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Chapter 1

Introduction

The prevalence of neurodegenerative diseases has been steadily increasing in recent years, underscoring

a concerning trend. A rising number of individuals are facing these debilitating conditions, reflecting the

complex challenges posed by ageing populations and changing lifestyles. The growth in the incidence

of neurodegenerative diseases highlights the pressing need for continued research, heightened awareness,

and enhanced support systems to address the evolving healthcare landscape and provide better care for

those affected by these conditions.

Another aspect underscoring the importance of research in this field is that neurodegenerative diseases

currently lack a cure. They can cause cognitive impairments manifesting as difficulties in memory, lan-

guage, thinking, judgment, and motor skills. Individuals exhibiting a combination of these symptoms

face a significantly heightened risk of developing dementia and, in more severe cases, Alzheimer’s Disease

(AD) or Parkinson’s Disease (PD).

Given the progressive nature of AD, early detection becomes crucial to initiate therapies to mitigate its

effects. Early diagnosis is a fundamental prerequisite for the effectiveness of these treatments, aimed at

slowing down disease progression. This early intervention not only helps extend the life expectancy of

patients but also enhances their overall quality of life. Once the signs of the disease manifest, substantial

and irreversible damage may have already occurred.

The impact of neurodegenerative diseases on handwriting is a notable concern, as these conditions can

compromise fine motor control and cognitive functions. Individuals affected by neurodegenerative dis-

eases often experience changes in their handwriting, such as altered penmanship, irregular letter shapes,

and diminished overall legibility. This decline in handwriting proficiency can be studied as a tangible

manifestation of the broader cognitive challenges associated with these diseases.

Diagnosing neurodegenerative diseases like AD involves a comprehensive physician assessment, using

several sources of information and incorporating various tools and tests to evaluate cognitive function,

neurological health, and overall well-being.

The involvement of Artificial Intelligence (AI) in supporting the diagnosis of neurodegenerative diseases

has been a progressively evolving field over the past couple of decades. The application of AI techniques

gained momentum in the 21st century with advances in computational power, the availability of data,

and improvements in algorithmic approaches. Since the early to mid-2000s, researchers began exploring

the potential of AI in analyzing various data types associated with neurodegenerative diseases, including

medical images, genetic information, and clinical data. The use of AI in supporting the diagnosis of

Neurodegenerative Diseases (NDs) represents a promising frontier in healthcare. AI applications, such

as machine learning algorithms and deep learning models, analyze vast datasets to identify patterns and

indicators associated with neurodegenerative conditions. These technologies offer the potential for earlier

and more accurate detection of NDs, facilitating timely intervention and personalized treatment plans.

In the past ten years, the research community agreed that the application of artificial intelligence to

handwriting analysis holds great potential for supporting the diagnosis of NDs. AI algorithms can dis-

cern subtle changes in handwriting patterns, offering valuable insights into cognitive decline associated

with conditions like AD or PD. By analyzing features such as pressure, speed, and stroke dynamics, AI

may contribute to the early detection and monitoring of NDs, providing a non-invasive and cost-effective

diagnostic tool. This approach enables a better understanding of neurological changes and comple-

ments traditional diagnostic methods. Ongoing research in AI-driven handwriting analysis underscores

its promise in enhancing the accuracy and efficiency of NDs diagnosis.

1



Introduction

1.1 Aims and Motivation

The diagnosis of NDs is assessed by physicians and experts in the medical field. They gather information

about the patient’s medical history, including family history, lifestyle factors, and the onset of symptoms.

This helps in understanding potential risk factors and the progression of cognitive decline. Cognitive

tests commonly assess memory, language, and other cognitive functions. A thorough physical examina-

tion helps identify any underlying health issues, and a neurological exam assesses functions like reflexes,

coordination, and sensory abilities. Blood tests are often conducted to rule out other conditions that may

mimic symptoms of neurodegenerative diseases. Advanced imaging techniques provide detailed images

of the brain, evaluated by physicians to detect anomalies. Occasionally, cerebrospinal fluid analysis may

be performed to detect specific biomarkers associated with AD.

While diagnostic tests for NDs play a crucial role in early detection and management, they also have

certain limitations and considerations, especially for impaired individuals, they can present some poten-

tial drawbacks. Some diagnostic tests, such as advanced brain imaging, can be expensive. The financial

burden may be a concern, especially for individuals without comprehensive insurance coverage. The

invasiveness is another aspect to consider, as certain tests, like lumbar punctures for cerebrospinal fluid

analysis, can be invasive and uncomfortable. The procedure involves inserting a needle into the spinal

canal to collect fluid. Invasive tests may pose challenges for individuals with cognitive impairment, as

they may find it distressing or be unable to cooperate. Cognitive tests and neurological exams, though

generally non-invasive, may cause discomfort or anxiety for individuals with cognitive impairment. These

individuals may find it challenging to follow instructions or become agitated during testing. Some indi-

viduals may have difficulty cooperating during cognitive tests or imaging procedures, potentially affecting

the accuracy of the results. This limitation underscores the need for alternative, patient-friendly diag-

nostic approaches.

Moreover, access to certain diagnostic tests may be limited based on geographical location, healthcare

infrastructure, or financial constraints. This can impact the timely diagnosis and intervention for indi-

viduals with cognitive impairment. While cerebrospinal fluid analysis for biomarkers is a valuable tool,

it is not as widely available as other diagnostic tests. Limited accessibility may hinder its use in routine

clinical practice.

It’s essential for healthcare providers to carefully consider the individual needs, preferences, and limita-

tions of each patient, particularly those with cognitive impairment. Additionally, ongoing research and

technological advancements aim to address some of these limitations and improve the accessibility and

accuracy of diagnostic tools for NDs. AI applications may assist in analyzing and interpreting cognitive

test results more efficiently. Recognizing the importance of an early diagnosis, it is widely acknowledged

in the medical community that handwriting is among the first skills impacted by the onset of cognitive

disorders. This is because cognitive diseases can impact motor activities, including handwriting, which

relies on cognitive, kinaesthetic, and perceptive motor skills. The intricate connection between cognitive

decline and changes in handwriting serves as a valuable early indicator, emphasizing the importance of

timely diagnosis to initiate interventions that can potentially alleviate the impact of these debilitating

conditions.

Recent research has highlighted specific aspects of the writing process that exhibit greater vulnerability

and could serve as diagnostic indicators in signal and image processing. For instance, dysgraphia, a

writing impairment, manifests early in the course of AD, even during its initial phase. Consequently,

over the past two decades, researchers have devised writing tests to examine the progression of cognitive

impairment more effectively, aiming to establish a means for early predictions. It’s worth noting that

most studies exploring the impact of cognitive impairment and neurodegenerative disorders on handwrit-

ing kinematics have been conducted within the medical field, utilizing statistical tools for analysis.

Recognizing the significance of early diagnosis in the medical domain, researchers have turned to AI tech-

niques to identify potential features that can enhance the recognition mechanism across a broad spectrum

of illnesses. Diseases such as AD and other cognitive impairments fall within this category. While the

traditional diagnostic process relies on medical expertise, advancements in technology, including AI, are

playing an increasing role in aiding diagnosis. AI is increasingly being explored for its potential in ND

diagnostics. Machine learning algorithms can analyze large datasets, including medical records, imaging

data, and genetic information, to identify patterns and predict disease risk or progression. AI applica-

tions, including deep learning models, are being developed to assist in interpreting medical imaging, such

as identifying subtle changes in brain structures indicative of neurodegenerative diseases. AI-powered

decision support systems may aid physicians by providing additional insights based on a comprehensive
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analysis of diverse data sources. While AI holds promise in supporting the diagnostic process, it is crucial

to note that the final diagnosis is typically made by experienced healthcare professionals who consider a

wide view of the patient’s clinical presentation. AI tools are valuable aids, assisting healthcare providers

in more efficient and accurate decision-making.

Handwriting analysis holds promising potential as a non-invasive and accessible tool for developing a

system to support the diagnosis of neurodegenerative diseases using AI. By examining subtle changes in

handwriting patterns, this innovative approach seeks to detect early signs of cognitive decline associated

with diseases such as AD and PD. AI algorithms play a crucial role in processing vast datasets of hand-

written samples, extracting intricate features related to motor control, velocity, and pressure. The goal is

to create a sophisticated diagnostic system to discern variations indicative of neurodegenerative disorders.

Integrating AI-driven handwriting analysis into diagnostic protocols offers a patient-friendly alternative,

particularly for those facing challenges with traditional testing methods. This approach can potentially

enhance early detection, paving the way for timely interventions and improved patient outcomes. Ongo-

ing research in this field explores the correlation between handwriting alterations and neurodegenerative

changes, contributing to the advancement of precision medicine in diagnosing and managing these com-

plex conditions. The last two decades of research have demonstrated that applying AI techniques to

handwriting analysis can yield positive outcomes.

This thesis aims to leverage AI to develop a Computer Aided Diagnosis system (CAD) specifically de-

signed to support Alzheimer’s diagnosis. There are several motivations behind this goal. First, a timely

diagnosis is crucial for effective intervention in AD. AI-powered CAD systems have the potential to de-

tect subtle cognitive changes and can analyze complex patterns and data, providing a more accurate and

objective assessment of cognitive decline based on various inputs. This has the potential to enhance di-

agnostic precision compared to traditional methods. Moreover, using AI can ease the diagnostic process,

reducing the time and resources required. This efficiency is particularly important given the increasing

prevalence of neurodegenerative diseases and the need for scalable and accessible diagnostic solutions.

AI systems also offer an objective and standardized evaluation of biomarkers, reducing the potential for

subjective interpretation.

Finally, insights gained from the system can potentially lead to new research directions, therapeutic

targets, and a deeper comprehension of the disease’s progression. This thesis’s contributions include

evaluating AD diagnosis systems based on dynamic and shape information and comparing the results

achieved through different experimental settings. The study assessed CNNs’ ability as automatic feature

extractors, tested long-term motor planning ability through new tasks, and compared different classifica-

tion approaches. The findings shed light on the effectiveness of combining shape and dynamic information

for AD diagnosis using machine learning techniques.

The final objective is to provide cost-effective, non-invasive, and easily accessible support for AD diag-

nosis by integrating AI with handwriting analysis. This innovative approach seeks to harness the unique

patterns in handwriting to detect early signs of cognitive decline associated with AD. By utilizing AI

algorithms, the system aims to process handwriting samples efficiently, extracting subtle features related

to motor control and cognitive function. The emphasis on low cost and non-invasiveness ensures broader

accessibility, particularly for individuals facing challenges with conventional diagnostic methods. The goal

is to create a user-friendly and widely applicable tool to facilitate timely AD detection, fostering better

patient outcomes. Ongoing research in this field underscores the potential for AI-driven handwriting

analysis to revolutionize the diagnostic landscape for neurodegenerative diseases, offering an accessible

and scalable solution for widespread use and implementation.

1.2 Overview of Contents

In this context, preliminary studies explored the combined use of shape and dynamic features extracted

from handwriting for AD diagnosis. In this thesis, an experimental handwriting task protocol was con-

sidered for the data acquisition step, exploiting the ability of the Wacom Bamboo Folio graphic tablet

to record essential information. After the execution of the protocol, many types of data were achieved

from handwriting tasks, namely static and dynamic features directly derived from the sequences of points

provided by the tablet and the handwriting images recorded or generated at the end of each task.

Features were processed and used for ML classification algorithms to distinguish between healthy people

and patients. Concerning images, several variants have been investigated. Deep learning techniques were

considered, and a set of CNNs was empirically selected to extract features automatically.

Promising results were achieved, but challenges remained in distinguishing healthy subjects from those
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with AD in the early stages. To address this point, the study expanded, incorporating more complex

tasks demanding higher fine motor control and more significant cognitive load. The choice of unfamiliar

graphic tasks aimed to accentuate differences in writing characteristics between healthy subjects and

those with NDs. Various classification schemes were employed to assess the performance of different

feature representations.

The remainder of the thesis is organized as follows. Chapter 1 introduces the objective of the work

and the issue it means to solve. Many concepts addressed in this part will be deeply explained in the

remainder of this work. Chapter 2 describes the NDs with a particular emphasis on AD and resumes

the last advancements in the employment of AI in healthcare. It also contains a section dedicated to the

handwriting process. The second part of this chapter consists of a rich selection of research involved in

the diagnosis or monitoring of NDs from different information sources and technological approaches. It

provides an overview of the literature regarding the examined topic. Chapter 3 is designed to describe

the data acquisition step followed by an image generation and a feature computation phase. Chapter 4

discusses the experimental architectures, results and findings, while Chapter 5 introduce an additional

research path involving the evolutionary theory. Finally, the last Chapter 6 is devoted to a final discussion

and considering possible future works.

1.3 Scientific Production

The contents addressed in this thesis focus on the following publications.

Journal papers

• N. D. Cilia, T. D’Alessandro, C. De Stefano, F. Fontanella and M. Molinara.

From Online Handwriting to Synthetic Images for Alzheimer’s Disease Detection Using

a Deep Transfer Learning Approach

in IEEE Journal of Biomedical and Health Informatics, Dec. 2021, vol. 25, no. 12, pp. 4243-4254.

• N. D. Cilia, T. D’Alessandro, C. De Stefano and F. Fontanella.

Deep transfer learning algorithms applied to synthetic drawing images as a tool for

supporting Alzheimer’s disease prediction

Mach. Vision Appl, May 2022, vol. 33, no. 3.

• N. D. Cilia, T. D’Alessandro, C. De Stefano, F. Fontanella, and A. Scotto di Freca.

Comparing filter and wrapper approaches for feature selection in handwritten charac-

ter recognition

Pattern Recognition Letters, 2023, vol. 168, pp. 39–46.

Conference Proceeding

• N.D. Cilia, T. D’Alessandro, C. De Stefano, F. Fontanella, A. Scotto di Freca.

Using Genetic Algorithms to Optimize a Deep Learning Based System for the Predic-

tion of Cognitive Impairments

International Workshop on Artificial Life and Evolutionary Computation (WIVACE), 2021, vol.

1722.

• N.D. Cilia, T. D’Alessandro, C. De Stefano and F. Fontanella.

Offline handwriting image analysis to predict Alzheimer’s disease via deep learning

International Conference on Pattern Recognition (ICPR), 2022, pp. 2807-2813.

• N.D. Cilia, C. Carmona-Duarte, T. D’Alessandro, C. De Stefano, M. Diaz, M.A. Ferrer, F. Fontanella.

Lognormal Features for Early Diagnosis of Alzheimer’s Disease Through Handwriting

Analysis

Intertwining Graphonomics with Human Movements (IGS), 2022, vol. 13424.

In collaboration with University of Las Palmas de Gran Canaria

• F. Fontanella, S. Pinelli, C. Babiloni, R. Lizio, C. Del Percio, S. Lopez, G. Noce, F. Giubilei, F.

Stocchi, G.B. Frisoni, F. Nobili, R. Ferri, T. D’Alessandro, N.D. Cilia, and C. De Stefano.

Machine Learning to Predict Cognitive Decline of Patients with Alzheimer’s Disease
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Using EEG Markers: A Preliminary Study

International Conference on Image Analysis and Processing (ICIAP), 2022, vol. 13231.

• A. Bria, P. De Ciccio, T. D’Alessandro, F. Fontanella.

A Novel Evolutionary Approach for Neural Architecture Search

International Workshop on Artificial Life and Evolutionary Computation (WIVACE), 2022, vol.

1780.

• T. D’Alessandro, C. De Stefano, F. Fontanella, E. Nardone, A. Scotto di Freca.

Feature Evaluation in Handwriting Analysis for Alzheimer’s Disease using Bayesian

Network

International conference of the International Graphonomics Society (IGS), 2023, vol. 14285.

• T. D’Alessandro, C. Carmona-Duarte, C. De Stefano, M. Diaz, M.A. Ferrer, F. Fontanella.

A Machine Learning Approach to Analyze the Effects of Alzheimer’s Disease on Hand-

writing Through Lognormal Features

International conference of the International Graphonomics Society (IGS), 2023, vol. 14285.

In collaboration with University of Las Palmas de Gran Canaria

Unpublished research

• N.D. Cilia, T. D’Alessandro, C. De Stefano, F. Fontanella, I. Marthot-Santaniello, M. Molinara, A.

Scotto Di Freca.

A Novel Writer Identification Approach for Greek Papyri Images

Workshop International Workshop on Pattern Recognition for Cultural Heritage (PatReCH), 2023.

In collaboration with University of Basel

• T. D’Alessandro, C. De Stefano, F. Fontanella, E. Nardone.

Integrating Data Augmentation in Evolutionary Algorithms for Feature Selection: A

Preliminary Study

Evostar 2024.
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Chapter 2

Theoretical Background

Neurodegenerative diseases are characterized by the progressive degeneration of the structure and func-

tion of the nervous system, leading to cognitive and motor impairment over time. In this context, AD

is the most common, predominantly affecting older individuals. Most of these conditions lack a cure, so

timely diagnosis is crucial to start treatments as soon as possible, aiming at slowing down the effect of

the onset of such diseases, prompting the search for effective automated methods.

Numerous research efforts propose innovative approaches to support the diagnosis of NDs. The research

on using automated methods, particularly ML and Deep Learning (DL), to support the diagnosis of NDs

began gaining significant traction in the last couple of decades. The importance of this research lies in

the potential for early and accurate detection of these diseases, which can significantly impact patient

outcomes and the development of effective treatment strategies. In detail, the exploration of automated

methods for NDs diagnosis started to emerge in the early 2000s. Researchers began to recognize the po-

tential of computational approaches in analyzing complex patterns and biomarkers associated with these

diseases. From the mid to late 2000s, a growing emphasis was on leveraging machine learning techniques,

such as Support Vector Machine (SVM) and Artificial Neural Networks (ANNs), to analyze medical data,

including neuroimaging and clinical information. Researchers aimed to identify distinctive patterns that

could aid in early diagnosis.

Regarding the use of DL, it gained prominence in the 2010s. DL, with its ability to automatically learn

hierarchical representations from data, became a powerful tool for analyzing large and complex datasets,

including those related to neurodegenerative diseases. Nowadays, it is generally agreed in the research

community that automated methods allow for a more personalized and precise approach to diagnosis,

considering individual variations and patterns in patient data.

NDs often present complex and subtle patterns that may not be readily apparent through traditional di-

agnostic methods. ML and DL offer the capability to discern intricate relationships within large datasets.

Automated techniques contribute to identifying biomarkers associated with these diseases, understand-

ing their underlying mechanisms and facilitating the development of targeted treatments. In summary,

automated methods for supporting the diagnosis of NDs started gaining momentum in the early 2000s

and have continued to evolve, offering promising avenues for early detection, personalized medicine, and

a deeper understanding of these complex conditions.

However, advancing more efficient learning techniques requires a comprehensive understanding of existing

work in the field. This Chapter is devoted to describing and analysing the ongoing research in the context

of automated methods to support the diagnosis of NDs. The subsequent sections provide a comprehen-

sive overview of this subject, drawing insights from diverse information sources and exploring various

facets, including feature extraction and automated methodologies. The analysis deeply examines these

techniques, offering valuable perspectives on future directions.

2.1 Neurodegenerative Diseases

Neurological disorders are recognized to be the primary cause of disability and the second leading cause

of death on a global scale [51]. Over the last decades, there has been a significant increase in the number

of individuals facing disabilities due to neurological conditions [37]. This surge is particularly relevant in

low-income and middle-income countries, and it is expected to increase globally due to population growth

and ageing.

According to the Global Status Report, it is estimated that around 55 million individuals worldwide were
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impacted by dementia in 2019. Projections from the same report indicate a substantial increase, with

an anticipated rise to 139 million people by the year 2050. This alarming trend underscores the pressing

need for advancements in research, care, and support to address the growing challenges posed by these

conditions.

NDs specifically refer to a subset of neurological disorders commonly characterized by the progressive

degeneration of the structure and function of the nervous system, typically involving the gradual loss of

neurons in specific areas of the brain or spinal cord.

Although the precise cause remains elusive, several prevalent risk factors have been discerned [3]. It’s cru-

cial to emphasize that these factors can differ based on the particular disease. They are usually associated

with ageing as the primary risk factor, but it’s not the only one. Family history and genetic factors play a

role in neurodegeneration, as some genetic mutations or variations can increase susceptibility. Exposure

to certain environmental toxins and pollutants may contribute to the development of NDs. This includes

exposure to heavy metals, pesticides, and other environmental toxins, so a dangerous environment raises

the risk. Head trauma and some cardiovascular problems have been associated with the development of

neurodegeneration. Other causes are related to an unhealthy lifestyle, hormonal changes, viral infections

and even sleep disorders. Nevertheless, it is important to note that research has identified oxidative stress

and inflammation as the two major contributors to neurodegeneration [124, 128].

Biomedical research has revealed diseases belonging to this realm share striking similarities at the sub-

cellular level, including the formation of atypical protein assemblies (proteinopathy) and induced cell

death. The compromised integrity of neurons, leading to their death, is a significant contributor to the

progression of neurodegenerative conditions.

In [140], the authors describe some key, recurring features observed in various forms of these diseases in

addition to pathological protein aggregation, neuron death and aberrant proteostasis. They are related to

dysfunctions in the synaptic and neuronal network, cytoskeleton abnormalities, altered energy homeosta-

sis and DNA and RNA defects. By targeting multiple hallmarks simultaneously, personalized therapies

can be developed to halt or slow down neurodegenerative disease progression effectively. These shared

characteristics suggest that progress in therapies for one neurodegenerative disease could potentially yield

positive effects for other diseases within this category. Among the most known are amyotrophic lateral

sclerosis, multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, multiple sys-

tem atrophy, tauopathies, and prion diseases.

NDs are generally considered irreversible, meaning that the damage to the nervous system and the loss

of neurons that occur during the progression of these diseases cannot be fully reversed or restored to

normal function. This irreversibility is a significant challenge in the field and limits current therapeutic

interventions. Currently, there’s no resolutive cure, but only treatments aiming to slow down the pro-

gression of these diseases, manage symptoms, and improve the quality of life for affected individuals and

their families and caregivers.

While a complete reversal of the damage may be difficult, there is hope that early detection and inter-

vention strategies may help delay the onset of severe symptoms and provide a better quality of life for

individuals living with NDs. Additionally, emerging technologies, such as regenerative medicine and gene

therapies, hold promise in exploring more advanced treatment approaches.

2.1.1 Alzheimer’s Disease

AD is recognized as one of the most prevalent neurodegenerative disorders, characterized by progressive

cognitive decline and is estimated to be the cause of 60−70% of dementia cases. Globally, it is estimated

that a minimum of 55 million individuals are currently living with Alzheimer’s disease or other forms

of dementia. Without significant breakthroughs, this number is poised to nearly double every 20 years,

projected to reach 78 million in 2030 and a staggering 152 million in 2050 [10]. A poignant statistic reveals

that one out of every three seniors ultimately succumbs to Alzheimer’s or a related form of dementia.

This underscores these conditions’ pervasive and profound impact on the ageing population.

This disorder is named after Dr. Alois Alzheimer, a German psychiatrist who first identified the distinc-

tive brain abnormalities associated with the disease in the early years of the XX century [129]. After this

discovery, in 1984, the National Institute of Neurological and Communicative Disorders and Stroke and

the Alzheimer’s Disease and Related Disorders Association proposed the NINCDS-ADRDA Alzheimer’s

Criteria for diagnosis, then widely revised in 2007. According to these criteria, a clinical diagnosis of

AD has to confirm the existence of cognitive impairment and a suspected dementia syndrome through

neuropsychological testing. A conclusive diagnosis, however, requires histopathologic confirmation in-
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volving a microscopic examination of brain tissue. The diagnostic criteria demonstrate strong statistical

reliability and validity, aligning well with definitive histopathological confirmation. It’s crucial to note

that a definitive diagnosis of Alzheimer’s disease can only be established post-mortem, emphasizing the

need for a thorough examination of brain tissue after death.

Dementia is one of the most economically burdensome conditions for societies globally [64]. As popula-

tions age, the associated costs are anticipated to rise, posing a significant social and economic challenge.

Expenses related to AD encompass both direct and indirect medical costs, with variations observed among

countries based on the level of social care provided. Direct costs encompass expenditures on doctor visits,

hospital care, medical treatments, nursing home services, specialized equipment, and household expenses.

Indirect costs encompass the financial impact of informal caregiving and the productivity loss experienced

by informal caregivers.

AD is thought to develop when abnormal accumulations of amyloid beta, forming as amyloid plaques

externally and as tau proteins internally in the brain, disrupt neuronal functioning and connectivity

[132]. This disruption leads to a progressive loss of brain function. The altered ability to clear these

proteins is age-related and influenced by brain cholesterol, and it is also linked to other neurodegenera-

tive diseases. The cause of most Alzheimer’s cases remains largely unknown and not entirely understood,

except for deterministic genetic differences identified in only 1− 2% of cases [85]. Concerning this, while

most Alzheimer’s cases are not directly inherited, genetic factors can play a role. Mutations in specific

genes, such as the Amyloid Precursor Protein gene on chromosome 21, can increase the risk of developing

Alzheimer’s. The APOE gene, especially the APOE4 variant, is a well-established genetic risk factor for

late-onset Alzheimer’s. The cholinergic hypothesis [10] suggests that a deficiency in the neurotransmitter

acetylcholine may contribute to AD. Acetylcholine is involved in memory and learning, and its levels are

reduced in the brains of individuals with Alzheimer’s. Chronic inflammation in the brain and dysreg-

ulation of the immune system have been implicated in Alzheimer’s disease. Another risk is related to

conditions that affect the cardiovascular system, such as high blood pressure, diabetes, and high choles-

terol. Many other risk factors for developing this disease are the same as described for the NDs in Section

2.1, like advanced age, environmental and lifestyle factors. It’s important to note that AD likely results

from a combination of genetic, environmental, and lifestyle factors, and ongoing research aims to unravel

the intricate interplay among these elements.

This degenerative disorder primarily affects brain regions responsible for thought, memory, and language

and disrupts various cognitive functions, leading to thinking, reasoning, and language challenges. Early

symptoms are often mistaken for brain ageing or stress, but as the disease advances, it significantly im-

pairs a person’s capacity to perform routine daily activities. The primary and most evident manifestation

is short-term memory loss, characterized by difficulty recalling recently acquired information and an in-

ability to grasp new facts. The early phases of Alzheimer’s disease may also manifest subtle challenges in

executive functions such as attentiveness, planning, flexibility, and abstract thinking. Additionally, im-

pairments in semantic memory involving the recall of meanings and conceptual relationships can become

apparent. Apathy and depression often surface during this stage, with apathy persisting as the most

enduring symptom throughout the disease progression.

Mild Cognitive Impairment (MCI) frequently serves as a transitional phase between typical ageing and

dementia [109]. MCI can manifest with various symptoms, and when memory loss takes precedence, it is

labelled as amnestic MCI. This form is frequently recognized as a prodromal stage of AD, with a greater

than 90% likelihood of being associated with AD.

Individuals with Alzheimer’s may struggle to recall information, navigate familiar spaces, and express

themselves verbally. As the disease gradually erodes the individual’s cognitive and functional indepen-

dence, comprehensive care strategies are required, including supportive environments, adapted living

spaces, and person-centred care approaches. AD patients often face challenges in maintaining a sense of

purpose and dignity and performing basic daily living, such as dressing, bathing, grooming, and preparing

meals. The disease’s progressive nature can result in the need for assistance with these tasks.

AD progresses through distinct stages, each characterized by specific symptoms and impairment levels,

though the disease’s progression can vary from person to person. The most common symptoms of the

early stage refer to minor events of memory loss and challenges in executive functions and language.

People in this stage can still perform routine daily activities independently, though social skills may start

to decline. Regarding the emotional aspects, apathy may be persistent and can be registered in mild

personality changes and depression phenomena.

During the middle stage, the memory decline becomes more important, affecting both short-term and

long-term memory. Communication becomes more unstable with a decrement in vocabulary and word
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fluency. Issues with spatial orientation and perception may arise. Behavioural changes become more

debilitating and noticeable, including agitation and irritability, wandering and hallucinations. Typically,

individuals in this stage require assistance as their motor skills are impaired.

The late stage is the phase where the symptoms become unbearable, consisting of severe memory loss,

communication breakdown and a profound impairment in all cognitive functions. Individuals become

increasingly dependent on others for all aspects of care and emotionally unstable, also manifesting ag-

gressive behaviour. They become unable to perform basic tasks requiring continued assistance. Mobility

and motor skills decline significantly, and swallowing difficulties may also appear. Caregivers and health-

care professionals need to provide appropriate support and address the unique challenges associated with

each stage of the disease. Additionally, providing emotional support to both individuals with AD and

their caregivers is crucial in navigating the complexities associated with the progressive nature of the

disease.

Currently, there is no cure for AD, and available treatments provide relatively small symptomatic ben-

efits while maintaining a palliative nature. These treatments fall into three categories: pharmaceutical,

psychosocial, and caregiving.

Concerning the pharmaceutical group, medications used to address cognitive symptoms include acetyl-

cholinesterase inhibitors (tacrine, rivastigmine, galantamine, and donepezil) and memantine, an NMDA

receptor antagonist [6]. Acetylcholinesterase inhibitors are designed for mild to severe Alzheimer’s, while

memantine is intended for moderate to severe cases [127]. However, the benefits from these medications

are modest. Acetylcholinesterase inhibitors aim to slow down the breakdown of acetylcholine in the brain,

counteracting its loss due to the death of cholinergic neurons. Memantine acts on the glutamatergic sys-

tem to prevent excitotoxicity. Ginkgo biloba extract and atypical antipsychotics are also explored for

their potential benefits [74].

Psychosocial interventions complement pharmaceutical treatment and include behaviour-, emotion-, cognition-

, or stimulation-oriented approaches. Behavioural interventions focus on identifying and reducing an-

tecedents and consequences of problem behaviours. Emotion-oriented interventions involve reminiscence

therapy and simulated presence therapy [126]. Cognition-oriented treatments, such as reality orientation

and cognitive retraining, aim to reduce cognitive deficits. Stimulation-oriented treatments encompass

art, music, pet therapies, and exercise. Regarding the last group, as Alzheimer’s disease has no cure and

gradually hinders individuals’ ability to care for themselves, caregiving becomes a crucial aspect of treat-

ment. During the early and moderate stages, living environment and lifestyle modifications can enhance

safety and reduce caregiver burden. In the final stages, treatment focuses on relieving discomfort until

death, often with the assistance of hospice care.

A conclusive diagnosis of AD is typically established through autopsy findings; in the absence of autopsy,

clinical diagnoses are designated as ”possible” or ”probable” based on other indicators. As many as 23%

of individuals clinically diagnosed with AD may receive a misdiagnosis, with pathology indicative of a

different condition sharing symptoms similar to those of AD. Clinical diagnosis of AD commonly relies on

the person’s medical history, information from relatives, and behavioural observations. The presence of

distinctive neurological and neuropsychological features and the absence of alternative conditions support

the diagnosis. Advanced medical imaging, such as Computed Tomography (CT), Magnetic Resonance

Imaging (MRI), Single-Photon Emission Computed Tomography (SPECT), or Positron Emission Tomog-

raphy (PET), aids in ruling out other cerebral pathology or dementia subtypes. These imaging techniques

can also predict the progression from prodromal stages (MCI) to full-fledged AD.

Assessing intellectual functioning, including memory testing, further contributes to characterizing the

disease’s status. Medical organisations have developed diagnostic criteria to facilitate and standardize

the diagnostic process for physicians. Nevertheless, a definitive diagnosis can only be confirmed through

post-mortem evaluations involving examination of brain material for senile plaques and neurofibrillary

tangles.

Neuropsychological assessments are useful in diagnosing cognitive impairments like AD. Essential com-

ponents of this diagnostic process include widely employed cognitive tests like the Mini-Mental State

Examination (MMSE) [54], the Montreal Cognitive Assessment (MoCA) [95] and the Frontal Assessment

Battery (FAB) [70]. Notably, these assessments may have limitations in accuracy, particularly regarding

sensitivity to mild cognitive impairment and vulnerability to biases stemming from language or attention

issues. It is crucial to underscore that certain tests, such as those evaluating handwriting alterations

recognized by early AD researchers like Alois Alzheimer, play a distinctive role. Recognizing the nuances

of these assessments is imperative to enhance reliability, especially in the early stages of the disease.

In addition, complementary neurological examinations are crucial for distinguishing AD from other con-
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ditions. Family interviews provide valuable insights into daily living abilities and changes in mental

function. The caregiver’s perspective is particularly significant, given that individuals with Alzheimer’s

disease often lack awareness of their deficits. Families, however, may struggle to identify initial dementia

symptoms and may not accurately convey information to physicians.

Supplemental testing serves to exclude other potentially treatable diagnoses and prevent misdiagnoses.

