
Human-Multi-Robot Task Allocation in Agricultural Settings:
a Mixed Integer Linear Programming Approach

Martina Lippi, Jorand Gallou, Jozsef Palmieri, Andrea Gasparri, Alessandro Marino

Abstract— The use of heterogeneous human-multi-robot teams
enables the combination of complementary skills of these two
different types of agents. To have an effective collaboration, it
is necessary to define a strategy for allocating and scheduling
tasks among them. In this work, we distinguish robots in working
robots and service ones: working robots and human operators can
perform similar tasks in the environment and both are assisted
by service robots. We propose a Mixed-Integer Linear Program-
ming approach that aims to minimize the waiting times of the
working agents, the energy consumption of the service robots, and
the makespan while ensuring that the velocity constraints of the
robots are met and the task ordering is correct. Furthermore, we
propose an online updating strategy that tackles changes in the
parameters of working agents and adapts the plan accordingly
based on a heuristic algorithm. To validate our framework, we
analyze a precision agriculture harvesting application with two
human operators, two working robots, and two service robots.

I. INTRODUCTION

In recent years, robots have become increasingly prevalent
in a wide range of fields thanks to their growing capacity for
context awareness and reasoning. However, collaboration with
human operators remains pivotal in many areas to achieve
successful outcomes. This is particularly true in dynamic and
unstructured environments where full autonomy of the robots
is challenging to realize [1]. Examples of such environments
include precision agriculture, search and rescue operations,
and healthcare settings, to name a few. Within the realm of
human-robot scenarios, we narrow our focus to human-multi-
robot settings where robots are capable of carrying out tasks
autonomously or assisting human operators. In this context, a
defined number of tasks must be completed, and our aim is
to explore the most effective ways to distribute and schedule
these tasks among the available robots and human operators [2].
In doing this, it is necessary to take into account the variable
human behavior, which might be influenced by several factors
such as fatigue, distraction, and changing task requirements [3].

Mixed Integer Linear Programming (MILP) formulations
represent a valuable tool for finding an optimal assignment of
tasks while taking into account possible (linear) constraints
of the problem at hand [4]. Several approaches exist in the
literature which have explored the use of MILP for minimizing
the overall execution time, i.e., the makespan, in collaborative
settings. An example can be found in [5] where multiple robots
and a human operator are considered in the MILP formulation.

M. Lippi, J. Gallou and A. Gasparri are with Roma Tre University, Italy,
{martina.lippi,jorand.gallou}@uniroma3.it, gasparri@dia.uniroma3.it.

A. Marino is with University of Cassino and Southern Lazio, Italy,
{al.marino, jozsef.palmieri}@unicas.it.

This work has been supported by the European Commission under the grant
agreement number 101016906 – Project CANOPIES.

Fig. 1: Illustration of the considered scenario.

A discretization of the time horizon is used which makes it inef-
ficient for long-horizon planning or fine discretization settings.
A set of discrete time points is also exploited in [6] where a
single-robot single-human scenario is analyzed. In addition
to optimizing the makespan, ergonomics aspects are consid-
ered as well to minimize human fatigue. The time-horizon
discretization is overcome, for instance, in the formulation pro-
posed in [7], where additional cost indices based on switching
costs and quality measures are defined. Several features such as
the capability for humans to supervise robot operations when
autonomy is not possible are also included. A MILP formula-
tion is additionally proposed in [8] where the human workload
is taken into account. In this formulation, a prior subdivision
of the tasks into several layers is made based on precedence
constraints and the cycle time of these layers is minimized. A
similar layer architecture of the tasks is exploited in [9] where
priorities are set on the basis of the task dependency order.

Further methodologies for task allocation and scheduling
in human-robot collaborative settings can be found in the lit-
erature. For instance, an AND/OR graph representing the col-
laborative job is employed in [10] to design a scheduler that
is online locally updated in case of failures. A chemical re-
action optimization algorithm is designed in [11] to include
micro-breaks within job-cycles, allowing recovery from fa-
tigue. Interestingly, a discrete Bee Algorithm is adopted in [12]
to realize a cooperative disassembly task by minimizing human
fatigue. A genetic algorithm is proposed in [13] for an assembly
task. Specifically, a simulation tool is realized and exploited
to optimize a fitness function based on task progress, waiting
time, and traveled distance. Multi-agent deep reinforcement
learning has also been applied for a collaborative assembly
task in [14]. However, many of the above approaches do not
take into account the variability in the human parameters.

In this work, we consider a heterogeneous human-multi-
robot setting involving: (i) human operators and working
robots, that can perform operations in the environment, and
(ii) service robots, that provide assistance to them. Taking in-

spiration from the H2020 European project CANOPIES, we
examine a precision agriculture scenario during the table grape
harvesting season as depicted in Figure 1. Specifically, we con-
sider working robots and human operators that carry out box
filling operations with table grape bunches, assisted by service
robots performing box exchange and transporting services. The
proposed approach involves formulating a MILP-based opti-
mization problem that defines the allocation of service tasks
to the robots and their scheduling while minimizing a combi-
nation of waiting time, makespan, and robot energy. Notably,
our approach differs from many previous works in that we also
consider the velocity of the service robots as an output of the
optimization problem. Moreover, we take into account possible
changes in the parameters of the working agents, including
human operators, and design an online updating strategy that
reacts to such changes. We build on our previous work [15],
extending it to a more complex scenario and a more general
formulation with and including a novel replanning strategy. We
validate the approach in a realistic simulator with two humans,
two working robots, and two service robots.

