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We report on further measurements and a numerical solution for a proposed benchmark problem involving an eddy current 

nondestructive evaluation configuration. This is a simplified version of the inspection of fastener holes in aircraft structures, 

comprising combinations of plates with through holes and a crack. Previously only line (B-scan) data were provided for the coil 

impedance while in this follow-up work we provide precision surface (C-scan) data as well as details on the evaluation of the critical 

parameters of the problem. Furthermore, the experimental data are cross-validated with numerical ones by using a model that 

combines an integral/FEM approach. 

 
Index Terms— Benchmark testing, eddy currents, impedance measurement, nondestructive testing. 

 

I. INTRODUCTION 

DDY current testing is an established NonDestructive 

Testing (NDT) method that is routinely used in a number 

of important applications ranging from the tube inspection in 

nuclear power plant steam generators to structural integrity 

checks of commercial and/or military aircrafts [1]. For the 

latter, the inspection and location of cracks adjacent to 

aluminum fastener holes is of great interest since the 

development and propagation of such fatigue cracks may have 

detrimental effects on the structural integrity of the aircraft 

[2]. All NDE methods involve the interaction of some form of 

energy with the inspected testpiece and the monitoring of this 

interaction with appropriate sensors. In the case of eddy 

current testing it is the magnetic field coupling of an 

inspection coil and the alteration of the eddy current flow 

around the defect/crack. In the classical approach, this is 

monitored by the impedance of the coil and its change as the 

coil is moved above the testpiece area with the defect/crack. 

There are various issues in this procedure and computer 

modeling plays an important role like in the optimization of 

the probe coil shape, the excitation frequency selection, the 

interpretation of results, the imaging of cracks, etc. 

The basic simulation setup involves a large testpiece, a coil 

excited by a frequency of the order of kHz and a discontinuity 

in the testpiece in the form of a volume defect or a surface like 

crack. Because the defect is usually much smaller than the 

testpiece and/or the coil, modeling constitutes a multi-scale 

problem, i.e. the field perturbations and defect signals are 

weak compared to the ones produced by the coil and the 

conductor. In addition, narrow cracks or small lift-offs 

(distance of coil from testpiece) are usually present and affect 

mesh quality [3]. Integral equation methods are commonly 

used, but the need for dedicated Green's functions with 

analytical expressions that correspond to the specific 

conductor geometries limit their scope [4-6]. In this work a 

source integral equation method is adopted where the 

unknown is the induced current density. The underlying 

integral equation is solved by discretizing the unknown by 

means of Whitney forms and applying the Galerkin method 

[7]. The advantages of this approach are the need of 

discretizing the material regions only, the numerical 

integration of a kernel that is singular (1/r) but not 

hypersingular, the possibility of treating arbitrary geometries 

and materials (possibly inhomogeneous and/or anisotropic [8]) 

and the no need to impose explicitly the regularity conditions 

at infinite. The main drawback is the need of storing O(N2) 

and inverting a fully populated matrix (O(N3) with a direct 

method). Despite of this, compression methods for reducing 

the memory occupancy (almost O(N)) and fast solvers for 

reducing the solution time to about O(N2) have been recently 

developed [9], [10]. Moreover, an ad-hoc variant of this 

numerical model has been specifically tailored for fast and 

accurate computations in eddy current testing applications 

[11]. 

All solution methods and available codes require validation 

which is usually performed by comparing theoretical results to 

precision measurements taken from well prepared 

experiments. A review of existing benchmark configurations 

was provided in [13] with special emphasis and critical 

comments on the data-sets and characteristics of the TEAM 

Workshop No.8, 15 and 27 problems. Also in [13], a new 

benchmark problem was proposed that consisted of a set of 

plates with through-wall holes and a crack. Four combinations 

of testing configurations were created by arranging the plates 

and precision coil impedance measurements were reported. 

The proposed problem can be regarded as a canonical one and 

represents a simplified version of the eddy current 
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nondestructive inspection of fastener holes in aircraft 

structures. 

The purpose of the current work is twofold: (i) to 

considerably enrich the data of that benchmark problem by 

providing additional surface (C-scans) of the coil impedance 

and (ii) to provide numerical results by using a model that 

combines an integral/FEM approach. 

 

II. BENCHMARK PROBLEM DESCRIPTION 

A detailed description of the problem configuration was 

given in [13] and repeated here. Two aluminum plates were 

used in the experiments to simulate a layered structure. Both 

of them had dimensions 300×300 mm, a thickness of 2 mm 

and a through-hole at the center of their area. In addition, one 

of them had a narrow, through slot simulating a crack adjacent 

to the hole and in a radial direction with respect to it. If we 

designate the plate without the crack as A and the one with the 

crack as B, we have performed measurements for the 

following 4 configurations that are named depending on the 

plate(s) used and their position when stuck together: 

A : plate-A alone (no crack) 

B : plate-B alone (through the thickness crack) 

AB : plate-A placed above plate-B (bottom layer crack) 

BA : plate-B placed above plate-A (top layer crack) 

 

 
 

Fig. 1. Experimental setup for one of the configurations (BA). 

