/τn(η) in Ω× [0,+∞[. (2.2)

Therefore, the protocol entails in gathering the waveform of either Beddy or veddy. Hence,
the waveforms are pre-processed to extract the time constants and, finally, the set of
time constants is provided as input to the imaging algorithm.

Throughout this paper, Ω is the region occupied by the conducting material. We
assume Ω ⊂ R3 to be an open bounded domain with a Lipschitz boundary and outer unit
normal n̂. We denote by V and S the 3-dimensional and the bi-dimensional Hausdorff
measure in R3, respectively and by ⟨·, ·⟩ the usual L2-integral product on Ω.

Hereafter we refer to the following functional spaces

L∞
+ (Ω) := {θ ∈ L∞(Ω) | θ ≥ c0 a.e. in Ω for c0 > 0},

and to the derived spaces L2(0, T ;HL(Ω)) and L2(0, T ;Hcurl(Ω)), for any 0 < T < +∞.
Let E, B, H and J be the electric field, the magnetic flux density, the magnetic

field and the electrical current density, respectively where η ∈ L∞
+ (Ω) is the electrical

resistivity of the conductor, µ0 is the magnetic permeability of the free space, Js is the
prescribed source current density and we have assumed that there are no magnetic
materials. The Magneto-Quasi-Stationary approximation of Maxwell’s equations is
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described by (see, for instance, [28]) in integral formulation in the weak form (see [29, 6])
by:

⟨ηJ,w⟩ = −⟨∂tAJ,w⟩ − ⟨∂tAS ,w⟩ ∀w ∈ HL(Ω), (2.3)

where AS ∈ L2(0, T ;Hcurl(Ω)) is the vector potential produced by the prescribed source
current Js ∈ L2(0, T ;HL(Ωs)), Ωs is a bounded open set with Lipschitz boundary, A is
the operator defined in (1.1) and J ∈ L2(0, T ;HL(Ω)).

This Section provides the characterization of the time constants. Specifically, it has
been found that the time constants are the eigenvalues for a proper generalized eigenvalue
problem [1]. To find this generalized eigenvalue problem, we notice that in the absence
of source currents (2.3) reduces to:

⟨ηJ,w⟩ = −∂t⟨AJ,w⟩ ∀w ∈ HL(Ω)).

Then, the separation of variables J (x, t) = i (t) j (x) gives

i (t) ⟨η(x)j(x),w(x)⟩ = −i′(t) ⟨Aj(x),w(x)⟩ ∀w ∈ HL(Ω),

and, therefore,

i (t)

i′ (t)
= −τ(η) ∀t ∈]0,+∞[,

⟨Aj,w⟩
⟨ηj,w⟩

= τ(η) ∀w ∈ HL(Ω),

where τ(η) is the separation constant. Therefore, J (x, t) = e−t/τ(η)j (x) and

⟨Aj,w⟩ = τ(η) ⟨ηj,w⟩ ∀ w ∈ HL(Ω). (2.4)

When (2.4) admits a nonzero solution, the real number τ and the function j ∈ HL(Ω)\{0}
are called the eigenvalue and eigenfunction of (2.4), respectively.

In [1] it has been proved that:

(i) the generalized eigenvalues and eigenvectors form countable sets: {τn(η)}n∈N and
{jn}n∈N;

(ii) the eigenvalues can be ordered such that τn(η) ≥ τn+1(η);

(iii) τn(η) > 0 and limn→+∞ τn(η) = 0;

(iv) the set of eigenvectors {jn}n∈N forms a complete basis in HL(Ω).

We stress that the sequence {jn}n∈N form a complete basis, hence it can be used to
represent any element of HL(Ω) in terms of a Fourier series.

Furthermore, by induction, we define

τn(η) := max
∥j∥η=1, j∈Hn

L(Ω)
⟨Aj, j⟩ n = 1, 2, ... (2.5)

where

H1
L (Ω) := HL(Ω)

Hn
L(Ω) := {v ∈ HL(Ω)| ⟨v,ηj1⟩ = . . . = ⟨v,ηjn−1⟩ = 0} n = 2, 3, ...
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Proposition 2.1. The sequence {jn}n∈N of the maximizers of (2.5) forms a complete
basis in HL(Ω).