II. PRELIMINARIES

The considered scenario involves a heterogeneous human-
multi-robot team where we identify i) human operators and
ii) working robots (which can be equipped, for instance, with
manipulators), that carry out multiple consecutive operations
within the environment, and iii) mobile service robots, that
provide assistance to the operations. We refer to the first two
categories as working agents. We assume that every time a
working agent completes an operation, a service is needed to
enable the start of the subsequent operation. Furthermore, we
assume that a depot station is present where the service robots
start from and return to after every service. For example, in
an agricultural setting, human operators and working robots
may perform the task of harvesting fruits and filling boxes
with multiple fruits. Meanwhile, service robots may aid them
by replacing the full fruit boxes with empty ones and trans-
porting the full boxes to a designated depositing station. A
depiction of the considered scenario is provided in Figure 1.
In this setup, we are interested in defining a strategy for al-
locating and scheduling the service activities in such a way
to ensure a correct execution of the tasks and optimize the
performance of the overall system, while taking into account
possible variations in the agents’ parameters.

In the following, a formal definition of the overall system
is presented. Given a set S = {s1, s2, .., sn}, we adopt the
following notations: i ∈ S denotes the i-th element of the set,
and |S| represents the cardinality of the set. If the set includes
elements with two indices, such as S = {s1,2, s1,2, .., sn,m},
we use the notation (i, j) ∈ S to refer to the element si,j . As
described above, we have a set of mobile service robots, de-
noted by M, and a set of working agents to assist, denoted by
A. The latter set includes working robots, composing the set
W , and human operators, composing the set H, i.e., it holds
A = H ∪ F . We denote by nm, na, nh, and nw the number of
service robots, working agents, human operators and working
robots, respectively, i.e., it holds |M| = nm, |A| = nw, with

na = nh + nw, |H| = nh, and |W| = nw. We model the
environment as a two-dimensional space, where the subspace
external to the depot is referred to as working area. Each ser-
vice robot m ∈ M is assigned a specific location at the depot,
which we refer to as the base position and indicate with bm.
Similarly, for each working agent a ∈ A, the respective posi-
tion is represented by xa. The path length required to reach
the agent a from the base position of the service robot m is
denoted by lm,a, which is equivalent to the length of the return
journey from the agent to the robot’s base position. We denote
with lmax = maxm∈M, a∈A lm,a the maximum possible path
length to traverse. Note that, in general, the position of the
working agents within the environment can vary over time,
implying that the length variables can also be time-varying.

Additionally, for each mobile service robot m, we take
into account the minimum and maximum cruising velocities,
which are denoted by vmin,m, for which it holds vmin,m > 0
and vmax,m, for which it holds vmax,m ≥ vmin,m, respec-
tively. The maximum velocity is determined by the physi-
cal limitations of the robot, while the minimum velocity is
influenced by both physical constraints (e.g., to overcome
static friction) and the need to limit the robot’s presence in
the working area. We denote with vmin = minm∈M vmin,m

and vmax = maxm∈M vmax,m the minimum and maximum
allowed velocity among all robots, respectively.

As far as the working agents are concerned, every agent a
carries out a set of qa ordered operations. Let τoa,i be the i th op-
eration performed by the agent a, we denote its start time and
end time as oa,i and oa,i, respectively. We indicate the ordered
set of operations of the same agent with Oa = {τoa,1, ..., τoa,qa},
where it holds that oa,i ≥ oa,i−1, ∀i ∈ {2, ..., qa}. In our case
study, as an example, an individual operation corresponds to
filling a box with fruits in an agricultural scenario. By con-
sidering all human and robotic working agents, we obtain the
collective set of operations as O = O1 ∪ ... ∪ Om. To simplify
our notation, we assume that all qa operations executed by an
agent a have the same duration δoa. However, our framework
easily accommodates scenarios where the duration of each op-
eration may differ. Similar to the working agent positions, it is
important to note that also the duration variables may vary over
time. For instance, human operators might be faster or slower
at working depending on the level of fatigue and/or stress,
while working robots may have different operating speeds de-
pending on the variability of the environment in which they are
deployed. This variability can make it more or less complex
for the robots to carry out operations effectively, thus making
them potentially slower or faster.