 

The narrow slot was made by Electro Discharge 

Machining (EDM) while the coil was constructed by layer-

winding copper wire (0.1 mm diameter) onto a suitable Delrin 

former. The coil impedance data were recorded by using the 

precision LCR meter Agilent 4284A (precision 0.05%) at two 

frequencies, 1 and 5 kHz. The coil and plate parameters are 

shown in Table I. For the specific plates' conductivity, these 

frequencies correspond to skin depths of 3.82 and 1.71 mm, 

respectively. 

TABLE I 

TEST SETUP PARAMETERS 

COIL M1650 PLATE(S) A and B 

Inner radius 7.0 mm Thickness 2 mm 
Outer radius 12.0 mm Conductivity 17.34 MS/m 

Height 4.0 mm Rel.Permeability 1 

Wire-turns 1650 Gap between 70 μm 
Lift-off 1.082 mm Hole radius 10.0 mm 

L0 (measured) 53.655 mH Crack  length/width 9.8/0.234 mm 

 

One of the experimental setups (BA) is shown in Fig.1. A 

Cartesian coordinate system is associated to the geometry. The 

surface of the top plate coincides with the plane Oxy, the 

hole's with the coordinate system center and the crack line 

with the x-axis. The data were collected as a function of coil 

position and for that matter an XY translation stage was used 

(controlled by a PC, position accuracy 0.05 mm), which 

correlated the position of the coil with the measured data. 

Instead of mounting the coil onto the moveable part of the XY 

stage, it was fixed and the test object was moved under it. 

III. EXPERIMENTAL RESULTS 

The impedance values were acquired by averaging 16 

measurements for each coil position and frequency. First, the 

inductance of the coil in air was measured to the value shown 

in Table I as follows. A frequency scan is performed with the 

coil away from any conductive structure, the results are shown 

in Fig.2. A typical L0 vs frequency curve has a straight part 

that spans a frequency range, a diminish part due to the 

measuring instrument accuracy deterioration at lower 

frequencies and an upward range at higher frequencies where 

capacitive effects start to be important. These are due to the 

distributed capacitance between the coil wires and the 

capacitance associated with the coil leads and for even higher 

frequencies they become predominant and the coil reaches 

resonance. As pointed out in [14], a safe measurement range, 

that is a range where the experimental results can be safely 

compared to theoretical ones spans to a frequency as high as 

one-tenth of the specific coil resonance frequency, while by 

following the correction procedure, this safe measurement 

range can be increased up to half of the resonance frequency. 

In our case, however, such a correction procedure was not 

necessary since the frequencies were much lower than the 

resonance frequency of the coil. 

 
Fig. 2. Experimental measurements showing variation of coil inductance 

with frequency. 

 

The inductance of the coil in air was computed to 54.139 

mH, by using the well established Dodd and Deeds model [15-

16], thus giving a discrepancy of 0.9% with respect to the 

measured value. This small discrepancy can be attributed to 

the fact that the theoretical model assumes that the coil is an 

ideal conductor carrying a uniform distributed current. In [14], 
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an effective value for the outer coil radius was established, in 

order to get a perfect match between the measured and the 

theoretical value. In our case, this would result to a value of 

6.938 mm instead of 7 mm, which is less than a single wire 

diameter and would therefore represent a legitimate 

correction. However, this was not considered necessary and, 

instead, we followed the usual approach of presenting the 

results in normalized form, the normalization factor being the 

coil reactance X0=2πfL0 in air [1]. Hence, when comparing the 

experimental data to theoretical results, by normalizing with 

the corresponding experimental or theoretical X0, it is expected 

that small dimensional deviations will not affect agreement 

between them. 

Initially, the lift-off was measured with a micrometer and 

the conductivity with the GE Phasec 2D instrument working in 

conductivity mode. For greater accuracy, effective values for 

the lift-off and the conductivity were determined by following 

the standard method [14], which involves the minimization of 

the RMS error between the experimental impedance and the 

theoretical calculations over a frequency range for the coil 

above each plate and away from the hole and crack. The 

theoretical model used in this case was again the Dodd and 

Deeds model [15, 16]. 

Fig.3 shows the normalized impedance data arising from a 

frequency scan together with the theoretical data for the values 

of lift-off and conductivity shown in Table I. In general the 

variation of the lift-off moves the arc-shape curve inwards for 

increasing lift-off and outwards for decreasing lift-off while 

the variation of the conductivity moves the data points on the 

curve upwards (for decreasing conductivity) or downwards 

along the curve (for increasing conductivity).  

