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Summary

The digitisation of the energy sector represents a strategic lever to respond to global
challenges in terms of sustainability, efficiency, interoperability and resilience, ori-
enting systems towards a full application of the Smart Energy concept.

This research investigates the central role played by measurements and Smart
Meters in Smart Monitoring processes, a strategic concept in the reference con-
text, irrespective of the type of energy vector under consideration. The analysis
is centred on two pivotal parameters: this investigation elucidates the direct influ-
ence of Electrical Signature Quality and Monitoring Quality on the performance
of advanced digital tools in the smart field, including Load Profiling, Digital Twin,
Predictive Diagnosis and Non-Intrusive Load Monitoring. The investigation is
conducted with a concrete and methodological approach, analysing the digital po-
tential of smart meters currently on the market and proposing a new ad-hoc smart
meter architecture for the implementation of the aforementioned digital tools. Fur-
thermore, the research addresses the issue of cyber security, proposing non-invasive
methodologies based on side-channel for the protection of critical infrastructures.
It demonstrates how electromagnetic emissions can be used to detect potential
threats without compromising business continuity.

The findings demonstrate that a comprehensive approach to measurement qual-
ity and digital security can facilitate and expedite the transition to safer, more
efficient, and sustainable energy systems. The author posits that Smart Monitor-
ing not only represents an advanced energy management tool but also a strategic
enabler of new services and functionalities to address the challenges of the global
energy transition.
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Introduction

Digitisation can break down the boundaries between the energy sectors, increasing
their flexibility, interoperability, and resilience, offering efficient integration of new
systems, technologies, and digital services. The electricity sector is at the heart of
this transformation and has been the first to project and enable the full application
of the Smart Energy concept, aiming at an increasingly efficient and sustainable
use of energy.

As economies depend on reliable and affordable electricity, in addition to the
urgent need to address climate change, this projected growth requires a radical
transformation of the world’s energy systems. Achieving this transformation re-
quires policy actions, enabling regulatory frameworks, new business models, and
large-scale investments. However, alongside global efforts to decarbonise energy
systems, the world needs innovative approaches to the design and operation of
electricity systems, as well as the development of new technologies and services
aimed at smart and energy-conscious energy use. Without such innovation, increas-
ing electrification could lead to greater energy insecurity, unnecessary transmission
and distribution losses, and missed cost-saving opportunities for consumers and
energy producers.

In this context, Smart Monitoring emerges as a central aspect of modern energy
management; it represents a milestone in the digitisation of the energy sector,
focusing on the real-time collection, analysis and management of energy flow data.
This is also thanks to the implementation of technologies and new digital services
that make electricity systems more dynamic, efficient, reliable, and sustainable.
In particular, Smart Meters. In fact, the number of smart meters worldwide will
exceed 1 billion by 2022, a 10-fold increase since 2010. Meanwhile, connected
devices with automated controls and sensors are estimated to reach 13 billion in
2023, up from less than a billion a decade ago. This number could reach more than
25 billion in 2030. And there are similar trends in electricity grids, with around
320 million distribution sensors distributed globally. All these devices generate
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data: smart meters collect consumption details and transmit real-time data from
networks. If well utilised, these data provide information on consumption patterns
and patterns, predicts demands, and helps to better manage energy systems. But
for this to happen, data must be collected, stored, analysed, and shared according
to certain criteria, while ensuring privacy and cyber security. These requirements
include multiple layers of interoperability that are in reality far from seamless.
This creates enormous challenges for energy systems, but also brings enormous
potential benefits. Effective management helps increase energy efficiency and can
benefit energy systems in many ways. For example, it has been estimated that in
the European Union, proper data sharing could potentially unlock over 580 GW of
flexible energy resources by 2050, which would then cover over 90% of the flexibility
needs of EU electricity grids.

However, globally, the use of smart meter data is still below its potential, with
only 2-4% of available data currently being used. Despite the increasing amount
of information generated by smart meters and distributed sensors, only a small
fraction of this data is actually used to improve the efficiency of energy systems.

Smart monitoring and digitisation together offer the possibility of overcoming
these barriers, enabling the efficient use of data with new services and advanced
functionalities that enable a more dynamic and conscious energy management.
In this context, the quality of energy measurements becomes a decisive factor.
It is no longer enough to collect data: this data must be accurate, reliable and
representative of the phenomena it is intended to monitor.