Blood tests, thyroid function tests, assessments of vitamin B12 levels, screenings for neurosyphilis, and

evaluations for metabolic problems (including kidney function, electrolyte levels, and diabetes) are com-

monly employed. Imaging techniques such as MRI or CT scans can help rule out alternative causes

such as tumours or strokes. Psychological tests for depression are integral to the diagnostic process. De-

pression can coexist with AD, serve as an early sign of cognitive impairment, or even be the underlying

cause. Recognizing and addressing psychological factors is essential to comprehensively understand the

individual’s cognitive health.

Early diagnosis becomes crucial for implementing interventions and support strategies that can enhance

the quality of life for affected individuals. Ongoing research aims to uncover effective treatments and pre-

ventative measures, recognizing the growing impact of Alzheimer’s in an ageing global population. The

multifaceted nature of the disease underscores the need for holistic approaches that encompass medical,

social, and psychological dimensions to address the complex challenges posed by Alzheimer’s. Caregiver

support and public awareness are pivotal in fostering understanding, empathy, and a supportive envi-

ronment for those affected by this debilitating condition. Currently, as for the other NDs described in

Section 2.1, there isn’t a cure for AD.

2.2 Artificial Intelligence in Healthcare

AI is fundamentally reshaping the healthcare landscape, offering a wide set of advantages that signifi-

cantly enhance patient care and the efficiency of healthcare systems.

It employs intricate algorithms and software to replicate human cognition for analyzing complex medical

data or inferring diagnoses by observing specific aspects of a subject. AI’s ability to analyze vast datasets

enables the early detection of diseases, leading to timely interventions and improved patient outcomes.

Through the personalized analysis of patient data, including genetic information and lifestyle factors, AI

tailors treatment plans, increasing effectiveness. Nevertheless, the escalating volume of clinical data and

health records poses a significant challenge for healthcare professionals, and AI has emerged as a valuable

ally in managing this burgeoning complexity. Its capacity to process, analyze, and derive meaningful

insights from vast datasets solves clinicians’ information overload.

By leveraging AI-driven algorithms, healthcare providers can sift through extensive electronic health

records and clinical data more efficiently. This expedites decision-making processes and allows clinicians

to focus on patient care rather than being overwhelmed by the sheer volume of information. Furthermore,

AI contributes to organising and structuring diverse data types, facilitating interoperability between dif-

ferent systems. This interoperability is crucial for creating a comprehensive and cohesive view of a

patient’s medical history, enabling more informed diagnoses and personalized treatment plans.

AI techniques are applied across various domains, such as diagnosis, treatment recommendations, drug

development, patient monitoring, and administrative tasks. Numerous research studies demonstrate AI’s

effectiveness in medicine, often performing on par with or outperforming humans in certain tasks. Its

role is complementary, enhancing diagnosis accuracy rather than replacing medical expertise. Recent

research has shown substantial progress in diagnosing various illnesses, especially in radiology, imaging,

psychiatry, and disease diagnosis.

Data-driven techniques lead to many advantages in the medical-scientific and academic worlds. Among

the most important advantages is the notable capacity for accuracy and speed of diagnosis on a large

amount of data, even about patients in the early stages. A further advantage lies in suggesting per-

sonalized treatment plans based on individual patient data, improving outcomes and reducing trial-and-

error approaches. Moreover, AI-powered tools enable remote monitoring of patients’ health, facilitating

telemedicine, extending healthcare access to remote areas and expediting the drug discovery process by

analyzing molecular structures, predicting potential drug candidates, and accelerating research phases.

Nevertheless, some cons have to be considered. Among the most discussed are data privacy and security

concerns, as long as sensitive patient data raises concerns about privacy breaches and security vulner-

abilities in AI systems. Another critical aspect lies in ethical consideration, as integrating AI systems

with existing healthcare infrastructure can be complex, requiring upgrades and adaptations, which may

disrupt workflows. All this is concerning regulatory and safety aspects.
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Otherwise, some technical aspects have to be considered. AI models may exhibit biases based on the

data they were trained on, leading to errors or inaccurate predictions, especially in underrepresented

populations. While AI holds immense potential in revolutionizing healthcare, addressing these challenges

is crucial to ensure responsible and effective integration into the healthcare ecosystem.

Many applications have been implemented involving AI in the medical field in the last decade, ranging

from medical imaging analysis, clinical decision support systems, genetic analysis, genomics, and diag-

nostic assistance. In drug discovery, AI accelerates the process by analyzing complex biological data,

reducing the time and costs of bringing new medications to market. Predictive analytics powered by

AI predicts disease progression and patient outcomes, aiding healthcare providers in making informed

decisions for better patient management. AI facilitates remote patient monitoring, providing real-time

data for proactive care outside traditional healthcare settings. This continuous monitoring allows for

early intervention and reduces the need for frequent hospital visits. Additionally, AI optimizes hospital

operations, streamlining workflows and allocating resources efficiently.

Enhancements in medical imaging analysis, particularly in radiology and pathology, contribute to more

accurate diagnoses. Of particular interest has been the application of these methodologies to analyze

images from MRI and CT scans to detect and characterize tumours in various organs or tissues and to

assist radiologists by highlighting suspicious areas that might indicate the presence of tumours, aiding in

early detection. The high algorithmic capacity is employed to analyze patient data, medical records, lab

results, and symptoms to provide clinicians with insights, potential diagnoses, and treatment recommen-

dations.

Following the canonical division, the supervised learning methodology has been commonly used for cancer

diagnosis, organ segmentation, radiotherapy dose denoising and prediction. On the contrary, as regards

the domain adaptation task, classification of patient groups and image reconstructions, the unsupervised

learning approach (autoencoders, dimensionality reduction, clustering) led to better results. Addressing

issues such as tumour segmentation and treatment planning has been extensively tested by reinforcement

learning (Q-learning, Markov Decision Process).

Natural language processing by AI extracts valuable insights from unstructured medical records, sup-

porting clinical decision-making. In surgical settings, AI assists in robotic-assisted surgeries, enhancing

precision and minimizing invasiveness. Furthermore, AI applications empower patients with personalized

health information, fostering engagement and promoting preventive care.

Integrating of AI in healthcare signifies a transformative shift, improving diagnostics, treatment strate-

gies, and overall patient care. These advancements underscore the potential of AI to revolutionize the

healthcare landscape, offering unprecedented benefits for individuals globally.

2.3 The Role of Handwriting

Handwriting [139] is a complex motor skill and form of communication where individuals use a writing

instrument to create marks on a surface, typically paper. It involves the coordination of fine motor

movements and cognitive processes. Each person’s handwriting is unique, influenced by muscle control,

hand-eye coordination, and individual style.

Handwriting can be analyzed in various ways and for different purposes, including forensic investigations,

personality assessments, and medical diagnoses. The study of handwriting is known as graphology. It

encompasses the formation of letters, spacing, slant, size, and overall visual appearance. Handwriting

can convey personal traits, emotions, and cultural nuances. It has historical significance, preserving in-

formation in personal letters, documents, and manuscripts. Forensic contexts focus on authenticating

documents by scrutinizing specific characteristics like letter formations, slant, and pressure. This deep

comparison aids in determining the authorship or authenticity of handwritten materials.

Handwriting analysis becomes a valuable tool for identifying neurological or motor disorders in medical

diagnosis. By scrutinizing patterns such as tremors, micrographia, and inconsistencies, practitioners can

detect early signs of conditions like PD. Biometric authentication leverages the unique features of an

individual’s handwriting, such as pressure, speed, and stroke sequence, to verify identity for security

purposes. Integrating computerized systems into this process adds a layer of sophistication, emphasizing

the adaptability of handwriting analysis in contemporary technological contexts.

Advancements in ML and computer vision further propel the field forward. These technologies allow

for automated analysis, enabling signature verification and sentiment analysis tasks. Such automation

enhances efficiency and contributes to more objective and standardized handwriting analysis. Kinematic

analysis looks at the motor control and movement patterns involved in handwriting. Researchers gain
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insights into the intricate dynamics of the writing process by measuring aspects like speed, acceleration,

and pressure using specialized tools. This approach is particularly relevant for understanding the physio-

logical aspects of handwriting. Cognitive assessment through handwriting analysis delves into the study

of writing-related cognitive processes. Analyzing elements such as pen pressure, stroke duration, and

pauses provides valuable insights into cognitive functions, attention, and memory. This interdisciplinary

approach bridges the realms of psychology and neurology.

Emotion recognition, an intriguing facet of handwriting analysis, seeks to understand emotional states

by examining writing characteristics. Handwriting changes may reflect mood or psychological well-being

shifts, offering a unique avenue for emotional insight. In summary, the versatility of handwriting analysis

is evident in its applications across forensic, medical, biometric, and cognitive domains.

As technology advances, the field benefits from increased efficiency and objectivity, particularly with ML

and computer vision integration. These developments open up new possibilities for handwriting analysis

as a valuable tool in various professional and clinical settings. The advent of digital technology has led

to a decline in the emphasis on handwriting, with keyboards and touchscreens becoming dominant tools

for written communication. Cursive writing, a script with connected letters, is a traditional form of

handwriting that has seen variations in education curricula. Handwriting can have therapeutic benefits,

promoting cognitive function and mindfulness.

Many applications have been developed based on the handwriting. Handwriting recognition technology

facilitates the conversion of handwritten text into digital formats. Signature analysis is a specialized

handwriting examination used for authentication and security purposes. Handwriting can evolve, influ-

enced by age, health, and external factors, and it is a cultural and educational skill that evolves across

societies and generations. It engages multiple brain regions and is linked to improved learning and mem-

ory retention. Despite technological advances, the personal touch and individuality conveyed through

handwriting remain valued in certain contexts.

Research, exemplified by studies [147, 90], indicates that intricate tasks like drawing and handwriting

demand a combination of graphomotor skills. These encompass visual-perceptual maturity, spelling cod-

ing, motor planning and execution, kinesthetic feedback, and visual-motor coordination. The integrity of

these skills is crucial, as any dysfunction linked to brain disorders can significantly impair an individual’s

drawing and handwriting performance. The analysis of graphomotor impressions has proven valuable

as a psychometric tool for identifying various neuropsychological and neurological disorders, including

apraxia, visuospatial neglect, dysgraphia, and dementia [125]. This underscores the significance of hand-

writing as a potential diagnostic indicator. Studies such as [82] also establish a connection between

writers’ emotional states and handwriting, further highlighting the intricate interplay of cognitive and

emotional factors in writing. This holistic understanding of the cognitive components involved in hand-

writing emphasizes its role as a motor skill and a reflection of both neurological function and emotional

states.

Handwriting analysis holds utility in diagnosing AD due to its sensitivity to cognitive decline and motor

skill changes associated with the condition [35, 138, 88]. As Alzheimer’s progresses, individuals often

experience deterioration in their handwriting, characterized by irregular size, spacing, and letter forma-

tion. These alterations reflect cognitive decline, affecting the intricate coordination required for precise

writing. Handwriting analysis is a non-invasive and cost-effective tool for early detection, potentially

allowing for timely intervention and support.

The degradation of fine motor control and visuospatial abilities in Alzheimer’s patients manifests in

the written script, making handwriting a valuable indicator of disease progression. Researchers have

identified specific features such as micrographia (reduced letter size) and dysfluency in writing patterns

that correlate with cognitive decline in Alzheimer’s. By examining these nuances, handwriting analysis

can contribute to a more comprehensive diagnostic approach, complementing other clinical assessments.

Moreover, writing engages multiple cognitive processes, including memory, attention, and executive func-

tions. Changes in these cognitive domains, common in Alzheimer’s, often manifest in written expression.

Analyzing handwriting may provide insights into the evolving cognitive profile of an individual, aiding in

the differentiation between Alzheimer’s and other forms of dementia.

While handwriting analysis alone is not diagnostic, its integration into a broader assessment toolkit en-

hances the accuracy and sensitivity of Alzheimer’s detection. The non-intrusive nature of this method is

particularly valuable for monitoring cognitive decline over time, facilitating personalized care strategies,

and improving the quality of life for individuals affected by AD.

12



2.4 Related Work

2.4 Related Work

2.4.1 Handwriting Analysis

Section 2.3 widely describes the handwriting process and how it is sensitive to the symptoms of NDs.

Handwriting can be analyzed in various ways depending on the type of investigation intended. In the

context of NDs, different types of analysis can be performed:

• Cognitive Assessment: aims to evaluate cognitive processes related to writing by analysing elements

such as pen pressure, stroke duration, and pauses to obtain detailed information about cognitive

processes, attention, and memory.

• Kinematic Analysis: aims to assess motor control and movement patterns. It involves measurement

of the kinematics of writing [1], including speed, acceleration, and pressure, often recorded with

specialized equipment such as digitizing tablets.

• Image Analysis: consists of graphical analysis of handwriting images, using techniques including

computer vision algorithms and ML to recognize and analyze unique patterns in writing.

Cognitive assessment tests play a crucial role in diagnosing and monitoring NDs, offering clinicians

valuable insights into the cognitive functioning of individuals. Among these, the MMSE is a widely

employed screening tool, evaluating aspects like orientation, memory, attention, and language to derive

an overall cognitive impairment score. Another commonly used assessment, the MoCA, extends be-

yond the MMSE by incorporating tasks that assess executive functions and visuospatial abilities. Its

increased sensitivity makes it particularly useful in detecting mild cognitive impairment, a crucial stage

in the progression of neurodegenerative diseases. For AD specifically, the Alzheimer’s Disease Assess-

ment Scale-Cognitive Subscale is tailored to assess cognitive dysfunction, including memory, language,

and praxis. This focused approach aids in diagnosing and tracking cognitive decline associated with

AD. The Clinical Dementia Rating offers a more comprehensive evaluation, considering multiple cogni-

tive and functional domains. Widely used for staging dementia severity, the Clinical Dementia Rating

provides an understanding of the impact of NDs on an individual’s daily life. Addenbrooke’s Cognitive

Examination takes a different approach by aiming to detect and differentiate between various types of

dementia, including Alzheimer’s and frontotemporal dementia. Its versatility makes it a valuable tool

for identifying specific cognitive impairments associated with different neurodegenerative conditions. For

a more focused assessment of executive functions linked to the frontal lobes, the Frontal Assessment

Battery proves valuable. Tasks targeting mental flexibility, motor programming, and inhibitory control

contribute to a nuanced evaluation of cognitive functions related to the frontal lobes. The Repeatable

Battery for the Assessment of Neuropsychological Status provides a comprehensive battery covering var-

ious cognitive domains, offering a more detailed understanding of an individual’s cognitive strengths and

weaknesses. The Trail Making Test stands out in assessing cognitive flexibility and visual attention with

its two parts (A and B). This test is particularly valuable for evaluating how individuals switch between

tasks and manage complex cognitive processes. While intelligence tests like the Wechsler Adult Intel-

ligence Scale are primarily designed to assess general intelligence, specific subtests within the Wechsler

Adult Intelligence Scale can offer insights into cognitive functions affected by neurodegenerative diseases,

such as working memory and processing speed.

In conclusion, the selection of cognitive assessment tests depends on the specific diagnosis goals and the

suspected neurodegenerative condition. Combining these tests with clinical evaluation and neuroimaging

often provides a more comprehensive picture, enabling healthcare professionals to make informed decisions

regarding diagnosis and treatment. Cognitive assessment tests are typically administered and evaluated

by trained healthcare professionals, such as neuropsychologists, neurologists, or clinical psychologists.

Integrating advanced techniques, such as ML and DL methodologies, allows these analyses’ automation

and improved objectivity. AI algorithms can analyze handwriting patterns to detect subtle changes re-

lated to cognitive impairment that may escape manual assessment, providing quantitative measures that

may aid in early diagnosis and monitoring disease progression.

While many studies in the field of handwriting analysis still rely on conventional statistical techniques,

like [73, 115], there is a growing body of literature that embraces ML methodologies for data exploration,

in particular in the context of PD [7, 84, 39].

In [58], an investigation into handwriting time series encompassed parameters such as horizontal and ver-

tical velocity, absolute velocity, acceleration, pressure, and trajectory curvature. The researchers adopted
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a noise-robustness paradigm employing the singular value decomposition technique and a sparse, non-

negative least-square classifier. In [2], the authors utilized features extracted from the Attentional Matri-

ces Test to assess selective attention. Using various machine learning algorithms and an ensemble scheme,

these features were employed to classify subjects into distinct groups, such as AD patients or healthy

controls. In [47], the authors introduce the PaHaW Parkinson’s disease handwriting database, comprising

samples from 37 PD patients and 38 healthy controls across various handwriting tasks. Kinematic and

pressure features were examined for their potential in PD diagnosis. Three classifiers were compared,

demonstrating that the analysis of kinematic and pressure features in handwriting can effectively discern

subtle characteristics, aiding in differentiating PD patients from healthy controls. The research in [21]

introduces the DARWIN dataset for studying AD. It is the largest publicly available dataset, featuring

handwriting data from individuals affected by Alzheimer’s and a control group. With 174 participants,

the dataset follows a specific protocol designed for early Alzheimer’s detection. The study assesses the

effectiveness of proposed tasks and features in capturing distinctive handwriting aspects for Alzheimer’s

diagnosis. The research addresses the need for standardized experimental protocols and datasets to ex-

plore handwriting dynamics as a tool for early neurodegenerative disease diagnosis.

Additionally, in [142], the authors employed semi or unsupervised learning techniques to unveil homo-

geneous clusters of subjects. The analysis focused on understanding the information carried by these

clusters regarding cognitive profiles. The researchers introduced a novel temporal representation learning

approach from handwriting trajectories, uncovering a comprehensive set of features such as the complete

velocity profile, size and slant, fluidity, and shakiness. This approach revealed how these handwriting fea-

tures collectively characterize cognitive profiles. In the study [137], kinematic measures of the handwrit-

ing process were conducted to evaluate the significance of features in distinguishing groups and assessing

handwriting characteristics across five distinct functional tasks of copying. The findings indicated that

kinematic measures effectively differentiated between patients in different groups in conjunction with the

MMSE score. Notably, pressure and time-in-air emerged as the top-performing features in the analysis.

Similarly, [71] focused on analyzing the stability of the offline handwritten word ”mamma” (meaning

’mum’ in Italian) to discern AD patients from healthy controls. The stability of the word was quantified

by segmenting its image into elementary parts and measuring the similarity among adjacent segments.

The authors employed the Yoshimura approach as a classification algorithm, comparing stability features

between the sample to be recognized and training samples. In a unique approach presented in [106], the

authors explored the early diagnosis of AD by analysing handwritten signatures. Patients’ signatures

were represented using the Sigma-Lognormal model [41, 97], incorporating twelve features.

The objective of the research detailed in [56] was to differentiate participants from three distinct groups

(AD, MCI, and a control group) by comparing their handwriting kinematics. Discriminant analysis

served as the classification algorithm, and a protocol consisting of seven tasks, including copying and

drawing tasks, was adopted. The study investigated the most discriminating features for the same task

and identified that discriminating features were group-dependent. Some tasks, such as the clock drawing

test, facilitated effective discrimination between certain groups with high scores of evaluation metrics.

In [50], the author proposed a cost-effective, rapid, and accurate CNN model for early AD diagnosis.

Using the DARWIN dataset, they transformed handwriting features into 2D RGB images, and their

model achieved remarkable accuracy. The study in [105] explores CNNs to analyze images of handwrit-

ten dynamics for PD diagnosis. The provided dataset, containing images and signal-based data, supports

research on computer-aided PD diagnosis. The proposed CNN-based approach yielded promising results,

especially in early-stage detection compared to raw data and texture-based descriptors. The findings

suggest that leveraging deep learning on handwritten dynamics is valuable for automatic PD identifica-

tion, potentially surpassing traditional handcrafted features. The work in [14] introduces a decision-aid

tool for early AD detection using Archimedes spiral drawings on a Wacom digitizer. The study explores

transfer learning to address sparse data, embedding kinematic time functions in spiral trajectory images.

Through experiments on 30 AD patients and 45 healthy controls, the extracted features significantly

improved sensitivity and accuracy compared to raw images. The research identifies intermediate-level

features as the most discriminant, and the decision fusion of experts trained in these features outperforms

low-level fusion.

In [89], the focus is on handwriting tremors prevalent in NDs. The research collects image-based hand-

writing trajectories from individuals with mild and severe PD and those without tremors. Image features

are extracted, and a corner detection method is employed to assess trajectory fluctuations. The trajecto-

ries are then transformed into frequency-domain space using a 2-dimensional Discrete Fourier Transform,

and texture features from the amplitude spectrum are extracted through the grey-level co-occurrence
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matrix. Finally, a ML approach is used to classify these features, enabling the diagnosis of diseases.

The work in [93] introduces the use of recurrent neural networks for early stage AD classification based

on handwriting. The study compares Bidirectional Long Term Short Term and CNN methods. The

focus extends beyond accuracy alone, considering the energy costs incurred during training for a com-

prehensive accuracy-efficiency trade-off analysis. The study emphasizes the importance of examining

accuracy-efficiency trade-offs in neural network models to mitigate environmental impacts during train-

ing.

The study in [31] aims to detect and classify early-stage Alzheimer’s patients using online handwriting

loop patterns. It addresses limited training data challenges by employing data augmentation techniques,

including a variant of Generative Adversarial Networks, DoppelGANger, for synthesising realistic online

handwriting sequences. Methods involve data preprocessing, traditional augmentation, and Doppel-

GANger for synthetic data. A 1D CNN is chosen for classification, with feature selection and evaluation

metrics applied. Results show DoppelGANger effectively generates synthetic data, leading to state-of-the-

art Alzheimer’s classification performance. In [5], the authors developed an early diagnostic method for

Parkinson’s disease using artificial intelligence and the spiral test. Patients’ spiral drawings are analysed,

employing an Echo State Network and a Multilayer Perceptron (MLP) layer for classification. Various

algorithms, including boosting and decision trees, validate the approach.

In [81], the authors aimed to develop an efficient early diagnosis method for PD using off-line handwriting

analysis, specifically focusing on spiral hand drawings. A Continuous Convolution Network was employed

to overcome limitations in existing AI-based methods. The research in [119] aimed to enhance PD di-

agnosis using dynamic handwriting analysis through a three-stage fuzzy classifier method. It extracted

features based on kinematic characteristics and pen pressure using public datasets. The fuzzy classifier

construction involved generating the structure, feature selection, and tuning parameters with fuzzy logic

rules. In [112], a PD detection system was developed using machine learning and handwriting analysis,

focusing on spiral and wave drawings from healthy individuals and PD patients. They used a Histogram

of Oriented Gradients for feature extraction and a Random Forest (RF) for classification. An interesting

study in [94] describe the development of a vision-based system using commodity cameras and RGB

video to capture and analyse handwriting kinematics for NDs screening. Using a smartphone camera

and digitising tablet, the method compares kinematic data from both sources, achieving good results

demonstrating the system’s potential as an accurate and accessible screening tool for NDs.

The research in [101, 120] compares AI classification methods for PD diagnosis using handwriting samples.

Cartesian Genetic Programming outperforms white-box approaches in accuracy and black-box methods

in interpretability by providing explicit rules. The findings suggest that the proposed approach offers

a twofold benefit: supporting PD diagnosis and generating explicit classification models, aiding in de-

signing non-invasive and cost-effective diagnostic protocols. The comparison involved machine learning

techniques on handwriting samples from benchmark datasets (PaHaW and NewHandPD), highlighting

its superior performance in accuracy and interoperability. The study in [103] addresses the development

of a ML tool for PD diagnosis that provides accurate results and explains its decisions in an understand-

able way for clinicians. The Decision Tree (DT) is chosen for its transparency in presenting decision

criteria based on relevant features. The evaluation on a public dataset demonstrates that the decision

tree-based system achieves comparable or superior results to state-of-the-art solutions and stands out as

the only approach providing a clear description of decision criteria based on observed features and their

values. In [32], the authors propose a multi-classifier approach, employing as many classifiers as there are

tasks (handwriting and drawing) for discrimination. The method combines outputs through a majority

vote. Experiments using six popular ML techniques demonstrate that selecting task-specific classifiers

and combining their outputs achieve superior results.

The study in [102] explores neurodegenerative disease diagnosis through handwriting and drawing analy-

sis, employing one-class classifier models. These models, requiring only healthy subject data for training,

eliminate the need for patient data collection. In this article [57], the authors introduce an innovative

approach for diagnosing PD using CNNs applied directly to handwriting images. Unlike traditional

frameworks, this method eliminates the need for specialized devices or feature engineering, offering an

end-to-end solution. The proposed architecture employs multiple fine-tuning steps and an ensemble.

Various handwriting modalities for PD diagnosis are assessed in [45, 43, 44], including on-surface, in-air,

and pressure on the tablet surface. It emphasizes the significance of in-air movement and pressure-based

features. Including entropy and empirical mode decomposition features alongside traditional kinematic

and spatio-temporal features enhances diagnostic capabilities. The study in [48] focuses on micrographia,

a common clinical sign of PD, characterized by reduced letter size and altered kinematic aspects in
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handwriting. The research introduces a template to capture handwriting during various tasks, including

established PD diagnosis tasks like the Archimedean spiral and new tasks addressing micrographia as-

pects. Another study, [46], aims to identify a subset of handwriting features for effective PD diagnosis,

extracting various kinematic measures. Novel measures based on entropy, signal energy, and empirical

mode decomposition were computed. In [38], the authors explore the potential of dynamically enhanced

static images of handwriting in CAD systems. The enhanced images are synthetically generated, incor-

porating both static and dynamic properties of handwriting to improve discrimination. The proposed

representation involves drawing points of the samples without linking them and adding pen-ups to retain

temporal/velocity information.

The impact of advanced online handwriting parameterization using fractional-order derivatives is anal-

ysed in [92] for PD dysgraphia. The research explores the relationship between the newly designed

features and clinical data through partial correlation analysis. Binary classification analysis evaluates the

discrimination power of these features, and regression models assess their ability to gauge the progress

and severity of PD, comparing results with a baseline of conventional online handwriting features. The

computed features demonstrate stronger correlations with clinical characteristics and more accurate as-

sessments of PD severity, suggesting potential improvement in computerized PD severity assessment when

combined with specific tasks. The study in [87] explores the dynamics of signatures based on recent motor

learning findings, suggesting that signatures are stored in the brain as both trajectory and motor plans.

The research proposes that the stored representation may focus on specific, more learned parts of the

signature, executed more automatically and less prone to variations. The study discusses experiments

using an algorithm to identify and utilize these stable regions in signature ink for automatic verification.

Finally, the study in [121] explores handwriting movements as a non-invasive tool for early screening of

PD, particularly focusing on cases where the disease affects the contralateral side of writing. The re-

search identifies distinctive signs in early-stage PD handwriting, indicating the potential for early disease

detection. The study analyzed handwriting samples from PD patients and healthy subjects using a novel

protocol with various complexity levels. Findings reveal that specific features during the execution of

handwriting tasks can contribute to early PD detection, offering guidelines for designing a diagnostic tool

and suggesting conditions that benefit patients’ performance.

Many researches focus on studying how gender, age and environmental factors can influence one’s hand-

writing. The research described in [55] aims to compare the classification performance of automatically

extracted features by a pre-trained CNN and handcrafted features in detecting PD dysgraphia. The

multilingual dataset includes Parkinson’s patients and healthy controls from various countries. Three

analysis scenarios explore the impact of language on classification. Results indicate that handcrafted

features slightly outperform CNN-extracted features in all language scenarios for sentence writing tasks,

while for spiral drawing tasks, CNN-extracted features show competitive results.

The study described in [63] aimed to enhance PD diagnosis accuracy by considering inherent neurolog-

ical differences between genders and age groups. Using online handwriting data from individuals with

Parkinson’s and healthy controls, a sex-specific and age-dependent classifier outperformed the general-

ized classifier. Combining age and sex information proved beneficial, revealing distinct features for higher

accuracy in different classification categories. In [4], the authors investigated age-related changes in hand-

writing among healthy individuals using ML. Subjects were categorized into younger adults, middle-aged

adults, and older adults. Handwriting tasks were digitized and analyzed with a CNN and DBNet al-

gorithm for stroke sizes. The CNN effectively distinguished age groups with a valuable performance,

highlighting the model’s robustness in classifying age-related handwriting changes.

The research in [16] presents a method for synthesizing the temporal evolution of handwriting from child-

hood to adulthood for biometric applications. The approach includes online and offline handwriting,

utilizing parameters to manage the synthesized handwriting evolution. The methodology simplifies text

trajectory plans and handwriting dynamics using a modified kinematic theory and a neuromotor-inspired

synthesizer. Realism is evaluated through quantitative tests measuring letter variability and stroke count

and a subjective evaluation by 30 individuals assessing the perceived realism of the synthetic handwriting’s

evolution. In [107], the authors investigate the complexity of handwriting generation as a neuromotor

skill, exploring the interaction of cognitive processes involved in producing ink traces on a writing medium.

The Kinematic Theory of rapid human movements and its lognormal models offer analytical represen-

tations, considering strokes as fundamental handwriting units. The lognormality of velocity patterns is

interpreted as a reflection of subjects in perfect control of their movements, supported by experimental

confirmation and physiological tests. The paper explores how software tools can leverage these models

to analyze ideal lognormal behaviours and investigate the operational convergence hypothesis through
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studies on motor learning in children and the impact of ageing on handwriting.

The study in [114] investigates age-related changes in executive functions and handwriting performance

in 80 healthy participants. Using the Behavioral Assessment of the Dysexecutive Syndrome and the Com-

puterized Penmanship Evaluation Tool, the research reveals significant differences in executive functions

and temporal/spatial handwriting measures across age groups.

In conclusion, integrating AI and handwriting analysis has demonstrated promising advancements in sup-

porting the diagnosis of NDs. The synergy between cutting-edge technology and the intricate patterns

within handwriting offers a unique avenue for early detection and accurate assessment. This section also

underscored the importance of collaboration between AI, neuroscience, and psychology experts, which

becomes imperative to implement innovative solutions that hold the potential to revolutionize the di-

agnosis and understanding of NDs, ultimately contributing to improved therapeutic interventions and

enhanced quality of life for individuals affected by these conditions.

2.4.2 Speech Analysis

Speech analysis has shown promise as a non-invasive and cost-effective tool for the early diagnosis and

monitoring of NDs. Several NDs, such as AD, PD, and Amyotrophic Lateral Sclerosis (ALS), can affect

speech patterns and vocal characteristics. Changes in speech may occur in the early stages of NDs,

often before other noticeable symptoms. Speech analysis provides an objective and quantifiable way to

measure changes in speech parameters, such as pitch, intensity, rate, and pauses. This objectivity can be

particularly valuable for tracking disease progression over time. It can monitor the progression of NDs,

providing insights into how the diseases impact different aspects of speech over time. This longitudinal

data can be valuable for both clinicians and researchers. Moreover, speech analysis can be performed

remotely, continuously monitoring individuals in their natural environments. This is particularly bene-

ficial for individuals who may face challenges with regular clinic visits. Analyzing speech characteristics

can help in early detection and intervention, potentially allowing for more effective disease management.

Advances in technology, including machine learning and natural language processing, have facilitated

more sophisticated analysis of speech patterns. These technologies can identify subtle changes that may

not be easily discernible to the human ear. Ongoing research in speech analysis for NDs contributes to

developing new diagnostic tools and technologies. This includes the exploration of voice-based biomarkers

and the integration of speech analysis with other types of data. In [15], the authors introduce a novel

speech kinematics-based model for studying and analyzing complex speech movements. Unlike previ-

ous speech motor models, this model employs the kinematic theory of rapid human movements and the

Sigma-lognormal model, similar to approaches used in handwriting studies. The method parameterizes

the neuromuscular response to a neuromotor command, allowing for the derivation of muscular response

parameters and the subject’s age from continuous speech.

The study in [86] aims to address the challenge of detecting cognitive impairment, particularly in AD, by

employing automatic speech analysis as a non-invasive screening tool. The research presents a non-linear

multi-task approach analyzing three tasks with varying language complexity levels, incorporating features

such as linear features, perceptual features, Castiglioni fractal dimension, and Multiscale Permutation

Entropy. Instead, in [9, 111] are presented systematic reviews related to the speech analysis. In particu-

lar [9] explores hypokinetic dysarthria in PD, focusing on early diagnosis, disease progression monitoring

through acoustic voice and speech analysis, neural correlates investigated via functional imaging, and

the impact of dopaminergic medication and brain stimulation. The review identified 14 recommended

combinations of speech tasks and acoustic features for describing this disorder in PD. In [111], instead,

a state-of-the-art review of automatic speech and voice analysis techniques for monitoring patients with

AD is presented. It focuses on feature extraction techniques, classification methods, and frequently used

data repositories. The review aims to guide researchers in the field, highlighting clinically relevant results

and current developments.