 
Fig. 3. Variation of coil inductance with frequency. Comparison of 

experimental measurements to theoretical results. 

 

In all cases, a C-scan was performed, i.e. the coil was 

moved above the hole with or without the crack in a raster of 

measurement points covering an area of 150×150 mm at 

maximum. In the direction of the crack (x-axis) the step was 

set to 1 mm while in the perpendicular direction (y-axis) it was 

set to 2 mm. Representative experimental results are presented 

next for the precision impedance measurements for each of the 

four configurations. 

IV. THE NUMERICAL MODEL 

The numerical model used through this paper is derived 

from [7] and described in [11]. It is also at the basis of a new 

prototypal plug-in recently developed for the CIVA software 

[17] within the framework of an European (FP7) founded 

project (SIMPOSIUM project) [19]. It is optimized for typical 

eddy current testing scenarios which are multiscale: the 

unperturbed (no defects are present) eddy current J0 generated 

by the driving coil is distributed on a large region and on a 

coarse scale, whereas the perturbation J of the eddy current 

density due to a “small” defect is concentrated in a 

neighborhood of the defect and its spatial scale is definitely 

finer than those of the unperturbed field. A discretization of 

the complete problem, i.e. computing the induced eddy current 

J=J0+J in the presence of the defect, would require an 

extended and finer mesh to accomplish the requirements of an 

appropriate discretization for both J0 and J at the same time. 

Therefore the number of elements could become prohibitively 

high. The approach followed in the CARIDDI_ECT code [11, 

12] is to compute separately J0 and J on two different finite 

element meshes optimized for each sub-problem. This strategy 

is very effective especially when the solution of the forward 

problem has to be computed on several/many different defect 

geometries (as is the case when solving the inverse problem 

through an iterative method or generating a database, etc.) 

This numerical model, combines the integral/FEM 

approaches and is based on the following integral equations 

(linear constitutive relationships, non magnetic materials and 

time-harmonic operations): 

[ ] in 
BG

i   + +  = J A J 0                                      (1) 

 subject to 

in 
BG BG

 = − J J                                                               (2) 

where   is the electric resistivity,  is the angular frequency, 

J  and   are the perturbations of the eddy currents and 

scalar potential due to perfectly insulating defect   hosted in 

the background domain ( )
BG BG

    , [ ]A  is the 

operator giving the vector potential due to prescribed sources 

0
( )

: ( )
4

BG

BG

dV








→ 
−


u r

A u r r
r r

                           (3) 

and 
BG

J  is the eddy current density in the absence of the 

anomaly. The formulation is “optimized” in the sense that the 

unknown J  is “localized” in the neighbourhood of the defect 

 . The proper functional space for J  is 

ˆ{ ( , ) | 0, 0 on }
BG BG

J H div=     =  = u u u n             (4) 
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The corresponding weak forms of the equations (1) and (2)  

are hereafter reported (explicated according to Galerkin’s 

method)1: 

{ ( ) [ ( )]} ( ) in 

BG

BG
i dV   



   +  =  J r A J r J r 0          (5) 

and 

[ ( ) ( )] ( ) in 
BG

dV 


   +  =  J r J r J r 0                         (6) 

The unknown is discretized as ( )
k kk

I = J N r  

where the 
k

N 's are edge-element-based shape functions [7]. 

Suitable conditions guarantee the uniqueness of the solution as 

well as the condition ˆ 0  =J n  on 
BG

  in weak form.  

By combining the above discretization and the weak form 

(5) and (6) we obtain the following discretized model:  

0

TT
K Z K x K Z a= −                                                               (7) 

where Z L i R= +  (matrices L  and R  are defined in [7]) 

and the matrix K  and the column vector 0a  are defined in 

[11]. Eventually I , the column vector of Degree of Freedom 

kI ’s, can be computed from x  as 
0

I K x a = +  [11]. It can 

be proven that K x  represents current density vanishing in the 

region occupied by the defect  , regardless the value of the 

column vector x  [11]. 

V. NUMERICAL RESULTS 

In this section we report results concerning the validation 

of the experimental data relative to the proposed benchmark 

problem. For all the cases, the numerical results (impedance 

variations) are compared to the experimental data, according 

to the common NDT data presentations (B-scan and/or C-

scan) or in the complex plane (appropriate for eddy current 

testing). The B-scan representation covers a line of 90mm 

(passing at 0y = ) with a step of 1 mm, while the C-scan 

representation covers an area of 3030 mm2, with a step of 1 

mm in the x direction (parallel to the crack) and 2 mm in the y 

direction (orthogonal to the crack). In both representations, the 

centre of the hole is located at the origin of the reference 

system. The results are normalized with respect to the value of 

the reactance of the probe in air and evaluated at the 

frequencies of 1 kHz and 5 kHz. 