The quality of the data, therefore, is not just a technical issue but represents
the fulcrum around which Smart Energy applications revolve. This parameter can
take on several facets, but from a measurement point of view, it can be divided
into two key parameters: Electrical Signature Quality, and Monitoring Quality.
These directly influence the performance of algorithms used in the smart energy
field, such as Load Profiling, Digital Twin, Predictive Diagnostics, Forecasting,
Non-Intrusive Load Monitoring, etc.

This research is part of this framework of digital transformation of the energy
sector, with the aim of exploring and deepening the potential of Smart Monitoring
and related technologies. In the field of smart energy, the role that measurements
are called upon to play today and the impact of their associated quality in smart
analysis processes is analysed in detail. The details of the research are presented
below.



The first chapter introduces the concept of Smart Energy and the crucial role
of energy measurements in this context. It explores how smart meters, integrated
with advanced digital technologies, can provide a detailed, real-time view of energy
consumption, enabling more efficient and sustainable energy management. The
importance of ensuring a high quality of measurements, both in terms of Monitor-
ing Quality and Electrical Signature Quality, is emphasised as a prerequisite for
successful Smart Monitoring applications.

The second chapter delves into the crucial role of smart meters in the collection
of high-quality data, which is necessary for the development of advanced smart
energy applications. It highlights the importance of the quality of energy measure-
ments, in particular the Electric Signature Quality and the Monitoring Quality,
in ensuring the reliability of monitoring and optimisation algorithms. An inno-
vative dataset is introduced that offers an unprecedented level of detail in energy
measurements, capable of supporting the development of advanced techniques.

The third chapter presents a methodological approach to Load Profiling in-
tended for integration into digital and data-based monitoring. This approach is
conceived above all as an enabler of digital services. Moreover, the presentation
of an analysis protocol and illustrative examples demonstrates how the Electrical
Signature Quality and the Monitoring Quality can markedly enhance the efficacy
of algorithms in the context of Smart Energy. The findings of the methodological
work offer indispensable guidance for the design of Load Profiling.

The fourth chapter explores the use of Load Profiling techniques for the diag-
nosis and detection of anomalies in electrical systems. The crucial role of energy
measurement quality in Predictive Diagnosis is emphasised, highlighting experi-
mentally how high-quality data can improve the accuracy and timeliness of main-
tenance interventions.

The fifth chapter examines Non-Intrusive Load Monitoring as a strategic tech-
nology for optimising energy monitoring processes and reducing operating costs.
It discusses how adequate Electrical Signature Quality can improve load disaggre-
gation, even in complex scenarios, and contribute to more efficient and sustainable
energy management.

The sixth chapter addresses the crucial issue of data security in digital energy
networks and Cyber Security. Using a “Side Channel” approach, it explores how
electromagnetic emissions, generated by devices during their operation, can be
hacked and/or used to identify and prevent potential security threats, without
requiring direct access to the systems. This demonstrates how Smart Monitoring
can go beyond energy management, also contributing to the protection of critical
infrastructures from cyber attacks, thus ensuring greater security and reliability of
the overall energy system.



Introduction

The seventh chapter presents the design of an innovative smart meter with
metrological and communication properties suitable for advanced, state-of-the-art
smart energy applications. In summary, the aim is to give an insight into the life
cycle of a smart meter, from initial design to practical implementation, characteri-
sation and calibration; highlighting the technical challenges faced and the solutions
adopted in line with the standards and requirements of the industrial application
environment,.

The knowledge advancement, the implementation of algorithms and hardware
components, the deep analysis of each development and the validation in real-world
or near-real-world conditions establish the contribution of this doctoral dissertation
as solid new ground in monitoring of smart energy systems.

In summary, the research offers an in-depth and multidisciplinary analysis of
the challenges and opportunities offered by digitisation in the energy sector, with
a special focus on the quality of measurements in Smart Monitoring processes.
Through a rigorous and innovative approach, it aims to provide useful tools and
knowledge to improve the efficiency, safety and sustainability of the energy systems
of the future.









Chapter 1

Smart Energy and
Digitalisation

1.1

Highlights

Innovation in energy management: This research explores the revo-
lutionary impact of digitisation on the energy sector, with a focus on the
“Smart Energy” concept and the importance of intelligent energy monitoring
to optimise resource use and reduce waste.

Central role of Smart Monitoring: It is highlighted how Smart Monitor-
ing, supported by advanced digital technologies such as artificial intelligence
and machine learning, enables detailed and real-time analysis of energy con-
sumption data, improving the efficiency and resilience of systems.

Smart Meters as the core of digitisation: The chapter emphasises the
importance of smart meters, key devices that enable real-time and multi-
physical monitoring, enabling a new era of energy management based on
accurate and reliable data.