For each operation τa,i ∈ O, we define a respective assis-
tance activity that a service robot has to carry out. This is
composed of four consecutive phases, also referred to as tasks:
i) a going phase τga,i, where the robot, starting from its depot,
navigates the field to go in the proximity of the working agent
a; ii) a waiting phase τwa,i, where the robot waits for the com-
pletion of i th operation of the agent a to carry out the service;
iii) a serving phase τsa,i, where the robot actually performs the
service for the agent; iv) a depositing phase τda,i, where the
robot returns to the base position at the depot and performs

any conclusive action if needed (e.g., releasing a load at the
depot). To indicate the robot performing the assistance activity
(i.e., the four phases above), we introduce the binary decision
variable Sa,i,m ∈ {0, 1}, ∀(a, i) ∈ O,m ∈ M, that is equal
to 1 when the mobile service robot m serves the i th opera-
tion of the working agent a, and is 0 otherwise. Clearly, when
Sa,i,m = 1, it means that the mobile robot m has to carry out
all four phases of the respective assistance activity. Addition-
ally, we denote the start times of the above four tasks as g

a,i
,

ws
a,i, sa,i, and da,i, respectively, and the corresponding end

times as ga,i, w
s
a,i, sa,i, and da,i, respectively. We use δsm to

represent the time needed for the robot m to perform a service
at a working agent position, and δdm to represent the time to
perform a conclusive action at the depot. For instance, in our
case study, the service task involves box replacement, i.e., the
robot is loaded with a filled box and provides an empty one to
the working agent, while, during the depositing phase, the con-
clusive action involves a box emptying, i.e., the robot releases
the full box at the depot. We denote with δsmax = maxm∈R δsm
and δdmax = maxm∈R δdm the maximum service time and final
action at the deposit among all robots, respectively.

III. PROBLEM STATEMENT AND SOLUTION OVERVIEW

To determine how to allocate and schedule the service activ-
ities, we introduce relevant cost indices. First, we consider the
waiting time of each working agent, representing the agent idle
time during which no operation can be carried out. Second, we
take into account the energy consumption of the service robots
for navigating the environment. Third, we consider the overall
makespan, representing the overall time to complete all tasks.

As far as the waiting time of the working agents is con-
cerned, let wo

a,i be the normalized waiting time associated to
the operation τa,i ∈ O. We compute it as follows

wo
a,i =

(
oa,i − sa,i−1

)
lmax/vmin + δsmax

with i > 1, (1)

i.e., it is given by the difference between the starting time of
the operation and the end time of the previous service task by
a robot, normalized with respect to the maximum time that
a robot may need to reach the working agent and perform
the service. For instance, in our case study, in order for a
working agent to begin filling a new box, a service robot must
replace the previously filled box with an empty one. For the
first operation of each working agent, we consider zero waiting
time, i.e., wo

a,1 = 0, ∀a ∈ A.
As far as the energy contributions are concerned, we first

introduce the average traveling velocities of the service robots.
Specifically, we denote by vga,i the average velocity of the robot
reaching the agent a for the i th operation, and we obtain it as

vga,i =
∑

m∈M Sa,i,mlm,a/(ga,i − g
a,i

), (2)

that is the ratio between the distance traveled by the serving
robot (i.e., the one with Sa,i,m = 1) to reach the agent and
the time taken to complete the travel. Similarly, we define the
average velocity to return to the base position vda,i as

vda,i =

∑
m∈M Sa,i,mlm,a

da,i −
∑

m∈M Sa,i,mδdm − da,i
, (3)

where the term
∑

m∈M Sa,i,mδdm represents the time spent at
the depot station and is not included in the robot’s travel time.
Based on these quantities, we define an energy-like term ea,i
which increases with higher traveling velocities [16] as follows

ea,i =
(
ega,i + eda,i

)
/2, (4)

where

ega,i = ke

(
vga,i − vmin

vmax − vmin

)
, eda,i = ke

(
vda,i − vmin

vmax − vmin

)
,

with ke a positive constant.
As far as the makespan is concerned, we indicate it with the

variable ∆ and obtain its normalized version as

∆ =
max(a,i)∈O da,i − t0

na(2lmax/vmin + δsmax + δdmax)
, (5)

obtained by considering that all tasks are executed at the slow-
est speed and where t0 is the initial time of the experiment.

We can now state the main problem addressed in this work.
Problem 1. Consider a system composed of na working agents
in the set A, including nh human operators and nw working
robots, with positions xa, ∀a ∈ A. The working agents re-
alize operations O in the environment with agent-dependent
duration δoa. Consider nm mobile service robots in the set M
with base positions bm at the depot, ∀m ∈ M, assisting the
working agents. Each assistance activity comprises four tasks:
going to the working agent, waiting for him/her/it, serving, and
returning to the depot. Our goal is to plan the allocation and
scheduling of all the tasks, i.e., the binary decision variables
Sa,i,m, ∀(a, i) ∈ O,m ∈ M and the real decision variables
g
a,i

, ws
a,i, sa,i, da,i, ga,i, oa,i, w

s
a,i, sa,i, da,i, and oa,i, while

minimizing a combination of working agent waiting time, robot
energy and makespan. The plan must be able to adapt to varia-
tions over time of the positions and operation durations of the
working agents, which can occur particularly for humans.