Proof. Let us assume that there exists v ∈HL(Ω)\span {jn}n∈N. Let us decompose v
as v = v1 + v2 with v1 ∈ span {jn}n∈N and v2 ̸= 0 such that ⟨v2, ηjn⟩ = 0, ∀ n ∈ N.
Thanks to the latter, v2 ∈ Hn

L(Ω) ∀n ∈ N, thus

τn = sup
∥v∥η=1, v∈Hn

L(Ω)
⟨Av,v⟩ ≥

〈
A

v2

∥v2∥η
,

v2

∥v2∥η

〉
> 0

where the last inequality comes from the positive definiteness of A. In the limits for
n → +∞ we get 0 > 0 which is a contradiction. Thus, v2 = 0, i.e. {jn}n∈N is complete
basis in HL(Ω).

3. Monotonicity of eigenvalues
This Section provides the proof of the MP for the time constants. To achieve this aim,
we first derive a variational characterization of the time constants in a slightly different
form with respect to (2.5). More precisely, this new variational characterization (3.2)
have two specific features: (i) it involves a finite dimensional space, rather than an
infinite dimensional space and (ii) the set of admissible functions does not depend upon
the electrical resistivity η. The first result is contained in Lemma 3.1 whereas the second
result is in Lemma 3.2.

3.1. Variational Characterization
We have the two following variation characterizations of the eigenvalues [1].

Lemma 3.1. The following variational characterization of τn(η) holds:

τn(η) = min
j∈Un

⟨Aj, j⟩
||j||2η

, (3.1)

where Un =span{j1, j2, . . . , jn}
Lemma 3.2. The following max-min variational characterization of τn(η) holds:

τn(η) = max
dim(U)=n

min
j∈U

⟨Aj, j⟩
||j||2η

. (3.2)

3.2. The Monotonicity Principle for the Eigenvalues
At this stage, we are in position to prove the main result of this paper, i.e. the
Monotonicity of the time constants with respect to the electrical resistivity η. We stress
that a key role is played by the variational characterization (3.2) appearing in Lemma
3.2.

Theorem 3.3. Let η1, η2 ∈ L∞
+ (Ω). It holds that

η1 ≤ η2 a.e. in Ω =⇒ τn (η1) ≥ τn (η2) ∀n ∈ N,

τn (η1) being the n−th eigenvalue related to η1 and τn (η2) the one related to η2.
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Proof. First, we observe that if η1 ≤ η2 a.e. in Ω, then ||v||2η1 = ⟨η1v,v⟩ ≤ ⟨η2v,v⟩ ≤
||v||η2 . Then, ⟨Av,v⟩/||v||η1⟨Av,v⟩/||v||η2 and

min
v∈U

⟨Av,v⟩
||v||η1

≥ min
v∈U

⟨Av,v⟩
||v||η2

,

where U is a linear space. Eventually, from Lemma 3.2, we have

τn (η1) = max
dim(U)=n

min
v∈U

⟨Av,v⟩
||v||η1

≥ max
dim(U)=n

min
v∈U

⟨Av,v⟩
||v||η2

= τn (η2) ,

for any n ∈ N.

4. Interpretation of the results and imaging method
This Section provides a discussion on the impact of the previous results. Specifically,
we discuss the relevance of the completeness and orthogonality of the basis {jn}n∈N and
the foundation of the imaging method based on MP.

4.1. The Completeness of the basis
The sequence {jn}n∈N forms a complete basis in HL(Ω), as proved in (2.1). Furthermore,
we show that any J ∈L2 (0, T ;HL (Ω)) can be represented by means of the following
Fourier series:

J (x, t) =

∞∑
n=1

in (t) jn(x) in Ω× [0, T ]. (4.1)

Moreover, when T is finite, it is possible to prove that [1]:

L2 (0, T ;HL (Ω)) = L2 (0, T )⊗HL(Ω).