Electric Signature and Measurement Standards: The concept of the
electric signature is explored in depth, explaining how its advanced analysis
can provide crucial information for the actual fulfilment of smart energy ob-
jectives, using recognised standards such as IEEE 1459 and TEC 61000-4-30.

Security challenges and data protection: The research highlights the
critical issue of cyber security, highlighting the risks associated with digiti-



CHAPTER 1. Smart Energy and Digitalisation

sation in the energy sector and proposing innovative solutions to ensure the
protection of infrastructure and sensitive data.

e Practical applications of smart energy: The chapter presents various
areas of application of smart monitoring in the context of smart energy, show-
ing how digital technologies are radically changing the way we approach the
analysis of energy flows.

1.2 Introduction

The evolution of the energy sector is unstoppable, driven by the advancement of
digital technologies and the growing urgency to address environmental challenges.
In this context, the concept of “Smart Energy” has gained extraordinary relevance.
This concept encompasses a wide range of digital solutions and strategies aimed at
improving energy efficiency, reducing waste and promoting intelligent management
of energy resources. At the heart of this transformation is the important issue of
monitoring energy consumption, an essential pillar in promoting an efficient and
sustainable energy culture.

In this scenario, the energy sector is undergoing a constant transformation
in terms of digitisation and the development of new energy services based on the
intelligent use of energy information. In Europe, for example, the development and
use of smart metering systems and techniques has been encouraged by European
Directives in recent years and supported by the “International Energy Agency” -
IEA [1]. These directives set strict requirements for member states concerning both
metering and charging, identifying the use of smart metering systems as one of the
tools for improving energy efficiency. In addition, the IEA has launched a four-year
inter-agency initiative, “Digital Demand-Driven Electricity Networks” - 3DEN [2],
which works to accelerate progress in the modernisation of the electricity system
and the efficient use of distributed energy resources through policy, regulation,
technology and investment guidance.

It is therefore necessary to introduce a new paradigm for energy management,
aimed at maximising energy efficiency, thus reducing waste due to sub-optimal man-
agement of energy installations, to lower the environmental and economic impact.
It should be noted that efficient energy use also arouses considerable interest in
commercial and industrial activities, especially if they are highly energy-intensive.
The reason is simple: energy efficiency makes it possible to do the same thing with
less energy, reducing costs and burdens. The energy sector was among the first to
use digital technologies to facilitate the management and operation of networks,
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as well as to modernise plants. Today, digitalisation is an indispensable tool for
achieving the objectives set by the European Union within the “Clean Energy for
All Europeans” package [3], but more generally for meeting the goals of the energy
transition. An energy transition that has led to a radical transformation of the
traditional electricity system, which has gone from being a passive network - where
the flow of energy passed from the place of production to the place of consumption
- to becoming an active network, where energy flows follow a discontinuous and
bidirectional path.

But above all, digitisation has supported the development of smart grids, the
evolution of urban centres into smart cities, and of living spaces into smart buildings
and smart homes. Digitalisation has also brought about a radical change in the
world of industry, which first evolved towards a 4.0 system and is now oriented
towards an Industry 5.0 model. In practice, it makes the concept of smart energy
possible.

In this context, Smart Monitoring emerges as a central aspect of modern en-
ergy management; it represents a milestone in the digitisation of the energy sector,
focusing on the collection, analysis and real-time management of energy consump-
tion data. This technology makes it possible to monitor energy consumption in
detail, detect inefficiencies and optimise the use of resources, offering a clear and
precise view of energy consumption patterns thanks to innovative digital methods
and tools. Today, Smart Monitoring is distinguished by its ability to integrate
advanced instruments and tools, such as smart meters, and digital technologies
such as artificial intelligence and machine learning, which enable automated and
accurate analysis of energy data. Not only does it improve energy management
and efficiency, but also the interoperability and resilience of electrical systems, in
any application context. Smart Monitoring has long played a strategic role in
Smart Grids, which use data to balance energy supply and demand in real-time,
in smart cities and smart buildings, where energy monitoring helps to create more
efficient and sustainable environments. In addition, the industry, increasingly ori-
ented towards the Industry 5.0 paradigm, benefits greatly from Smart Monitoring,
which enables improved predictive maintenance, reduced downtime and optimised
operations.