The research in [99] introduces a methodology for automatically detecting pathologies in the phonatory

system using continuous speech records. Based on estimating nonlinear dynamics features, the approach

enables the segmentation and characterization of voice registers without relying on pitch period estima-

tion, making it independent of gender and intonation. Related to this research, the work in [66] focus

on assessing voice quality by employing objective nonlinear measures, departing from traditional linear

techniques. Six chaotic measures based on nonlinear dynamics theory were applied to discriminate be-

tween healthy and pathological voice qualities.

DL techniques are also considered in this field, like in [67], which describes an ensemble of CNNs for the
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computerized detection of Parkinson’s disease (PD) based on voice recordings.

The growing research in machine learning and deep learning for diagnosing NDs through speech analysis

holds significant promise, offering a non-invasive and accessible avenue for early detection and monitoring,

thereby contributing to advancements in timely and effective clinical interventions.

2.4.3 Gait Analysis

Gait analysis systematically studies an individual’s walking pattern, including step length, walking speed,

stride duration, and other related parameters. It is typically conducted through observational methods,

wearable sensors, or specialized equipment like pressure-sensitive walkways. While gait analysis is often

associated with musculoskeletal system conditions, it can also be valuable in the context of NDs, includ-

ing AD.

Many studies suggest that alterations in gait patterns may be observed in individuals with AD, partic-

ularly in the later stages of the condition. Gait analysis may provide insights into motor function and

coordination, potentially contributing to a more comprehensive understanding of the disease progression.

In summary, while gait analysis is not a primary tool for diagnosing AD, it can offer supplementary in-

formation about motor function and may be considered as part of a comprehensive assessment, especially

in research studies focused on understanding the broader impact of NDs on movement.

However, Gait Analysis is more commonly utilized to assess and diagnose movement disorders such as PD

[76]. It is particularly useful for both monitoring and diagnosing PD at different stages, as it is a disorder

that affects movement, where changes in gait are common symptoms. Individuals with Parkinson’s often

exhibit specific gait abnormalities, including shuffling steps, reduced arm swing, and a stooped posture.

Analyzing these gait characteristics and other clinical assessments can aid in the accurate diagnosis of

PD. Moreover, changes in gait patterns can indicate disease progression and regular gait assessments can

help healthcare professionals track the evolution of motor symptoms. This information is crucial for ad-

justing treatment plans and interventions accordingly. By regularly assessing gait parameters, healthcare

providers can determine whether interventions are helping to alleviate symptoms and improve overall

mobility.

One of the primary data acquisition methodologies involves utilizing visual information, where patients

perform movement tests [62]. In this context, gait analysis systems based on vision can be categorized

into two main types: marker-based and markerless systems. In gait analysis, systems considered gold

standards for gait assessment are marker-based systems. Multi-Camera Motion Capture systems are

commonly used in clinical settings due to their high tracking accuracy and sampling frequency [91, 100,

144].

In marker-based systems, spherical or reflective markers are detected by cameras or motion sensors, and

the collected data are used to reconstruct the three-dimensional kinematics of joints and body segments

during walking. However, these systems have limitations, such as being expensive, requiring significant

setup time, and potentially influencing the naturalness of movement during data acquisition. Addi-

tionally, specialized personnel are needed to position markers on patients correctly. For these reasons,

significant efforts have been dedicated in recent years to study and implement markerless systems.

The evolution of computer vision has represented a significant advancement in this field, opening new

possibilities for gait analysis. Using ML and DL techniques, combined with gait feature recognition al-

gorithms, has led to new markerless solutions that leverage information extracted from videos. These

systems can detect and track anatomical features and body landmarks without markers. Thanks to re-

cent technological innovations, key joint positions can be directly inferred from colour or depth images

through 2D prediction algorithms, such as OpenPose [13], or 3D prediction algorithms [30, 122].

In [60], a 3D CNN model was proposed, utilizing spatiotemporal saliency maps of RGB images. In

another case [116, 117], 2D and 3D skeletons of PD patients were extracted using multivariate ordinal

Logistic Regression (LR) models and the SpatioTemporal Graph Convolutional Network to predict PD

severity from joint trajectories.

In conclusion, the fusion of artificial intelligence and gait analysis stands at the forefront of transforma-

tive advancements in diagnosing NDs. AI-driven gait assessments offer a unique lens into these disorders’

subtle yet significant markers. This highlights the importance of the collaboration between AI experts,

biomechanics specialists, and healthcare professionals.
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2.4.4 NeuroImaging Analysis

Neuroimaging in detecting NDs represents a crucial advancement in research and clinical applications.

These imaging techniques, including MRI, PET, Electroencephalography (EEG) and SPECT, provide a

window into the structural and functional changes occurring in the brain. One of the primary advantages

of neuroimaging is its role in early detection, which is vital for timely intervention and effective manage-

ment. Structural changes in the brain, such as atrophy patterns and the presence of abnormal protein

deposits, can be visualized through MRI and PET scans.

Functional imaging techniques delve into the dynamics of brain activity and connectivity. Changes in

regional cerebral blood flow, glucose metabolism, and neural network functioning offer valuable insights

into disease progression. The ability to identify biomarkers associated with specific diseases, such as

beta-amyloid plaques in AD or abnormal protein aggregates in PD, contributes to a more accurate and

targeted diagnosis. Moreover, neuroimaging plays an important role in research and drug development.

In clinical trials, these techniques help monitor changes in the brain over time, assess the efficacy of treat-

ments, and deepen our understanding of the underlying mechanisms of NDs. Tracking disease progression

longitudinally provides critical data for predicting trajectories and evaluating treatment outcomes. Neu-

roimaging facilitates a more individualized approach to diagnosis and treatment as we move towards

personalised medicine. By assessing the unique brain characteristics of each patient, healthcare providers

can tailor interventions to specific needs, leading to more effective and patient-centric care. Despite these

advancements, challenges remain, including accessibility to advanced imaging technologies, standardiza-

tion of imaging protocols, and the need for further research to uncover additional biomarkers.

The integration of AI with neuroimaging techniques revolutionizes the field of neuroscience. AI algo-

rithms, particularly DL models, enhance the analysis of vast and complex neuroimaging datasets, en-

abling more accurate and efficient detection of abnormalities associated with NDs. In neuroimaging, AI

facilitates automated segmentation of brain structures, precisely quantifying volumes and abnormalities.

ML algorithms applied to functional MRI data contribute to the identification of unique patterns of

brain activity, supporting personalized diagnostics and treatment strategies. The synergy between AI

and neuroimaging is promising for advancing our understanding of brain disorders and improving early

detection and intervention.

Many researchers focus on applying AI techniques to MRI images to diagnose neurodegenerative diseases

[118]. The most used techniques involve 2D and 3D CNNs [72], in some cases in conjunction with the

slice-level attention mechanism [68, 18]. The study in [12] addresses the challenge of predicting cognitive

performance in AD using MRI measures employing a non-linear, norm-regularized multi-kernel multi-task

feature learning formulation.

In [79], the authors propose a novel framework for monitoring AD, utilizing longitudinal neuroimaging

data for clinical score prediction. The research in [145] focuses on enhancing the CAD for AD diag-

nosis through the automatic detection of dementia in MRI brain data. The study employs established

techniques such as registration, slicing, and classification, introducing deep convolutional models and

transformer-based architectures.

Moreover, various AI models have been developed to address the complexity of NDs diagnosis, utilizing

clinical data and medical imaging like PET [110, 75] and EEG [8, 53]. In closing, the combined use of

artificial intelligence and neuroimaging offers a promising frontier in NDs diagnosis.

2.4.5 Other Techniques

Despite the aforementioned studies on AI applications to support the diagnosis of NDs, the research

community also uses various techniques focusing on genetic data, multimodal approaches, and daily ac-

tivities.

The integration of genetic data and AI holds significant promise for advancing the diagnosis of NDs.

Researchers and clinicians can use AI algorithms to analyze genetic information to identify patterns, mu-

tations, and genetic markers associated with NDs. ML models, including DL, excel at detecting complex

relationships within large genetic datasets, identifying genetic risk factors for diseases like Alzheimer’s

and Parkinson’s [136, 69, 80]. The combination of genetic data and AI enhances the precision of diagnos-

tics, enabling earlier and more accurate detection of NDs, potentially facilitating personalized treatment

approaches based on an individual’s genetic profile. This interdisciplinary approach represents a cutting-

edge avenue in medical research, potentially revolutionising our understanding and management of NDs.

Many other researchers adopt a multimodal approach to analyse the disease from different points of view,

considering a combination of data from neuroimaging, handwriting, wearable sensors, video and audio
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recordings and other sources. For example, in [133], researchers introduced a multimodal dataset encom-

passing online handwriting, speech signals, and eye movement recordings, while in [134], three approaches

were compared for PD detection: wearable sensors, video recordings, and handwriting samples; instead

in [135] imaging, genetic, and clinical test data were analysed for AD and mild cognitive disorders. Wear-

able Devices and Sensors or patient and caregiver interviews are usually used to monitor daily activities,

including movement patterns, sleep quality, and behavioural changes. These data can provide valuable

insights into the early signs of neurodegenerative disorders [104, 96].
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Chapter 3

Data

In Chapter 2, Section 2.3 discusses how changes in handwriting can be considered as observable indicators

due to the cognitive and motor alterations associated with the AD. The degradation of fine motor control,

visuospatial skills, and memory functions, hallmarks of Alzheimer’s, can manifest in the act of writing.

Interest in handwriting analysis for diagnosing AD has increased over the past few decades, aligning

with advancements in neuroscientific research and technology. The following Section 3.1 describes the

data acquisition phase and presents an experimental protocol for handwriting tasks conceived in 2018

by a group of researchers from the University of Cassino and Southern Lazio [23]. The remainder of

this chapter aims to describe the data involved in the experimental part of this research. It provides a

detailed description of the image generation in Section 3.2 and ends with features calculation, described

in Section 3.3.

3.1 Data Acquisition

In the context of AD, as stated in Section 2.3, alterations in handwriting are often observable due to

the cognitive and motor changes associated with the condition. The degradation of fine motor control,

visuospatial skills, and memory functions, which are characteristic of Alzheimer’s, can manifest in the

act of writing.

The interest in handwriting analysis for diagnosing AD has grown over the past few decades, aligning

with advancements in neuroscientific research and technology. While early studies exploring the link be-

tween handwriting changes and cognitive decline date back to the late 20th century, significant attention

to this area has emerged in the 21st century. In the 2000s, researchers began to recognize the potential

of handwriting analysis as a non-invasive and accessible tool for early detection. With the increasing

prevalence of Alzheimer’s and the global ageing population, there has been a heightened emphasis on de-

veloping innovative diagnostic approaches. Technological advancements, including sophisticated imaging

techniques and computer-based analysis tools, have facilitated more precise and quantitative assessments

of handwriting changes associated with cognitive decline. This intersection of neuroscience, technology,

and a growing awareness of the importance of early detection has fueled the surge in interest in hand-

writing analysis for Alzheimer’s diagnosis.

In 2016, the Department of Electrical and Information Engineering at the University of Cassino and

Southern Lazio began investigating this topic. In 2018, the work [35] was published, providing a concise

compilation of the research involved in this subject and highlighting the presence of issues and needs

in this research field. Researchers discussed how NDs like Alzheimer’s and Parkinson’s impact patients’

lives and proposed methods for early diagnosis. They highlighted the relationship between these diseases’

symptoms and the gradual deterioration of motor skills, leading to difficulties in handwriting. They aimed

to survey the state-of-the-art work on diagnosing NDs by handwriting analysis, showcasing achieved re-

sults and advocating for classification systems.

In particular, they discussed the absence of a well-designed dataset for NDs as a significant concern. First,

they noticed that the available datasets regarding NDs comprised a very small number of participants.

Limited data availability hampers the efficacy of classifier-based approaches, as they are known to be

data-hungry. Secondly, they noticed that many approaches focus on offline acquisitions in the literature

thanks to the large availability of handwritten documents.

In Section 2.1, it is explained how NDs impair not only the motor assessment of a person but also

the cognitive aspect. This encompasses the need to define a new protocol of tasks, considering the en-
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tire spectrum of consequences that neurological degeneration causes. In addition, new acquisition tools

were necessary for an online characterization of the movements performed. Given these assumptions,

in 2018, these researchers published an experimental protocol to support cognitive impairment through

handwriting analysis [23] to strengthen standard diagnosis techniques with research on handwriting and

neuro-muscular diseases. This study introduced an experimental protocol to address the aforementioned

challenges, aiming to construct a database with hundreds of samples from subjects with NDs and healthy

controls. This extensive database aims to enhance the performance of classifier-based approaches, en-

abling more effective training of the underlying classification algorithms.

Thus, in 2018, researchers from The University of Cassino and Southern Lazio decided to start a meticu-

lous data acquisition campaign crucial for the validity and reliability of the data involved in the study. The

acquisition was done by administering the experimental protocol. Participant selection was conducted

following specific criteria defined through collaboration with the geriatric ward’s Alzheimer unit at the

”Federico II” hospital in Naples. The selection process incorporated clinical assessments and standard

cognitive evaluations such as the MMSE, FAB, and MoCA. These assessments span diverse cognitive

domains, encompassing aspects such as orientation in time and place and registration recall. Healthy

controls were chosen based on demographic and educational characteristics to ensure equitable compar-

isons. Both patients and controls underwent scrutiny for medication use, with an exclusion criterion for

individuals using psychotropic drugs or other substances that could impact cognitive abilities.

Participants were informed about the research objectives and provided informed consent for participa-

tion. The research included a total of 174 participants, with 89 patients diagnosed with AD and 85

serving as healthy control subjects. Table 3.1 shows participants’ personal information, like age, years

of school and number of female and male people for every class of the dataset, healthy controls (HC)

and patients (PT). Moreover, this information is systematically recorded because writing skills may be

influenced by factors such as age, educational background, and occupational type. By capturing these

additional demographic and contextual details, the study aims to comprehensively understand how these

variables may contribute to variations in writing performance.

People Age Education #Women #Men

HC 63.8 (11.0) 13.2 (4.3) 49 36
PT 71.7 (9.5) 10.7 (5.0) 46 43

Table 3.1: Average demographic data of participants. Standard deviations are shown in parenthesis

The proposed protocol aims to investigate the distinctive features in handwriting dynamics that can

differentiate individuals affected by AD from healthy ones. For this reason, tasks were designed to increase

in difficulty, targeting specific cognitive functions progressively. These tasks included graphic challenges,

copy and reverse copy exercises, memory assessments, and dictation activities. Tasks aimed to evaluate

motor control, coordination, memory, and spatial organization. Graphical tasks and free spaces were

employed to evaluate the spatial organization skills of patients. Copy and dictation tasks enabled the

comparison of writing variations in response to different stimuli (visual or auditory). Tasks involving

different pen-ups allowed the analysis of air movements, known to be altered in patients with AD, while

tasks with varied graphic arrangements, such as words with ascenders/descenders or complex shapes,

assessed fine motor control capabilities. Task intensity and duration are varied to test patient responses

under different fatigue conditions.

The tasks include copying letters with different graphic compositions, copying letters on adjacent rows

to test spatial organization abilities, continuous cursive writing of single letters and bigrams, and word

copying tasks.

The study also explores word copying with variations in spatial organization, introducing cues to observe

the impact. For instance, patients were asked to sign their names, draw circles, copy letters and words,

and perform memory tests. The tasks ranged from basic motor activities to more complex activities like

copying a paragraph or performing the Clock Drawing Test (CDT) to assess cognitive functions asso-

ciated with mild AD. The researchers introduced variations in word copying tasks, considering spatial

organization and cues.

The protocol also incorporated tasks related to daily activities, such as copying details from a postal or-

der. The researchers utilized a systematic approach, considering both quantitative and qualitative data.

Tasks were carefully structured to avoid influencing patient performance, with the experimenter playing a

critical role in guiding and ensuring accurate data collection. Overall, the detailed experimental protocol
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aimed to uncover specific features in the handwriting of subjects affected by NDs, providing valuable

insights into the cognitive aspects related to these diseases.

The protocol includes 25 writing tasks to highlight a potential deterioration in motor, spatial, and cog-

nitive skills commonly compromised by AD. The protocol’s tasks are organized in ascending order of

difficulty, considering the cognitive functions required for task execution. Based on their objectives, tasks

are divided into four categories, as follows:

• Graphic tasks: assess the patient’s proficiency in producing basic strokes, connecting specific points,

creating figures, both simple and intricate, and adjusting their proportions.

• Copy and Reverse Copy tasks: aim to evaluate the patient’s capacity to replicate complex graphic

movements with semantic significance, such as reproducing letters, words, and numbers of varying

lengths and spatial arrangements.

• Memory tasks: focus on highlighting changes in the graphic component while retaining in memory

a word, a letter, a graphic gesture, or a motor plan.

• Dictation tasks: aim to explore how writing in the task context (involving phrases or numbers)

varies when utilizing working memory is necessary.

Table 3.2 defines every protocol task with the corresponding description and belonging group. Task

1 involves executing one’s signature, a gesture frequently encountered in literature; individuals must

perform a motion they have repeated multiple times throughout their lives. Tasks 2 and 3 investigate

the wrist joint and finger joint motor abilities, respectively, while Tasks 4 and 5 test the movements’

automaticity, coordination and spatial organization. Task 6 is a copy task of letters that present ascender

and descender traits in their execution. Task 7 is a copy task to test the spatial organization. Tasks

8 and 9 evaluate the motion control alternation. Additionally, tasks from 10 to 13 mean checking the

spatial organization. Task 14 is a short memory test, while 15 and 16 are reverse copy tasks inspired by

the MMSE. Task 17 tests the handwriting of different types of words, with or without semantic sense,

in defined boxes. Task 18 is a memory task; instead, task 19 requires performing a complex but daily

activity. Task 20 involves dictation, so the person has to write without the stimulus of visualization.

Task 21 is a complex graphic task to evaluate the person’s fine and long motor control abilities. Tasks

22 and 23 are copy and dictation tasks involving numbers, respectively, which require a different motor

planning from the one used for words. The CDT, task 24, is particularly useful for mild AD. In the last

task, number 25, the person has to copy a short paragraph consisting of 110 characters. The table shows

nine additional tasks obtained by considering parts of others.

This protocol aimed at recording handwriting samples and their dynamics to understand whether

there were significant features to support the diagnosis of AD. Digital tools were employed to collect

writing samples, ensuring the standardization of the process. Each participant was invited to perform

the experimental protocol by using the WACOM Bamboo Folio graphic tablet, enabling participants to

write on standard A4 white paper sheets using a pen that appears typical. This pen not only produced

ink traces on the sheet but also generated digital information recorded by the tablet in the form of spatial

coordinates and pressure for each point (x, y, and z). The data were acquired at a frequency of 200Hz.

The tablet additionally captured in-air movements, allowing tracking of motions up to a maximum height

of 3cm from the tablet surface.

All participants were positioned comfortably, approximately 70cm from the sheet, and all individuals

included in the study were right-handed. It is noteworthy that under these conditions, participants

were instructed to maintain their natural writing movements, avoiding alterations commonly observed

when using an electronic stylus on the surface of a tablet. For patients with AD or elderly individuals,

using traditional paper and pen for tasks might be more intuitive and familiar than a digital tablet.

Consequently, this choice ensures that the collected data remains free from biases from the invasiveness

or unfamiliarity associated with using a less comfortable tool.

A computer application, developed in C#, accompanied the study, streamlining the uniform collection

of data by automatically storing information generated by the tablet onto the computer’s storage. The

experimental procedure involved presenting visual and auditory stimuli to guide participants in task

execution. Task instructions and the specified letters/words/phrases for copying were presented on the

white sheets used by the subjects. Moreover, participants were instructed to adhere to the experimenter’s

guidance throughout the experiment. After completing each handwriting task, the specifically developed

software automatically saved a .csv file in the computer’s memory. Each file comprised four columns
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Task Description Type
1 Signature Memory
2 join two points horizontally (x4) Graphic
3 join two points vertically (x4) Graphic
4 trace a circle continuously (x4, d = 6cm) Graphic
5 trace a circle continuously (x4, d = 3cm) Graphic
6 copy ”l, m, p” Copy
7 copy ”n, l, o, g” on adiacent rows Copy
8 write continuously ”l” (x4) Copy
9 write continuously ”le” (x4) Copy
10 word copy: ”foglio” Copy
11 word copy with a cue: ”foglio” Copy
12 word copy: ”mamma” Copy
13 word copy with cue: ”mamma” Copy
14 memorize and then write: ”telefono, cane, negozio” Memory
15 reverse copy ”bottiglia” Reverse Copy
16 reverse copy ”casa” Reverse Copy
17 copy words in boxes: ”pane, mela, prosciutto, ciliegia, taganaccio, lonfo” Copy
18 write the name of the object shown (a chair) Memory
19 copy the details of a postal order Copy
20 write a simple sentence under dictation Dictation
21 retracing a complex form Graphic
22 copy a telephone number Copy
23 write a telephone number under dictation Dictation
24 Clock Drawing Test Graphic
25 write a short paragraph from a FAB story Copy

Additional Tasks

26 Telefono Memory
27 Cane Memory
28 Negozio Memory
29 Pane Copy
30 Mela Copy
31 Prosciutto Copy
32 Ciliegia Copy
33 Taganaccio Copy
34 Lonfo Copy

Table 3.2: Protocol handwriting tasks
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documenting the timestamp, spatial coordinates (x, y), and pressure (z). This meticulous recording

resulted in a compilation of individual .csv files, each corresponding to a distinct task performed by a

participant. Subsequently, these files played a central role in generating new data, producing images, and

computing features, as elaborated in the subsequent sections.

The subsequent discussion is divided into two sections for a more comprehensive exploration of the subject

matter. The first section, Section 3.2, is specifically dedicated to explain the image generation process.

This portion aims to provide a detailed and thorough examination of the steps involved in generating

images within the context of the broader topic.

Concurrently, the second section, Section 3.3, is crafted to offer an understanding of the computation

of features. This segment is strategically designed to delve into the methodologies and computations

associated with extracting features within the specified framework.

3.2 Image Generation

This study delves into the analysis of handwriting as a component in aiding the diagnostic process of AD.

The execution of the designed protocol not only produces a comprehensive .csv file containing pertinent

information but also captures handwritten traits recorded on paper sheets affixed to a graphic tablet.

Recognizing the dual significance of these information sources, the aim is to harness their potential by

extracting and generating images.

These images, containing the subtleties of individual handwriting characteristics, serve as the input

data for subsequent processing through ANNs. This approach seeks to leverage the amalgamation of

quantitative data stored in the .csv files and the qualitative intricacies encapsulated in the handwritten

traits, providing a multi-dimensional dataset for more robust and insightful analysis through the lens of

AI. The interplay between traditional data and image-based information allows for a holistic exploration

of handwriting features, contributing to a wide understanding of their potential role as diagnostic markers

for AD.

Analyzing images of handwriting traits instead of dynamic features in the context of AD has advantages.

First, basing the analysis on static traits, such as size, slant, pressure, and spacing, can be instrumental

in the early detection of cognitive decline associated with AD. Changes in these static features may

manifest before significant alterations in dynamic features. In addition, continuous monitoring of static

traits provides a longitudinal perspective and enables the identification of subtle changes over time that

may indicate cognitive decline. It’s important to note that while analyzing static handwriting traits may

offer valuable insights, a broader approach that considers both static and dynamic features could provide

a more robust assessment of cognitive function in AD. Combining various methodologies may enhance

the accuracy and reliability of early detection and monitoring efforts. This is why this research focuses

on analysing several aspects of handwriting by considering multiple sources of information and many

processing and AI techniques to support the diagnosis.

This section describes, in the following, three different processes of image generation. Every generated

image must adhere to the standards specified by the ANNs employed for their processing. Ensuring

conformity to these standards is paramount for seamless integration into the subsequent phases of the

AI framework. The adherence to specific requirements is not merely a procedural formality; it directly

influences the accuracy and efficiency of the image processing pipeline. The reliability and consistency of

the analytical process are upheld by aligning generated images with the prescribed standards of the neural

networks. Contemporary understanding underscores the indispensability of a rich and well-structured

dataset for experiments leveraging AI and deep transfer learning techniques. Furthermore, considering

the constraints imposed by the adopted CNN models and their respective input size requirements, a

meticulous resizing of the original x, y coordinates into the range [0, 299] was implemented for each

image. This proactive adjustment ensures that the generated images conform to the designated size

criteria, minimizing the potential loss of information associated with zoom-in/out effects.

Python, as the programming language, facilitated the development of specialized software tailored to

generate diverse image types. Pillow and OpenCV, prominent libraries in the Python ecosystem, played

a crucial role in managing image files. Pillow is particularly known for its image processing capabilities,

while OpenCV is widely recognized for its computer vision and image manipulation functionalities. The

integration of these libraries ensured a robust and efficient workflow for handling image-related tasks

during the image generation process.
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3.2.1 Binary Synthetic Images

Any endeavour rooted in AI, particularly when centred around DL methodologies, necessitates a pre-

liminary data processing phase for systematically collecting and organising data. The intricacies of this

phase are contingent upon the nature of the data being handled. In the context of this study, data

processing has been executed through a dedicated Python script, distinctly separated from the model

construction. This segregation ensures that the neural network can seamlessly load the pre-processed

dataset, streamlining its operational commencement.

Within the initial data category, generating synthetic images is a process starting from the information

encapsulated in .csv files. Specifically, these files contain different data, but this process required focusing

on timestamps and spatial coordinates represented as (x, y) pairs. Each pair of coordinates corresponds

to a discrete point captured by the system at a frequency of 200Hz. This high acquisition rate translates

to registering points at intervals as brief as 5ms.

Therefore, the .csv files serve as repositories of temporally stamped spatial data, allowing for the recon-

struction of the subject’s trajectory with a good approximation. The 200Hz sampling rate ensures that

the synthetic images encapsulate spatial information, faithfully representing the dynamic evolution of the

subject’s movements over time.

The generation process starts by treating points (xi, yi) as vertices of a polygonal structure, closely ap-

proximating the original curve. Each image undergoes a reconstruction process where the subject’s traits

are delineated by interpolating consecutive points acquired during the execution of tasks. This binary

representation, exemplified in Figure 3.1, depicts the subject’s trace with a constant line width of 5 pix-

els. This approach contributes to creating images that align with the specifications of the neural network

models and strives to minimize any potential loss of essential information.

Figure 3.1: Example of generated strokes

Figure 3.2 illustrates a concrete instance of the synthesized strokes falling under this category.

Figure 3.2: Example of a trait generated for binary images.
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The selected deep architectures for the research experiments can technically process binary images as

input. However, it is worth noting that these models were initially pre-trained on RGB colour images

sourced from the ImageNet dataset [36]. Consequently, the architectures were designed to receive inputs

with three colour channels (depth = 3). To align binary images with these architectural constraints, a

requisite adjustment involved replicating the single channel across all three channels, thereby creating a

three-channel image (RGB) for compatibility with the selected architectures. This adjustment, commonly

called channel replication, is a standard practice to tailor models pre-trained on RGB images to process

grayscale or binary image inputs effectively. These images predominantly unveil the morphological and

personal details of the traced pattern, offering a focused depiction of the subject’s distinctive writing

characteristics. The described approach ensures that the generated images meet neural network standards

and convey a rich portrayal of the subject’s writing gesture by encapsulating information intricately tied

to the form and structure of the trace.

3.2.2 RGB Synthetic Images

The generation process of the second category of synthetic images incorporates kinematic information.

Analogous to the generation process for binary images, this procedure begins with the data stored in

the .csv files obtained post-protocol execution. Specifically, these synthetic images are constructed by

considering three key factors:

1. Similar to the binary case, the points (xi, yi) are considered vertices forming a polygonal structure

approximating the original curve.

2. The triplet of values (zi, vi, ji) is assigned as the RGB colour component for the i−th trait, delimited

by the point pairs (xi, yi) and (xi+1, yi+1).

3. Movements in air and on paper are directly recorded by the acquisition device.

This approach ensures a comprehensive integration of kinematic properties into the synthetic images,

enriching their representation across various features and aspects of the writing dynamics derived from

the outcomes of data acquisition and feature extraction phases. The triplet of values (zi, vi, ji) encoded in

the RGB colour channels contains dynamic information about the writing process’s actual motion, speed,

and acceleration characteristics. In this way, it is possible to describe the dynamic aspects of the motion

involved in handwriting rather than relying only on static or spatial characteristics. The generation of

these triplets involves the following computations:

• zi: Represents the pressure value at the point (xi, yi) directly acquired from the graphic tablet,

assumed constant along the i− th trait.

• vi: Denotes the velocity of the i− th trait, calculated as the ratio of the length of the i− th trait

to the interval time of 5ms given by the tablet’s acquisition frequency of 200Hz.

vi =
∆S

∆t
=

√
(xi+1 − xi)2 + (yi+1 − yi)2

ti+1 − ti
(3.1)

• ji: Represents the jerk of the i− th trait, defined as the second derivative of vi.

ji =
d2vi
dt2

(3.2)

The triplets’ values (zi, vi, ji) have undergone normalization to fit within the range [0, 255], aligning

with the standard colour scale. This normalization was achieved by considering these three quantities’

minimum and maximum values across the set. Figure 3.3 provides an illustrative example of a trait

generated from these images. As for the binary images, the subject’s trace is also represented with

a constant line width of 5 pixels. In this representation, the colour of the first trait corresponds to

the triplet (z = 166, v = 128, j = 184), while the colour of the second trait corresponds to the triplet

(z = 103, v = 171, j = 159). This normalization process ensures uniformity and compatibility with the

standard colour scale conventions.

Notably, the z coordinate stored in the .csv files refers to pressure. Due to the acquisition tool’s

capability to capture air movements within a 3cm range above the tablet surface, the z coordinate assumes

a null value during in-air movements and takes a value greater than zero otherwise. This information

allows to generate three different RGB image datasets:
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Figure 3.3: Example of colour encoding for the traits generation.

1. RGB on-paper, showing only on-paper movements;

2. RGB in-air, showing only in-air traits;

3. RGB in-air on-Paper, showing both in-air and on-paper traits.

This approach, indeed, not only captures the essential spatial and dynamic characteristics of handwriting

but also incorporates insights into the patient’s hesitations during the writing process. The images

encompass a comprehensive understanding of the physical act of writing and the pauses or hesitations

that may indicate underlying conditions.

3.2.3 Multi-Channel

Multi-Channel (MC) TIFF images were generated to consolidate four representations (frames) of a single

handwriting sample into a unified image file to enhance the dynamic information encoded. Each frame

portrays a grayscale depiction of traits acquired through a process similar to that elucidated for RGB

images. In detail, considering the points (xi, yi) as vertices of the polygon approximating the original

curve, pixel values in each frame are assigned based on the following criteria:

• The first frame encapsulates the acceleration feature: the acceleration of the i−th trait is delineated

as the derivative of vi:

ai =
dvi
dt

(3.3)

• The second frame encodes the jerk feature: the jerk of the i− th trait is articulated as the second

derivative of vi.

• The third frame encodes the velocity feature: the velocity of the i−th trait is computed as the ratio

between the length of the i − th trait and the interval time of 5ms, corresponding to the tablet’s

acquisition period.

• The fourth frame encodes the pressure feature, presumed to be constant along the i− th trait.

Figure 3.4 shows an example of the generation of MC images.

As for the RGB images described in Section 3.2.2, also MC images were generated in three variants,

containing only in-air or on-paper traits or depicting both of them. Moreover, each segment is replicated

with a constant line width of 5 pixels.

3.2.4 Offline

Concerning the last category of images, these were straightforwardly derived through the segmentation

of the original traits executed on the paper sheets during the performance of each task. This is why

those images are named ”offline”; the trait is original and not rebuilt by software, as is the case with

synthetic binary or RGB images. The significance of studying offline images of handwriting in supporting

the diagnosis of AD lies in the rich information embedded in the traces. Offline images encapsulate natu-

ral handwriting features, comprehensively reflecting the participant’s unique writing dynamics, pressure
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Figure 3.4: Example of encoding for the trait generation in an MC image.

variations, and movement characteristics. Analyzing these offline images offers a wide perspective on the

subtleties of the writing process, potentially uncovering subtle changes or patterns that may serve as

early indicators of cognitive decline associated with AD.

However, constructing a dataset can be challenging, particularly when dealing with paper documents. For

each participant involved in the acquisition step, their task-execution paper sheets were stored. Offline

images were generated by scanning these A4 paper sheets using the same scanner tool for all the docu-

ments. Thus, instead of relying on online data, images are sourced directly from the physical paper sheets

utilized in the handwriting test, scanned and converted into .tif files. Each subject’s test on different

fascicles yields a .tif image comprising multiple frames, one for each task.