Function in can be found by solving an ordinary differential equation:

rnin + lni
′
n = En ∀n ∈ N, (4.2)

where rn = ⟨ηjn, jn⟩, ln = ⟨Ajn, jn⟩ and En = −⟨∂tAS , jn⟩.
Moreover, when the source current Js is either vanishing or constant in time, we have

En = 0 for any t > 0 and, hence:

in(t) = in(0)e
−t/τn(η), (4.3)

where we exploited ln/rn = τn(η). Equation (4.3), together with (4.1), gives (1.2).
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4.2. Monotonicity, Shape Reconstruction, and Bounds
The inverse obstacle problem is one of the more important application of MP. In this
framework, the unknown is the shape of one (or more) inclusions in a background
medium. Let ηBG be the electrical resistivity of the background medium and let ηI
be the electrical resistivity of inclusions. For the sake of simplicity, we assume that both
ηBG and ηI are constant, but this assumption can be relaxed. In addition, we assume
ηI > ηBG; the other case (ηI < ηBG) can be treated similarly.

If A is the region occupied by an inclusion, the related electrical resistivity is
ηA (x) = ηI χA (x) + ηBG χΩ\A (x) in Ω. Then, Theorem 3.3 implies the following form
of MP:

A ⊂ B ⊂ Ω =⇒ τn (B) ≤ τn (A) ∀n ∈ N. (4.4)

An imaging algorithm could be based on the equation (4.4) and, under proper
conditions, upper and lower bounds are available, even in the presence of noise (see
[10], based on [7, 30]). That is, if V ⊂ Ω is an inclusion to be retrieved starting from
the knowledte of the time constants, the MP algorithm provides two subsets V I and V U

such that V I ⊆ V ⊆ V U .
More precisely, the imaging algorithm is based on the following proposition:

∃m ∈ N : τm (B) > τm (A) =⇒ A ̸⊆ B, (4.5)

which is an equivalent form of (4.4).
Starting from (4.5) we have the following imaging method (Union based):

V U =
⋃

k∈SU

{
TU
k : τn (V ) ≤ τn

(
TU
k

)
∀n ∈ N

}
, (4.6)

where the TU
k s are “test” domains forms a covering of the region of interest (ROI) and

SU is a proper set of indices. In this reconstruction rule we search for those test domains
TU
k which are seen as included in V , when analyzed from the time constants perspective.
A second option is given by the following reconstruction rule (Intersection based):

V I =
⋂

k∈SI

{
T I
k : τn

(
T I
k

)
≤ τn (V ) ∀n ∈ N

}
. (4.7)

In this reconstruction rule we search for those test domains T I
k which are seen as including

V , when analyzed from the time constants perspective.
A third option is given by

V SU = V U
a ∩ V U

b (4.8)

where V U
a and V U

b are union based reconstructions, but related to two different families
of tests domains: {T a

k }k∈Sa and
{
T b
k

}
k∈Sb . In this reconstruction rule, we first evaluate

two upper bounds V U
a and V U

b to the unknown defect V and, then, we compute
their intersection to reduce the test domains erroneously included in the two partial
reconstructions.
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5. Numerical Examples
In this section, a few numerical examples will be presented to demonstrate the MP
of time constants in eddy current testing and its application in tomography. These
examples are reproduced from [2, 3, 4] and they have been prepared with an in-house
numerical model as described in [31]. The time constants for a given configuration are
always arranged in the descending order.

5.1. Evidence of the Monotoniticy Principle
The first numerical example proves the MP (see [3] for details). The background domain
is a conductive slab which consists of 10×10×4 voxels. The electric conductivity of the
defects is significantly smaller than that of the background.

Figure 2(a) shows defect Dα, made by 2 × 2 × 1 voxels and defect Dβ, made by
4 × 4 × 1 voxels, being Dα completely enclosed by Dβ. As expected, the difference of
the corresponding time constants τi (Dα) − τi (Dβ) is non-negative for all values of i.
Figure 2(b) illustrates a case where the defects are partially overlapped. Specifically, Dα

is made by 4 × 4 × 2 voxels, whereas defect Dβ is made by 6 × 6 × 1 voxels. In this
case the difference τi (Dα)− τi (Dβ) presents non permanence of the sign, as showed in
Figure 2(b).