As repeatedly stated in this research by the author, it is clear that smart meters
are the key link between the digital revolution and the energy sector, enabling a new
era of real-time, efficient and multi-physics monitoring.
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This chapter explores these aspects in detail, with a particular interest oriented
towards the role that the smart meter is called upon to play today concerning the
smart energy context and the relative methodologies for implementing smart mon-
itoring. The objective is to bring out a series of fundamental aspects and concepts,
useful for understanding the subsequent chapters, regarding the real added value
associated with the use of smart meters as well as the associated influence parame-
ters, especially regarding the extraction and synthesis of the monitored “Electrical
Signature”.

The structure of the chapter is as follows: first, key concepts relating to the
context of smart energy and energy digitisation are defined and the relative reg-
ulatory reference scenario is illustrated. Next, smart monitoring and the smart
meter concept are presented, highlighting the concrete benefits of their adoption.
Subsequently, of fundamental importance, the electric signature concept and the
extraction and synthesis methodologies are discussed, as well as the associated pa-
rameters that influence the performance of a smart monitoring process. Finally,
some typical smart energy applications are summarised; applications that will be
studied in subsequent chapters.

1.3 Context and Definitions

In today’s scenario of constant digital transformation and evolution, the concept
of smart energy lends itself to various interpretations. Smart Energy can be un-
derstood as the set of techniques and devices that aim at a more efficient and
sustainable use of energy. However, in addition to efficiency, two other factors
must be considered: energy use and consumption. In detail [4]:

e Energy Efficiency is the ability of a physical system to achieve a particular
result by using less energy while increasing its overall performance;

e FEnergy Use refers to how energy is used and exerted, regarding how it is
managed in terms of time and the application area in which it is used;

o FEnergy Consumption refers to the amount of energy used by a system, ma-
chine, building or company during a given period; it reflects the use of natural
resources and the level of exploitation of energy sources.

By managing these factors intelligently and sustainably, today’s energy and en-
vironmental problems can be addressed. Together, as shown in Figure 1.1, these
three factors define the concept of energy performance, i.e. the “Measurable Out-
come related to Energy Efficiency, energy use and consumption”.

10
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Energy
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Energy
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Performance

Figure 1.1: The concept of Energy Performance.

These concepts are fundamental to addressing today’s energy and environmental
problems, as energy is becoming localised: it is not only how much that counts,
but also when, where and how it is produced and consumed. Therefore, it is
crucial to use energy intelligently and consciously. A better understanding of where,
how and why energy is used can help companies, or consumers in general, to
unlock opportunities for immediate energy savings and long-term energy efficiency
improvements [5]. Increasing the monitoring of management systems, integrating
smart meters and controls and carrying out energy audits are some actions that
can help to significantly reduce companies’ energy use.

According to the current European Commissioner for Energy, Kadri Simson,
and the Executive Director of the IEA, Fatih Birol, it can be stated that [6] [7]:

e smart meters and controls, when used to identify and manage energy con-
sumption, can lead to a reduction in energy consumption of up to 40%;

e it has been shown that energy audits, supported by appropriate monitoring
campaigns, can generate an average potential saving of 18% of total energy
consumption;

e smart energy management systems can lead to an average reduction of 10-
17% of annual energy consumption;

e training and awareness campaigns on the smart use of energy and digital
tools provide annual energy savings of almost 6% in companies, and when
combined with technological support and expertise, these can increase to
21%;

11
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e the automatic identification by state-of-the-art tools of inefficient equipment
and replacement with energy-saving options can lead to immediate energy
savings, usually with short payback periods;

e the implementation of digital tools for predictive diagnosis to optimise main-
tenance and management processes can reduce energy costs by up to 30%,
particularly in heating and cooling, refrigeration, lighting and insulation,
among others.

It is therefore a transversal subject, which includes the use of advanced tech-
nologies to manage and optimise the production, distribution and consumption
of energy. By combining innovative tools and techniques, Figure 1.2, this disci-
pline aims to improve the analysis, monitoring, maintenance, safety, efficiency and
sustainability of the energy system, regardless of the application context.

® os . ®
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DIGITALi ZATI{.}_N
2 R ® g

Figure 1.2: What is digitalization?

it

The fields of application where the use of digital tools and smart energy man-
agement is found are many and cover different areas of the energy and industrial
sector. Some examples include [8-10]:

e Smart Grids - are an electricity grid that use digital and other advanced
technologies to monitor and manage the transport of electricity from all gen-
eration sources to meet the different electricity demands of end users. Smart
grids coordinate the needs and capabilities of all generators, grid operators,
end users and electricity market stakeholders to manage all parts of the sys-
tem as efficiently as possible, minimising costs and environmental impacts
while maximising system reliability, resilience, flexibility and stability.