Post-data gathering, the need for processing and manipulation arose to enhance readability and organize

the dataset effectively. Starting from these considerations and the .tif images, various operations were

executed to construct a well-structured offline dataset with high-quality images, optimizing the perfor-

mance of the deep transfer learning strategy. This meticulous approach aims to ensure the dataset’s

integrity and enhance the efficacy of subsequent analyses and classification tasks.

First, it was necessary to define and extract the Region Of Interest (ROI) from every frame of the .tif

fascicle. In this context, the ROI was the portion of the image corresponding to the executed task.

However, not all content in these images corresponded to the executed task. The elements in the images

can be categorized into three types:

• Artefacts: Unnecessary features caused by mistakes during task execution or scanning operations.

These artefacts need to be removed.

• Command of the task: Every image contains a command providing instructions. While this is part

of the protocol, it is not useful and needs to be removed.

• Region Of Interest: The actual task execution is represented by the pen stroke drawn by the subject.

This information is crucial.

A Python script was developed to automatically extract the ROI from each image. The script utilizes the

OpenCV library to perform preprocessing operations and extract the region containing the task contours.

The algorithm includes steps such as image blurring, conversion to grayscale, thresholding, dilation, and

contour identification. Despite the algorithm’s effectiveness, challenges arose in some cases because of

random strokes, unfulfilled requests, and varying image dimensions. These issues were particularly promi-

nent in non-graphical tasks. A semi-automatic approach was adopted to address these challenges.

Every image underwent resizing to adapt to the distinct input formats required by the deep neural net-

works employed in the study. This resizing was executed with precision to ensure the centred alignment of

the trace, thereby minimizing any potential loss of information attributable to zoom-in/out effects. This

meticulous approach guarantees that the intrinsic details of the handwriting traces are preserved and

effectively utilized in subsequent analyses, contributing to the robustness and accuracy of the diagnostic

support system.

As a result of the whole process, in each image, the trace accurately represents the participant’s handwrit-

ing during the task, with pixel values capturing the natural shades of grey left by the ink on the paper.

These pixel values and the traits’ width are influenced by both the pressure applied and the dynamics of

the movements involved, creating an authentic representation of the handwriting process.
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3.3 Features

The analysis of handwriting features has emerged as a promising avenue in supporting the diagnosis of

AD. Researchers seek valuable insights into cognitive health by delving into the dynamic, kinematic, and

personal aspects of handwriting. Dynamic features, evaluating the fluency and rhythm of writing, offer

subtle indicators of cognitive function, with disruptions potentially signifying early cognitive decline.

Kinematic features, encompassing velocity, acceleration, and pen pressure, provide an understanding of

fine motor control. Changes in these parameters may serve as sensitive markers for cognitive alterations

associated with AD progression. Personal features, including individual writing styles, deviations from

established norms, and the consistency of handwriting, contribute to a more personalized diagnostic

approach. Advanced technologies, like digital tablets and specialized tools, facilitate the precise mea-

surement and analysis of these features. Integrating ML algorithms further refine diagnostic accuracy by

discerning patterns and abnormalities within the intricate data sets. As a non-invasive and cost-effective

method, handwriting analysis holds promise for early AD detection, potentially allowing for timely in-

tervention and improved patient outcomes. Ongoing research in this domain continues to unlock the full

diagnostic potential of handwriting features in the context of AD. The data acquisition phase is crucial

for any research involving handwriting analysis. In the context of this work, CSV files serve as a rich

repository of crucial information obtained during the acquisition campaign. Starting from the valuable

information stored in these files, extracting and computing interesting features to characterize handwrit-

ing is possible, providing a broad range of kinematic and dynamic information.

Various approaches for extracting additional features indicate an advanced methodology to refine and

broaden the understanding of writing regarding specific traits. This diversification of approaches can

include statistical methodologies, ML algorithms, or specific analyses for segmenting and interpreting

handwriting features. In summary, the wealth of information collected during the data acquisition phase

provides the basis for feature extraction and the flexibility to adopt diversified approaches for a more

profound understanding of writing and its distinctive traits. The following sections define the approaches

employed to compute handcrafted features in Section 3.3.1; and lognormal features in Section 3.3.2.

3.3.1 Handcrafted Features

The investigation into cognitive impairment among subjects involved an in-depth analysis of features

extracted during the handwriting process. Following the completion of data cleaning and modelling

to refine information stored in CSV files, the subsequent phase revolves around feature engineering.

This process involves computing features from the .csv files and organizing them for classification. On-

paper and in-air traits were processed, segmenting them into elementary strokes as single, connected, and

continuous components of the handwritten trait. Identifying segmentation points crucially relies on events

such as pen-down and pen-up occurrences, coupled with the zero-crossing of the vertical velocity profile.

These segmentation points delineate each stroke’s boundaries, capturing the handwriting’s distinctive

and coherent elements.

This approach ensures precision in the segmentation process and aligns with the fundamental notion that

strokes encapsulate the essence of a continuous handwritten sequence. For each stroke, feature values

were computed and averaged across all strokes about a specific task. Considering the observed differences

in patients’ motor performance between in-air and on-paper traits, each feature was calculated separately

for these conditions. In particular, four groups of features were computed:

• In air: considering only in air strokes, specifically those recorded when the pen tip is elevated from

the surface within the permissible maximum distance. These movements signify motor planning

activities associated with positioning the pen tip between consecutively written traits;

• On paper: considering only on-paper strokes, encompassing the pen-down and the subsequent pen-

up phases.

• In air on paper: putting together in-air and on-paper features. Consequently, the total number of

features equals the sum of the in-air and on-paper features;

• All: considering all the traits, independently of whether they are executed in the air or on paper.

Additionally, personal factors such as the subjects’ age, education level and gender were incorporated

into the final features. It is worth noticing that every task corresponds to a dataset of features. Table

3.3 lists the computed features, providing the corresponding description and the type.
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# Name Description Type
1 Duration Time interval between the first and the last points

in a stroke
D

2 Start Vertical Position Vertical start position relative to the lower edge
of the active digitizer area

S

3 Vertical Size Difference between the highest and lowest y co-
ordinates of the stroke

S

4 Peak vertical velocity Maximum value of vertical velocity among the
points of the stroke

D

5 Peak vertical acceleration Maximum value of vertical acceleration among
the points of the stroke

D

6 Start horizontal position Horizontal start position relative to the lower
edge of the active tablet area

S

7 Horizontal size Difference between the highest (rightmost) and
lowest (leftmost) x coordinates of the stroke

S

8 Straightness error It is calculated estimating the length of the
straight line, fitting the straight line, estimating
the (perpendicular) distances of each point to the
fitted line, estimating the standard deviation of
the distances and dividing it by the length of the
line between beginning and end

D

9 Slant Direction from the beginning point to endpoint
of the stroke, in radiant

S

10 Loop Surface Area of the loop enclosed by the previous and the
present stroke

S

11 Relative initial slant Departure of the direction during the first 80 ms
to the slant of the entire stroke.

D

12 Relative time to peak vertical velocity Ratio of the time duration at which the maximum
peak velocity occurs (from the start time) to the
total duration

D

13 Absolute size Calculated from the vertical and horizontal sizes S
14 Average absolute velocity Average absolute velocity computed across all the

samples of the stroke
D

15 Road length length of a stroke from beginning to end, dimen-
sionless

S

16 Absolute y jerk The root mean square (RMS) value of the abso-
lute jerk along the vertical direction, across all
points of the stroke

D

17 Normalized y jerk Dimensionless as it is normalized for stroke dura-
tion and size

D

18 Absolute jerk The Root Mean Square (RMS) value of the abso-
lute jerk across all points of the stroke

D

19 Normalized jerk Dimensionless as it is normalized for stroke dura-
tion and size

D

20 Number of peak acceleration points Number of acceleration peaks both up-going and
down-going in the stroke

S

21 Pen pressure Average pen pressure computed over the points
of the stroke

D

22 #strokes Total number of strokes of the task S
23 Sex Subject’s gender P
24 Age Subject’s age P
25 Work Type of work of the subject (intellectual or man-

ual)
P

26 Education Subject’s education level, expressed in years P

Table 3.3: Feature list. Feature types are dynamic (D), static (S) and personal (P).
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3.3.2 Lognormal Features

The Sigma-Lognormal model served as the foundation for the computation of two distinct sets of log-

normal features. These sets were derived through a comprehensive model analysis, capturing multiple

aspects of movement characteristics. The computation process involved intricate calculations based on

the lognormal parameters defined by the model. This dual set of lognormal features offers a better un-

derstanding of the underlying dynamics, allowing for a comprehensive examination of movement patterns

and behaviours. Utilizing these feature sets adds depth to the analysis, providing researchers with a more

refined toolkit for studying and characterizing movements within the Sigma-Lognormal framework.

Sigma-Lognormal Model

Grounded in lognormal movement decomposition, numerous studies have explored the normative range

of variations in lognormal parameters, providing insights into the ideal characteristics of a movement

[108]. The Kinematic Theory, employed to parameterize human movement velocity and trajectory, has

spurred the development of diverse algorithms, such as Robust XZERO [98, 42] and IDeLog [52]. For this

investigation, I used the IDeLog algorithm [52]. The Sigma-Lognormal model conceptualizes the velocity

of each simple, fast movement primitive as a lognormal function (Λ), with each velocity peak between

two-speed minima modelled by a lognormal. The lognormal parameters, t0j ,µj and σ2
j , are calculated

by minimizing the error between the velocity profile and the lognormal obtained through successive

interactions. This includes the comparison between the original trajectory profile and the reconstructed

one. The lognormal function defining each velocity peak, termed a ”simple movement” or ”stroke,” is

expressed as:

vj(t; t0j , µj , σ
2
j ) = DjΛ(t; t0j , µj , σ

2
j ) =

Dj

σj

√
2π(t− t0j )

exp{
[−ln(t− t0j )− µj ]

2

2σ2
j

(3.4)

where time t, amplitude Dj , time of occurrence toj , time delay µj , and response time σj operate on

a logarithmic time scale. In complex movements, characterized by a succession of simple movements or

strokes, as illustrated in Figure 3.5, the velocity profile vn(t) emerges from the time superposition of the

M preceding lognormals.

vn(t) =

M∑
j=1

vj(t; t0j , µj , σ
2
j ) =

M∑
j=1

Dj

[
cos(Φj(t))
sin(Φj(t))

]
Λ(t; t0j , µj , σ

2
j ) (3.5)

where Φj(t) is the angular position given by:

Φj(t) = Θsj +
(Θej −Θsj )

2
[1 + erf(

ln(t− t0j )− µj

σj

√
2

)] (3.6)

being Θsj and Θej the starting and the end angular direction of the jth simple movement or stroke.

This comprehensive approach outlines the Sigma-Lognormal model and sheds light on the intricacies of

parameter calculation and the dynamic interplay between velocity and trajectory profiles in both simple

and complex movement scenarios. The following sections describe two approaches to feature engineering

from the sigma-lognormal extracted parameters.

Lognormal Features: First set

The first feature engineering process enabled the identification of a set of features strategically chosen to

discern the handwriting patterns of individuals affected by AD from those of the healthy controls group.

The Sigma-Lognormal model, detailed in Section 3.3.2, was applied to obtain from every task execution

the set of sigma-lognormal parameters. Given the information stored in the .csv files, the outcome of

this application was the decomposition of each task into a vector summation of simple time-overlapped

movements, facilitating the extraction of Sigma-Lognormal parameters Pj = [Dj , t0j , µj , σj ,Θsj ,Θej ].

Specifically, for every point (x, y) recorded during task execution, multiple overlapping lognormals were

identified, with their respective parameters and the percentage of contribution meticulously stored for

each point.

The term ”First lognormal” denotes the lognormal that primarily contributes to a specific point. Subse-

quently, fourteen features were computed with the Sigma-Lognormal parameters obtained for every task

and participant, as detailed in Table 3.4. These features encapsulate essential characteristics derived from
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Figure 3.5: An example of lognormal.

Name Description
num seg Total number of segments generated by the execution of the task
avg log Average of the number of overlapped lognormals for every point
tot log Total number of lognormals extracted from the entire trace of the

task
avg D Average of D parameter of the first lognormal for every point
D max Max of D parameter found among the first lognormals of all the

points
P first log Average of the percentage of contribution of the first lognormal

for all the points
σ stability Variance of the sigma parameter of the first lognormal for all the

points
diff logs Average of the differences between the percentage of contribution

of the first and the second lognormal on all points
var log Variance of the percentage of contribution of the first lognormal

on all points
avg to Average of the to parameter of the first lognormal on all points
avg σ Average of the σ parameter of the first lognormal on all points
avg µ Average of the µ parameter of the first lognormal on all points
avg Θs Average of the Θs parameter of the first lognormal on all points
avg Θe Average of the Θe parameter of the first lognormal on all points

Table 3.4: Summary of computed Lognormal Features, first set.
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the decomposition process, offering a comprehensive quantitative representation of handwriting traits for

further analysis and discrimination between individuals affected by AD and healthy individuals.

This first set of Lognormal Features serves as a key indicator for subsequent analyses aimed at char-

acterizing and distinguishing handwriting patterns within the studied context.

Lognormal Features: Second Set

The second phase of lognormal feature engineering, centred around the Sigma-Lognormal model, incor-

porated insights from [146, 40] and various studies on the normative range of lognormal parameters [108],

offering an appropriate understanding of the characteristics of an ideal movement through lognormal

movement decomposition. This comprehensive approach aimed to extract diverse features from those

presented in Section 3.3.2, providing an exhaustive characterization of individual handwriting traits. The

goal was to accentuate potential disparities between the handwriting of individuals affected by AD and

that of healthy controls.

As for the previous set of lognormal features computed, initiating this process involved the application

of the Sigma-Lognormal model, outlined in Section 3.3.2, to the data acquired by the procedure detailed

in Section 3.1. Consequently, each task underwent decomposition into a vector summation of simple

time-overlapped movements, with each associated lognormal function generating a distinct set of Sigma-

Lognormal parameters. To refine the dataset for analysis, only points corresponding to the initial and

final pen-down events were processed for each task execution. This step aimed to exclude extraneous

movements recorded when the person approached or departed from the paper, focusing solely on the

genuine handwriting gestures under examination.

After extracting Sigma-Lognormal parameters, three distinct groups of features were computed. These

features encompass various aspects and measurements related to the execution of handwriting, contribut-

ing to a multifaceted analysis of individual writing styles and behaviours. They are divided into three

categories:

1. Temporal features: related to the temporal aspects of the execution. Among them is the total

time, representing the overall time taken to execute a task. The contact time refers to the duration

during which movements were executed without losing contact with the tablet surface, where the

pen remained within a maximum distance of 3cm. The remaining time, denoted as losing time,

accounts for the instances when the pen exceeded this threshold. The summation of the contact

and the losing time gives the total time. Some features within this category also correlate with

the number of lognormals identified in the reconstructed velocity profile, providing proportional

insights into task execution.

2. Signal-to-Noise Ratio (SNR): Indicates the quality of the reconstructed trace (SNRt) and velocity

profile (SNRv) derived from the Sigma-Lognormal model. Features associated with SNR offer

valuable information regarding the fidelity of the reconstructed data.

3. Geometrical features: These features are related to the geometric shapes of the reconstructed speed

profile. Insightful for comprehending movement velocity, stability, and fluency, these features are

derived from lognormal parameters like D and σ, as well as geometrical shapes (area, height, and

width) of lognormals within the reconstructed velocity profile. Specifically, ”area” refers to the

overlapping area between consecutive lognormals, ”height” represents the maximum, and ”width”

denotes the base of a lognormal function, as outlined in [40].

Tables 3.5 and 3.6 present a comprehensive display of the computed features, each denoted by the

nomenclature f# and accompanied by its corresponding explanation. This crucial step aims to ascertain

the potential for estimating AD by leveraging features extracted through the Sigma-Lognormal model ap-

plied to handwriting movements. In addition to the previously discussed feature groups, my experiments

incorporated personal features, including age, gender, education, and type of profession, recognizing the

potential impact of Alzheimer’s on various facets of an individual.

Temporal features bear significance in this exploration, as individuals affected by AD may exhibit pro-

longed task execution times and increased losing time, representing instances when the pen is lifted too

far from the tablet, possibly due to fatigue or distraction. Parameters such as the number of lognormals

generated from the velocity profile and the count of segments, where each corresponds to an entire trace

acquired without losing contact, are also considered. Anticipated results suggest elevated values for all

temporal features among individuals affected by AD. The signal-to-noise ratio serves as a critical metric
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for assessing reconstruction quality. When normalized by the number of lognormals, it provides insights

into the fluency of movements, a key aspect of handwriting analysis [146]. Geometrical features, derived

from sequences involving overlapping areas, heights, and widths of lognormal functions, offer valuable in-

sights into handwriting fluency. Larger overlapping areas signify smoother handwriting, height correlates

with speed, and width indicates movement pace. Geometrical features related to lognormal parameters

D and σ provide information on the lognormal distance covered in kinematic space and the lognormal

response time. Understanding the dynamics of these measures during a handwriting task or establishing

correlations with temporal features can yield valuable information, contributing to our comprehension of

the impact of Alzheimer’s on handwriting behaviours.

Features
TEMPORAL SNR

f1 number of lognormals f15 mean(SNRt)
f2 number of segments f16 std(SNRt)
f3 task total time f17 mean(SNRv)
f4 contact time f18 std(SNRv)
f5 losing time f19 sum(SNRt)/f1
f6 standard deviation of seg. time f20 f15/f1
f7 f3/f2 f21 f16/f1
f8 f3/f1 f22 sum(SNRv)/f1
f9 f4/f2 f23 f17/f1
f10 f4/f1 f24 f18/f1
f11 f5/f2
f12 f5/f1
f13 mean(number of log.s per seg.)
f14 std(number of log.s per seg.)

Table 3.5: Temporal and SNR related features.

Features
GEOMETRICAL

f25 std(areas) f39 mean(areas)/f25 f53 dif(widths)/1
f26 std(heights) f40 mean(heights)*exp(f26) f54 dev(widths)/1
f27 std(widths) f41 mean(heights)*ln(f26) f55 ’seg difA div nlog’
f28 sum(areas)/f3 f42 mean(heights)/f26 f56 ’std seg difA div nlog’
f29 sum(areas)/f4 f43 mean(widths)*exp(f27) f57 dif(sigma)/f1
f30 sum(areas)/f1 f44 mean(widths)*ln(f27) f58 std(sigma)/f1
f31 sum(heights)/f3 f45 mean(widths)/f27 f59 dif(sigma)/f4
f32 sum(heights)/f4 f46 f25/f4 f60 std(sigma)/f4
f33 sum(heights)/f1 f47 f26/f4 f61 dif(D)/f1
f34 sum(widths)/f3 f48 f27/f4 f62 std(D)/f1
f35 sum(widths)/f4 f49 dif(areas)/f1 f63 dif(D)/f4
f36 sum(widths)/f1 f50 std(areas)/f1 f64 std(D)/f4
f37 mean(areas)*exp(f25) f51 dif(heights)/f1
f38 mean(areas)*ln(f25) f52 std(heights)/f1

Table 3.6: Geometrical features.
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Chapter 4

Results and Findings

Delving into the insightful outcomes of this research work, the Results and Findings section presents

a comprehensive analysis of the experimental methods deployed, leveraging different data sources as

outlined in Chapter 3. This chapter aims to provide a wide understanding of fundamental patterns,

trends, and noteworthy discoveries essential for developing a robust system supporting the diagnosis of

NDs through handwriting analysis.

The following sections highlight the implications and contributions of this research, facilitating a

comparative assessment of various AI-based mechanisms and techniques. Through a wide investigation

and analysis, the following sections represent a detailed exploration of this research endeavour, discussing

results and consequential findings.

4.1 Baseline Experimental Setting

During my research, I conducted several experiments considering different configurations of tasks and

data. Many experimental settings have been deployed but share a common baseline architecture, al-

lowing me to compare the obtained results and derive interesting findings. The implemented baseline

experimental architecture is visually presented in Figure 4.1. It comprises four steps:

1. Data acquisition: it resumes the data acquisition and image generation phase described in Section

3.1.

2. Feature extraction/engineering: this step shows the features used. They usually are features from

a feature engineering process, like handcrafted or lognormal features; instead, for images, features

are automatically extracted by CNNs.

3. Classification: the classification step involves using ML algorithms and a fully connected classifier.

4. Combining rule: a combination rule, like a majority vote, is usually applied according to tasks,

classifiers or deep networks.

The figure shows a baseline, meaning adjustments and changes were adopted according to the specific

experiment, though some choices remained the same.

Figure 4.1: Basic experimental setting.
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Following the data acquisition, many data types were produced and can be divided into tabular

features and images. Once the data collection was complete, the images were utilized to input into four

well-established CNNs. The initial part of these architectures served as a feature extractor, enabling the

extraction of features from images, resulting in a feature vector for each image. After selecting four CNN

models, four sets of deep features were obtained for each task and image type.

For the classification step, two distinct approaches were implemented. In the first approach, standard

ML classifiers were employed, utilizing every feature, whether from images or not. Conversely, the

second approach utilized the classifier made of fully connected layers of the CNN. In the first approach,

many well-established classification schemes were considered: RF [11], DT, MLP, SVM [17], K-Nearest

Neighbors (KNN), LR, Gradient Boosting (GB) and Extreme Gradient Boosting (XGB). These represent

diverse model types, with RF being an ensemble of DT, MLP being a connectionist network, KNN being

an instance-based non-parametric regression algorithm, and SVM being kernel-based. In detail, thirty

runs were performed for every ML algorithm, and the final result was computed as an average. This is

a very common practice, as averaging the results over multiple runs provides a more stable and reliable

estimate of a model’s performance and helps to assess the robustness and generalization ability of the

model.

Regarding the second classification approach, the architecture of the classifier included two hidden

layers with 2048 neurons and a dropout between them, named Fully Connected (FC) classifier from now

on. The FC classifier was exclusively applied to the feature sets directly obtained from the convolutional

layers. Regarding CNNs, four models were employed: VGG19 [123], ResNet50 [65], InceptionV3 [131],

and InceptionResNetV2 [130]. These models underwent enhancements over the years by introducing new

structural elements and increasing the number of layers. This augmentation led to a parameter rise,

ranging from twenty-five million in VGG19 to sixty-two million in InceptionResNetV2, as detailed in

Table 4.1. The table also shows the input size required and the output size, which refers to the dimension

of the feature vector at the bottleneck.

Table 4.1: Number of parameters and input/output size of the CNN used in the experiments.

Model Parameters Input size Output size
VGG19 25M 256x256 512
ResNet50 32M 224x224 2048
InceptionV3 30M 299x299 2048
InceptionResNetV2 62M 299x299 1536

All the CNN architectures adopted in this study consist of two main parts: the convolutional part

designed for feature extraction (Feature Extractor (FE)) directly from input images and the classification

part (Classifier (C)). CNN models are known to be very data-hungry, as not only the quality but also the

quantity of data can affect their performance. A transfer learning technique was considered because the

available data were insufficient to train those models. Every model was pre-trained on the public dataset

ImageNet [36], but this training involved only the FE part, as the weights of the C part were frozen.

Following a re-training process involved both parts, FE and C, using the fine-tuning (FT) approach.

Notably, all models’ original C layers were replaced with the FC classifier, specifically adapted for the

context, i.e., classifying two classes (healthy control or patient).

Following the training phase, the CNN networks served a dual purpose: deep feature extraction and

classification using the final fully connected layers (the classifier section of the deep network). Deep

features were obtained by pruning the network after the FE, often called the ”bottleneck”. Each model

generated a flattened vector of varying size, as indicated in Table 4.1. A preliminary experimental phase

was undertaken to assess the CNN architectures, involving minimising the accuracy of all models. The

selected settings and hyper-parameters included Stochastic Gradient Descent (SGD) with a learning rate

of 0.001 and momentum of 0.9 as the optimization method, categorical cross-entropy as the loss function,

a batch size of 16, and a maximum of 2,000 epochs. The training process employed a patience value of

200, whereby if the validation accuracy did not improve for 200 epochs, the training was interrupted.

The principal evaluation metric for performance was accuracy, but many other metrics were computed

according to the experiment, like True Positive Rate (TPR), True Negative Rate (TNR), False Negative

Rate (FNR) and Area Under the Curve (AUC). The training phase incorporated a validation set to

mitigate the undesired overfitting phenomena and followed a 5-fold cross-validation strategy. Each fold

utilized a test set comprising 20% of the images, with the remaining images divided into a 70% training

set and a 10% validation set. It is important to note that the images in the validation set were randomly
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selected from folds that were not used as the test set. The experiments were conducted on a computing

system featuring an Intel Core i7-7700 CPU @3.60GHz with 32GB of RAM and a GPU Titan Xp, and

Keras 2.2.2 and TensorFlow 1.10.0 were utilized as the software framework.

The following subsections comprehensively describe each experiment, discussing the related results.

4.2 Comparison among Binary, RGB on-paper and Handcrafted
Features on Graphic Tasks

The current section shows the development of a system for AD diagnosis based on dynamic features like

speed and jerk acceleration and morphological information from handwriting [22].

This experiment’s contributions include assessing a diagnostic system’s impact by investigating the

combined use of shape and dynamic features. Different models of CNNs were tested as automatic feature

extractors, comparing their performance with traditional ML algorithms. The following subsections show

the data used, the details of the experimental framework implemented, and the performance obtained.

Data

In order to test the experimental setting, participants’ handwriting was examined as they drew lines

or circles to predict their cognitive status, focusing on evaluating fine motor control without requiring

cognitive or memory skills. The handwriting tasks comprising the experimental protocol are thoroughly

described in Section 3.1. Four tasks out of 25 were selected for this experiment; in particular, they belong

to the subset of graphic tasks from the second to the fifth. The initial two tasks involved connecting

two points 5cm apart with a straight continuous line either horizontally (task 2) or vertically (task 3),

repeated four times. These tasks aimed to assess elementary motor functions, with horizontal movements

emphasizing arm movements and fixed finger positions, while vertical movements required smaller finger

and wrist motions. Drawing a single continuous line four times also assessed long-term motor planning,

a function often compromised in individuals with cognitive impairments. The subsequent two tasks in-

volved retracing a 6cm (task 4) or 3cm (task 5) wide circle continuously four times. These tasks focus on

demonstrating the continuity of the line by repetitively retracing a circular shape of varying dimensions.

The consistency and distance from the background shape traced were indicators of cognitive deteriora-

tion. Additionally, these tasks allowed evaluation of the automaticity, regularity and coordination of the

sequence of movements.

Three data types were selected to understand the discriminatory power of different handwriting as-

pects: Binary images, RGB on paper images and handcrafted features. The generation of the synthetic

images is exhaustively described in Sections 3.2.1 and 3.2.2, while the computation of handcrafted fea-

tures is depicted in Section 3.3.1. In particular, binary images represent an approximation of the real

handwritten trace executed by a person. RGB on paper images approximate the real handwritten trace

and encode kinematic information in the colour channels, i.e., pressure, velocity, and jerk. Finally, the

handcrafted features refer, in this case, to the on-paper acquired points and are grouped into static, dy-

namic and personal characteristics. These representations were organized into three datasets, and their

performance was evaluated using various classification schemes. Examples of RGB on paper images of

the selected tasks are illustrated in Figure 4.2.

(a) Task 2 (b) Task 3 (c) Task 4 (d) Task 5

Figure 4.2: Examples of RGB images generated from the online handwriting data acquired from a
participant while performing the selected graphic tasks

38



4.2 Comparison among Binary, RGB on-paper and Handcrafted Features on Graphic
Tasks

Experimental Setting

The implemented comprehensive system architecture is exactly the baseline architecture shown in Figure

4.1 and described in Section 4.1. Following acquisition, three types of data were procured: handcrafted

features, synthetic binary images, and synthetic RGB on paper images. Once the data collection was

complete, the images were utilized to input into the four CNNs selected. I used these models to extract

features from images, so four sets of deep binary features and four sets of deep RGB features were obtained

for each task, amounting to a total number of nine sets of features to be evaluated.

For the classification step, two distinct approaches were implemented. In the first approach, four

well-established classification schemes were considered: RF, MLP, SVM and KNN. Regarding the second

approach, I used a fully connected classifier, which was exclusively applied to the feature sets directly

obtained from the convolutional layers.

Experimental Results

In the classification step, four standard classification schemes (RF, MLP, KNN and SVM) and a modified

fully connected network FC were employed, as mentioned in the previous section. The parameter values

used in this experiment are detailed in Table 4.2.

Table 4.2: Values of the ML classifiers hyperparameters used in the experiments.

Classifier Hyperparameter Value
RF trees 100
K-NN K 3
MLP Learning rate 0.3

Momentum 0.2
Hidden Neurons (#features + #classes)/2
Epochs 500

SVM Kernel RBF
C 1.0
γ 0.5

In the case of the FC classifier, since its training required substantial resources and time, the FC

results were averaged based on accuracy obtained from the 5-fold cross-validation strategy; no multiple

runs were performed. The aforementioned feature extraction procedure was applied to data from four

handwriting tasks described in Section 4.2. Regarding deep features, considering that their extraction

requires a training phase, the approach involved the utilization of ”test deep features” to prevent bias.

In practical terms, the feature vector obtained from the feature extraction part was employed for each

sample when that sample was in the test set.

Three experiments were conducted to assess the system’s effectiveness according to the procedures

outlined in the previous sections. First, features extracted from binary images containing only an ap-

proximation of the real morphological traits were tested. Then, it was evaluated whether there was

a performance improvement, considering features extracted from RGB on-paper images containing dy-

namic information with respect to the binary ones. The third set involved comparing the classification

performance of the proposed approach with that achieved using handcrafted features, only concerning

the dynamic and static characteristics of the movement, without considering the information related to

the shape. Finally, based on the analysis of the results, an additional set of experiments was executed to

verify if performance could be enhanced by combining the classifier responses for each subject across all

tasks or by fusing handcrafted and deep features.

Regarding the first experiment, Table 4.3 displays the classification outcomes on the binary images

for individual tasks using the five classifiers applied to the deep features extracted by the CNNs. The

table provides a comprehensive account of the results, focusing on accuracy, which quantifies the number

of correct predictions (for both patients and healthy controls) relative to the total number of subjects in

consideration. A notable observation from the table is the substantial variability in performance across

different classifiers when extracting features with the same CNN for each task. This pattern is also

evident in the performance disparities observed across tasks. Looking at the overall results it is also

possible to point out that features extracted from some CNNs outperform others. For each task, bold

values highlight the best accuracy. Thus, it is easy to notice that the best-performing configurations are
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given by features extracted from InceptionV3 and InceptionResNetV2 models and classified by SVM,

RF and MLP algorithms. The worst result is usually obtained by the FC classifier, which also shows a

greater standard deviation, but this can be explained by the fact that no multiple runs were performed.

SVM obtains the best result with an accuracy of 70.8% on the fifth task with features extracted from

InceptionV3.

Task 2 Task 3 Task 4 Task 5
ACC SD ACC SD ACC SD ACC SD

VGG19
RF 64.8 2.8 59.4 2.5 68.0 1.8 67.1 2.0
K-NN 62.2 1.8 56.9 3.0 64.0 2.2 64.8 2.6
SVM 60.3 2.9 58.8 2.5 68.6 1.6 66.1 1.5
MLP 57.4 2.5 57.8 2.9 61.7 2.9 61.9 3.2
FC 50.1 8.1 48.1 7.6 42.6 6.5 50.6 4.4
ResNet50
RF 62.3 2.8 60.0 2.2 68.0 2.0 67.7 2.0
K-NN 58.5 2.2 53.9 2.7 59.5 1.8 59.5 1.8
SVM 61.3 2.8 58.0 1.9 65.0 1.7 68.9 1.5
MLP 52.8 3.0 51.9 2.7 55.9 5.4 53.7 0.7
FC 45.2 8.4 50.9 10.3 47.2 6.7 47.0 7.8
InceptionV3
RF 65.5 2.3 55.1 3.0 68.9 2.0 68.4 2.2
K-NN 63.1 1.9 51.3 2.8 66.4 2.1 63.2 2.7
SVM 66.2 2.2 56.0 3.0 69.5 1.3 70.8 1.5
MLP 67.4 2.1 49.6 3.2 61.0 3.8 63.4 2.5
FC 52.4 7.6 51.9 11.3 44.4 9.1 45.2 11.8
Inc.ResNetV2
RF 64.9 2.8 61.5 2.2 67.8 1.5 66.5 2.7
K-NN 59.1 2.5 57.6 2.6 61.2 1.8 55.5 2.1
SVM 66.0 1.9 60.6 2.3 67.7 2.0 65.9 2.0
MLP 66.8 3.5 61.2 4.1 63.5 3.0 58.3 1.5
FC 49.1 10.9 48.2 5.1 46.8 8.4 49.6 10.6

Table 4.3: Classification results achieved on deep features extracted by binary images.