The first validation is related to Case A (Plate A). Fig.4 

shows the comparison between the numerical and 

experimental data in the B-scan representation, as well as the 

complex impedance curves. In both cases, the agreement 

between the numerical and experimental data is excellent. 

 
1The   contribute disappears in the weak formulation.  
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Fig. 4. Case A – Comparison between the experimental and numerically 

computed data at 1 kHz and 5 kHz. Top: B-scan, bottom: complex plane 

presentation. 

The second case is B (Plate B). Fig. 5 shows the numerically 

computed impedance variation vs the experimental one. A C-

scan representation of the difference between the experimental 

(Fig. 6) and numerically computed magnitude of the 

impedance is shown in Fig. 7. Also in this case the agreement 

is excellent: the ratio between the maximum of the difference 

and the maximum of the magnitude of the numerically 

computed impedance is 9.72×10-3 and 7.06×10-3 for 1 kHz and 

5 kHz, respectively. 
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Fig. 5. Case B – Comparison between the experimental and numerically 

computed data at 1 kHz and 5 kHz. Top: B-scan, bottom: complex plane 

representation. 
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Fig. 6. Case B - C-scan representation of the experimental impedance 

variation at 1 kHz and 5 kHz. 
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Fig. 7. Case B - C-scan representation of the difference between the 

experimental and numerical impedance variation at 1 kHz and 5 kHz. 

 

The third validation is relative to the Case AB that includes 

the two plates A and B in a configuration where plate A 

overlaps plate B; the gap between them is 70 μm. Fig. 8 shows 

the comparison of the experimental and numerical data 

according to the coil position and also depicts the relevant 

complex impedance curves. A C-scan representation of the 

difference between the numerically computed and 
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Fig. 8. Case AB – Comparison between the experimental and numerically 

computed data at 1 kHz and 5 kHz. Top: B-scan, bottom: complex plane 

representation. 
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Fig. 9. Case AB - C-scan representation of the experimental impedance 

variation at 1 kHz and 5 kHz. 
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Fig. 10. Case AB - C-scan representation of the difference between the 

experimental and numerical impedance variation at 1 kHz and 5 kHz. 

 

experimental impedance variation (Fig. 9) is given in Fig. 10. 

Also in this case the agreement is excellent: the ratio between 

the maximum of the difference and the maximum of the 

magnitude of the numerically computed impedance is 

1.65×10-2 and 1.89×10-2 for 1 kHz and 5 kHz, respectively. 
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Fig. 11. Case BA – Comparison between the experimental and numerically 

computed data at 1 kHz and 5 kHz. top: B-scan, bottom: complex plane 

representation. 
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Fig. 12. Case BA - C-scan representation of the experimental impedance 

variation at 1 kHz and 5 kHz. 
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Fig. 13. Case BA - C-scan representation of the difference between the 

experimental and numerical impedance variation at 1 kHz and 5 kHz. 
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The last validation considered is relative to the Case BA, in 

which Plate B overlaps Plate A; the gaps between them is 70 

μm. Fig. 11 shows the numerically computed data vs. the 

experimental one according to the coil position and also 

depicts the relevant complex impedance curves. A C-scan 

representation of the difference between the experimental 

(Fig. 12) and numerically computed data is given in Fig.13. 

Again, the agreement is excellent: the ratio between the 

maximum of the difference and the maximum of the 

magnitude of the experimental impedance is 1.94×10-2 and 

1.37×10-2 for 1 kHz and 5 kHz, respectively. 

VI. CONCLUSIONS 

Complete experimental results were presented for a new 

benchmark problem in eddy current NDT. Contrary to 

previous benchmarks, the current problem provides 

quantitative and precise impedance measurements (a full C-

scan of the area under interest using an XY stage). Certain 

geometrical aspects, like the very thin gap between the plates 

and the combination of two structural variations (hole(s) and 

crack) make the benchmark more challenging than existing 

TEAM Workshop ones. 

The numerical simulations, carried out with an ad-hoc 

integral/FEM numerical model developed in the past, cross-

validate the benchmark data. This numerical cross validation 

is appropriate/required for proposing the specific problem as a 

benchmark to the NDT-community. The agreement is 

remarkable in all considered cases. The numerical 

modelling/validation is non-trivial because of the multiscale 

nature of the problem where a thin crack, air gap and lift-off 

have dimensions negligible with respect to the specimen and 

probe. This poses challenging problems when, for instance, a 

standard FEM code is applied to model this configuration. 
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