We address the above problem with a two-layer architecture.
First, an optimal allocation and scheduling layer is responsible
for generating the plan; second, an updating layer is in charge
of modifying the plan according to variations of the working
agent parameters. Regarding the optimal solution, we formu-
late a MILP problem generating the allocation and scheduling
variables by assuming that all the parameters of the working
agents are constant. Then, we take into account possible varia-
tions in these parameters in the updating strategy. Specifically,
we assume that a monitoring module is available that estimates
position and duration of the working agents. Based on these
values, we establish whether the same allocation can be pre-
served, by only possibly re-scheduling the tasks, or if a new
optimal solution should be computed. Note that the develop-
ment of a monitoring module is beyond the scope of the paper,
but many approaches exist in the literature that can be adopted
for this purpose, such as [17]. Finally, note that by construction
a feasible solution to Problem 1 can always be found.

IV. MILP FORMULATION

In this section, we focus on the formulation of the
MILP problem. The inputs of the problem consist of,
∀m ∈ M, a ∈ A: the minimum and maximum cruising ve-
locities of the service robots, vmin,m, vmax,m, the path lengths

lm,a, the times δsm and δdm for the service and depositing ac-
tions, the number qa of operations of each working agent
and the duration δoa. Based on these inputs, the allocation and
scheduling decision variables must be determined. According
to Problem 1, we aim to minimize the following cost function

c = α
∑

(a,i)∈O,
a∈H

wo
a,i + β

∑
(a,i)∈O,
a∈W

wo
a,i + γ

∑
(a,i)∈O

ea,i + κ∆, (6)

with α, β, γ, κ positive weights. The cost function is modeled
in such a way to achieve a balance between the different rele-
vant cost indices. Specifically, it aims to minimize the waiting
time of both humans and working robots, in order to reduce
their idle time. Additionally, it seeks to minimize the energy
consumption of service robots, extend their lifespan and reduce
costs. Finally, it aims to minimize the overall makespan, which
is particularly relevant for the depositing tasks, for which there
is no subsequent waiting time of a working agent. It is evident
that some of these indices are in opposition to each other. For
instance, to decrease the waiting time for humans, it might be
necessary to increase the velocity of the service robots, which
results in greater energy consumption. Hence, the balance that
is attained by the solution depends on the selection of weights.

The following constraints are identified.
1) Assignment of the assistance tasks :∑

m∈M Sa,i,m = 1, ∀(a, i) ∈ O. (7)
This guarantees that each operation (a, i) of a working agent
is served by exactly one service robot, i.e., among all robots in
M, only one of them should satisfy the condition Sh,i,m = 1.

2) Duration for going tasks:

ga,i − g
a,i

≥ Sa,i,mlm,a/vmax,m, (8a)

ga,i − g
a,i

≤ Sa,i,mlm,a/vmin,m, (8b)

∀(a, i) ∈ O,m ∈ M. The above constraints guarantee that the
time duration scheduled for each going task does not violate
the limitations on the traveling velocity of the robots. Specifi-
cally, the first inequality ensures that, for each going task, the
scheduled duration is above the minimum travel time required
by the robot m assigned to the task (having Sa,i,m = 1). This
minimum travel time is obtained as lm,a/vmax,m, i.e., by con-
sidering the maximum speed of the robot during the traveling.
Similarly, the second inequality guarantees that the duration is
below the maximum travel time lm,a/vmin,m.

3) Duration for depositing tasks :

da,i − da,i ≥ Sa,i,mlm,a/vmax,m + Sa,i,mδdm, (9a)

da,i − da,i ≤ Sa,i,mlm,a/vmin,m + Sa,i,mδdm, (9b)
∀(a, i) ∈ O,m ∈ M. Similar to the previous constraints,
the above inequalities guarantee that the limits on the robot
velocities are satisfied for each depositing task. In this case, the
duration of the task also includes the time for the possible final
depositing action δdm. In our case study, this time corresponds
to the time for emptying the full box at the depot station.

4) Sequence of the assistance tasks:
ws

a,i = ga,i,

sa,i = ws
a,i,

da,i = sa,i,

∀(a, i) ∈ O (10)

The above equalities establish the correct sequence of the as-
sistance phases. Specifically, the first constraint states that, for
each operation (a, i) ∈ O, the start time of the waiting phase
(i.e., ws

a,i) coincides with the end of the going phase (i.e., ga,i),
meaning that the waiting phase is immediately consecutive
to the going one. Similarly, the second and third constraints
ensure that the service phase follows the waiting one, and the
depositing phase follows the service one, respectively.

5) End time of service tasks:
sa,i ≥ oa,i +

∑
m∈M Sa,i,mδsm, ∀(a, i) ∈ O. (11)

This inequality allows to properly set the end time of the service
tasks. In particular, it requires, for each operation (a, i) ∈ O,
that the end time of the service task is greater than or equal to
the end time of the operation performed by the working agent
a plus the service time of the robot assigned to the task (i.e.,
having Sa,i,m = 1). This guarantees that, to serve a working
agent, the latter must have completed the operation of interest.