Defect Dα Defect Dβ Top view Side view

i
(a)

Defect Dα Defect Dβ Top view Side view

i
(b)

Figure 2. Schematic of the slab and defects. and plot of τi (Dα)− τi (Dβ) for the first
50 time constants. (a) Defect Dα is enclosed by Dβ. (b) Defects Dα and Dβ are partially
overlapped. This Figure is reproduced from [3] with the kind permission of IOS Press.
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5.2. The modes
In this second example we investigated how defects impact time constants. Let us
consider a simple test case, a conductive cube of 20 mm×20 mm×20 mm. The electrical
resistivity of the cube is 1 × 10−7 Ω m. By solving the generalized eigenvalue problem
(2.4), we obtain the time constants τi and the associated natural modes ji. Figure 3 plots
the natural modes in terms of ji for some selected i. The eddy currents related to the
1st, 2nd and 3rd time constants circulate mainly on the surfaces of the cube. These three
modes are equivalent up to a proper rotation as they represent multiplicative eigenvalues
in (2.4). Similarly, other groups of equivalent modes are {4, 5}, {6, 7, 8} and {9, 10, 11}.
The natural modes in the same group share identical time constants.

(a) Conductive cube

(b) i = 1 (c) i = 2 (d) i = 3

(e) i = 4 (f) i = 5

(g) i = 6 (h) i = 7 (i) i = 8

(j) i = 9 (k) i = 10 (l) i = 11

Figure 3. The natural modes of a conductive cube. (a) The cube, and (b)-(l) the
natural modes associated with the 1st to 11th time constants. This Figure is reproduced
from [2] with the kind permission of Institute of Physics (IOP).
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When there is a defect in the cube, the eddy current is forced to redistribute around
the defect. The defect impacts a mode if and only if it interacts significantly with the
associated eddy current. For instance, if a defect is located in the center of the cube, it
will barely make any impact to the modes that circulate mainly on the surface, e.g. the
1st, 2nd and 3rd mode. On the other hand, the same defect completely blocks the path
of the 6th, 7th and 8th mode, modifying the corresponding time constants.

As a comparison, a surface breaking defect on the top surface and a buried defect
in the center of the specimen were considered, and the time constants were computed
with and without the defect. The dimensions of the defects are 4 mm× 4 mm× 4 mm.
The surface breaking defect causes significant changes in the time constants of modes
i = 2, 3 and i = 10, 11 as it blocks the current of these modes; the buried defect instead
causes changes in the time constants of modes i = 6, 7, 8. The corresponding results are
summarized in Table 1 and Table 2.

Table 1. The perturbation of time constants when introducing a surface breaking defect.
This Table is reproduced from [2] with the kind permission of Institute of Physics (IOP).

defect No. No defect (µs) With defect (µs) Difference (µs)

1 178 178 0
2 178 172 6
3 178 172 6
4 96.2 96.0 0.2
5 96.2 96.0 0.2
6 89.8 89.6 0.2
7 89.8 89.6 0.2
8 89.8 88.4 1.4
9 78.2 77.9 0.3
10 78.2 74.2 4
11 78.2 74.2 4

From these simple test cases, we notice that the time constants are sensitive to buried
defects if their associated modes redistribute and change their paths due to this defect.
Therefore, the analysis of time constants, especially whose natural modes have strong
currents in the center part, is a valuable tool for inspecting the innermost regions of the
specimen, which is usually a difficult task with conventional eddy current methods.

5.3. The role of the symmetry
Time constants from two configurations that are equal apart from an isometric
transformation of the space are identical. Therefore, it is impossible to distinguish
two defects that are equal apart from an isometry. In this section, we investigate this
aspect and suggest the use of additional conductors to break the symmetry.

Let us consider a pipe, which is commonly used in many industrial applications,
e.g. oil/gas transmission, steam generation in power plants, as our subject of inspection
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Table 2. The perturbation of time constants when introducing a buried defect. This
Table is reproduced from [2] with the kind permission of Institute of Physics (IOP).

defect No. No defect (µs) With defect (µs) Difference (µs)

1 178 177 1
2 178 177 1
3 178 177 1
4 96.2 96.2 0
5 96.2 96.2 0
6 89.8 81.6 8.2
7 89.8 81.6 8.2
8 89.8 81.6 8.2
9 78.2 78.2 0
10 78.2 78.2 0
11 78.2 78.2 0

(Figure 4). The inner and outer radii of the pipe are 5 mm and 9 mm, respectively.
We consider only a section of the pipe which is 10 mm long. For numerical simulations,
this cylinder domain is meshed into hexahedral elements with 10 uniformly distributed
elements in axial direction, 10 uniformly distributed elements in radial direction and 30
uniformly distributed elements in azimuthal direction. Multiple coils are used to pick
up signals at the inner surface of the pipe.