Concerning the second experiment, Table 4.4 shows the performance obtained on the RGB on paper

images. Here, the same observations can be applied to the variability of the outcomes considering different

configurations of CNNs and classifiers. Regarding the classification algorithms, RF and SVM consistently

outperform the others in most cases. Concluding these results, it is possible to make the following

considerations: the ensemble-based strategy of RF, along with the kernel-based approach tailored for

two-class problems, yields the best performance, and the effectiveness of features extracted by CNNs

remains independent of the classifier used, enabling even better results compared to those achieved by

the fully connected layer of the CNN. Concerning the CNNs, InceptionResNetV2 generally achieves

the best results, except for task 5, where InceptionV3 outperforms. This outcome may be attributed

to the complexity of task 5, allowing for better discrimination between healthy controls and patients.

Consequently, a simpler CNN like InceptionV3, facilitating more practical training on available data,

yields superior results. The best result is given by MLP on the second task, reaching an accuracy of

74.6% with features extracted from InceptionResNetV2.

In summarizing the outcomes presented in Table 4.4, Figure 4.3 shows two vertical bar graphs. The

objective is to quickly discern whether a particular CNN or classifier outperforms the others. In particular,

Figure 4.3 (a) displays, for each task, the mean accuracy of each classifier, averaged across the features

of the four CNNs. This plot confirms what was said previously, that RF and SVM are the best classifiers

for the features in the exam. Similarly, 4.3 (b) shows the mean accuracy obtained with the features of

each CNN for each task, averaged across the results of all the classifiers. This plot shows that deeper

CNN models perform better in this case. Upon examination of the figure, it is evident that task 3

yielded the lowest performance, though it can be considered very similar to the second. This outcome

is understandable, considering task 2 imposes a greater motor load than task 3. The nature of task 2,

which involves executing the activity without moving the arm but with small movements of both fingers

and wrist, makes it comparatively more challenging than task 3.
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Task 2 Task 3 Task 4 Task 5
ACC SD ACC SD ACC SD ACC SD

VGG19
RF 67.6 2.3 62.8 2.8 70.0 2.4 68.2 1.6
K-NN 64.3 2.2 56.7 2.7 61.0 2.0 61.6 2.1
SVM 61.7 2.4 55.4 2.0 67.6 1.4 66.9 1.3
MLP 63.5 3.3 56.6 2.8 58.1 3.4 58.2 3.4
FC 64.1 15.2 59.0 5.1 70.7 7.5 64.7 11.0
ResNet50
RF 69.7 2.1 60.3 2.4 71.2 2.4 71.7 2.2
K-NN 66.8 2.1 57.0 2.4 66.3 2.6 57.9 1.4
SVM 72.0 1.7 58.9 1.9 67.3 2.2 72.6 1.6
MLP 53.8 2.1 50.6 3.4 60.3 8.7 52.9 3.5
FC 61.1 8.0 53.5 9.5 68.8 7.7 64.4 12.7
InceptionV3
RF 68.6 2.1 54.5 3.8 70.5 2.5 71.7 1.9
K-NN 66.5 1.8 56.0 2.8 62.7 2.5 66.8 2.0
SVM 71.1 1.5 55.4 2.7 71.1 2.0 73.1 1.9
MLP 67.5 2.5 53.5 1.5 63.9 1.7 62.8 4.7
FC 64.2 9.0 57.1 4.8 68.0 6.6 65.7 11.1
Inc.ResNetV2
RF 70.4 2.4 65.4 2.0 73.0 2.1 69.2 2.3
K-NN 68.4 1.8 62.8 2.4 65.0 2.0 64.6 2.0
SVM 71.1 2.2 61.2 2.4 71.8 1.6 67.5 1.4
MLP 74.6 2.3 63.3 1.5 70.4 2.1 52.6 2.1
FC 60.0 15.9 62.7 7.3 68.0 10.6 65.3 10.1

Table 4.4: Classification results achieved with deep features extracted by RGB images.

(a) Classifiers (b) CNNs

Figure 4.3: Average accuracy achieved by the classifiers (a) and the CNNs (b) for features extracted by
RGB images.
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Task 2 Task 3 Task 4 Task 5
ACC 74.65 65.42 73.04 73.14
ERR 25.35 34.58 26.96 26.86
TPR 72.36 63.46 72.19 67.05
TNR 75.08 65.06 73.05 81.42
FNR 27.64 36.54 27.81 32.95
AUC 0.81 0.71 0.78 0.75

Table 4.5: Summary of the best experiments obtained on RGB images. The table also shows, for each
task, the other considered performance measures

To have a closer look at the results obtained, Table 4.5 displays a set of evaluation metrics for

experiments providing the best results on RGB images for each task (Table 4.4). The set comprises

accuracy, error, sensitivity (TPR), specificity (TNR), FNR and the AUC. FNR is a very important

metric in the medical field, particularly in the context of AD, as false negatives occur when a diagnostic

test incorrectly indicates that a patient does not have AD. If the FNR is high, it means that a significant

number of individuals with Alzheimer’s may go undetected, delaying appropriate care and support. Every

value is expressed in percentage except the AUC. The analysis reveals that task 2 performs best as it

reaches the highest accuracy and AUC values, affirming the effectiveness of predictions. Moreover, this

task reports the highest TPR and the lowest FNR, meaning that most patients are correctly classified.

Task 5, while displaying the highest accuracy, exhibits a lower AUC value and a significantly lower TPR

than TNR, indicating that a higher number of patients go unidentified.

In almost every case, the performance obtained from RGB images outperforms that obtained from

binary images. This was expected as RGB images contain more information than binary ones, thanks to

the dynamic information encoded in their colour channels.

Figure 4.4 compares these approaches. A vertical bar graph was created for each CNN to illustrate

the accuracy per task, computed by averaging the results from the five classifiers. The graphs indicate

that performances on RGB images consistently surpass those achieved with binary images. This find-

ing reaffirms that relying solely on shape information in binary images is inadequate for distinguishing

patients’ handwriting from that of the control group.

For the third series of experiments, Table 4.6 presents the accuracy achieved with handcrafted features

for each task and the four classification algorithms selected. The table shows that RF and KNN deliver

the best performance when utilizing handcrafted features. This reinforces the efficacy of the RF ensemble-

based strategy and highlights the satisfactory results obtained by KNN, contrasting with the deep features

scenario. In fact, unlike in the deep features case, the KNN algorithm effectively estimated the probability

distributions represented by the handcrafted features in this instance. The best result is given by RF on

task 5, with an accuracy of 68.3%. Notably, task 3 contributed to good performance, suggesting that,

unlike the deep feature scenario, certain handcrafted features facilitated effective discrimination between

the handwriting of patients and that of the control group.

Task 2 Task 3 Task 4 Task 5
ACC SD ACC SD ACC SD ACC SD

RF 61.3 2.5 66.4 1.8 53.0 3.2 68.3 1.5
K-NN 58.1 3.4 64.3 1.7 57.9 2.9 63.7 2.3
SVM 52.1 0.1 51.7 0.1 51.3 1.0 51.0 0.4
MLP 57.3 2.7 66.3 1.8 55.0 3.6 63.4 2.2

Table 4.6: Results of classification with handcrafted features. Bold values highlight the overall best
performance achieved on each task.

To summarize the comparison between deep and handcrafted features, Figure 4.5 shows a vertical

bar graph depicting the best overall accuracy achieved for each task. The graph includes the best overall

classification performance obtained using deep-RGB features (bold values in Table 4.4) and handcrafted

features (bold values in Table 4.6) for each task. The plot illustrates that the deep-based approach outper-

forms the handcrafted feature-based approach, except for task 3. These findings affirm the effectiveness

of the proposed approach in combining shape and dynamic information. The marginal performance dif-

ference on task 3 is likely due to the task’s low complexity, which restricts the selection of discriminant

features, as evidenced by the generally poor classification results obtained.
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(a) VGG19 (b) ResNet50

(c) InceptionV3 (d) InceptionResNetV2

Figure 4.4: Accuracy for each task averaged over the results of five classifiers.

Figure 4.5: Comparison results between deep and handcrafted features.
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The final set of experiments aimed to enhance the system’s performance, employing two distinct ap-

proaches. The first approach focused on enriching the feature space by combining deep and handcrafted

features. These feature sets, originating from synthetic off-line RGB images and engineered handwriting

features, were theoretically largely uncorrelated. The new feature representation was created by concate-

nating handcrafted and deep features from RGB images for each sample. The results, summarized in

Figure 4.6, displayed a slight performance increment in most tests.

The second approach sought performance improvement by combining responses for each task and

classifier on data related to each subject. A weighted majority vote rule was applied, incorporating the

confidence degree provided by each classifier as weights. The results, reported in Table 4.7, revealed

significant performance increments in many cases compared to the best results from single classifiers.

Notably, the best result was achieved by combining classifiers using features from ResNet50, yielding an

accuracy of 81.03%.

(a) VGG19 (b) ResNet50

(c) InceptionV3 (d) InceptionResNetV2

Figure 4.6: Accuracy for each task averaged over the results of the five classifiers using merged features,
compared with deep features.

VGG19 ResNet50 InceptionV3 Inc.Res.V2 All Nets
All
classif.

74.13 81.03 77.01 79.31 74.13

RF K-NN SVM MLP FC
All nets 71.83 71.25 76.21 69.54 68.96

Table 4.7: Classification results achieved using the weighted majority vote rule.

In conclusion, this research presented a comprehensive comparison between classifiers based on hand-

crafted and deep features for Alzheimer’s diagnosis from handwriting. Three feature sets were extracted

for each handwriting sample based on handcrafted features, features from CNNs applied to synthetic
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colour images (RGB), and features from CNNs applied to synthetic binary images. The comparison

allowed for evaluating the role played by shape and the combined use of shape and dynamic information.

The deep features demonstrated more promise than handcrafted ones, reaching the best performance

with the RF classifier. Additionally, the contribution of shape information was noted to be significant

for subject classification, especially when combined with dynamic information from RGB channels.

4.3 Comparison among RGB on-paper, Multichannel and Hand-
crafted Features on Graphic Tasks

The study presented in this section stems from considerations from the study described in Section 4.2.

In particular, the previous section demonstrated the effectiveness of a hybrid approach based on feature

extraction through deep neural networks and classification using machine learning algorithms from RGB

images containing dynamic information about writing within the colour channels. These reasons led

me to perform new experiments to compare standard handcrafted features with those derived from a

feature extraction approach using RGB on paper and multichannel images [20]. Building upon these

considerations, the set of experiments outlined in Section 4.2 was expanded by incorporating additional

graphic tasks from the protocol, characterized by a higher difficulty level. In summary, nine distinct

datasets were obtained for each task: one was based on standard dynamic features, four were based on

features provided by CNNs applied to synthetic RGB images, and four were provided by CNNs applied to

the MC images. Furthermore, the performance for each task and dataset was evaluated using the same

classification schemes, namely Random Forest, K-Nearest Neighbor, Multi-Layer Perceptron, Support

Vector Machines and a further comparison by considering the classification results directly provided by

the fully connected layer of CNN. This approach facilitated a straightforward comparison of experimental

results related to different feature vector representations, emphasizing the roles of shape and the combined

use of shape and dynamic information. The primary contributions of this study can be summarized as

follows:

• Evaluation of the contribution of dynamic information encoded in RGB channels of specifically

generated images for an AD diagnosis system’s performance.

• Comparison of results achieved using these images with those obtained from multi-channel images,

which include an additional dynamic feature in the fourth channel.

• Assessment of CNNs’ ability as automatic feature extraction tools, comparing their performance

with widely-used handcrafted features.

• Evaluation of the method presented in Section 4.2 on additional tasks, providing insights into

participants’ long-term motor planning ability.

• Comparison of two classification approaches: one employing handcrafted features with well-known

machine learning algorithms and the other using features automatically extracted by CNNs from

RGB and multi-channel images. The classification results from the fully connected layers of CNNs

were also considered for comparison.

Data

Similar to the previous study, this work focuses on graphic tasks requiring subjects to produce handwritten

forms less familiar than characters and words in their native language. This choice stemmed from the

rationale that the habitual writing of individuals with neurodegenerative disorders might make alterations

in their handwriting less conspicuous, rendering it more akin to that of healthy subjects with limited

writing habits. In essence, we selected writing tasks that subjects were not accustomed to, making them

less automated from a neuromotor control perspective. This approach aimed to highlight distinctions in

writing characteristics between healthy subjects and those affected by neurodegenerative disorders more

prominently. The tasks considered for this work are the same as described in 4.2 with two additional

tasks. Specifically, tasks demanding increased fine motor control and those imposing a higher cognitive

load and greater complexity in spatial organization. The fifth task involved reproducing a complex figure

to assess the participant’s motor control abilities. This task examines changes in handwritten traits

independently of letters, words, or related semantic meanings. Retracing the form necessitates constant

motor re-modulation, as the form comprises a continuous line with varying curvature radii to evaluate
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both fine control and long-term motor motion planning. Moving on to the sixth task, participants

were asked to execute the well-known clock drawing test: drawing a clock face, including numbers, and

positioning the hands at five past eleven. The clock-drawing test (CDT) is a screening tool for cognitive

impairments and dementia, assessing spatial dysfunction and attention deficits. Initially designed for

evaluating visuoconstructive abilities, it has been observed that abnormal clock drawing occurs in various

cognitive impairments. The test requires verbal comprehension, memory, spatially coded knowledge, and

constructive skills.Figure 4.7 shows sample images of the selected tasks.

As the previous study enhanced the inefficacy of using binary images, only approximating the actual

shape of the handwritten traits, they have been discarded from this new set of experiments. A new

procedure for generating synthetic images was adopted by incorporating a fourth channel alongside the

previously considered three to assess the significance of dynamic information associated with each hand-

written trait. According to this new procedure, a MC TIFF image was generated for each handwritten

sample. The first three channels encoded the dynamic information used in our previous study, namely ve-

locity, jerk, and pressure, while the fourth channel encoded acceleration. This kind of image is described

in Section 3.2.3. In this context, MC on-paper images were considered. A feature extraction on TIFF

images was employed using CNN’s ability to extract features automatically. More information about this

kind of image can be found in Section 3.2.3.

(a) Task 2 (b) Task 3 (c) Task 4

(d) Task 5 (e) Task 21 (f) Task 24

Figure 4.7: Examples of tasks performed by a participant involved in the experiments.

Experimental Setting

The experimental setting employed in this case is the same as described in Section 4.2, and its workflow is

shown in Figure 4.1. RGB-deep and MC-deep features are obtained by feeding four models of CNNs. A

difference from the previous studies is that results haven’t been combined in this case, so the last part of

the system is missing. For comparison, the selected models are the same exploited in the previous research:

VGG19, ResNet50, InceptionV3 and InceptionResNetV2, pre-trained on ImageNet and fine-tuned using

the handwriting images. Each set of features is employed individually in the classification stage by various

ML classification schemes, with a fully connected layer classifier of the CNNs also contributing to the

classification process. After the classification step, there is a comparison of the performances obtained.

For what concerns hyperparameters of CNNs used for feature extraction and the ML algorithms for

the classification, they were the same as the previous study, detailed in Section 4.2, for comparison sake.

This comprehensive approach enables the analysis of participants’ handwriting across various tasks to

predict cognitive status.
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Experimental Results

To assess the system’s efficacy, I conducted three sets of experiments. First, I evaluated the performance

of features extracted from the RGB on-paper images. Then, in the same way, I extracted features from

MC images and evaluated the outcomes. Finally, I compared the results obtained from the proposed

approach with those from the handcrafted features. A comprehensive account of the results from these

experiments is presented in the following. To provide an exhaustive overview of the results for the first

two experiments, as they show common patterns, Tables 4.8 and 4.9 present a detailed breakdown of

the performance for each task by the five classifiers. The assessment involved the use of both RGB-deep

features (Table 4.8) and MC-deep features (Table 4.9) extracted from different CNNs. Analysis of the

tables reveals substantial variations in classifier performance for each task. Similarly, the performance

fluctuates significantly for each task when utilizing features extracted from different CNNs. Moreover,

within each classifier, the performance varies notably based on the features extracted from different CNNs

and the tasks at hand. Looking at Table 4.8, the best accuracy value (74.6%) was achieved by MLP with

features extracted by InceptionResNetV2 from task 2.

Task 2 Task 3 Task 4 Task 5 Task 21 Task 24
ACC SD ACC SD ACC SD ACC SD ACC SD ACC SD

VGG19
RF 67.6 2.3 62.8 2.8 70.0 2.4 68.2 1.6 63.7 2.4 73.2 2.1
K-NN 64.3 2.2 56.7 2.7 61.0 2.0 61.6 2.1 64.3 2.0 72.8 1.9
SVM 61.7 2.4 55.4 2.0 67.6 1.4 66.9 1.3 60.1 2.2 70.8 1.2
MLP 63.5 3.3 56.6 2.8 58.1 3.4 58.2 3.4 60.5 2.8 72.6 1.8
FC 64.1 15.2 59.0 5.1 70.7 7.5 64.7 11.0 64.8 11.7 70.4 13.5
ResNet50
RF 69.7 2.1 60.3 2.4 71.2 2.4 71.7 2.2 66.0 2.2 69.1 2.3
K-NN 66.8 2.1 57.0 2.4 66.3 2.6 57.9 1.4 59.6 2.0 62.5 2.0
SVM 72.0 1.7 58.9 1.9 67.3 2.2 72.6 1.6 65.1 1.4 67.9 1.8
MLP 53.8 2.1 50.6 3.4 60.3 8.7 52.9 3.5 53.0 2.7 56.2 4.2
FC 61.1 8.0 53.5 9.5 68.8 7.7 64.4 12.7 64.3 9.3 66.8 11.4
InceptionV3
RF 68.6 2.1 54.5 3.8 70.5 2.5 71.7 1.9 66.13 2.93 67.69 3.09
K-NN 66.5 1.8 56.0 2.8 62.7 2.5 66.8 2.0 64.79 2.06 58.58 2.43
SVM 71.1 1.5 55.4 2.7 71.1 2.0 73.1 1.9 69.18 1.32 69.84 2.28
MLP 67.5 2.5 53.5 1.5 63.9 1.7 62.8 4.7 58.12 5.55 63.24 3.87
FC 64.2 9.0 57.1 4.8 68.0 6.6 65.7 11.1 58.86 11.15 62.41 7.00
Inc.ResNetV2
RF 70.4 2.4 65.4 2.0 73.0 2.1 69.2 2.3 65.2 2.1 65.3 2.4
K-NN 68.4 1.8 62.8 2.4 65.0 2.0 64.6 2.0 64.5 2.0 64.1 2.3
SVM 71.1 2.2 61.2 2.4 71.8 1.6 67.5 1.4 68.7 1.9 58.6 1.7
MLP 74.6 2.3 63.3 1.5 70.4 2.1 52.6 2.1 57.3 4.9 51.6 2.0
FC 60.0 15.9 62.7 7.3 68.0 10.6 65.3 10.1 62.0 8.5 55.3 9.4

Table 4.8: Classification results achieved using RGB features.

The best result achieved on MC images, as shown in Table 4.9, is an accuracy of 72.8% by the FC

classifier, with features extracted by ResNet50 from task 4.

Two vertical bar graphs were generated for each feature type to summarize the outcomes in Tables

4.8 and 4.9, in Figure 4.8, regarding RGB-deep features, and Figure 4.9, concerning MC-deep features.

For both figures, the left plot (a) showcases the mean accuracy of each classifier for each task, averaged

across results obtained from the four CNNs. Conversely, the right plot (b) displays the mean accuracy

of each CNN, averaged across the results from the five classifiers. These figures aim to facilitate a quick

assessment of superior performance among CNNs, classifiers and tasks. Observing the figures and the

tables, it becomes apparent that task 3 exhibits the poorest performance for both RGB and MC features.

This outcome is understandable and already explained in the previous study in Section 4.2. The best

results are achieved for the RGB images on the second task and for the MC images on the fourth task.

The additional tasks (21 and 24) usually didn’t perform better from these experiments, though they

require a major cognitive skill. Instead, concerning ML classifiers, the best performing are RF and SVM,

confirming the effectiveness of the ensemble-based strategy of RF and that of the SVM kernel-based

approach. These results also highlight the effectiveness of RGB features extracted by the CNNs, inde-
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Task 2 Task 3 Task 4 Task 5 Task 21 Task 24
ACC SD ACC SD ACC SD ACC SD ACC SD ACC SD

VGG19
RF 64.0 2.6 60.9 2.5 68.6 1.5 64.3 2.4 66.4 2.4 69.0 2.2
K-NN 56.9 2.5 55.5 2.3 59.7 2.4 59.5 2.0 62.6 2.9 65.4 1.8
SVM 59.7 1.8 55.1 2.5 64.5 2.1 62.5 2.0 61.9 2.0 68.3 1.7
MLP 58.2 3.3 56.6 2.8 61.5 2.9 62.1 2.4 61.3 2.3 65.6 2.9
FC 66.2 10.7 62.7 10.0 69.5 10.5 64.2 11.1 64.7 7.4 64.5 12.3
ResNet50
RF 60.1 2.6 56.3 3.0 72.0 2.4 66.8 2.7 65.0 2.2 66.0 2.7
K-NN 59.3 2.3 54.9 1.7 61.1 1.5 62.8 2.1 58.3 2.8 58.3 1.9
SVM 57.4 2.5 53.7 2.3 72.2 1.7 67.2 1.9 66.6 1.8 69.9 2.1
MLP 55.6 2.8 49.7 1.0 64.0 5.4 57.7 4.8 57.2 5.2 58.3 4.3
FC 61.7 12.1 59.0 8.8 72.8 9.0 67.7 13.7 65.6 10.3 68.6 8.3
InceptionV3
RF 67.5 2.2 57.9 2.5 68.8 2.5 67.6 2.2 65.6 3.0 62.2 2.8
K-NN 63.5 1.9 54.1 2.2 57.1 1.7 61.4 2.0 59.6 2.5 60.6 2.3
SVM 67.7 2.2 61.8 2.0 68.3 2.3 68.7 2.0 66.5 2.4 64.5 2.8
MLP 66.3 2.0 56.8 3.2 62.7 4.0 63.7 4.0 55.4 3.5 61.8 2.2
FC 67.2 8.9 58.9 13.1 70.5 2.6 71.2 13.0 61.1 7.1 65.4 13.6
Inc.ResNetV2
RF 65.2 2.3 61.4 2.7 67.6 2.1 59.8 2.6 67.6 2.2 66.4 2.2
K-NN 58.9 2.9 56.9 2.1 63.0 2.1 57.9 2.2 59.6 2.5 60.7 2.2
SVM 63.3 2.7 59.9 2.6 65.6 1.8 58.2 2.6 67.9 1.7 66.8 1.7
MLP 66.7 2.5 58.5 2.3 59.7 3.0 58.2 3.3 68.4 2.8 61.4 2.6
FC 61.6 11.8 58.7 10.4 67.8 11.3 64.8 10.9 70.7 3.3 55.0 17.1

Table 4.9: Classification results achieved using MC features. Bold values highlight the overall best
performance achieved on each task.

pendent of the classification algorithm used to implement the classification layer. Furthermore, RF and

SVM performance is better than that of the FC classifier trained during the process for feature extraction.

The same does not occur for MC features. Looking at the CNNs (right images), the deepest architec-

tures usually perform better. Figure 4.8, which illustrates CNN performances using RGB features, shows

that InceptionResNetV2 demonstrated superior results for the first three tasks. However, different CNNs

yielded the best performance for the subsequent tasks. InceptionV3 and VGG19 outperformed others

in tasks 5 and 24, respectively. This divergence is likely attributed to the increased complexity of these

tasks compared to the initial three. Consequently, simpler CNN architectures facilitated more effective

training on the available data, leading to better outcomes. Conversely, for task 21, CNNs exhibited

comparable performances, suggesting that the number of parameters did not significantly impact the

training process. Turning attention to Figure 4.9, which depicts CNN performance on MC features, it is

noteworthy that, except tasks 3 and 21, InceptionResNetV2 did not achieve the best performance. This

outcome implies that employing CNNs with higher complexity may not necessarily result in improved

system performance.

Furthermore, as depicted in Figure 4.9 (a), the FC classifier, in the case of MC features, demonstrated

slightly superior or comparable performance compared to the other considered classifiers. This finding

reinforces the notion that, during the training phase, addressing the heightened complexity of MC images

necessitated leveraging the interaction between the feature extractor and the classification layer. It is

worth noting that the results provided by the FC classifier exhibit higher standard deviation values than

those of the other classifiers. This is likely attributable to the fact that, as previously mentioned, FC

results were computed by averaging accuracy over the five test folders, while the results of the other

classifiers were averaged over 30 runs. To highlight these aspects, Table 4.10 specifically compares the

performance of RGB and MC features when utilizing the FC classifier.

Figure 4.10 and Table 4.10, in fact, compare the classification performance between RGB and MC

features. The objective is to assess the contribution of the fourth channel in MC images in terms of

performance. Figure 4.10 illustrates the contrast in classification performance between MC and RGB

features. For this purpose, I computed the average accuracy across the five classifiers and represented

a vertical bar for each task. Analysis of the graphs reveals that, in most instances, the performance

obtained with RGB features is marginally superior to or on par with that obtained with MC features.
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(a) Classifiers (b) CNN

Figure 4.8: Average accuracy achieved by the classifiers (a) and the CNNs (b) using RGB images.

(a) Classifiers (b) CNN

Figure 4.9: Average accuracy achieved by the classifiers (a) and the CNNs (b) using MC images.
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This outcome supports the conclusion that the additional information from the fourth channel did not

significantly enhance the system’s performance.

(a) VGG19 (b) ResNet50

(c) InceptionV3 (d) InceptionResNetV2

Figure 4.10: Accuracy for each task averaged over the results of five classifiers.

Task 2 Task 3 Task 4 Task 5 Task 21 Task 24
RGB MC RGB MC RGB MC RGB MC RGB MC RGB MC

VGG19 64.0 66.2 59.0 62.7 70.7 69.5 64.7 64.2 64.8 64.7 70.4 64.5
ResNet50 61.1 61.7 53.5 59.0 68.8 72.8 64.4 67.7 64.3 65.6 66.8 68.6
InceptionV3 64.2 67.2 57.1 58.9 68.0 70.5 65.7 71.2 58.9 61.1 62.4 65.4
Inc.ResNetV2 60.0 61.6 62.7 58.7 68.0 67.8 65.3 64.8 62.0 70.7 55.2 55.0

Table 4.10: Classification results achieved by the FC classifier, using RGB and MC features.

In the final experiments, the performance of handcrafted features is evaluated and compared to the

RGB results. Table 4.11 presents the accuracy obtained using the handcrafted features. Analysis of the

table reveals that the RF and KNN classifiers yield the best performance, affirming the effectiveness of the

RF ensemble-based strategy, with KNN, in contrast to the deep features scenario, delivering satisfactory

results. Moreover, in this context, task 3 demonstrates notable performance. These results suggest that,

unlike the situation with deep features, certain handcrafted features contribute information, enabling

effective differentiation between the handwriting of patients and that of the control group. Conversely,

tasks 4 and 24 exhibit poor performance with these features, implying that they do not sufficiently

capture the shape and dynamics of handwriting to distinguish between samples of cognitively impaired

individuals and those of the control group.

To summarize the comparison between deep RGB and handcrafted features, Figure 4.11 shows a

vertical bar plot representing the best overall accuracy achieved for each task in a vertical bar graph.

The plot showcases the superior performance of our deep-based approach in combining shape and dynamic

50



4.4 Comparison among RGB on paper, Offline and Handcrafted Features on Writing Tasks

information, except for task 3, where the slight difference in performance may be attributed to the task’s

low complexity, hindering the selection of discriminant features. This is consistent with the generally

poor classification results obtained using both deep and handcrafted features in this specific task.

Task 2 Task 3 Task 4 Task 5 Task 21 Task 24
ACC SD ACC SD ACC SD ACC SD ACC SD ACC SD

RF 61.3 2.5 66.4 1.7 53.0 3.2 68.2 1.5 64.9 2.9 55.9 2.4
K-NN 58.1 3.4 64.3 1.7 57.9 2.9 63.7 2.3 61.1 2.3 54.2 2.9
SVM 52.1 0.1 51.7 0.0 51.3 1.0 51.0 0.4 51.7 0.9 52.3 2.6
MLP 57.3 2.7 66.3 1.8 55.0 3.6 63.4 2.2 63.2 3.5 53.3 3.3

Table 4.11: Results of classification with the handcrafted features. Bold values highlight the overall best
performance achieved on each task.

Figure 4.11: Comparison results between Deep-RGB and handcrafted features.

This work reinforces the outcomes of the previous one as also in this case, it is apparent that deep fea-

tures show more promise than their handcrafted counterparts, consistently achieving superior accuracy.

For each task and classification approach, there is consistently a CNN model whose features outper-

form those obtained with the handcrafted ones. The lone exception is task 3, where the performance

with handcrafted features was marginally better than that achieved with deep features. Regarding the

comparison between RGB and MC deep features, the analysis of results indicates that adding an extra

channel in generating multi-channel images does not enhance feature extraction significantly. Classifica-

tion results using RGB deep features are nearly always superior to MC deep features. The only anomaly

is observed in task 21, where the FC classifier, trained with MC deep features using InceptionResNetV2,

yielded slightly better results.

4.4 Comparison among RGB on paper, Offline and Handcrafted
Features on Writing Tasks

In prior investigations outlined in 4.2 and 4.3, an attempt was made to distinguish AD patients from

healthy control with a system based on ML and DL techniques by integrating shape-related information

with the dynamics of the handwriting process. Given the outcomes from the previous section, it seems

that RGB on-paper images are the most suitable for analysis by the proposed experimental workflow.

Building upon these findings, the current study aims to investigate whether performance can be enhanced

by utilizing original offline images obtained by digitizing text written on paper sheets during the adminis-

tration of our protocol, as detailed in Section 3.2.4. The rationale behind this approach is to consider the
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handwriting samples’ shape, size, and actual thickness. Once again, I leveraged the capability of Deep

Neural Networks (DNNs) to extract features from raw images automatically, following the transfer learn-

ing approach [25]. It is important to note that an advantageous aspect of this approach is the potential

to use parts of text previously written by subjects for diagnostic purposes. This enables the examination

of whether initial signs of the disease were already present and facilitates the analysis of its progression.

The drawback, of course, is the loss of dynamic information directly derived from online data. However,

based on the preliminary results, this loss does not appear significant. The following Sections describe

the data used, the system workflow and the experimental results.

Data

Three kinds of data are considered in this research: RGB on paper images, Section 3.2.2; offline images,

Section 3.2.4; and handcrafted features, Section 3.3.1. The proposed protocol encompasses various tasks

designed to assess participants’ motor control, memory, and cognitive capacity, including writing letter

groups, words, and graphic exercises. However, for the purposes of this study, only writing tasks were

considered. Specifically, the following tasks: signature (Task 1), continuously write the cursive bigram

”le” four times (Task 9), and write the Italian word for sheet, ”foglio” (Task 10). The first task is a

well-established activity often found in literature, typically executed with a highly automated gesture.

The ninth task evaluates fine motor control by repeating a consistent pattern sequentially but with

varying sizes. Lastly, task 10 involves copying a common word with an interesting graphic composition,

incorporating ascending and descending traits. These specific tasks were chosen because they facilitate

the examination of automatism, regularity, coordination of motor sequences, and spatial organization.

Graphic tasks were deliberately excluded from our selection. This decision aligns with one of the study’s

objectives: to determine if features automatically extracted from offline handwriting images effectively

predict AD. Under this hypothesis, earlier handwriting examples, which usually lack graphic patterns,

could be valuable for detecting early signs of cognitive impairment and assessing their progression. Figure

4.12 shows examples of offline images from the selected tasks.

(a) Task 1 (b) Task 9 (c) Task 10

Figure 4.12: Example of offline images.