6) Sequence of operations of working agents:

oa,1 = t0, ∀a ∈ A (12a)

oa,i = oa,i + δoa, ∀(a, i) ∈ O (12b)

oa,i ≥ sa,i−1, ∀(a, i) ∈ O (12c)
These constraints determine the sequence of the operations per-
formed by the working agents. Specifically, the first equation
sets the start time of the first operation of each agent to the
initial time of the experiment. The second equality imposes
that the end time of each operation (a, i) (i.e., oa,i) is given
by the corresponding start time (i.e., oa,i) plus the respective
duration δoa. Finally, the last inequality ensures that a working
operator cannot start an operation if the previous one has not
been served. This is encoded by enforcing that the start time
of the operation (a, i) must be greater than or equal to the end
time of the service task (a, i− 1).

7) Execution of one task at a time:
zp,k − ua,i ≥ −K(2− Sa,i,m − Sp,k,m)

−K(1−Quz
a,i,p,k,m),

(13a)

ua,i − zp,k ≥ −K(2− Sa,i,m − Sp,k,m)−KQuz
a,i,p,k,m,

(13b)
∀m ∈ M, (a, i), (s, k) ∈ O with (a, i) ̸= (s, k), where K is
an arbitrarily large constant, and, with an abuse of notation,
we consider u, z ∈ {g, ws, s, d} meaning that, for instance,
when z = g the variable zp,k corresponds to g

p,k
. In addition,

Quz
a,i,s,k,m ∈ {0, 1} is an auxiliary binary decision variable

detailed in the following. The above constraints ensure that
each service robot only executes a task at a time, i.e., it cannot
assist multiple working agents at the same time. Specifically,
let us analyze the case when a service robot m has to provide
assistance for two operations (a, i) and (p, k) (i.e., Sa,i,m =
Sp,k,m = 1), and let us consider, for instance, z = g and u = d.
In this case, the above constraints enforce that either it holds
that the going task for (p, k) is executed after the depositing
task (a, i) is completed, i.e., g

p,k
≥ ga,i with Ugd

a,i,p,k,m = 1,

or the opposite, i.e., g
a,i

≥ gp,k with Ugd
a,i,p,k,m = 0. In the

case the robot m is not assigned to both the operations (i.e.,
either it holds Sa,i,m = 0 or Sp,k,m = 0), no constraints are

enforced by (13a) and (13b) for the relative start and end times.

Note that the proposed formulation is not limited to precision
agriculture settings but is applicable to different service tasks
and settings, such as assembly tasks in industrial contexts.

V. ONLINE UPDATING STRATEGY

When solving the MILP problem, we assume that all the
parameters of the working agents remain constant over time.
However, especially regarding the human operators, it is evi-
dent that changes in their parameters, i.e., duration variables
δah and locations xa, can occur. To address this issue, we de-
sign an online updating strategy. Briefly, once a variation is
detected, an update algorithm is designed to adjust the times of
the tasks and operations accordingly in order not to violate any
constraint. For instance, if a person starts working at a slower
speed than at the beginning, this may lead to invalid times for
the corresponding robot services. Afterward, we evaluate the
cost function of the updated plan and compare it with the one
obtained from the original schedule. If the difference in cost
exceeds a specified threshold, we recalculate the solution by
resolving the optimization problem. It is important to note that
when a change is detected, we do not want to automatically
simply recalculate the optimal solution every time, since this
may lead to constantly apply major changes in the plan. This
may be not desirable especially in tasks where human opera-
tors are involved, where these updates may cause interruptions
and disrupt their workflow, leading to frustration and decreased
productivity [18]. Furthermore, since MILP problem are NP-
hard, continuously re-compute the optimal solution might not
be feasible. This aspect could be mitigated by implementing ap-
propriate heuristics as, for example, in [19], which however is
out of the scope of this paper. In the following, we denote with
topt the time at which the most recent optimal solution was
obtained by solving the MILP problem. Then, we denote with
tuse the time when the currently used plan was last computed
or updated. Clearly, at the beginning tuse = topt. Finally, we
use tch to represent the time at which a change in the parame-
ters was detected. Only the tasks that have not been completed
by time tch are considered in the following. The notation y(t)
is used to represent the value of variable y at a specific time t.

A. Update of the plan

Algorithm 1 summarizes the main steps for updating the plan
given the agent a∗ with changing parameters. At the beginning,
we initialize the plan at time tch with the last one computed
at time tuse (line 1). For the simplicity of notation when we
omit the time variable, we refer to tch. We start analyzing the
first operation of the agent a∗ that has not been completed yet
at time tch and loop over all the subsequent ones. We update
the final time of the current operation (a∗, i) according to the
duration δoa∗(tch) (line 3) and get the index m∗ of the service
robot assisting the operation (i.e., having Sa∗,i,m∗ = 1) in
line 4. In addition, we initialize to false a boolean variable that
will be used to determine whether a checking must be done
on shifting the scheduled times. At this point, we differentiate
the analysis on whether a change in the operation duration or
in the lengths has been recorded. In the first case, we check