e Smart Buildings - are equipped with integrated automation systems that can
control the building’s lighting, temperature, ventilation, heating and air con-
ditioning. Thanks to installed sensors and devices, smart buildings can reduce

12
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energy consumption and improve system efficiency. They are also equipped
with energy management systems that can monitor energy consumption in
real-time and analyse the data to identify any waste or inefficiency.

e Smart Cities - are cities that use advanced technologies to improve the qual-
ity of life for citizens, increase the efficiency of urban systems and reduce
environmental impact. In a smart city, data collected by sensors and moni-
toring systems are analysed to obtain useful information for urban planning
and the management of public services. This leads to reduced costs and a
more sustainable urban environment. In smart cities, citizen participation is
often promoted through the use of online platforms and mobile applications,
which allow citizens to report problems, suggest useful tips and participate in
urban planning. This interaction promotes greater citizen empowerment and
participation in city management. Thus, smart cities represent an innovative
solution to urban challenges, creating more efficient and sustainable cities.

e Electric mobility - smart energy plays an important role in the promotion
of electric mobility, through the creation of charging facilities in people and
the management of energy demand. Thanks to these infrastructures, electric
cars can be recharged efficiently, safely and sustainably.

e Smart Factory - as well as smart manufacturing, are manifestations of the
technological transformation and digitisation of production processes, known
as Industry 4.0 and 5.0. Thanks to interconnected networks of machines,
communication mechanisms and computing power, the smart factory is a
cyber-physical complex that harnesses advanced technologies such as arti-
ficial intelligence and machine learning to monitor analyse data, promote
automated processes and learn from experience.

Overall, digital technologies and data have enormous potential to accelerate
transitions to clean energy in the power sector. In power systems, digital technolo-
gies can help integrate increasing shares of variable renewable sources and improve
grid reliability, while in end-use sectors they can improve energy efficiency and
reduce emissions. Advances in digital technologies and services, cost reductions
and ubiquitous connectivity have accelerated the digital transformation of energy
in recent years, particularly in electricity grids. Grid-related investments in digital
technologies have grown by more than 50% since 2015; by 2023 they have reached
about 19% of total grid investments [11].

There is an increasing focus on the monitoring and distribution segment, which
now accounts for more than 75% of total digital expenditure. The number of smart
meters worldwide exceeded 1 billion in 2022, a tenfold increase since 2010. The
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TEA estimated that connected devices with automated controls and sensors reached
13 billion in 2023, up from less than 1 billion a decade ago. This number could
reach more than 25 billion in 2030. Similar trends are being observed in electricity
grids, with around 320 million distribution sensors deployed globally. There has also
been a substantial increase in investment in electric vehicle charging infrastructure,
which doubled in 2022 compared to the previous year.

However, much of the progress to date is limited to developed countries and fur-
ther efforts by policymakers and industry are needed to realise the full potential of
digitisation to accelerate transitions to clean energy. This includes the implemen-
tation of enabling standards, policies and regulations that prioritise innovation and
interoperability while addressing cyber-security and data privacy risks. In addition
to accelerating the implementation of key digital technologies, there is a need to
make better use of existing data and digital assets to deliver benefits to consumers
and the energy system; in 2019, it was estimated that utilities exploited only about
2-4% of collected data [12]. For instance, Transmission System Operators (TSO)
recognise their underutilisation of data opportunities. A survey of 10 TSOs shows
that most agree that their control rooms do not make full use of data analysis
applications, even when they have fully digitised networks equipped with sensors
and remote control.

1.3.1 Reference regulatory standards

Countries have been preparing their infrastructures for digitisation for some time
now, and increasingly so. In the context of the smart energy revolution, the Eu-
ropean Union has promulgated the Clean energy for all Europeans package [3], a
set of directives and regulations in the field of energy. Furthermore, in 2022, the
European Union launched the action plan Accelerating the Digital Transformation
of the European Energy System [13], for the digitisation of the energy system to
promote connectivity and interoperability, foster coordinated investments in smart
grid technologies, empower customers, improve cyber-security, promote greater ef-
ficiency and design effective governance through joint planning. But that is not
all, over time a series of regulations and packages have followed to help define the
“Europe strategy” [14], including: Directive 2009/72/EC, Directive 2012/27/EU,
Energy Efficiency First principle, National energy and climate plans, FIT FOR
55, REPowerEU plan, etc. These legislative packages and regulations aim to pro-
mote energy efficiency, the use of new technologies, and renewable energies and the
flexibility of the energy system on a European level.