Experimental Setting

The experimental setting for these experiments focuses on the baseline workflow shown in Figure 4.1;

which is the same as described for the previous studies, but this time, binary and MC images were

substituted with offline ones and different tasks were evaluated. First, I evaluated the system on features

automatically extracted from RGB images, then those extracted from Offline images and in the end, I

tested handcrafted features. A final experiment involved the application of the majority vote rule. The

extraction of deep features from images was the same as the previous study, as the same CNNs were used

without changing their hyperparameters. New ML algorithms were introduced to assess the efficacy of

the features extracted, while the KNN algorithm used in the previous works was discarded. The overall

selected algorithms are XGB, RF, DT, SVM, and MLP. A 5-fold cross-validated grid search was conducted

to optimise each classifier’s performance to select the most suitable set of hyperparameters. This involved

defining a range of values for each parameter and exhaustively testing all possible combinations, as

depicted in Table 4.12. The principal metric to evaluate the system’s performance is accuracy, but other

metrics were also computed, like sensitivity, specificity, and precision.
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Classifier Hyperparameters Constraints
XGB min child weight 1, 5, 10

gamma 0.5, 1, 1.5, 2
subsample 0.6, 0.8, 1
colsample bytree 0.6, 0.8, 1
max depth 3, 4

RF bootstrap True, False
max depth 10, 20, 50
mas features auto, sqrt
min samples leaf 1, 2, 4
min samples splir 2, 5, 10
n estimators 100, 200

Tree criterion gini, entropy
min samples split 2, 10
max depth 2, 5, 10
min samples leaf 1, 5, 10
max leaf nodes 2, 5, 10

SVM C 0.1, 1, 10, 100
gamma 1, 0.1, 0.01, 0.001
kernel rbf
class weight balanced, None

MLP hidden layer sizes 50, 100, 200
activation tanh, relu
solver lbfgs, sgd
alpha 0.0001, 0.05
learning rate constant, adaptive

Table 4.12: ML Classifiers and their hyperparameters involved in the Grid search process

Experimental Results

To ease the comparison, Table 4.13 shows the results obtained by each set of features in terms of Accuracy,

Sensitivity, Specificity and Precision expressed in percentage for every task taken into account in this work.

It is worth noting that for every CNN feature extractor, only two classification results are reported, one

for the FC classifier and one for one ML algorithm out of the five tested. Concerning the ML evaluation,

only the performance achieved by the best algorithm was reported to reduce the complexity of the table.

For each task, the best values of the computed metrics are in bold.

The table shows a high variability according to the experiment implemented, as the performance

widely differs across tasks and feature sets. Independent of the kind of image, the best classifiers are

XGB and RF. Looking at the outcomes on handcrafted images, instead, the best classifier is always RF.

Moreover, ML algorithms outperform the FC classifier both for RGB and offline deep features. This result

demonstrates that ensemble-based architectures more effectively capture the differences between patients

and healthy people. Another aspect that contributed to these outcomes is the grid-search procedure,

which optimised the ML classifiers’ performance. Differently from the previous studies, in this case, it

is not easy to assess which CNN is the best, though, also in this case, the best results are obtained

from features extracted from deepest models like InceptionResNetV2. The table shows that the best

accuracy was achieved for the first task by the RF classifier with the handcrafted features (65.86%),

while for both the ninth and the tenth task by the XGB classifier with the offline features (74.7% and

74.4%, respectively). The first task is the one that achieves the worst result among all the tasks, while

the highest performing is the ninth task for every evaluated set of features. The motivation behind this

result can be explained by analysing the task: the first task requires a well-known kinematic gesture,

becoming almost an automatic graphic task that doesn’t require significant motor or cognitive attention.

The ninth and tenth tasks, instead, thanks to their characteristic of including descending and ascending

traits and requiring greater coordination and control skills, are the most useful to highlight the difference

between patients and healthy controls. Looking at the set of features, it seems that features extracted

from offline images perform better than the others, but for the first task, they don’t achieve the best

result as handcrafted features outperform them. The table shows that offline features outperformed the

RGB features in most cases. These performance differences are more important for the ML classifiers,

confirming that the latter could better exploit the information contained in the offline features. This is
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an interesting result, as these features were extracted from offline images containing the original traits of

the participants’ handwriting without any information regarding the dynamics of the movement.

Task 1 Task 9 Task 10
Acc Sen Spe Pre Acc Sen Spe Pre Acc Sen Spe Pre

RGB features
VGG19
ML 56.6 (RF) 61.6 51.6 59.3 68.6 (MLP) 67.1 64.7 68.7 66.5 (XGB) 67.1 66.5 67.7
FC 56.3 50.6 62.7 59.2 68.8 58.7 79.6 75.3 67.8 58.7 77.2 72.8
ResNet50
ML 56.4 (XGB) 59.1 54.8 58.9 66.6 (RF) 69.9 64.6 68.6 65.3 (XGB) 67.9 64.1 66.8
FC 58.7 74.2 42.2 57.8 62.5 62.1 62.7 63.5 59.7 71.3 46.9 58.5
Inc.V3
ML 59.97 (RF) 64.7 55.2 62.8 68.3 (XGB) 70.5 66.6 69.9 65.1 (RF) 69.9 61.6 66.8
FC 52.5 66.3 37.4 53.2 62.5 60.9 63.8 63.8 65.5 72.5 57.8 64.3
Inc.Res.V2
ML 56.8 (RF) 60.8 54.7 59.5 69.6 (XGB) 69.3 66.1 69.5 63.3 (RF) 65.5 61.9 65.6
FC 55.1 58.4 51.8 56.5 68.8 60.9 77.1 73.6 60.7 90.8 28.9 57.3

Offline features
VGG19
ML 61.1 (XGB) 67.3 54.2 65.5 71.2 (XGB) 73.7 66.5 74.2 68.1 (MLP) 69.2 64.3 70.2
FC 66.3 77.2 53.8 65.3 70.4 73.8 66.6 71.4 67.6 69.3 65.3 69.3
ResNet50
ML 61.2 (XGB) 67.3 54.8 64.4 70.6 (XGB) 73.3 68.0 74.9 74.4 (XGB) 75.7 70.5 77.8
FC 59.3 57.9 60.2 62.1 65.9 88.6 41.1 62.9 58.9 82.9 32.1 57.9
Inc.V3
ML 56.4 (XGB) 74.2 54.4 61.1 75.4 (XGB) 80.3 69.5 76.2 68.6 (RF) 80.3 51.7 66.5
FC 60.3 62.4 50.8 61.8 71.1 88.6 51.2 67.2 67.3 72.7 61.5 68.0
Inc.Res.V2
ML 59.6 (XGB) 63.3 55.6 66.4 75.7 (XGB) 78.5 72.8 78.6 68.4 (MLP) 73 62.8 71.5
FC 62.6 77.2 46.1 61.8 67.7 92.1 41.1 63.7 67.2 75 58.9 67.3

Handcrafted features
ML 65.8 (RF) 67.6 63.8 64.2 74.7 (RF) 78.8 70.8 72.2 69.2 (RF) 69.1 69.4 69.0

Table 4.13: Performance comparison on all the feature sets considered.

To have a better understanding of the performance achieved by the offline images, Figure 4.13 (a)

compares the results of FC and ML classifiers, while Figure 4.13 (b) compares the results from the point

of view of CNNs. In the first case, the plot shows the average accuracy of every task over the CNNs. The

second case shows the average accuracy over the classifiers for every task. The first illustrates how, for

two tasks out of three, the ML algorithms outperformed the FC classifier, confirming the effectiveness of

the ML in characterizing the handwriting of people affected by AD. The second shows a great variability

of the CNNs’ performance, and no CNN outperformed the others on all three tasks. However, these plots

also confirmed that the best performance came from the second task.

(a) Classifiers (b) CNNs

Figure 4.13: Average accuracy achieved by the classifiers (a) and the CNNs (b) using offline images.
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To further compare the effectiveness of the three types of features extracted, Figure 4.14 plots for

each CNN the average accuracy reached by the ML algorithms. Looking at the figure, it is worth noting

that the HC features, in most cases, outperformed the others, while offline features always outperformed

the RGB ones, except for the first task using InceptionV3. Comparable performance is observed between

offline and HC features in Task 9 and Task 10, both of which are more intricate than Task 1. Specifically,

the sequencing of ”le” bigrams and the word ”foglio” demands a heightened motor control effort compared

to the signature, a gesture characterized by high automation. The dominance of handcrafted features in

yielding better results is unsurprising, given their extensive utilization in literature and their incorporation

of dynamic information related to the handwriting process. As mentioned earlier, the well-established

significance of these features in supporting the diagnosis of AD is recognized in the field. In contrast,

deep features are automatically extracted from the CNN and far outnumber handcrafted features.

(a) VGG19 (b) ResNet50

(c) InceptionV3 (d) InceptionResNetV2

Figure 4.14: Comparison between accuracy achieved by the ML classifiers from RGB, offline and Hand-
crafted features.

Finally, an additional experiment assessed whether combining classifier responses could enhance overall

performance. This experiment involved applying a majority vote rule, and the summarized results can

be found in Table 4.14. The table presents accuracy outcomes achieved by combining responses from

the considered classifiers using features extracted from both RGB and offline images for each task. The

first two rows depict the results of the ML approach applied to RGB and offline features, respectively.

Similarly, the third and fourth rows display the results of the FC layer of the CNNs using RGB and offline

features, respectively. Additionally, the table includes results obtained by combining responses across all

tasks. It is worth noting that the best-combined results were obtained using offline features. While the

results are interesting, the observed performance improvement is generally modest. This outcome is likely

attributed to the limited number of classifier responses available for combination and the simplicity of the

combining rule. Notably, the most favourable outcome was achieved by combining ML classifier responses

for offline features, resulting in an accuracy of 75.94%. It is noteworthy that combining responses for all
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tasks consistently yields lower results than combining responses for only task 9. This discrepancy is due

to the higher accuracy typically obtained for task 9 compared to the other tasks.

Table 4.14: Combining results.

Task 1 Task 9 Task 10 All Tasks
ML RGB 59.05 70.25 67.46 69.35

OFF 61.89 75.94 72.79 74.23
FC RGB 60 72.34 69.5 68.02

OFF 66.66 74.63 68.7 73.33

The analysis of the experimental results, focusing on three tasks within the aforementioned protocol,

indicates a substantial performance improvement thanks to offline images compared to features extracted

from RGB synthetic images. Moreover, the performance appears comparable to that achieved using

dynamic features alone.

4.5 Exploiting Lognormal Features to Support the Diagnosis of
AD through Handwriting Analysis

The subsequent sections delineate a system to facilitate the diagnosis of AD by analysing handwrit-

ing using the Sigma-Lognormal model. This model is specifically employed for characterizing complex

movements, and I utilized it to break down each handwriting task into a vector summation of basic

time-overlapping movements. This process enabled extracting a set of Sigma-Lognormal parameters

from the movements. Subsequently, based on the Lognormal parameters, I derived a set of lognormal

features, which were then assessed using ML algorithms [24]. This research aimed to assess whether

these simple lognormal features could effectively characterize individuals’ handwriting. Specifically, the

investigation aimed to determine whether ML classifiers could discern interesting patterns, distinguishing

the handwriting of a healthy control from that of an individual affected by AD.

Data

Data involved in this research refer to the first set of lognormal features computed and described in Section

3.3.2. The final step of this experiment compares the outcomes obtained from the lognormal features

with those achieved from RGB in-air on-paper images described in Section 3.2.2. Given my uncertainty

about which tasks would be best suited for analysis using lognormal features, I opted to include tasks of

various types. Six tasks were considered: joining two points with a vertical line continuously four times;

tracing a circle (d = 6cm) continuously four times; writing continuously four times, in cursive, the bigram

’le’; Copying in reverse order a simple the Italian word ”bottiglia”; writing under dictation a telephone

number and the Clock Drawing Test (CDT). The initial two tasks fall under the graphic tasks category

(tasks 3 and 4); the third and fourth tasks involve copy and reverse copy tasks (tasks 9 and 15); the

fifth task is a dictation task (task 23), and the sixth is a graphic task (task 24), assessing cognitive skills.

Figure 4.15 shows examples of RGB in-air on-paper images generated from a person executing the tasks

involved in this experiment.

Experimental Setting and Results

In this case, the experimental setting resembles the baseline depicted in Figure 4.1, with some differences:

lognormal features have been assessed with ML algorithms, while RGB in-air on-paper images were

evaluated with CNNs and the FC classifier. No combining rule was applied in this case. Concerning

images I trained three CNN models, namely VGG19, ResNet50 and InceptionV3, whose hyperparameters

are the same as expressed in Section 4.1. I evaluated lognormal features with standard machine learning

algorithms: KNN, RF, MLP, SVM, LR, GB, and XGB. Hyperparameter settings for these algorithms were

maintained at default values as provided by scikit-Learn, except for the SVM classifiers, which employed

a linear kernel, and the KNN classifier, where the number of neighbours was set to 3. As for other

experiments, to ensure statistical significance, I conducted 30 runs for each ML classifier. Performance

evaluation of the models considered metrics such as accuracy, Sensitivity, Specificity, Precision, False

Negative Rate, and Area Under the ROC Curve. Given the 30 runs for each classifier, the aforementioned

metrics were computed for each run, and their average, along with the standard deviation, is presented
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(a) Task 3 (b) Task 4 (c) Task 9

(d) Task 15 (e) Task 23 (f) Task 24

Figure 4.15: Examples RGB in-air on-paper images generated from the execution of tasks by a participant
involved in the experiments.

in the subsequent tables. All metrics are expressed in percentages, except for the AUC, with bold values

highlighting the best performance achieved.

Examining the accuracies presented in Table 4.15, it is noteworthy that the highest performance, with

an accuracy of 74.66% (SVM), was achieved on task 9, while the lowest performance was recorded on task

3 with an accuracy of 58.24% (DT). The SVM algorithm emerged as the best-performing in most cases,

except for tasks 4 and 15, where RF yielded higher values. Conversely, the DT classifier consistently de-

livered the poorest performances across various tasks. Upon closer inspection of the table, a discernible

trend emerges: the initial two tasks exhibit inferior performances compared to the others. This trend

can be elucidated through an analysis of the tasks in question. They involve graphic elements, assess-

ing the dynamics of simple movements and the individual’s motor control without requiring significant

cognitive attention. In contrast, the subsequent tasks involve words, numbers, and the clock drawing

test, demanding cognitive attention due to semantic meanings, the inclusion of descending and ascending

traits, and the requisite for enhanced coordination, control skills, and the use of working memory. These

observations suggest that lognormal features prove more effective in tasks with semantic meaning than

in purely graphic tasks, accentuating differences between patients and healthy controls.

Accuracy
T KNN RF DT SVM LR GB XGB
3 64.3 (2.7) 63.8 (2.2) 58.2 (3.1) 66.9 (2.2) 63.9 (1.5) 61.5 (2.3) 61.3 (2.9)
4 62.7 (2.4) 63.9 (2.6) 60.8 (3,2) 59.4 (2.0) 61.3 (2.1) 63.3 (3.7) 62.0 (3.0)
9 62.7 (2.0) 72.9 (2.2) 67.0 (2.7) 74.6 (1.5) 74.2 (1.5) 69.7 (2.7) 71.2 (2.4)
15 64.6 (2.6) 72.0 (2.0) 62.1 (3.5) 68.7 (1.8) 70.4 (1.4) 69.9 (3.5) 70.5 (2.7)
23 66.8 (2.3) 71.8 (1.8) 63.5 (2.8) 73.6 (1.9) 72.6 (1.9) 69.7 (3.2) 69.6 (2.9)
24 67.0 (2.8) 67.1 (3.0) 61.1 (3.9) 72.6 (2.8) 71.5 (2.3) 68.4 (2.9) 70.1 (3.0)

Table 4.15: Average Accuracy achieved on 30 runs for every ML algorithm on lognormal features

Table 4.16 displays the sensitivity values derived from the experimental process. Sensitivity is a crucial

metric in medical contexts, offering insights into accurately recognising patients. The highest sensitivity

score, 77.47%, is given by RF in task 15, while the lowest, 59.29%, is observed with DT in task 3. This

table shows that RF and LR classifiers demonstrate good sensitivity values. However, it is essential to

note that superior sensitivity does not necessarily equate to the overall best classifiers, as SVM emerges

as the top performer in accuracy. Despite SVM’s supremacy in accuracy, this table highlights that other

classifiers exhibit a greater ability to identify patients correctly.
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Sensitivity
T KNN RF DT SVM LR GB XGB
3 67.2 (2.6) 64.3 (3.0) 59.2 (4.2) 64.5 (2.7) 67.3 (2.1) 62.6 (2.5) 62.5 (3.1)
4 66.6 (3.5) 72.0 (3.9) 63.5 (4.2) 62.5 (3.5) 64.5 (3.2) 70.5 (4.3) 67.9 (3.6)
9 63.5 (2.0) 68.0 (3.7) 66.3 (4.1) 67.3 (1.8) 70.1 (2.0) 66.3 (4.2) 68.6 (3.5)
15 67.7 (3.0) 77.4 (2.1) 66.1 (5.4) 68.8 (3.0) 73.4 (2.7) 75.5 (3.5) 75.9 (3.1)
23 62.4 (3.1) 70.1 (3.0) 62.3 (4.1) 68.6 (2.8) 68.5 (2.1) 67.6 (4.2) 68.2 (4.3)
24 70.5 (3.5) 69.6 (4.6) 62.0 (6.2) 75.1 (3.4) 75.2 (3.6) 71.1 (4.8) 72.5 (5.3)

Table 4.16: Average Sensitivity achieved on 30 runs for every ML algorithm on lognormal features

Table 4.17 illustrates the specificity values obtained in the study. The optimum specificity measure,

82.03%, is reached by SVM for task 9, while the lowest result, 54.06%, is observed with RF in task 4.

This measure is closely tied to sensitivity, providing insights into the accurate classification of healthy

control participants. Despite SVM being identified as the top classifier based on accuracy, it did not

obtain the highest sensitivity values. Consequently, the specificity table reveals elevated values of this

metric for the SVM classifier. This implies that while SVM stands out as the best classifier in terms of

accuracy, considering sensitivity and specificity considerations suggests its superior ability to recognize

healthy controls rather than patients among our study participants.

Specificity
T KNN RF DT SVM LR GB XGB
3 61.1 (4.5) 63.2 (4.8) 57.1 (5.9) 69.5 (3.5) 60.3 (2.7) 60.4 (4.3) 59.9 (5.0)
4 58.0 (3.1) 54.0 (3.0) 57.4 (4.2) 55.6 (3.4) 57.3 (2.4) 54.3 (4.7) 54.8 (4.8)
9 61.9 (3.6) 77.8 (2.0) 67.6 (5.5) 82.0 (2.6) 78.4 (2.0) 73.0 (3.2) 73.8 (3.3)
15 60.7 (4.0) 65.0 (3.9) 56.9 (6.4) 68.5 (2.5) 66.5 (2.4) 62.8 (5.1) 63.8 (5.0)
23 71.3 (2.6) 73.4 (2.7) 64.8 (4.7) 78.7 (2.9) 76.9 (3.1) 71.8 (3.5) 71.0 (3.9)
24 63.1 (3.6) 64.0 (4.0) 60.1 (5.0) 69.8 (4.7) 67.1 (3.7) 65.4 (4.7) 67.3 (3.7)

Table 4.17: Average Specificity achieved on 30 runs for every ML algorithm on lognormal features

In Table 4.18, it is evident that the highest precision value, 80.36%, is given by SVM in task 9, while

the lowest precision, 59.89%, is observed with DT in task 3. Despite SVM not being the superior classifier

in recognizing patients according to sensitivity, this table underscores its precision as the most notable

among the classifiers in recognising patients.

Precision
T KNN RF DT SVM LR GB XGB
3 65.3 (3.0) 65.7 (2.8) 59.8 (3.4) 69.7 (2.7) 64.9 (1.7) 63.2 (2.7) 62.9 (3.1)
4 66.3 (2.6) 66.2 (2.4) 65.0 (3.3) 63.8 (2.0) 65.2 (2.0) 65.9 (3.3) 65.4 (3.0)
9 63.2 (2.3) 76.4 (1.9) 68.5 (3.3) 80.3 (2.5) 77.6 (2.0) 72.1 (2.8) 73.6 (3.0)
15 69.2 (2.6) 74.4 (2.5) 66.7 (3.7) 74.5 (2.0) 74.3 (1.7) 72.8 (3.5) 73.2 (2.8)
23 69.6 (2.7) 73.8 (2.3) 64.8 (3.8) 77.3 (2.8) 76.0 (2.9) 71.6 (3.6) 71.1 (3.0)
24 69.0 (3.1) 69.6 (3.1) 64.3 (3.9) 74.6 (3.1) 72.8 (2.6) 71.1 (2.9) 72.3 (2.7)

Table 4.18: Average Precision achieved on 30 runs for every ML algorithm on lognormal features

Table 4.19 presents the FNR values computed during the experimental phase. It is evident that the

best value, 22.52%, is achieved by RF in task 15, while the worst, 40.71%, is observed with DT in task

3. FNR is closely tied to Sensitivity, as they are complementary metrics. FNR represents the amount

of erroneously classified patients, and the lowest, the better. In the medical domain, this information

is pivotal because misclassifying a patient is a more critical issue than an error involving a healthy

individual.

Table 4.20 presents the AUC values. AUC quantifies the area under the ROC curve, depicting the

diagnostic ability of a binary classifier as the discrimination threshold varies, with a higher value indicating

superior performance. The table indicates that LR obtained the highest result (0.83) on the ninth task,

while DT recorded the lowest outcome on the third task (0.58).

To assess the efficacy of the computed lognormal features, I compared the results presented in the

aforementioned tables and outcomes obtained from deep neural networks trained on synthetic RGB

images containing both in-air and on-paper traits. Table 4.21 showcases the accuracy performances of
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FNR
T KNN RF DT SVM LR GB XGB
3 32.7 (2.7) 35.6 (3.0) 40.7 (4.2) 35.4 (2.7) 32.6 (2.1) 37.3 (2.5) 37.4 (3.1)
4 33.3 (3.5) 27.9 (3.9) 36.4 (4.2) 37.4 (3.5) 35.4 (3.2) 29.4 (4.3) 32.0 (3.6)
9 36.4 (2.0) 31.9 (3.7) 33.6 (4.1) 32.6 (1.8) 29.8 (2.0) 33.6 (4.2) 31.3 (3.5)
15 32.2 (3.0) 22.5 (2.1) 33.8 (5.4) 31.1 (3.0) 26.5 (2.7) 24.4 (3.7) 24.0 (3.1)
23 37.5 (3.1) 29.8 (3.0) 37.6 (4.1) 31.3 (2.1) 31.4 (2.1) 32.3 (4.2) 31.7 (4.3)
24 29.4 (3.5) 30.3 (4.6) 37.9 (6.2) 24.8 (3.4) 24.7 (3.6) 28.8 (4.8) 27.4 (5.3)

Table 4.19: Average FNR achieved on 30 runs for every ML algorithm on lognormal features

AUC
T KNN RF DT SVM LR GB XGB
3 0.66 (0.02) 0.70 (0.01) 0.58 (0.03) 0.72 (0.02) 0.71 (0.01) 0.66 (0.02) 0.67 (0.02)
4 0.65 (0.02) 0.68 (0.02) 0.60 (0.03) 0.63 (0.04) 0.65 (0.02) 0.67 (0.03) 0.66 (0.03)
9 0.69 (0.01) 0.82 (0.01) 0.66 (0.02) 0.82 (0.01) 0.83 (0.01) 0.79 (0.02) 0.78 (0.02)
15 0.68 (0.02) 0.78 (0.01) 0.61 (0.03) 0.78 (0.01) 0.79 (0.01) 0.76 (0.02) 0.77 (0.02)
23 0.69 (0.01) 0.78 (0.01) 0.63 (0.02) 0.77 (0.01) 0.76 (0.01) 0.75 (0.02) 0.75 (0.02)
24 0.68 (0.02) 0.72 (0.03) 0.74 (0.02) 0.76 (0.02) 0.75 (0.02) 0.73 (0.03) 0.74 (0.02)

Table 4.20: Average AUC achieved on 30 runs for every ML algorithm on lognormal features

the two approaches. In most instances, ML, thus lognormal features, outperformed DL, thus RGB images,

particularly with the SVM classifier. DL approaches on images only outperformed the ML approaches

on features in the fourth task with the VGG19 network. For a comprehensive comparison, ROC curves

for each task were plotted in Figure 4.16 for the classification algorithms/nets that outperformed others

in at least one task, specifically LR and SVM among the ML classifiers and VGG19 among the CNNs,

referring to Table 4.21.

ML Deep
T KNN RF DT SVM LR GB XGB VGG19 ResNet50 Inc.V3
3 64.34 63.83 58.24 66.92 63.98 61.56 61.33 61.62 62.64 62.20
4 62.77 63.97 60.83 59.47 61.31 63.30 62.05 72.19 65.90 71.25
9 62.79 72.97 67.01 74.66 74.25 69.73 71.27 66.83 62.09 70.81
15 64.67 72.03 62.11 68.72 70.43 69.97 70.59 66.82 58.62 63.97
23 66.87 71.80 63.58 73.69 72.68 69.70 69.63 66.01 62.43 70.37
24 67.09 67.10 61.14 72.66 71.50 68.45 70.10 66.48 64.07 65.39

Table 4.21: Comparison results.

These diverse evaluation sources show that the deep approach (utilizing RGB images) surpassed the

lognormal-based approach in tasks involving graphic elements (Tasks 3 and 4). Conversely, lognormal

features demonstrated their effectiveness in addressing handwriting and cognitive tasks, as evidenced by

their superior performance in the remaining tasks.

4.6 A Machine Learning Approach to Analyze the Effects of AD
on Handwriting through Lognormal Features

This study aims to create a classification system for AD diagnosis by utilizing handwriting features

extracted using the Sigma-Lognormal model [29]. I conducted a thorough analysis of the results to

understand the quality of the extracted features and the relationships between these characteristics and

the personal information of the examined people. Features involved in this study are described in Section

3.3.2 and represent an expansion of the feature set previously examined. The effectiveness of these

features is evaluated through a series of ML experiments, as outlined in the subsequent sections, and the

obtained results are discussed.
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(a) Task 3 (b) Task 4

(c) Task 9 (d) Task 15

(e) Task 23 (f) Task 24

Figure 4.16: Comparison of ROC curves obtained from RF, SVM and VGG19 for every task.
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Figure 4.17: Workflow Representation.

Data

The data exploited in this study refer to the lognormal set of features described in Section 3.3.2. This

research aims to identify the system’s optimal task performance and evaluate the sigma-lognormal model’s

suitability and the extracted features for the specific problem. To achieve this, the proposed experimental

setting was employed for every of the 25 tasks of the protocol. The feature computation process produced

a collection of features for each task, resulting in individual datasets. In one of the developed experiments

I compared the performance achieved on these features with those achieved on handcrafted static and

dynamic features, described in Section 3.3.1

Experimental Settings

The workflow employed is detached from the baseline architecture and can be more comprehensively

elucidated by considering a three-step approach, as discussed in the following section and depicted in

Figure 4.17.

The first step of the workflow is devoted to ML classification. In this case, I opted for seven widely

recognized classification algorithms to classify each task dataset: XGB, RF, DT, SVM, MLP, KNN and

LR. Before initiating training, I employed a pipeline consisting of three ML techniques to enhance the

discriminative capability of the system:

• Feature scaling;

• Grid search;

• Feature Selection: Recursive Feature Elimination (RFE)/SelectKBest

Following the grid search in the initial step of the experimental phase, I implemented a feature selection

procedure, enabling the classifier to focus on the most crucial features by eliminating redundant or less

informative ones. RFE was chosen as the algorithm for most classifiers, except MLP and KNN, for which

SelectKBest was utilized.
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Once each algorithm’s optimal set of hyperparameters and features was determined, I performed the

training. Specifically, the dataset was randomly partitioned into training and testing sets, allocating 50%

of the total samples to each set while maintaining a balance between the two classes: healthy controls

and patients. Thirty random runs were executed to ensure reliability and robust performance estimates,

and the final results were averaged across these runs. A final comparison was performed with results

obtained from handcrafted features (Section 3.3.1. Dynamic features encompass handwriting character-

istics such as Start time, Duration, Vertical dimension, Horizontal dimension, Vertical speed peak, Peak

of vertical acceleration, Relative initial inclination, Jerk, Pen pressure, etc. Each task performed by each

subject generates a feature vector. Notably, these dynamic features were included in this study solely for

comparison purposes.

The second phase of the proposed approach involved a stacking technique, a form of ensemble stacking or

stacked generalization in ML. This approach combines predictions from multiple models or base learners

to generate a more potent and accurate final prediction. By training diverse models on the same dataset

and utilizing a ”meta-learner” to learn from their predictions, stacking aims to enhance predictive power

and system robustness. The output predictions provided by the classifiers in the first step were utilized.

Specifically, the responses obtained for all tasks were merged to form a new feature vector for each sample

(person). The final score was determined by averaging the stacking results over the 30 runs.

The third and final step of the proposed experimental approach involved utilizing the outcomes from the

initial step outlined above to implement a combining technique based on a ranking. First, I employed a

ranking technique for each classifier, ordering the tasks based on their relevance measured by the accuracy

metric. Accuracy was chosen for its effectiveness in assessing classifier performance, resulting in a list

of tasks sorted in ascending order concerning this metric. Subsequently, I implemented a combination

rule known as the majority vote. This rule, applied in problems with multiple classifiers, relies on the

majority opinion to determine the final prediction. Each classifier’s prediction is considered a vote, and

the class with the most votes is selected as the ultimate prediction. This process involved combining

predictions for different sets of tasks, run by run, and the average accuracy was computed over the thirty

runs. The list of tasks generated by the ranking process was used to select significant subsets of tasks to

apply the majority vote.

Experimental Results

Table 4.22 presents the outcomes derived from the first experimental step, showcasing the average ac-

curacy (in percentage values) for each task and classifier across 30 runs. Notably, the best-performing

classifier for each task is highlighted in bold. Average accuracies range from a minimum of 58.31%,

achieved by KNN in the first task, to a maximum of 78.41% obtained by RF for task 23. Specifically,

RF demonstrated superior performance compared to other classifiers in seven of the 25 tasks, while KNN

never achieved the top result. Regardless of the classifier type, the table indicates that the 1st task

yielded the worst performance, whereas the 23rd task yielded the highest. Notably, the 1st task involved

the execution of a signature, while the 23rd task required writing a telephone number dictated to the

participant.

Accuracy
T XGB RF DT SVM MLP KNN LR
1 67.6 66.3 60.3 62.7 60.1 58.3 65.0
2 65.3 66.3 60.0 68.6 65.5 61.7 65.1
3 66.9 68.1 64.8 68.5 63.8 62.0 67.6
4 65.0 66.3 58.4 66.4 66.6 62.6 67.7
5 67.2 69.0 62.0 66.8 65.0 61.5 69.9
6 70.6 75.0 67.4 75.6 61.8 64.1 75.0
7 70.5 68.61 68.6 73.7 69.8 66.3 71.4
8 68.3 68.6 65.2 69.1 68.2 64.5 65.6
9 76.5 77.3 70.0 74.6 67.1 74.4 76.0
10 71.2 69.5 62.8 68.9 63.5 65.0 70.2
11 69.0 69.3 63.3 65.5 68.0 64.7 70.1
12 68.3 68.6 62.4 66.1 64.9 60.5 70.6
13 67.3 62.6 58.7 63.7 67.1 62.8 66.7

Accuracy
T XGB RF DT SVM MLP KNN LR
14 68.3 67.4 61.6 66.2 64.9 65.0 66.7
15 71.0 72.5 67.6 73.2 73.0 69.3 73.3
16 65.8 64.2 59.2 67.4 63.0 61.4 67.4
17 74.6 75.7 71.3 71.8 70.9 65.6 75.0
18 64.5 68.4 62.2 67.2 64.9 62.9 67.7
19 65.0 66.4 61.9 66.2 59.4 66.0 65.1
20 66.2 66.8 64.7 67.6 66.1 66.5 69.9
21 66.3 67.2 58.7 63.8 59.0 61.8 67.0
22 72.9 72.3 68.3 71.6 68.6 66.7 68.8
23 77.4 78.4 70.7 78.3 66.7 75.0 78.0
24 76.4 73.9 65.9 65.3 68.0 62.3 67.5
25 72.8 74.6 63.2 73.1 68.8 68.1 71.3

Table 4.22: Average Accuracy achieved on 30 runs for every ML algorithm on lognormal features
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Since task 23 achieved the highest accuracy, this experiment’s further analysis was performed by

computing additional evaluation metrics, including precision, sensitivity, specificity, False Negative Rate,

F1 score and Area Under the Curve. In Table 4.23, the first column identifies the classifier used for the

23rd task, while the subsequent columns present the metric values averaged over 30 runs. All metrics

are expressed as percentage values except for AUC, which ranges from 0 to 1. The best metric value

in each column is highlighted in bold. This table reveals that RF emerged as the top classifier for this

task, excelling in accuracy and other metrics, except for precision and specificity. The latter two metrics

indicate that RF may not be the optimal classifier for correctly classifying healthy controls. However, in

the medical context, prioritizing accurately identifying individuals affected by the illness is crucial, given

the more significant consequences of a false prediction. The FNR stands at 22.07%, representing the

lowest value among all classifiers, indicating that RF was the best in recognizing patients. Figure 4.18

shows a bar plot of evaluation metrics averaged over 30 runs for every ML classifier tested with the 23rd

task.