Algorithm 1 Updating Algorithm
Input: agent a∗ with updated parameters

1: plan(tch)← plan(tuse)
2: for i ∈ {1, ..., qa∗} and oa∗,i < tch do
3: oa∗,i ← oa∗,i + δoa∗ (tch)
4: m∗ ← assigned robot(S, a∗, i)
5: check shift← false
6: if δoa∗(tch) ̸= δoa∗(tuse) and sa∗,i < oa∗,i then
7: ws

a∗,i ← oa∗,i, sa∗,i ← oa∗,i, sa∗,i ← sa∗,i + δsm∗ ,
da∗,i ← sa∗,i

8: check shift← true
9: else if lm∗,a∗(tch) > lm∗,a∗(tuse) and sa∗,i > tch then

10: if ga∗,i − g
a∗,i
≤ lm∗,a∗/vmax,m∗ {Going task speeding

up not possible} then
11: ga∗,i ← g

a∗,i
+ lm∗,a∗/vmax,m∗

12: ws
a∗,i, w

s
a∗,i, sa∗,i ← ga∗,i, sa∗,i ← sa∗,i + δsm∗ ,

da∗,i ← sa∗,i

13: check shift← true
14: if check shift then
15: if i < qa∗ and oa∗,i+1 < sa∗,i then
16: oa∗,i+1 ← sa∗,i

17: if da∗,i − da∗,i ≤ lm∗,a∗/vmax,m∗ + δdm∗ {Depositing
task speeding up not possible} then

18: d
prev
a∗,i ← da∗,i,

19: da∗,i ← da∗,i + lm∗,a∗/vmax,m∗ + δdm∗

20: η ← da∗,i − d
prev
a∗,i {Shifting quantity}

21: for r ∈M do
22: Tr ← ordered assistance operations robot (r, S)
23: for (ar, ir) ∈ Tr consecutive to (a∗, i) do
24: plan← shift assistance tasks (ar, ir, η)
25: for (a, i) ∈ O, with i > 1 do
26: if oa,i < sa,i−1 then
27: oa,i ← sa,i−1, oa,i ← oa,i + δoa
28: tuse ← tch

if the start time of the respective service task is lower than
the updated end time of the operation (line 6), i.e., the service
robot wants to serve the operation (a∗, i) before it has been
completed. If this condition is met, we need to update the plan.
Specifically, we first set the end of the waiting task and the start
time of the service task related to (a∗, i) equal to oa∗,i and then
update the end time of the service task and the start time of
the depositing one accordingly (line 7). We additionally set the
boolean variable to true (line 8). In the case of variation in the
working agent position, we check if the path length has been
increased (thus potentially leading to constraint violations) and
if the service has not been completed by time tch. If these
conditions are met, we first try to speed up the going phase
of the robot performing the assistance activity by considering
the maximum velocity vmax,m∗ (line 10). If speeding up is not
possible or not sufficient, we update the final time of the going
task, as well as the respective waiting and service tasks and the
start time of the depositing task (lines 11-12). Similar to the
previous case, we set the boolean variable to true. From line 14,
we start checking if shifting the subsequent tasks is necessary
in case the boolean variable is equal to true. More in detail,
we first update the starting time of the next operation of the
working robot a∗ if necessary (lines 15-16). Then, we check
if the robot can speed up during the depositing phase (leaving
da∗,i unchanged) in order not to update the subsequent tasks

(line 15). If this is not possible, we store the current depositing
end time in a variable d

prev

a∗,i (line 16) and update it by assuming
the maximum velocity of the service robot (line 17). Next, we
compute the shifting quantity η = da∗,i − d

prev

a∗,i (line 17) and
update the depositing end time (line 18). At this point, we shift
all consecutive assistance tasks: for each service robot r, we
get the set Tr of ordered operations that the robot assists (line
22) and, for each operation (ar, ir) consecutive to (a∗, i), we
apply a shift of η for the corresponding assistance tasks.

After analyzing all operations of the agent a∗, we finally
update the start and end times of the working agents if needed
(lines 25-27) and set the variable tuse equal to tch.

B. Strategy for re-computation
To evaluate if a re-computation of the MILP solution is

needed, we evaluate the cost variation compared to the one
generated at time topt. As stated above, we only focus on the
tasks which are not completed by time tch and denote with
C+ the cost function related to these tasks. We re-compute the
MILP solution if the following condition is verified

µ ≜ |C+(topt)− C+(tuse)|/C+(topt) > µt (14)
where µt is a positive threshold, C+(topt) represents the cost
function related to the tasks of interest according to the optimal
solution computed at time topt, while C+(tuse) is the cost
function related to the same tasks according to solution in use
computed at time tuse. The idea behind the condition in (14)
is that a significant difference between the quantities C+(topt)
and C+(tuse) can be indicative of the fact that the quality
of the solution in use might be compromised since it has a
cost significantly different compared to the last optimal one.
Therefore, in this case, the optimization problem is solved
again and the plan is updated accordingly. Note that for tasks
already started, we enforce that they are allocated to the same
service robots. The variable topt is finally set equal to tch.