14
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The TEA’s Tracking Clean Energy Progress (TCEP) [15], assesses recent devel-
opments for more than 50 components of the energy system that are critical to
clean energy transitions, following what was also established at the last COP28
in Dubai [16]. The assessed components include sectors, sub-sectors, technologies,
infrastructure and cross-cutting strategies. Today, thanks to all these packages and
regulations, the analysis and perspectives at the European level reported according
to the TCEP are certainly more promising than a decade ago. Innovative digital
infrastructures are gaining importance in electricity grids, both in distribution and
transmission, with investment growth of around 7% in 2022 compared to 2021. The
distribution sector accounts for about 75% of all investments in grid-related digital
infrastructure, through the implementation of smart meters and the automation of
substations, lines and transformers using sensors and monitoring devices [17].

In addition, as early as 2006, Directive 2006/32/EC [18] identified the use
of smart metering systems as one of the tools for improving energy efficiency
through appropriate algorithms and techniques. In 2009, the Electricity Directive
2009/72/EC [19] declared the obligation for Member States to ensure the adoption
of smart metering systems. Finally, in 2012, the European Energy Efficiency Direc-
tive 2012/27/EU [20] reaffirmed the importance of the use of smart meters, with
stringent requirements for Member States regarding both metering and billing. In
addition, in recent years, the IEA has recommended policies and new services that
improve the reliability, affordability and sustainability of energy, also promoting
the Clean Energy Transitions Programme (CEPT) [21] with the goal of global net
zero emissions through safe and people-centred clean energy transitions, with a
focus on major emerging and developing economies.

Italy, in particular, is at the forefront in this regard, as in addition to being the
first to have completed the complete installation of first-generation smart meters
for electricity on distribution networks, to date, according to “ANIE Federazione”
in the “Sistema Confindustria” and “Smart Metering Group - SMG” [22], it has
approximately 36 million smart meters installed. In Italy, like other European
countries, significant steps have been taken to address the challenges and exploit
the opportunities offered by smart energy. The Piano Nazionale Energia e Clima
(PNIEC) [23] represents the central pillar of Italian initiatives. This plan is aligned
with European objectives and establishes a roadmap for the energy transition in
Italy. It contains ambitious targets for energy efficiency, renewable energy sources
and the reduction of greenhouse gas emissions. Digitisation, innovation and green
transition also appear among the main axes of the Piano Nazionale di Ripresa e
Resilienza (PNRR) [24], where there is a close connection between digitisation and
green transition and, therefore, between energy and climate objectives on the one

15



CHAPTER 1. Smart Energy and Digitalisation

hand and innovation objectives on the other. Following the European strategy, in
Ttaly, of particular relevance concerning this objective are Directive 2018/2022/EU
[25] on energy efficiency and Directive 2018/844/EU [26] on the energy performance
of buildings. In particular, the use of new technologies is encouraged to create smart
buildings that, hand in hand with the development of smart grids, enable the goal
of more efficient energy performance to be achieved. In this sense, Italian legislation
also promotes the development of sustainable mobility, a crucial aspect of the smart
energy ecosystem, including measures in favour of electric and sustainable vehicles.

Furthermore, in this context, Legislative Decree 102/2014 [27], establishes a
framework of measures for the promotion and improvement of energy efficiency,
which contribute to the achievement of the national energy savings target and
contribute to the implementation of the European principle of putting energy effi-
ciency first. The aforementioned decree provides a comprehensive regulation of the
entire energy production, transmission, distribution and marketing cycle, aimed at
removing barriers in the energy market and overcoming market failures that hinder
efficiency in the supply and end use of energy. In particular, it provides detailed
guidance on how to plan, perform and document energy audits/diagnoses in vari-
ous sectors (carried out by certified entities such as Energy Services Companies -
ESCo), and provides a set of recommendations for the identification of energy effi-
ciency improvement opportunities, following the technical standards UNI CEI/TR
11428 and UNI CEI EN 16247 [28, 29].

To this end, companies, especially energy-hungry ones, have in recent years
implemented suitable metering and sub-metering networks within their plants, to
assess the efficiency and effectiveness of the processes implemented and define en-
ergy improvement strategies. In 2019 alone, 3.2 million meters were installed in
companies in Italy.