CLS ACC PRE SEN SPE FNR F1S AUC
XGB 77.43 77.67 77.03 77.88 22.97 77.18 0.83
RF 78.41 78.72 77.93 78.89 22.07 78.14 0.85
DT 70.78 78.77 58.16 83.25 41.84 65.21 0.70
SVM 78.39 81.53 73.51 83.23 26.49 77.06 0.84
MLP 66.72 90.23 36.38 96.73 63.62 49.67 0.81
KNN 75.06 77.04 71.57 78.54 28.43 74.01 0.80
LR 78.02 79.88 75.37 80.69 24.63 77.24 0.84

Table 4.23: Average results achieved on 30 runs for every ML algorithm on lognormal features, extracted
from the execution of task 23, i.e. the one that reached the best performance according to Table 4.22

Figure 4.18: Averaged evaluation metrics achieved on 30 runs for every ML algorithm on lognormal
features, extracted from the execution of task 23.

Table 4.24 compares the results obtained for each task using handcrafted features (dynamic) and

those obtained with the lognormal features computed for this study. The accuracy percentage values

in the table are computed by averaging this metric over 30 runs, displaying only the results of the best

classifier, with the top performance for each task highlighted in bold. Overall, employing our proposed

lognormal features for classification consistently led to better results in most cases, as the bar plot in

Figure 4.19 shows at a glance.

The second step of the experimental workflow involved using a stacking approach. Stacking is widely

used in ML, particularly when working with multiple classifiers. This is because it can potentially
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DYN. FEAT. LOG. FEAT.
T CLS ACC CLS ACC
1 XGB 64.5 XGB 67.6
2 XGB 63.0 SVM 68.6
3 XGB 57.3 SVM 68.5
4 XGB 59.2 LR 67.7
5 DT 69.0 LR 69.9
6 XGB 57.4 SVM 75.6
7 DT 58.4 SVM 73.7
8 DT 61.7 SVM 69.1
9 XGB 64.5 RF 77.3
10 XGB 61.6 XGB 71.2
11 XGB 66.4 LR 70.1
12 XGB 67.2 LR 70.6
13 XGB 68.3 XGB 67.3

DYN. FEAT. LOG. FEAT.
T CLS ACC CLS ACC
14 XGB 64.1 XGB 68.3
15 XGB 64.3 LR 73.3
16 XGB 67.0 SVM 67.4
17 XGB 69.3 RF 75.7
18 XGB 68.9 RF 68.4
19 XGB 68.3 RF 66.4
20 XGB 66.1 LR 69.9
21 DT 55.1 RF 67.2
22 RF 70.0 XGB 72.9
23 XGB 72.3 RF 78.4
24 XGB 56.0 XGB 76.4
25 DT 59.8 RF 74.6

Table 4.24: Comparison between average Accuracy achieved on 30 runs for every task with the best-
performing ML algorithm for Dynamic and Lognormal features

Figure 4.19: Comparison between average Accuracy achieved on 30 runs for every task with the best-
performing ML algorithm for Dynamic and Lognormal features.
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enhance overall predictive performance compared to utilizing individual models in isolation. The meta-

model in stacking can effectively learn to capitalize on various base models’ strengths while mitigating

their weaknesses. Table 4.25 presents the evaluation of each classifier based on various metrics. These

parameters enable a more comprehensive analysis of a classifier’s performance. Notably, stacking didn’t

consistently outperform the average accuracy obtained from the initial classification step for all tasks.

Examining all parameters, the best outcome is achieved by applying stacking to the results obtained from

XGB as the initial classifier, yielding a final stacking accuracy of 76.29%.

1st CLS ACC PRE SEN SPE FNR F1S AUC
XGB 76.29 77.99 76.09 76.52 23.91 76.32 0.84
RF 75.15 76.78 74.55 75.75 25.45 75.31 0.83
DT 70.98 73.89 68.85 73.39 31.15 70.2 0.78
SVM 75.38 78.45 72.24 78.7 27.76 74.91 0.83
MLP 69.41 70.78 69.86 69.00 30.14 69.63 0.76
KNN 71.75 74.79 69.1 74.58 30.9 71.16 0.77
LR 75.68 76.78 76.02 75.3 23.98 75.81 0.83

Table 4.25: Stacking results averaged over thirty runs with XGB classifiers, with the output of first-step
classifiers

The third phase of the experimental process involved the implementation of two well-established

techniques in machine learning: ranking and majority vote. Table 4.26 presents the ranked lists of tasks

based on their accuracy for each classifier. Upon inspection of the table, it becomes evident that certain

tasks consistently appear in top positions, irrespective of the algorithm used. Specifically, task number

23 is positioned the first five times across seven algorithms, task 9 ranks within the top three positions

for six algorithms, and task 17 secures a place within the top four positions for five algorithms. Tasks 6,

7, 15, 22, and 24 also exhibit notable relevance. The 23rd task involves writing a phone number under

dictation, the 9th requires continuous writing of the bigram ’le’ four times, and the 17th involves writing

six words in defined boxes, each with varying levels of complexity. As for the other relevant tasks, the

6th entails writing ’l, m, p’; the 7th involves ’n, l, o, g’ in designated spaces; the 15th is a reverse copy of

’bottiglia’; the 22nd involves the direct copy of a phone number, while the 24th is the clock drawing test.

Table 4.27 demonstrates the performance of the majority vote for different sets of tasks, considering

the first n tasks from the ranking lists. The initial column, labelled ”T set,” denotes the number of tasks

considered for each set, ranging from a minimum of three to a maximum of 25 (i.e., all tasks). Beyond

the fifth set, involving 11 tasks, the accuracy of the majority vote decreases. The highest majority vote

accuracy, reaching 82.5%, is obtained by combining predictions given by XGB from the first three tasks

of the ranked list.

Considering the intermediate stages of the experimental process, many observations can be derived

from the results. After the grid search, a feature selection was performed in the first step. While different

sets of features were selected for each classifier and task, common patterns were observed, leading to

some notable observations. Certain personal features like age, profession, and education were consistently

selected for nearly every task. In the realm of temporal features, f1, f4, f3, f7, and f9 were frequently

chosen, while among geometric features, f62, f47, f26, f28, f61, f60, f49, and f64 were prominent selections.

As for Signal-to-Noise Ratio (SNR) features, f19, f20, f22, and f23 were frequently chosen. Notably, these

features were selected in at least ten tasks out of 25 by the classifier that achieved the best result, XGB.

The selection of temporal features aligns with some general assumptions, indicating that individuals

with impairments generally take more time to complete a handwriting task, resulting in more lognormal

functions in the velocity profile and segments in the trace acquisition. Among features related to SNR

and geometric shapes, the emphasis lies on those describing the variation of a measure sequence. Partic-

ularly, relating SNR or geometric features to temporal ones contributes to creating more robust features,

enhancing the differentiation between the two classes I aim to distinguish. To better comprehend the

significance of each feature for the examined problem, we employed a parametric statistical test, the

t-test. This test evaluated whether the difference between the means of the two groups was statistically

significant. The test yielded a p-value for each characteristic, indicating the strength of evidence against

the null hypothesis. A significance level 0.05 was used as the threshold, below which the null hypothesis

was rejected. In the examined case, all the aforementioned features reported a p-value smaller than the

threshold, proving that these features significantly distinguish between the two classes. This discussion

highlighted valuable features extracted during the initial step. However, further refinement is necessary
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XGB RF DT SVM MLP KNN LR
T23 T23 T17 T23 T15 T23 T23
T09 T09 T23 T06 T17 T09 T09
T24 T17 T09 T09 T07 T15 T06
T17 T06 T07 T07 T25 T25 T17
T22 T25 T22 T15 T22 T22 T15
T25 T24 T15 T25 T08 T20 T07
T10 T15 T06 T17 T24 T07 T25
T15 T22 T24 T22 T11 T19 T12
T06 T10 T08 T08 T13 T17 T10
T07 T11 T03 T10 T09 T14 T11
T11 T05 T20 T02 T23 T10 T20
T12 T12 T11 T03 T04 T11 T05
T08 T08 T25 T20 T20 T08 T22
T14 T07 T10 T16 T02 T06 T18
T01 T18 T12 T18 T05 T18 T04
T13 T03 T18 T05 T14 T13 T03
T05 T14 T05 T04 T18 T04 T24
T03 T21 T19 T19 T12 T24 T16
T21 T20 T14 T14 T03 T03 T21
T20 T19 T01 T12 T10 T21 T13
T16 T02 T02 T11 T16 T02 T14
T02 T01 T16 T24 T06 T05 T08
T19 T04 T13 T21 T01 T16 T19
T04 T16 T21 T13 T19 T12 T02
T18 T13 T04 T01 T21 T01 T01

Table 4.26: Tasks ranking for each ML Classifier

T set XGB RF DT SVM MLP KNN LR
3 82.5 79.23 76.16 81.22 76.32 77.40 79.35
5 79.81 80.35 76.10 81.88 75.37 75.21 79.95
7 79.46 81.17 77.30 80.26 74.53 75.06 79.72
9 79.67 80.10 77.75 79.99 74.37 74.99 78.10
11 78.82 79.70 77.58 80.32 75.54 74.84 78.02
13 77.94 78.35 77.14 78.64 75.06 74.33 77.67
15 77.86 78.08 76.80 77.76 73.60 72.66 76.42
17 77.60 77.24 76.92 77.20 72.43 72.71 76.69
19 77.19 77.75 76.37 76.83 72.23 72.37 76.36
21 76.74 77.34 75.42 77.24 72.51 72.58 75.56
23 76.54 77.07 75.53 77.49 71.73 72.04 74.58

ALL 76.39 76.64 75.19 76.99 71.93 71.76 74.04

Table 4.27: Majority vote to a different set of ranked tasks.
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for a classification system, particularly in the medical domain. To better understand the observed be-

haviour, I comprehensively analysed our features. First, I examined the individuals’ distribution in the

dataset based on personal features. It is important to note that, from this point onward, I will refer to

educational level as the number of years of school attended by an individual. Given that the dataset

encompasses individuals aged between 44 and 88 years with educational levels ranging from 2 to 21 years

of school, I investigated whether these personal features could significantly influence handwriting tasks.

Table 4.28 illustrates the distribution of individuals in the dataset according to age and education (school

years), with these characteristics categorized into two ranges.

Education level Distribution
School years Total HC PT

[2, 11] 70 22 48
[12, 21] 104 63 41

Age Distribution
Age intervals Total HC PT

[44, 66] 69 50 19
[67, 88] 105 35 70

Table 4.28: Distribution of people according to Education level and Age.

Box plots in Figure 4.20 depict how the contact time feature varies with age, school years, and the

presence or absence of AD. These plots refer to the 23rd task, which outperformed others according to

Table 4.26. The figures facilitate the comparison of feature distribution between the two education ranges

for a specific group. The x-axis represents the education range, the y-axis depicts the contact time feature

in seconds, and each plot corresponds to a particular group (All, HC, PT) within a specific age range

[44, 66] and [67, 88]. The following trends emerge from this analysis:

• Younger individuals are faster; those with fewer years of school take more time, with an increased

deviation (Figure 4.20 (a) and (b)).

• There is no variation among healthy individuals in the first age range, regardless of education

(Figure 4.20 (c)).

• Older healthy controls take longer than younger healthy controls, particularly if they have a lower

education level. Education years appear to be significant for elderly individuals (Figure 4.20 (c)

and (d)).

• The feature shows minimal change for impaired individuals in the first age range, irrespective of

education (Figure 4.20 (e)).

• Elderly patients exhibit significantly different behaviours based on their education. Impaired elderly

individuals take more time for handwriting tasks with fewer years of school (Figure 4.20 (f)).

These trends extend to other features, especially geometric ones related to contact time and the number

of lognormals. This study reveals that a younger patient with Alzheimer’s may perform a task similarly

or even better than an older healthy person with fewer years of education. These findings offer insights

into the outcomes obtained in the first step, highlighting a notable difference between young, healthy

controls (c) and older patients (f). The difference diminishes significantly between older healthy controls

(d) and younger patients (e) or older individuals in a higher education range (f).

There could be multiple reasons why healthy older individuals are not easily distinguished from

younger patients. Older individuals, even without Alzheimer’s, may have other impairments affecting

their skills, as it is known that abilities deteriorate with age. Regarding younger patients, their per-

formance depends on the disease stage, and they may be more used to compensate for its effects than

older individuals who experience a loss of control. It would be intriguing to determine the disease stage

of younger patients and understand if they have developed compensation mechanisms that render them

similar to older healthy controls.

4.7 Complementary Results

This section describes further examinations involving images presented in Section 3.2 and approaches

similar to those employed in the previously detailed works.
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(a) All, first age range (b) All, second age range

(c) HC, first age range (d) HC, second age range

(e) PT, first age range (f) PT, second age range

Figure 4.20: Box plots showing how the contact time feature is related to age and education. The first
age range is from 44 to 66 years old, while the second is from 67 to 88 years old.

68



4.7 Complementary Results

4.7.1 Comparison between Deep results achieved from Binary, RGB and
Offline Images on Graphic Tasks

This experiment compares the results obtained by CNNs when employed in the classification through

Binary, RGB on paper and Offline images concerning graphic tasks. The CNN models were the same as

described in Section 4.1, so VGG19, ResNet50, InceptionV3 and InceptionResNetV2, without changing

their hyperparameters setting. These models were pre-trained on Imagenet and trained on the target

dataset by applying a 5-fold cross-validation strategy, and every model had the same FC classifier. Figure

4.21 illustrates the simple workflow implemented.

Figure 4.21: Experimental setting.

Table 4.29 shows the results expressed in accuracy (%) for every approach to ease the comparison.

InceptionV3 achieves the best result on task 21 with offline images, which reported an accuracy of 74.4%.

Moreover, it shows that offline outperforms the other approaches most of the time and that binary never

exceeds the others.

Task 2 Task 3 Task 4 Task 5 Task 21 Task 24
Model BIN RGB OFF BIN RGB OFF BIN RGB OFF BIN RGB OFF BIN RGB OFF BIN RGB OFF
VGG19 50.1 64.1 64.6 48.1 59.0 65.4 42.6 70.7 67.2 50.6 64.7 69.6 61.2 64.8 61.7 66.2 70.4 69.8
Res.50 45.2 61.1 68.2 50.9 53.5 67.6 47.2 68.8 68.7 47.0 64.4 71.3 59.3 64.3 65.4 65.6 66.8 64.3
Inc.V3 52.4 64.2 68.7 51.9 57.1 65.5 44.4 68.0 65.4 45.2 65.7 70.3 57.5 58.8 74.4 56.2 62.4 60.8
Inc.V2 49.1 60.0 72.4 48.2 62.7 68.1 46.8 68.0 63.0 49.6 65.3 68.3 56.2 62.0 66.7 53.1 55.3 65.8

Table 4.29: Comparison among the evaluated deep approaches, considering binary, RGB and Offline
images.

After the classification, I obtained predictions for each individual and task. To consolidate them, I

employed a majority vote rule. Since there are six graphic tasks, an even number, I addressed instances

of ties as cases to discard. Table 4.30 presents accuracy evaluated solely on non-tie cases and the rejection

rate, indicating the percentage of cases where ties occurred. As expected, the best result was given by

using offline images, particularly by the ResNet50 model, with a majority vote accuracy of 81.9% and

the lowest rejection rate of 13.2%.

VGG19 ResNet50 InceptionV3 InceptionRNV2

BIN RGB OFF BIN RGB OFF BIN RGB OFF BIN RGB OFF
MV 68.2 73.6 73.5 69.9 78.2 81.9 71.3 74.4 78.8 71.0 72.8 77.0
REJECTED % 15.4 15.4 18.0 18.2 21.1 13.2 18.2 24.0 14.4 13.1 20.0 13.2

Table 4.30: Results of applying a majority vote rule with reject.

This study further affirms that binary images containing only an approximation of the real handwritten

trace are not suitable for this study. On the contrary, if adequately exploited, RGB images can bring

interesting outcomes, as they approximate the handwritten trace and encode dynamic information in the

three colour channels. Finally, the best data type among the three analyzed seems to be offline images,

depicting exactly the real handwritten trace executed by people.
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4.7.2 Comparison between Deep results achieved from Multi-Channel Images

In this experiment, I studied the power of CNNs to extract valuable features from Multi-Channel images

for detecting people suffering from AD through handwriting. In particular, I considered all the types of

MC images generated, i.e. on paper, in air, and in air on paper. I used the same CNN models described

for the experiment in Section 4.7.1.

Figure 4.22 shows the workflow implemented, where every task dataset was used to feed convolutional

models, exploited in this case for training and testing too. Once the accuracy and the predictions were

achieved, tasks were ranked in increasing order of accuracy. The final step involved the application of the

majority vote rule on different subsets of tasks, i.e. all, the first seven and the first nine of the ranked

list.

Figure 4.22: Experimental setting.

Table 4.31 shows the results of applying the majority vote rule on all the tasks or subsets. The table

doesn’t show intermediate results but only the outcome of the last step of the workflow, referring to the

combining rule. The subsets are defined considering a list of tasks ranked in increasing order of accuracy.

In detail, I considered two subsets of the first seven and the first nine tasks of the ranked list. The

evaluation metrics reported are the accuracy and the FNR in percentage. The best results were achieved

by combining the first nine tasks of the ranked list, reporting the best accuracy of 82.1% and a good

FNR value for in-air on-paper images evaluated by InceptionV3. It is worth noting that the approach

considering in-air and on-paper traits outperformed the others.

All task 7-task 9-task
Data Model Acc FNR Acc FNR Acc FNR

On Paper

VGG19 70.6 20.2 77.0 31.0 78.1 27.0
Res.50 71.7 20.2 71.2 23.6 70.6 25.8
Inc.V3 75.1 20.2 77.0 20.2 81.0 14.6

In Air

VGG19 72.9 22.4 78.9 21.2 80.7 18.8
Res.50 70.1 15.3 73.3 13.1 76.3 14.3
Inc.V3 74.7 12.9 76.0 20.5 79.0 16.9

In Air On Paper

VGG19 76.8 30.3 77.1 34.1 78.1 28.1
Res.50 71.7 12.4 75.2 21.3 73.5 20.2
Inc.V3 75.1 9.0 81.6 20.2 82.1 18.0

Table 4.31: Accuracy and FNR results from applying the majority vote rule on all the tasks or subsets
of them.

This experiment highlighted the power of MC images, in particular the in air on paper version. It

also enhanced the improvements that can be achieved by judiciously applying a combination rule.

4.7.3 Comparison between Deep and Machine Learning results achieved from
RGB Images

In Section 3.2.2, I described three types of RGB images. The following work focus on two of them,

specifically on paper and in air on paper. In this experiment, I considered a hybrid system with deep

networks to extract features evaluated by ML algorithms. Finally, as 34 tasks were considered, a majority

vote rule with rejection was applied.

Figure 4.23 shows the experimental workflow. Four CNN models were used as feature extractors, as

described in Section 4.1. Once extracted, the features for every task were used for classification with five
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well-known ML algorithms. Before the classification, the Recursive Feature Elimination algorithm was

applied to select the most valuable features of the dataset. Moreover, ML classifiers used a grid search

technique to find the best hyperparameters. After the classification, a majority vote rule with reject was

applied to the 34 tasks and used to compare the different approaches.

Figure 4.23: Experimental setting.

Table 4.32 shows the results obtained by the experimental setting previously described. No intermedi-

ate results are shown in this context. Results are very encouraging, showing the validity of the proposed

system. In both the evaluated approaches, the best results were obtained by InceptionV3 with XGB

classifier, reporting a majority vote accuracy of 90.2% for on-paper images and an accuracy of 91.1% for

in-air on-paper images. It is worth noting that the proposed system shows very low reject rates.

Model XGB RF DT SVM MLP

On Paper

VGG19 81.4 (2.5) 81.6 (3.2) 78.1 (3.8) 73.6 (4.6) 79.3 (3.9)
Res.50 88.3 (1.9) 85.2 (2.0) 84.3 (4.3) 69.4 (1.7) 84.5 (2.9)
Inc.V3 90.2 (2.3) 89.5 (2.1) 84.4 (4.0) 77.4 (2.9) 86.1 (2.4)
Inc.V2 84.6 (2.0) 82.3 (2.3) 79.3 (4.2) 67.3 (1.6) 80.7 (3.7)

In Air On Paper

VGG19 84.0 (3.5) 83.6 (2.2) 81.2 (4.6) 76.9 (3.2) 81.4 (3.5)
Res.50 90.0 (2.4) 89.3 (1.8) 83.1 (4.9) 74.2 (2.6) 85.3 (3.5)
Inc.V3 91.1 (2.0) 90.4 (2.0) 84.2 (4.3) 86.6 (2.7) 90.1 (2.2)
Inc.V2 85.7 (2.7) 83.5 (3.1) 81.4 (4.4) 70.0 (2.3) 82.3 (2.5)

Table 4.32: Results of the majority vote rule with rejection.

This complementary experiment aimed to highlight the power of the various types of RGB images, in

particular when a combination rule is applied.
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Chapter 5

Evolutionary Algorithms

Evolutionary algorithms comprise optimization techniques inspired by the theory of biological evolution.

Their development mimics natural selection to improve solutions for complex problems iteratively. They

evolve candidate solutions over successive generations by maintaining a population of potential solutions

and applying genetic operators. These versatile algorithms have been successfully applied in various

domains, including optimization, machine learning, and neural architecture search. Their adaptive and

explorative nature makes them well-suited for solving problems with complex search spaces and unknown

or dynamic landscapes.

In my exploration of AD research, I extensively utilized evolutionary algorithms to achieve various objec-

tives. In Section 5.1, I applied a GA to optimize the prediction capabilities of a DL system, enhancing its

efficacy in supporting the diagnosis of cognitive impairment. In Section 5.2, I delved into an evolutionary

approach for Neural Architecture Search (NAS), aiming to tailor the network architecture to best suit

the dataset of handwriting samples for AD diagnosis. Lastly, in Section 5.3, I employed evolutionary

algorithms for feature selection on a dataset of handwriting features in the context of AD diagnosis using

ML.

5.1 Using Genetic Algorithms to Optimize a DL-based System
for the Prediction of Cognitive Impairments

In Chapter 4, I conducted experiments to develop a system to support the diagnosis of AD through

handwriting analysis. In particular, in Section 4.3, I made an investigation based on DL and ML tech-

niques applied on synthetic MC on paper images, described in Section 3.2.3. The generated data fed four

distinct CNNs. Evolutionary algorithms have demonstrated their efficacy as search tools in addressing

numerous real-world challenges characterized by extensive and nonlinear search spaces [27, 34, 33], and

they also found widespread application in health-related domains. In this section, I introduce a system

employing a GA to enhance the performance of the aforementioned deep architectures [26]. The aim is

to identify the optimal subset of tasks that enhances the predictive capability of the networks through

the GA. Experimental results affirm the efficacy of the proposed approach.

Experimental Setting and Results

The previously mentioned in-air on-paper MC images, acquired for each task and subject, were organized

into a dataset. In this experiment, images from every task and those belonging to the additional tasks

were considered, referring to Table 3.2, summing up to 34 tasks. To mitigate overfitting and statistically

enhance the network’s accuracy, I employed the 5-fold Cross-validation technique. Subsequently, each task

dataset fed three distinct CNN models: VGG19, ResNet50, and InceptionV3. These models, pre-trained

on the ImageNet dataset, automatically extracted features. The models shared a common classifier with

two fully connected layers specifically configured for binary classification, healthy controls and patients,

deviating from the ImageNet dataset’s thousands of classes. The classification step iterated over the 34

tasks, resulting in 34 predictions and their corresponding confidence levels for each subject after this

process. The implemented experimental setting is depicted in Figure 5.1.

The output of each CNN is a binary prediction and its corresponding confidence degree. Once obtained

the prediction, I organized two datasets:
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Figure 5.1: The layout of the proposed system. Note that in our case n = 34.

• Normal, where every sample referred to a person and consisted of a feature vector containing the

34 binary predictions;

• Weighted, where every sample referred to a person and consisted of a feature vector containing the

34 predictions weighted with the corresponding confidence degree;

The two datasets obtained were divided into two statistically independent sets: a training set (Tr)

comprising 80% of the available samples and a test set (Ts) encompassing the remaining samples. I

implemented a GA to select the optimal subset of 34 tasks for both approaches to enhance the system’s

predictive performance regarding participants’ cognitive state. The chromosomes of this algorithm were

binary vectors of 34 elements, where each value is a 0, representing the exclusion or a 1, representing the

inclusion of the task corresponding to the position of that value. The evaluation of the i− th individual,

representing the tasks subset si, consisted in the computation of its fitness, defined as a majority vote rule

applied considering only the tasks included in si. The GA implementation utilized a generational evolu-

tionary algorithm, initiating with the random generation of a population of P individuals. Subsequently,

the fitness of these individuals was assessed by computing the prediction accuracy on the training set.

After this preliminary evaluation phase, a new population is generated by selecting P/2 pairs of individ-

uals using the tournament selection method of size t. The one-point crossover operator is then applied

to each selected pair according to a given probability factor pc, followed by the mutation operator with

a probability of pm. Finally, these individuals are added to the new population. This process is iterated

over a number of Ng generations. The parameters of the GA are detailed in Table 5.1.

Parameter Symbol Value
Population size P 100
Crossover probability pc 0.6
Tournament size t 5
Elitism e 2
Mutation probability pm 0.03
Number of Generations Ng 1000

Table 5.1: The values of the parameters used for the GA.

Tr was used to evaluate the fitness of individuals generated from the GA, Ts was employed to evaluate

the best individual’s performance on unseen data. For every dataset, I performed thirty runs, and after

each run, the task subset encoded by the individual with the highest fitness was preserved as the solution

for that particular run. The results presented herein are obtained by averaging the outcomes from the

thirty best individuals stored.

I conducted three sets of experiments. First, I examined the generalization capability and task reduction

effectiveness of the GA-based system for predicting cognitive impairments. This involved plotting the

training and test accuracy of the best individual, along with the average number of selected tasks (across

the entire population) and the number of selected tasks by the best individual in the thirty runs. Figures

5.2 and 5.3 present the outcomes from the first set of experiments, illustrating the evolution of (i) average

training (blue) and test (red) accuracy of the best individual; (ii) average number of selected tasks for the

best individual (green) and the entire population (yellow), computed by averaging values from the thirty

runs. These plots reveal the impact of overfitting because although the training and the test accuracy

increase, the system exhibits superior performance on training samples compared to unseen test samples,

indicating a need for enhanced generalization ability. This trend holds across different networks and
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approaches. Notably, the best accuracy trend is observed with weighted predictions from InceptionV3,

minimizing the gap between train and test accuracy, with the test accuracy reaching 71%. However,

analyzing other trends from the plots highlights the system’s effective task-reduction capability. The

number of selected tasks, both average and best, decreases with increasing generations, with less than

half of the tasks selected. The best result is observed with weighted predictions from InceptionV3, where

the lowest number of selected tasks is 14. Additionally, it’s noteworthy that the number of selected

tasks by the best individual is consistently lower than the average. This supports the idea that a better

performance can be achieved by selecting a subset of available tasks.

(a) VGG19 (b) ResNet50 (c) InceptionV3

Figure 5.2: Evolution of accuracy and average number of selected tasks for every model of CNN, consid-
ering weighted predictions.

(a) VGG19 (b) ResNet50 (c) InceptionV3

Figure 5.3: Evolution of accuracy and average number of selected tasks for every model of CNN, consid-
ering non-weighted predictions.

In the second set, I analyzed the frequency of selected tasks to identify the most relevant ones. Figure

5.4 presents histograms from the second set of experiments, displaying the frequency of selected tasks

across the thirty runs. Each of the thirty-four tasks has a corresponding bar, indicating the number of

times it was chosen collectively across all CNNs. The first plot refers to normal predictions, while the

second refers to weighted predictions. The two plots exhibit a similar trend. It is worth noting that

some tasks, such as 1 (signature), 5 (circles), 6 (copy of letters), 22 (copy of phone number), 24 (clock

drawing test), and 33 (copy of word), are more frequently selected than others. Many of these tasks

involve graphic or copy-related activities, underscoring the effectiveness of our protocol. Graphic tasks

assess subjects’ proficiency in writing elementary traits, connecting points, and drawing figures, while

copy tasks evaluate their ability to replicate complex graphic gestures or motor planning.

The third experiment involved comparing the results of the proposed approach with those obtained

using majority-vote and weighted majority-vote rules applied to all tasks. Table 5.2 illustrates the

comparison results, demonstrating that, in most cases, the majority-vote rule applied to GA-selected

tasks surpasses the accuracy of the rule applied to the entire task set. Even if the increment of accuracy

is not so significant, it is worth noting that this experiment supported the notion that a reduced number

of tasks, depending on the selected ones, can perform similarly or even better than considering all the

tasks, reducing the computational amount of time and resources needed.

5.2 An evolutionary approach for Neural Architecture Search

DNNs have emerged as a standard tool in various applications, but despite their success, a significant

challenge lies in the absence of a universally accepted set of criteria for selecting the architecture that
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(a) Normal (b) Weighted

Figure 5.4: Comparison of the number of occurrences of the selected tasks for the three CNN between
the normal and the weighted approach.

Normal GA MV MV
VGG19 69.30 69.06
ResNet50 68.16 65.74
InceptionV3 70.62 70.16
Weighted GA MV MV
VGG19 69.04 72.92
ResNet50 63.99 69.06
InceptionV3 72.27 71.82

Table 5.2: Comparison of results obtained by applying the majority vote rule on a subset of tasks selected
by the GA or on all the tasks.

suits a specific problem. This represents a limitation as the chosen architecture and the setting of

its hyperparameters significantly influence DNNs’ performance. Typically, experts manually design these

architectures, a labour-intensive process requiring a high level of expertise due to its trial-and-error nature.

To address this challenge, NAS [148, 113] has gained attention as a technology capable of automatically

designing DNN architectures. Evolutionary Computation (EC) approaches have shown notable success

among the diverse NAS methods [83]. The following work introduces an approach based on evolutionary

computation to optimize CNNs.

Proposed Method

This research focuses on CNNs, consisting of three types of layers: Convolutional layers, Pooling layers,

and Fully Connected layers. Table 5.3 outlines each layer type’s variants and associated hyperparameters.

Due to the interconnected nature of these hyperparameters, determining the optimal set becomes a

challenging task.

NAS emerges as an advanced algorithm in cases involving many hyperparameters or architectural

optimisation. Specifically, a variant of NAS, involving an evolutionary algorithm, was chosen for this

study. The proposed solution is an evolutionary algorithm designed to optimize a network’s hyperpa-

rameters and architecture. Before employing the evolutionary algorithm, certain parameters influencing

the operation of evolutionary operators need to be set. These parameters encompass population size,

crossover and mutation probabilities, and the number of generations. The evolutionary algorithm is made

of multiple steps and is outlined as follows:

1. Generate the initial population of individuals randomly (First generation):

• Decode the chromosomes and synthesize neural networks;

• Evaluate the fitness (validation accuracy) of each individual (net) in the population. Each net

undergoes training, and the validation accuracy is assessed.

2. Repeat the subsequent generational steps until the termination condition is satisfied:
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Layer Variants Hyperparameters
Convolutional Residual block Input/Output channels

Inception block Padding
Stride
Dilation
Kernel size
Activation function

Pooling Average Input/Output channels
Max Pool size

Padding
Stride
Dilation

Fully Connected Number of layers
Number of neurons
Dropout
Activation function

Model Optimizer
Learning rate
Loss
Metrics
Number of epochs
Batch size

Table 5.3: CNN layers and their hyperparameters.

• Select the fittest individuals for reproduction (Parents).

• Breed new individuals through crossover and mutation operations to generate offspring.

• Evaluate fitness.

• Replace the least-fit individuals of the population with new individuals (Next generation).

Each individual is encoded using a set of hyperparameters and the network architecture. Therefore, the

chromosome is divided into two parts. Hyperparameters coding:

• Learning rate: governs the algorithm’s update pace or learning of parameter values.

• Max learning rate.

• Learning rate gamma: implements a learning rate decay mechanism during training.

• Gradient clipping: constrains the gradient’s range of variation.

• Weight decay: incorporates a weight decay mechanism during training.

• Batch size: denotes the number of samples processed before model update.

• Dropout: addresses the undesired phenomenon of overfitting.

Every hyperparameter gene consists of its actual value; instead, the architecture can’t be coded in a

unique value. Regarding the architecture, every layer refers to a sequence of genes. In the case of a fully

connected layer, a gene is enough to represent the number of neurons; on the contrary, for layers coming

from the convolutional part of the architecture, the following genes are needed:

• Type: determines the layer type (convolutional or residual).

• Param: indicates the number of convolutional layers or the type of residual block (basic or bottle-

neck), depending on the first element’s value.

• Double channel: a boolean indicating whether to double the number of output features.