VI. SIMULATION RESULTS

The validation of the proposed framework was executed
within a virtual reality environment developed specifically for
the project CANOPIES with Unity Engine, as shown in Fig-
ure 1, and reproducing a table grape vineyard. The considered
vineyard consisted of 21 rows, with each row 3m large and
15m long. Regarding the agents, we considered four working
agents (na = 4), comprising two humans (nh = 2) and two
robots (nw = 2), and two service robots (nm = 2). Specif-
ically, the two working robots were composed of an Alitrak
DCT-350P tracked mobile base and a PAL Robotics dual-arm
system, while the two service robots were only given by the
Alitrak tracked mobile base. Each working agent was equipped
with a box initially empty and was required to perform qa = 3
box filling operations ∀a ∈ A, while the service robots were
requested to provide box exchange services. The duration vari-
ables of these box filling operations were uniformly chosen
in the interval [250, 350] s. The box replacement times during
service tasks δsm and the box release times during depositing
tasks δdm were set to 10 s and 5 s, respectively, for all service
robots, while the minimum vmin,m and maximum vmax,m ve-
locities were selected as 0.2 m/s and 0.8 m/s, respectively, for

all m ∈ M. Regarding the working agent positions and the
working agent base position, they were selected as shown in
Figure 1. Finally, we set the weights α = γ = κ = 1 and
β = 0.8 and the re-allocation threshold µt = 0.1. We utilized
MATLAB interfaced with the Gurobi solver, to determine the
MILP solution, and with ROS middleware, to command the
robots and humans in the scene. A video showing the simu-
lation results can be found in the supplementary material and
at the link1 (with higher resolution). Note that the box filling
operations and the box exchange activities are not visualized
in the simulation since they are part of the ongoing activities
of the simulator development.

In Figure 2, the initial plan obtained by solving the MILP
problem, reaching cost c(topt) = 0.998, is depicted on the left-
hand side. The first two columns are associated to the service
robots, the third and fourth columns to the humans, and the last
two to the working robots. The time evolution is represented
on the y axis. For the service robots, the thick lines represent
the time from the start of a going task to the end of the service
task, while the thin lines represent the depositing tasks. For
the simplicity of representation, we do not make a distinction
between going, waiting and servicing phases in the picture.
For the working agents, the lines represent the times of the
operations. The same colors are used to denote a working agent
operation and the respective assistance tasks of a service robot.
The figure shows that all the constraints for the correct execu-
tion of the tasks are fulfilled, e.g., each working agent waits for
a service robot to pick up the previous box to start a new box
filling operation. In addition, the robot velocities meet their
allowed range (not shown in the figure for the sake of brevity)
and the waiting times of the working agents are minimized.
After starting the execution of the initial plan, we simulated
that at time tch = 300 s a change in the human parameters
occurred. Specifically, we considered that the second human
moved by 10 m along his row in the vineyard in the direction
opposite to the depot. This caused the length variables lm,2

to change for all service robots. Therefore, according to the
strategy in Section V, we first updated the plan by executing Al-
gorithm 1, resulting in the plan shown in the middle of Figure 2.
In the updated plan, we can observe higher waiting times of the
working agents and makespan leading to an overall cost equal
to c(tuse) = 1.353. This led the coefficient µ to overcome the
threshold µt. Hence, the re-computation of the MILP solution
was triggered as shown on the right of Figure 2, resulting in a
reduced final cost equal to c = 1.038.

In addition, a simulation campaign was conducted to validate
the proposed online updating strategy and study the effect of
working agent variability on the optimality of the generated so-
lutions. To this aim, we applied progressively higher variations
to the duration variables of the working agents and analyzed the
costs of the respective solutions. Specifically, we considered
variations in the set V = {60, 80, 100, 120, 140, 160, 180} and,
for each variation value ν, we applied perturbations distributed
according to a uniform distribution U(ν − 20, ν + 20). The
sign of the perturbation was obtained by uniformly selecting

1https://youtu.be/FU5PntUct7Y

Fig. 2: Left: initial plan of the tasks on the left; middle: second plan updated at time tch; right: reallocation at time tch = 300 s.

60 80 100 120 140 160 180

Perturbation

1

1.1

1.2

1.3

1.4

C
o
st

Algorithm

Ours

MILP

Fig. 3: Simulation campaign for perturbations of the working agent
duration variables.

it between positive and negative. The change time was set to
tch = 250 s, while the working agent with variations was ran-
domly selected. Figure 3 shows the results obtained in terms
of cost as the variation increases. Specifically, we compared
the cost obtained by always re-computing the MILP solution
(in red), by always running Algorithm 1 (in blue), and by exe-
cuting our proposed updating strategy in Section V (in yellow).
For each variation value, we applied 100 perturbations and re-
ported the respective average and standard deviation of the cost.
Obviously, we can observe that the cost obtained by always
computing the MILP solution is the lowest since it corresponds
to selecting the optimal solution at all times. Similarly, the
cost obtained with only running Algorithm 1 is the highest
since a very sub-optimal solution might be generated due to
the shifting phases. Our approach instead leads to costs that fall
in the middle between the above-mentioned two. In detail, for
low perturbations, similar costs compared to the ones of the al-
gorithm are found since the condition in (14) is not met; as the
perturbations increase, we observe that our approach provides
a greater gap from the algorithm cost since it performs reallo-
cation in appropriate cases to preserve optimality. The figure
thus shows the balance reached by our approach between the
sub-optimality of the heuristics and the computational burden
of the continuous MILP re-computation.