1.4 Smart Monitoring

In the context of smart energy, the Smart Monitoring concept represents a milestone
in the transformation of the energy sector towards a more efficient, sustainable and
intelligent management of energy resources. This advanced technology focuses on
the real-time collection, analysis and management of energy consumption data,
providing unprecedented insight into energy use patterns. A crucial feature of
Smart Monitoring is its ability to monitor energy consumption in a detailed and
constant manner. This not only makes it possible to track energy consumption
patterns but also to detect any anomalies or inefficiencies in the loads associated
with the energy structure in question.
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For example, a key role of Smart Monitoring is played in the improvement and
implementation of Smart Grids, which use data from Advanced Metering Infras-
tructure (AMI) devices to balance energy supply and demand in real-time. This
approach is not only limited to the energy distribution sector but also to the resi-
dential sector, enabling users to make informed energy management decisions (such
as adjusting devices to reduce consumption peaks or detecting energy losses at an
early stage, actions to increase energy efficiency [30]). In addition, there are also
practical advantages in today’s increasingly digitised and smart Industry 5.0. For
example, Smart Monitoring enables immediate operator-machine collaboration by
visualising the electrical parameters of industrial machines in real-time, making it
possible to perform maintenance operations remotely when necessary, avoiding the
interruption of plant operations for the intervention of specialised personnel. This
minimises operating expenses and has a significant impact on the environment.

Smart Monitoring is constantly evolving, with an increasing integration of ad-
vanced technologies such as artificial intelligence and machine learning [31]. These
technologies enable automatic analysis of energy consumption data, detecting pat-
terns and trends that might escape simple human observation, making monitor-
ing even more sophisticated and responsive to changing energy market conditions.
However, it is crucial to address privacy and data security concerns in this area.
As this technology collects sensitive data on energy consumption, it is essential to
ensure that the information is protected from unauthorised access and used only
for legitimate purposes. Energy companies and regulators must therefore establish
strict data security policies and ensure compliance with privacy regulations.

As illustrated in the Figure 1.3, the smart monitoring concept can be applied to
different sectors [32]: residential, industrial and electricity distribution and trans-
mission. In general, regardless of the application scenario, the process is always
aimed at meeting objectives in terms of: monitoring, analysis (AI), management,
efficiency, diagnostics, retrofit (extraction of quality or system performance indices)
and cost savings, in accordance with smart energy objectives.

1.5 Smart Meter

It is well known that the first phase of a smart monitoring process, cannot be sepa-
rated from a phase dedicated to the acquisition and collection of data and therefore
the use of meters. Therefore, it is possible to state that: although digitalisation
today represents the real revolution in Energy, Smart Meters represent the means
that makes this epochal evolution possible, opening the door to real-time, efficient
and multi-physical smart monitoring.
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Figure 1.3: Context and objectives of a smart monitoring process.

Nevertheless, the process of digitisation has stimulated the development and
adoption of increasingly advanced meters, which have in turn undergone a process
of evolution over time. In fact, in recent decades, the metering sector applied to
energy monitoring systems has developed considerably thanks to increased invest-
ments by states, authorities and companies. In particular, as mentioned above, the
spread of smart metering systems is currently enjoying particular success in Europe,
especially thanks to legislation in many countries that promotes, or even obliges,
the replacement of old metering devices with modern smart meters. The process
supported for years by the “European Smart Meter Industry Group” (ESMIG),
focusing on achieving tangible benefits for consumers and society [33]. An example
of this progress is represented by the considerable number of commercial metering
solutions offered on the market today, or in the field of distribution by the Open
Meter 2.0 produced by the company e-distribuzione, a state-of-the-art electronic
meter that offers a series of remarkable technical specifications [34].

However, the success of smart meters is not only due to national and interna-
tional policies triggered by the energy and climate crisis, but above all is linked
to the multitude of advantages and opportunities that these devices now offer in
every application. To date, there is no universal definition, but regarding the liter-
ature [35], it is possible to state that smart meters are electronic metering devices
capable of providing energy services and information regarding the consumption,
billing and operation of electrical, water, gas and heating systems.
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Naturally, to be considered smart, smart meters must meet minimum require-
ments for measurement, processing, operation and control, according to European
Recommendation 2012/148 /EU [36]. Furthermore, ESMIG also highlights the min-
imum characteristics of a smart meter in terms of: remote reading; two-way com-
munication protocols; support of tariff systems; and remote control over energy.

The great potential of smart meters, a fundamental characteristic that the
following research seeks to highlight (Figure 1.4), is linked to the fact that: since
energy consumption in all its forms pervades the operation of every single piece
of equipment or complex system, the use of smart meters offers the consumer the
possibility not only of monitoring, pricing and power quality analysis as is the case
to date, but also of obtaining useful information to profile and disaggregate the
monitored loads, assess their state of health, efficiency and how their behaviour
evolves over time.