Figure 4. Mesh of the cylinder pipe and pick up coils. This Figure is reproduced from
[4] with the kind permission of IOS Press.

Figure 6 highlights two symmetric defects, colored in blue and red respectively. As
depicted in the figure, the corresponding time constants are identical because of the
symmetry and, hence, they cannot be uniquely determined by using the MP. A possible
method to overcome this problem is introducing additional pieces of conductors to
break the symmetry of the underlying structure, as illustrated in green in Figure 5.
These additional conducting patches are introduced nondestructively together with the
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inspection system (coils). They produce perturbations in the eddy currents modes, while
not changing the property of the specimen, i.e. the pipe. In order to raise significant
changes to the eddy current distribution, the size of additional patches should be large
enough. For instance, in this article, their sizes are about 40% of the pipe, in all
dimensions.

Figure 5. Additional conductor patches and their mesh together with the cylinder.
This Figure is reproduced from [4] with the kind permission of IOS Press.

(a) two circular symmetrical defects (b) defects lose symmetry with respect to extra
conductor patches

Figure 6. Introducing conductor patches breaks geometrical symmetry. This Figure is
reproduced from [4] with the kind permission of IOS Press.

After introducing the additional patches (Figure 5(b)) symmetric defects could be
distinguished via time constants since their relative positions with respect to the
additional conductors are different. Figure 7 illustrates the 11th to 20th time constants
related to these two defects. In this test case, the conductivity of the background and
of the additional conductors is 107 S/m, that of the defects is 105 S/m.
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Figure 7. Time constants related to symmetrical defects before and after the
introduction of the additional conductors. This Figure is reproduced from [4] with
the kind permission of IOS Press.

5.4. Imaging
Following the previous example, a defect can be uniquely identified via MP after
introducing the external patches. In this subsection, we test numerically the three
different imaging strategies of (4.6), (4.7) and (4.8) for defects in the pipe. Two test cases
are presented: a buried and centered defect and an inner-surface breaking and edged
defect. Each of these defects consists of 3× 3× 3 voxels, in the cylindrical structure.

To reconstruct these “unknown” defects, we calculate in advance the time constants
for small test elements (defects made by 2×2×2 voxels) and large test elements (defects
made by 4× 4× 4 voxels).

All time constants are calculated numerically and only the largest 50 time constants
are used in the reconstruction algorithm. Multiplicative noise model is assumed on the
measurement of the time constants related to the unknown defect V and the noise level
is 0.01%, i.e. τ̃i

V = τVi · (1 + ξ), where τVi is the i-th largest time constant related to V
and τ̃i

V is the noised measurement of τVi , ξ is uniformly distributed in [-0.0001, 0.0001].
The first test case considers a defect buried in the pipe. Imaging results are

summarized in figure 8. Strategies 1 and 3 give good reconstructions, however strategy
2, not reported here, gives a void set (V I = ∅). In fact, when applying strategy 2, there
were many “false” calls, even when the real defect was not included in the test element.
The intersection of these false calls gave the empty set. Also, comparing the result of
strategies 1 and 3, it is worth noting that the intersection (4.8) of two upper bounds
arising from (4.6) but from two families of test elements, gives a better reconstruction
where some superfluous voxels are excluded.

The last test case refers to a surface breaking defect at the edge of the pipe (Figure
9). This case nicely demonstrated the role of the additional conductive patches. They
helped to locate the azimuthal position of the defect, as well distinguish the defect at
the upper edge from defects at the lower edge. However, we noticed that a second
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Real defect Strategy 1 Strategy 3

Figure 8. Reconstruction of a buried defect. This Figure is reproduced from [4] with
the kind permission of IOS Press.

superfluous defect was reconstructed at the center part of the pipe.

Real defect Strategy 1 Strategy 3

Figure 9. Reconstruction of a surface breaking defect at the edge. This Figure is
reproduced from [4] with the kind permission of IOS Press.
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