VII. CONCLUSION

We developed a framework for task allocation and schedul-
ing in human-multi-robot settings where working agents, in-
cluding working robots and human operators, perform oper-
ations in the environment and are assisted by service robots.
A two-layer architecture was proposed: first, a MILP prob-
lem determines the allocation and scheduling variables for the
services in order to minimize waiting times and energy con-
sumption; next, an online updating strategy reacts to possible
changes in the parameters of the working agents. A table-grape
harvesting scenario in a precision agriculture context was con-
sidered to validate the proposed approach. As future work, we

aim to make the cost function weights adaptive and validate
the approach in a real agricultural field.

REFERENCES

[1] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge,
and O. Khatib, “Progress and prospects of the human–robot collabora-
tion,” Autonomous Robots, vol. 42, pp. 957–975, 2018.

[2] S. E. Hashemi-Petroodi, S. Thevenin, S. Kovalev, and A. Dolgui, “Oper-
ations management issues in design and control of hybrid human-robot
collaborative manufacturing systems: a survey,” Annual Reviews in Con-
trol, vol. 49, pp. 264–276, 2020.

[3] C. L. Bethel, K. Salomon, R. R. Murphy, and J. L. Burke, “Survey of
psychophysiology measurements applied to human-robot interaction,”
in IEEE Int. Conf. Robot and Human Interactive Comm., 2007, pp.
732–737.

[4] C. A. Floudas and X. Lin, “Mixed integer linear programming in pro-
cess scheduling: Modeling, algorithms, and applications,” Annals of
Operations Research, vol. 139, pp. 131–162, 2005.

[5] S. Zhang, Y. Chen, J. Zhang, and Y. Jia, “Real-time adaptive assem-
bly scheduling in human-multi-robot collaboration according to human
capability,” in IEEE Int. Conf. Robot. Autom., 2020, pp. 3860–3866.

[6] M. Pearce, B. Mutlu, J. Shah, and R. Radwin, “Optimizing makespan
and ergonomics in integrating collaborative robots into manufacturing
processes,” IEEE Trans. Autom. Science and Engineering, vol. 15, no. 4,
pp. 1772–1784, 2018.

[7] M. Lippi, P. Di Lillo, and A. Marino, “A task allocation framework for
human multi-robot collaborative settings,” in IEEE Int. Conf. Robot.
Autom., 2023.

[8] A. Pupa and C. Secchi, “A safety-aware architecture for task scheduling
and execution for human-robot collaboration,” in IEEE/RSJ Int. Conf.
on Intell. Robots and Syst., 2021, pp. 1895–1902.

[9] S. Alirezazadeh and L. A. Alexandre, “Dynamic task scheduling for
human-robot collaboration,” IEEE Robot. Autom. Letters, vol. 7, no. 4,
pp. 8699–8704, 2022.

[10] A. Pupa, W. Van Dijk, C. Brekelmans, and C. Secchi, “A resilient and
effective task scheduling approach for industrial human-robot collabora-
tion,” Sensors, vol. 22, no. 13, p. 4901, 2022.

[11] M. Zhang, C. Li, Y. Shang, and Z. Liu, “Cycle time and human fatigue
minimization for human-robot collaborative assembly cell,” IEEE Robot.
Autom. Letters, vol. 7, no. 3, pp. 6147–6154, 2022.

[12] K. Li, Q. Liu, W. Xu, J. Liu, Z. Zhou, and H. Feng, “Sequence planning
considering human fatigue for human-robot collaboration in disassem-
bly,” Procedia CIRP, vol. 83, pp. 95–104, 2019.

[13] T. Bänziger, A. Kunz, and K. Wegener, “Optimizing human–robot task
allocation using a simulation tool based on standardized work descrip-
tions,” J. Intell. Manuf., vol. 31, pp. 1635–1648, 2020.

[14] T. Yu, J. Huang, and Q. Chang, “Optimizing task scheduling in human-
robot collaboration with deep multi-agent reinforcement learning,” J.
Manuf. Syst., vol. 60, pp. 487–499, 2021.

[15] M. Lippi, J. Gallou, A. Gasparri, and A. Marino, “An optimal alloca-
tion and scheduling method in human-multi-robot precision agriculture
settings,” in IEEE Mediterranean Conf. on Control and Autom., 2023.

[16] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. G. Lee, “A case study of mobile
robot’s energy consumption and conservation techniques,” in IEEE Int.
Conf. Adv. Robot., 2005, pp. 492–497.

[17] R. Maderna, P. Lanfredini, A. M. Zanchettin, and P. Rocco, “Real-time
monitoring of human task advancement,” in IEEE/RSJ Int. Conf. on
Intell. Robots and Syst., 2019, pp. 433–440.

[18] G. Hoffman, “Evaluating fluency in human–robot collaboration,” IEEE
Trans. Human-Mach. Syst., vol. 49, no. 3, pp. 209–218, 2019.

[19] M. Fischetti and A. Lodi, “Heuristics in mixed integer programming,”
Wiley Encyclopedia of Oper. Res. and Manag. Science, 2010.