Each individual is initialized with values chosen from a discrete group of possible values. Concerning

the architecture, there are minimum and maximum chromosome length constraints. As the population

ages, the resolution of the search space increases, allowing individuals to settle in the neighbourhood of

a local optimum and refine hyperparameter optimization. Concerning evolutionary operators, selection,
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mutation and Crossover were applied in the algorithm, and after that, the offspring was generated.

Finally, the evaluation of each individual involves a chromosome decoding, necessary to synthesize the

neural network, configuring the architecture and hyperparameters. The obtained model is trained, and

its fitness (validation accuracy) is evaluated.

Experimental Results

I conducted three experiments to evaluate the effectiveness of the proposed system, each involving a

different input dataset. The goal was to assess how ENAS performs with images of varying sizes, nature,

and datasets from diverse tasks with varying sample and class numbers. Initially, I tested the system

on well-known benchmark datasets, MNIST [78] and CIFAR-10 [77], followed by an evaluation of a

handwriting Alzheimer dataset. Datasets details are shown in Table 5.4. Concerning the handwriting

Alzheimer dataset RGB on-paper images (Section 3.2.2) were considered for graphic tasks of the protocol

(Section 3.1). The first two tasks consisted of joining two points 5cm apart with a straight continuous

horizontal (task 1) or vertical (task 2) line continuously four times. The third and fourth tasks consisted

of retracing a 3cm (task 3) or 6cm (task 4) wide circle four times. The fifth task consisted of retracing a

complex form (task 5), and the sixth was the well-known clock drawing test (task 6). The results, often

reaching state-of-the-art performance, are promising. The experiments were conducted on an Intel Xeon

i7-7700 CPU @ 3.60 GHz and Intel Xeon Silver 4110 @ 2.10 GHz, with 377GB of RAM and a Tesla V100

GPU. PyTorch 3.6.9 on Ubuntu 18.04.3 LTS served as the framework.

Dataset #samples Size type #classes
CIFAR-10 60,000 32× 32 RGB 10
MNIST 60,000 28× 28 BN 10

Table 5.4: Benchmark datasets.

Regarding experiments on MNIST and CIFAR-10, some hyperparameters and rules were predefined

to expedite convergence toward a local optimum. The chosen optimizer is SGD, the scheduler is StepLR,

and random rotation is the only applied data augmentation. MNIST experiments achieved performance

comparable to state of the art, with a validation accuracy of 99.7% while, as shown by the learning curves

of the best individuals obtained at the end of the evolution, in Figure 5.5.

Figure 5.5: Best individuals.

Fitness reached a maximum of 99.69% after the 18th generation, and execution time showed variations
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due to algorithmic improvements, as shown in Figure 5.6 (a). Figure 5.6 (b) shows the trend of times

over the generations. Here, it is worth noting a detail: for the first part of the evolution, the time

curve grows, then it decreases, to keep on growing again in the last five generations. This trend is the

result of some improvements in the evolutionary algorithm. During the generations, the fitness value for

each individual was stored along its chromosome. This prevents a further evaluation when an already

evaluated chromosome shows again.

(a) Max Fitness (b) Time/Generations

Figure 5.6: MNIST results.

Although CIFAR-10 is not reaching the state-of-the-art accuracy (99.61%), the algorithm exhibited

increasing validation accuracy across generations, as shown in Figure 5.7. The execution time initially

decreased, indicating evaluations skipped for previously seen chromosomes, but later increased to counter

being stuck near a local optimum. To address this, a mechanism was implemented to enhance resolution

and generate new chromosomes near the local optimum, causing an upward trend in execution time.

(a) Max Fitness (b) Time/Generations

Figure 5.7: CIFAR-10 results.

Before ENAS execution on the Alzheimer dataset, specific hyperparameters and rules were prede-

fined; Adam was chosen as the optimizer, OneCycleLR as the scheduler, batch size set at 4, and no data

augmentation was applied. This choice aimed to expedite convergence towards a local optimum. ENAS

operated on one task dataset at a time, and after evolution, the best individual’s performance was eval-

uated. For the classification phase, multiple experiments were conducted using a 5-fold cross-validation

strategy, with the dataset split into balanced training, validation, and test sets. Figure 5.8 illustrates the

training and validation accuracy trends for the best individual selected by ENAS for each task.

To highlight the ENAS approach, a comparison was conducted with well-known Convolutional Neural

Networks (CNNs) such as VGG19, ResNet50, InceptionV3, and InceptionResNetV2. Table 5.5 presents

the obtained accuracy values, with the last line representing ENAS, consistently outperforming other
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Figure 5.8: Training and validation accuracy of the best individuals for each task

CNNs for every task. ENAS achieved the best overall accuracy (84.57%) on the third task, but for every

task, it outperformed the CNNs outcomes.

Model Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
VGG19 67.56 57.64 69.4 67.24 64.59 67.49
ResNet50 59.34 60.5 70.41 64.38 65.69 68.17
Inc.V3 60.98 54.73 72.94 67.71 68.12 61.47
Inc.Res.V2 64.41 61.48 69.97 62.38 67.68 64.53
ENAS 79.93 69.66 84.57 71.62 72.01 83.6

Table 5.5: Accuracy comparison among CNNs and ENAS

The proposed approach couldn’t outperform the state of the art on well-known and huge datasets like

MNIST or CIFAR. Besides this, it showed outstanding performances on the small dataset of handwriting

samples related to Alzheimer’s disease compared to results obtained by experts with known architectures.

5.3 Integrating Data Augmentation in Evolutionary Algorithms
for Feature Selection

In many ML problems, the presence of hundreds or even thousands of features represents a challenge

in identifying the most pertinent subset, as not all available features always introduce valuable informa-

tion. In this research, I investigate the effect of data augmentation on the performance of evolutionary

algorithms when implied in feature selection procedures, particularly regarding GA and Particle Swarm

Optimization (PSO). Comparative analyses with two established feature selection algorithms were con-

ducted and tested on several publicly available datesets.

Experimental Settings and Results

This study aims to explore the impact of data augmentation on Evolutionary Computation-based tech-

niques employed in feature selection [59, 19, 141, 27]. Multiple experiments were conducted considering

six datasets from various application domains and presenting distinct characteristics regarding sample

sizes, features, and classes. Table 5.6 provides a more detailed overview.

Aiming to evaluate the proposed approach combining data augmentation and evolutionary feature

selection techniques, I performed three experiments presented in increasing order of complexity. In

each experiment conducted for every dataset, I performed twenty runs. Figure 5.9 depicts the overall

experiment workflow.

The initial implementation served as a baseline case where datasets were directly employed for clas-

sification. In contrast, the second experiment utilized four distinct feature selection methods. The third

experiment introduced a data augmentation module. To evaluate the efficacy of GA and PSO, I compared

the best results achieved for the three experimental settings presented. Performance assessment was done
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Dataset #Samples #Features #Classes
Hand (Sec. 3.3.1) 174 90 2
Isolet [28] 7797 617 26
Mfeat1 [49] 2000 216 10
Mfeat2 [49] 2000 64 10
Ozone [143] 4748 72 2
Toxicity [61] 171 1203 2

Table 5.6: The datasets used in the experiments.

Figure 5.9: Experimental workflow.

considering the average accuracy and its standard deviation over the twenty runs, providing insights into

the stability of experimental results. The average number of selected features is also reported, a crucial

parameter in machine learning impacting efficiency, interpretability, and model performance.

The first experimental setup provided a fundamental reference point for comparison with other more

time-consuming and resource-intensive experiments. Figure 5.9 illustrates the final experimental work-

flow, with the baseline case represented as the uncoloured section.

First, the input dataset went through a preprocessing phase to ensure data quality and align the dataset

with the standards expected by the subsequent classification algorithm. This process involved three op-

erations: encoding categorical features, handling missing values, and scaling all features. The first two

operations were selectively applied where necessary. Then the dataset was split into training (80%) and

test (20%) sets. Subsequently, the training set underwent Bayesian search [8] to optimize the hyperpa-

rameters of the classification algorithm, implemented using a 5-fold cross-validation strategy. The chosen

supervised machine learning algorithm was KNN, which, after hyperparameter optimization, was trained

on the training set and tested on the test set. Table 5.7 displays the results obtained for each dataset.

Dataset AVG STD
Hand 58.8 7.1
Isolet 90.7 0.6
Mfeat1 95.7 1.1
Mfeat2 95.3 1.1
Ozone 94.1 3.8
Toxicity 67.4 5.5

Table 5.7: Baseline experiment results in average accuracy and standard deviation computed over 20
runs.

The second experimental setting is like the baseline with adding a feature selection module, represented

in green in Figure 5.9. Before the Bayesian search, the training set was utilized for feature selection

(FS), employing various FS techniques to identify the most suitable method, balancing resources and

performance. In particular, this experiment compares conventional FS methods with those proposed and

based on evolutionary algorithms, specifically PSO and GA.

PSO is an evolutionary computation technique inspired by swarm behaviour applied to feature selection

for machine learning. PSO iteratively updates particles’ velocities and positions by using a population

of particles, each representing a candidate solution with a position vector corresponding to a feature

subset. Fitness is determined by a sigmoid function, guiding feature inclusion or exclusion. PSO balances

exploration and exploitation through personal and global best positions, converging towards an optimal
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feature subset. The algorithm terminates after a set number of iterations, returning the best feature subset

for enhanced predictive model performance. Table 5.8 shows the parameters setting for the algorithm.

Parameter Value
Swarm Size 30
Cognitive Coefficient (ϕ1) 2.0
Social Coefficient (ϕ2) 2.0
Number of Iterations 60
Particle Position Limits (pmin, pmax) [−1.0, 1.0]
Velocity Limits (smin, smax) [−1.0, 1.0]

Table 5.8: PSO parameters setting.

GA for feature selection efficiently explores the best subset of features for maximum prediction ac-

curacy. Using binary string encoding, the GA evolves solutions over generations, employing selection,

crossover, and mutation operations. The process refines feature subsets, with the best-performing subset

identified to create an accurate and parsimonious model, preventing overfitting. The GA’s effectiveness

is evaluated based on the quality and consistency of the final feature subset across multiple runs, offering

flexibility for various data types and models, enabling an intelligent search for optimal feature spaces and

revealing hidden interactions. GA’s parameters setting is shown in 5.9.

Parameter Value
Population Size 50
Crossover Probability 0.6
Mutation Probability 1/#features
Tournament size 3
Number of Generations 40
Elitism Keep best

Table 5.9: GA parameters setting.

Two well-known FS algorithms were considered for comparison: RFE and SelectKBest (SKB). Table

5.10 presents the results of the tested feature selection methods, with the best outcomes highlighted in

bold. Notably, PSO achieved the best performance, surpassing others in four out of six cases in accuracy

and the number of selected features. While PSO demonstrated superiority, the table shows that PSO

and GA performance was comparable to the common and FS methods tested.

RFE SKB PSO GA
Dataset(#features) Acc #feat Acc #feat Acc #feat Acc #feat
Hand (90) 57.7 ± 7.5 45 58.0 ± 6.9 45 58.8 ± 6.8 33.3 58.4 ± 8.0 40.6
Isolet (617) 88.8 ± 1.4 308 88.3 ± 2.1 307 92.1 ± 0.9 291.8 91.5 ± 0.7 302.1
Mfeat1 (216) 95.0 ± 1.7 108 95.4 ± 1.6 109 95.9 ± 0.9 90.9 95.8 ± 1.1 103.3
Mfeat2 (64) 96.0 ± 1.0 32 96.2 ± 0.9 31 95.3 ± 1.0 31.5 95.3 ± 1.2 36.1
Ozone (72) 91.8 ± 3.2 36 92.3 ± 3.9 37 92.4 ± 3.3 29.9 94.2 ±2.8 32.6
Toxicity (1203) 64.8 ± 5.8 600 64.6 ± 6.6 601 67.1 ± 7.5 509.9 64.4 ± 8.7 597.9

Table 5.10: Feature selection results in average and standard deviation accuracy and average number of
selected features computed over 20 runs.

The third experiment, depicted in Figure 5.9, adds a data augmentation module (orange box) to the

second experimental setting. After the dataset splitting, the training set underwent augmentation before

feature selection, Bayesian search, and training of the KNN algorithm. Three augmentation percentages

(10%, 20%, and 30%) were tested. Data augmentation is a common practice in ML to enhance model

generalization by addressing imbalanced datasets. The implemented algorithm generates new samples by

iteratively perturbing random samples within class-wise constraints, ensuring adherence to the original

dataset feature distribution. The process continues until a predetermined augmentation percentage is

reached. This approach introduces minimal modifications, ensuring class balance and adjusting sample

numbers per class as necessary. Table 5.11 presents the results, highlighting that, in general, increased

augmentation percentages correlate with improved performance. Exceptions include the Ozone dataset

with the GA method and the Isolet dataset in conjunction with RFE and SKB. However, the highest

performance for each dataset was consistently achieved with the maximum augmentation percentage.
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Evolutionary feature selection methods outperformed others in four of six datasets, with comparable

performance in the remaining cases. Data augmentation did not impact the number of features selected

for all algorithms. Comparing PSO and GA, GA tended to select more features than PSO.

RFE SKB PSO GA
Dataset(#features) DA(%) Acc #feat Acc #feat Acc #feat Acc #feat

Hand (90)

0 57.7 ± 7.6 45 57.9 ± 6.9 45 58.8 ± 6.8 33.3 58.4 ± 8.1 40.6
10 61.7 ± 7.0 45 60.1 ± 8.0 46 62.7 ± 7.4 38.0 62.8 ± 8.7 40.7
20 65.6 ± 6.6 45 64.5 ± 8.5 44 66.3 ± 9.9 33.1 67.6 ± 6.8 40.1
30 66.7 ± 7.2 44 64.0 ± 9.5 45 68.3 ± 6.2 34.3 69.6 ± 5.7 38.4

Isolet (617)

0 88.8 ± 1.4 308 88.3 ± 2.1 307 92.1 ± 0.9 291.8 91.5 ± 0.8 302.1
10 82.2 ± 4.6 307 81.7 ± 3.6 308 92.0 ± 0.7 294.9 91.5 ± 1.0 301.5
20 85.5 ± 3.8 308 85.9 ± 3.4 306 92.6 ± 0.7 295.6 92.4 ± 0.8 304.1
30 88.9 ± 2.2 308 87.7 ± 2.5 308 92.9 ± 0.9 292.3 92.7 ± 0.7 299.4

Mfeat1 (216)

0 95.0 ± 1.7 108 95.4 ± 1.6 109 95.9 ± 0.9 90.9 95.9 ± 1.1 103.3
10 95.5 ± 1.4 107 95.6 ± 0.9 109 96.2 ± 1.0 94.5 96.5 ± 0.8 101.2
20 96.2 ± 0.9 108 96.3 ± 0.9 109 96.5 ± 0.8 89.5 96.5 ± 0.6 105.1
30 96.5 ± 0.9 106 96.5 ± 0.9 109 96.7 ± 0.6 90.8 96.9 ± 0.9 104.6

Mfeat2 (64)

0 96.0 ± 1.0 32 96.2 ± 0.9 31 95.3 ± 1.1 31.5 95.3 ± 1.2 36.1
10 96.0 ± 1.1 32 96.1 ± 1.4 33 95.4 ± 1.4 32.0 95.2 ± 1.4 35.6
20 96.4 ± 0.9 32 95.6 ± 0.9 34 96.1 ± 1.0 32.4 96.2 ± 0.8 36.2
30 96.1 ± 1.3 32 96.5 ± 0.8 32 95.7 ± 1.3 32.1 96.2 ± 1.0 34.7

Ozone (72)

0 91.8 ± 3.2 36 92.3 ± 3.9 37 92.4 ± 3.4 29.9 94.2 ± 2.9 32.6
10 92.1 ± 3.1 37 93.3 ± 3.4 35 93.1 ± 2.4 30.2 92.8 ± 2.8 33.7
20 93.0 ± 2.8 36 93.4 ± 3.2 35 94.1 ± 2.6 29.2 93.4 ± 2.5 33.7
30 92.9 ± 2.4 36 93.2 ± 2.5 35 94.8 ± 2.1 30.0 94.6 ± 2.2 33.1

Toxicity (1203)

0 64.8 ± 5.8 600 64.6 ± 6.6 601 67.1 ± 7.5 509.9 64.4 ± 8.7 597.9
10 64.5 ± 6.6 601 67.9 ± 7.5 602 66.1 ± 5.5 511.3 62.2 ± 4.2 593.1
20 66.7 ± 9.5 601 66.9 ± 7.9 600 65.3 ± 6.3 502.7 63.4 ± 9.1 592.0
30 70.1 ± 8.9 601 67.1 ± 9.5 600 69.6 ± 8.0 519.8 68.7 ± 8.0 593.3

Table 5.11: Data augmentation and feature selection results in average accuracy and standard deviation
computed over 20 runs for every FS technique and DA percentage.

To evaluate GA and PSO effectiveness, I compared the best results with data augmentation to baseline

and no feature selection results. The non-parametric Wilcoxon rank-sum test validated the comparisons.

Bold values in Table 5.12 represent better results, while starred results indicate no statistically significant

difference. GA and PSO achieved the best significant results on three datasets (Hand, Isolet, Mfeat1),

notably improving accuracy with data augmentation. Interestingly, for Hand, data augmentation led

to a substantial 10% accuracy improvement, whereas Mfeat1 showed a similar trend with a smaller

improvement. PSO outperformed GA on all three datasets, but data augmentation allowed GA to excel

on two (Hand, Mfeat1), selecting more features and suggesting its advantage in feature selection over

PSO.

Baseline Without DA 30% DA
Dataset (#features) Acc FS Acc #feat FS Acc #feat
Hand (90) 58.8 ± 7.1 PSO 58.8 ± 6.8 33.3 GA 69.6 ± 5.7 38.45
Isolet (617) 90.7 ± 0.6 PSO 92.1 ± 0.9 291.8 PSO 92.9 ± 0.9 292.3
Mfeat1 (216) 95.7 ± 1.1 PSO 95.9 ± 0.9 90.9 GA 96.9 ± 0.9 104.6
Mfeat2 (64) 95.3 ± 1.1 SKB 96.2∗ ± 0.9 31 SKB 96.5∗ ± 0.8 32
Ozone (72) 94.1∗ ± 3.8 GA 94.2∗ ± 2.8 32.6 PSO 94.8∗ ± 2.1 30
Toxicity (1203) 67.4∗ ± 5.5 PSO 67.1∗ ± 7.5 509.9 RFE 70.1∗ ± 8.9 601

Table 5.12: Comparison between baseline experiment and best performance achieved with FS and FS
combined with DA.
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Conclusions and Future Work

NDs are a group of disorders characterized by the progressive degeneration of the structure and function

of the nervous system. Among them, the most common is AD, which predominantly impacts cognitive

functions, leading to memory loss, impaired reasoning, and changes in behaviour. Its degeneration is

due to the accumulation of abnormal protein aggregates, such as beta-amyloid plaques and tau tangles,

in the brain. This condition lacks a cure, and an early diagnosis is crucial as it allows the initiation of

timely interventions and treatments, offering individuals a better chance to manage symptoms, maintain

quality of life, and potentially slow down the progression of the disease.

AD manifestations extend beyond cognitive decline and may affect motor skills, including handwriting.

As the disease progresses, individuals often experience fine motor control and coordination difficulties.

This can result in evident changes in their handwriting, including inconsistencies in letter size, spac-

ing, slant, and a general decline in legibility. Understanding these subtle yet significant alterations in

handwriting can serve to find potential diagnostic markers and monitor disease progression. Moreover,

investigating the impact of neurodegenerative diseases on handwriting may contribute to developing in-

novative therapeutic interventions to preserve both cognitive and motor abilities in affected individuals.

More information about the NDs and how their symptoms affect handwriting can be found in Chapter 2

of this work.

My thesis aims to offer a low-cost, non-invasive, and readily available tool for supporting AD diagnosis by

incorporating AI techniques with handwriting analysis. The exploitation of AI techniques strives to lever-

age distinctive patterns in handwriting to identify early indicators of cognitive decline. The developed

system aims to process handwriting samples efficiently, extracting subtle features associated with motor

control and cognitive function. The focus on affordability and non-invasiveness ensures greater acces-

sibility, especially for individuals encountering difficulties in performing traditional diagnostic methods.

Ongoing research in this field highlights the potential for AI-driven handwriting analysis to transform

the diagnostic landscape for neurodegenerative diseases, providing an accessible and scalable solution for

widespread adoption and implementation. Section 1.1 describes the objectives of this work, while Section

2.4 comprises a detailed description of the research on NDs involving several AI approaches on different

types of data.

During my research years, I worked with data described in Chapter 3 and acquired in 2018, compris-

ing several handwriting samples from a group of 174 people, equally balanced into two classes: healthy

controls and AD patients. Participants had to perform 25 handwriting tasks to evaluate different motor

and cognitive abilities, usually impaired by the onset of the disease. Starting from the raw data acquired

from each handwriting sample, I obtained and generated different data types, i.e. images and features.

Chapter 4 shows many experimental settings devoted to understanding which combination of data type,

kind of task and AI technique was the most suitable in discriminating people affected by AD from healthy

controls. In 4.2, I compared classifiers based on handcrafted and deep features applied to Alzheimer’s

diagnosis from handwriting on graphic tasks. Deep features were derived by feeding different models

of CNNs with binary and RGB on paper images. Every feature set was evaluated with different ML

classifiers. This choice allowed me to quickly compare the experimental results relative to the different

feature vector representations and, therefore, the role played by the shape and the combined use of both

shape and dynamic information.

The outcomes of this experiment show exciting trends. First, deep features exhibit greater promise than

handcrafted ones, showcasing superior accuracy, mainly when employed with the RF classifier. On aver-

age, the results obtained from handcrafted features perform worse than those from deep features. Across

various tasks and classification schemes, CNN extracted features from RGB on paper images consistently
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outperform handcrafted features, underscoring the advantage of deep features. Regarding the significance

of shape information compared to dynamic information derived from handcrafted features, it becomes

apparent that shape information holds relevance, particularly in subject classification. However, there

is a noticeable decrease in average performance when considering binary images, which don’t comprise

dynamic information. This underscores the importance of combining dynamic features, represented by

the three RGB channels, with shape features as the most effective approach to address the problem,

according to this first experiment.

Section 4.3 shows an experimental setting similar to the previous work, but instead of the binary images, it

considers MC images and six graphic tasks. As the previous experiment, also this one highlighted greater

promise in using deep extracted features than handcrafted ones. In each task and classification scheme,

deep features extracted from CNN models consistently outperformed handcrafted features, except in task

2, where handcrafted features marginally outperformed deep features. In comparing RGB and MC deep

features, the analysis reveals that adding an extra channel in generating MC images does not necessarily

enhance feature extraction. Generally, classification results obtained with RGB deep features are almost

always superior to those obtained with MC deep features. The sole exception is task 5, where the FC

classifier, trained with MC deep features from InceptionResNetV2, exhibited slightly better results. This

comprehensive approach could enhance the diagnostic system’s overall performance by aggregating the

classifiers’ responses across multiple tasks.

In Section 4.4, I evaluated the proposed system with writing tasks and a new data type: offline images.

The study aimed to assess whether extracting features directly from original offline handwriting images,

as opposed to synthetic RGB images, considering the authentic shape of the handwritten trace, could

yield superior results compared to handcrafted features. The preliminary experimental findings are highly

promising and validate the effectiveness of the proposed approach. A primary observation reveals that

offline deep features generally outperform RGB deep features. This is particularly noteworthy as RGB

images contain dynamic information, though with an approximation of the original shape. In contrast,

offline images capture all the actual shape details of handwritten traits, proving crucial for distinguish-

ing patients from healthy controls. This suggests the potential use of offline images in diagnosing AD

and raises the possibility of utilizing past examples of a person’s handwriting to detect the presence of

neurodegenerative disease and estimate its progression.

Another significant finding is that offline deep features perform similarly to handcrafted features. While

handcrafted features exhibit higher accuracy in many experiments, this discrepancy is more pronounced

for Task 1, a signature involving a highly automated graphic gesture less influenced by the presence of

AD. These results align well with other tasks, where shape changes play a more critical role than changes

in dynamic features, enabling better detection of AD patients. Notably, the sensitivity is generally higher

for offline deep features, a crucial aspect in medical applications where failing to identify a subject with

a pathology carries a much higher cost than inaccurately classifying a healthy subject.

Another type of data used during my evaluation is lognormal features. In particular, I computed two

different sets. The experiment on the first set is described in 4.5. This study examines the handwriting

of individuals, utilizing lognormal features derived from the kinematic theory of rapid movement. I con-

sidered various tasks in this work and evaluated different aspects of AD symptoms. Preliminary findings

indicate that lognormal features offer better modelling of writing tasks than graphic ones. It’s essential

to highlight a drawback of this experiment, as no parameter optimization was applied, but despite this,

results are interesting, and they outperform results obtained by the deep approach from the convolutional

models.

The study in Section 4.6 employs a ML-based classification system, leveraging ensemble techniques and

combining rules, to discern between patients and healthy controls using the second set of features de-

rived from the sigma-lognormal model applied to various handwriting tasks. The findings are interesting;

the outcomes on lognormal features outperform those on handcrafted features. In particular, this study

highlighted the good performance of ML classifiers when dealing with task 23. Contrary to what was

expected, the stacking ensemble didn’t improve the performance. The majority vote combining rule,

instead, allowed an increment in the accuracy by aggregating predictions from the first three tasks in a

ranked list based on their predictive ability. The study concludes that the extracted lognormal features

prove valuable in exploring handwriting dynamics and fluency. However, the obtained results are not

enough to address a medical problem, prompting an investigation into potential explanations:

• Inconsistencies were noted in the dataset, with instances where individuals from the control group

took an unexpectedly long time to perform certain tasks or deviated from task requirements. It

was observed that the velocity profile generated by the sigma-lognormal model failed to accentuate
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differences between healthy controls and patients sufficiently.

• Handwriting and its associated features exhibit correlations with age and education. While dis-

tinctions between young HC and elderly PT are discernible, this contrast diminishes notably when

comparing elderly HC and young PT.

Finally, I performed complementary experiments in Section 4.7 to complete an evaluation of the

systems and approaches presented in the previous works. I improved the deep feature extraction and

classification algorithms in this section by implementing grid search and feature selection techniques. In

this context, I highlighted the potential of the offline approach with respect to RGB and binary. Moreover,

I deployed a majority vote strategy considering subsets of tasks. I compared the performance of MC in

air, on paper and in air-on-paper images. This outlined an improvement in the performance considering

both air and on-paper traits. The same findings stand for RGB images, showing better performance with

in-air on paper images. Finally, these experiments proved the importance of the combination rule used

as if applied on a good subset of tasks, it can boost the system’s overall performance.

Chapter 5 is devoted to describing a part of my research on evolutionary algorithms. These optimization

techniques, inspired by the principles of biological evolution, were strategically applied across various

domains such as optimization, machine learning, and neural architecture search. Specifically, I showed

how the implementation of a GA could be useful in optimizing the prediction capabilities of a DL system

for supporting the diagnosis of cognitive impairment associated with AD. Additionally, I considered an

evolutionary approach to diagnosing cognitive impairment by adapting neural network architecture us-

ing evolutionary algorithms. The investigation extended to applying evolutionary algorithms for feature

selection on a dataset of handwriting features, primarily focusing on enhancing diagnostic precision for

cognitive impairment in the context of AD through ML. The collective results underscore the efficacy of

evolutionary algorithms in these applications, though a critical need for further experimental phases is

acknowledged to refine and optimize the obtained results.

The results achieved throughout my research are interesting, but there is room for improvement and fur-

ther investigation. In future system development, I mean paying more attention to information related

to in-air features, which haven’t been sufficiently studied in this context. Since in-air points are captured

from the tablet during the execution of writing tasks, assessing their impact on the feature extraction

process is a potential avenue for further investigation. Analyzing in-air traits could provide an additional

dimension to the study of AD, potentially offering valuable insights into early signs of cognitive decline.

Changes in the fluidity, speed, and accuracy of in-air writing movements could indicate neurological

changes associated with AD.

More improvements may come from the feature extraction and selection process definition, such as se-

lecting a specific set of features for each task and adopting more powerful combining rules, which could

substantially enhance overall classification performance.

Regarding the experiment on the second set of lognormal features, described in Section 4.6, It highlighted

the need to improve the system in discriminating between older HC and younger PT. To achieve this,

I need to investigate their striking similarities and determine the appropriate techniques or acquisition

tasks to consider. A useful direction for future research involves integrating handwriting features with

personal attributes to assess if it is feasible to measure or study how individuals cope with AD symp-

toms while writing and how they compensate. Additionally, future work will extend to applying the

system to diverse disease datasets to validate and generalize the findings regarding results and identified

relationships. Moving from the analysis of handwriting, Chapter 3 shows that the research community

is investing in supporting the AD diagnosis through a large number of approaches relying on different

data. In considering potential future advancements, it would be valuable to explore the complementary

utilization of multiple data sources to reinforce and validate diagnostic predictions in the context of an

AI-driven system for supporting the diagnosis of Alzheimer’s disease. A potentially practical approach

could involve the integration of new data sources but always guaranteeing some peculiar aspects of the

system, which has to be non-invasive and cost-effective. Specifically, the combined analysis of movement,

speech, and handwriting could emerge as a versatile and accessible method. Combining these signals

might provide a broader and deeper insight into the condition, thereby helping to overcome current chal-

lenges in ND diagnosis.

In conclusion, as presented in this thesis, the results obtained in my research have successfully met the

objectives I meant to achieve. The conducted experiments have provided insights into identifying tasks

and data types, most effectively highlighting differences in handwriting between healthy subjects and

those affected by AD. Moreover, through the various experiments, I have recognized the potential of con-
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volutional networks in extracting crucial features for this study. In particular, I noticed an enhancement

of results achieved on images containing both in-air and on-paper traits and improved performance by

applying combination rules to specific tasks rather than all acquired tasks. This is significant as it helps

discern which tasks can be excluded from the study and future acquisitions, such as signatures, and which

require particular attention, like the dictated telephone number task. Understanding these distinctions

aids in optimizing the study design. Despite the interesting outcomes, I have identified several drawbacks

that require resolution and further investigation. The work can thus be refined, and additional analyses

can be carried out to achieve better performance. This ongoing process of improvement and exploration is

crucial for advancing our understanding and refining the methodologies employed in handwriting analysis,

contributing to the broader field of research on NDs.
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[57] Matej Gazda, Máté Hireš, and Peter Drotár. “Multiple-Fine-Tuned Convolutional Neural Networks
for Parkinson’s Disease Diagnosis From Offline Handwriting”. In: IEEE Transactions on Systems,
Man, and Cybernetics: Systems 52.1 (2022), pp. 78–89. doi: 10.1109/TSMC.2020.3048892.

[58] Peyvand Ghaderyan, Ataollah Abbasi, and Sajad Saber. “A new algorithm for kinematic analysis
of Handwriting data; towards a reliable handwriting-based tool for early detection of Alzheimer’s
disease”. In: Expert Systems With Applications 12106 (2018).

[59] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning. Addison-
Wesley, 1989.

[60] Luis C. Guayacán and Fabio Mart́ınez. “Visualising and quantifying relevant parkinsonian gait
patterns using 3D convolutional network”. In: Journal of Biomedical Informatics 123 (2021),
p. 103935. issn: 1532-0464. doi: https://doi.org/10.1016/j.jbi.2021.103935. url: https:
//www.sciencedirect.com/science/article/pii/S1532046421002641.

[61] Seref Gul et al. “Structure-based design and classifications of small molecules regulating the cir-
cadian rhythm period”. In: Scientific Reports 11 (2021). url: https://api.semanticscholar.
org/CorpusID:237546851.

[62] Yao Guo et al. “Detection and assessment of Parkinson’s disease based on gait analysis: A survey”.
In: Frontiers in Aging Neuroscience 14 (2022). issn: 1663-4365. doi: 10.3389/fnagi.2022.
916971. url: https://www.frontiersin.org/articles/10.3389/fnagi.2022.916971.

[63] Ujjwal Gupta, Hritik Bansal, and Deepak Joshi. “An improved sex-specific and age-dependent clas-
sification model for Parkinson’s diagnosis using handwriting measurement”. In: Computer Methods
and Programs in Biomedicine 189 (2020), p. 105305. issn: 0169-2607. doi: https://doi.org/10.
1016/j.cmpb.2019.105305. url: https://www.sciencedirect.com/science/article/pii/
S0169260719315159.

[64] Youssef El-Hayek et al. “Tip of the Iceberg: Assessing the Global Socioeconomic Costs of Alzheimer’s
Disease and Related Dementias and Strategic Implications for Stakeholders”. In: Journal of Alzheimer’s
Disease 70 (June 2019), pp. 1–19. doi: 10.3233/JAD-190426.

[65] K. He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778.
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