Billing

Monitoring

Load Profiling B
& Digital Twin

Power Quality

— Predictive
Diagnosis

Analysis Non-Intrusive
& Forecasting Load Monitoring

Figure 1.4: Potential services and functionalities offered by smart meters.

The real added value associated with the use of smart meters is evident due to
the new functionalities and services offered associated with energy measurements,
regardless of the application and physical context [37].

In this context, chapter 7 discusses some aspects on the design and imple-
mentation of innovative instruments, capable of operating in today’s increasingly
digitised energy scenario, in accordance with reference standards. Furthermore,
an innovative smart meter prototype developed by the author is presented that is
able to offer multi-physical (electrical and mechanical/thermal) monitoring with
an integrated approach, while offering high flexibility and scalability.
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1.6 Electrical Signature

Each device or electrical system, whether simple or complex, is characterised by
its own unique “Electrical Signature” that distinguishes it from others. That is,
any device, e.g. connected to the power supply network, when in operation, leaves
an imprint of itself on the system that feeds it, the properties and characteristics
of which depend on many factors, including: operating conditions, state of health,
state of operation of the power supply system, etc.

An electrical signature therefore means everything the system or device leaves
behind on the system to which it is connected, i.e. the entire harmonic spectrum of
voltage and current absorbed by the load and/or electrical system being monitored.
From a theoretical point of view, such information is complicated to obtain, as the
absorption spectrum by definition is a concept that can be extended to infinity.
It is no coincidence that the Fourier transform, the main tool for signal analysis,
is applied to continuous signals in the [—oo + oo] range (In 1994 Gilbert Strang,
an American mathematician, described the FFT (Fast Fourier Transform) as the
most important numerical algorithm of our lifetime, and it was included in Top
10 Algorithms of 20th Century by the IEEE magazine Computing in Science and
Engineering).

Of course, from a practical measurement point of view, to be able to analyse
a signal, it must first be acquired, then sampled and discretized; this acquisition
is characterised by a finite observation time. For these reasons, the entire world
of signal processing is based on the DFT (Discrete Fourier Transform [38]) or
most often on the FFT, which ensures shorter processing times thanks to certain
algorithmic expedients that reduce the computational cost.

In this context, the concept of electrical signatures is frequently referred to
throughout the following research, highlighting its peculiarities and associated
metrological aspects, as well as the role it now plays in smart monitoring processes.

1.6.1 What and how it is necessary to extract the Electrical
Signature

It is not always possible to use advanced analysis tools for detailed extraction
of the electrical signature (time, cost, hardware and software limitations, etc.),
or at other times a high degree of detail may not be required if the application
under consideration does not need it. For example, if the monitoring activity
performed on an electrical device is only aimed at recording the energy absorbed,
such as billing operations, the meter will only need to be able to calculate the
active power and integrate this value over time. At other times, for a slightly
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better view, in terms of the power of the monitored system, it may be useful to
also display the “classic” parameters of apparent power, power factor and reactive
power simultaneously, to also have an idea of the type of load connected to the
system.

It is a different matter if the meter, in addition to performing pricing functions,
is also called upon to perform Power Quality or predictive diagnostics functions
(e.g. Motor Current Signature Analysis). In this case, the information that the
meter has to extrapolate is much more and necessarily requires harmonic analysis
of the signals.

Therefore, it is easily understood that it is the application that defines the
degree of accuracy and detail of the extrapolated electrical signature. In particular,
from a practical point of view, the latter will be represented by a finite and reduced
number of parameters, which can be derived and calculated using appropriate
metrics and standards.

1.6.2 ITIEEE1459 and IEC61000-4-30 Standard

In today’s harmonically distorted electrical scenario, a set of power definitions is
required that can maintain its veracity and reliably describe the properties of the
system. The selection of appropriate power parameters has an impact on system
efficiency. The criticality of the choice is reflected in the measurement algorithms
and data acquisition systems, which are designed to validate the reliability of the
expected results, cost savings and quality of service.

Power definitions in the electrical sector can be divided into two main categories
[39, 40]: energy-based definitions and shape-based definitions. The former empha-
sises the transferred energy and power concerning the signal waveform, while the
latter aims to ensure that the output of a signal is as close as possible to a pure
sinusoidal waveform.

From a functional point of view, a power theory that can be considered valid
should meet some basic requirements [41]. Firstly, it should apply to both single-
phase and multi-phase systems, thus covering a broad spectrum of applications.
Furthermore, this theory must be clear and easy to understand, as well as require
minimal computational load, so that it can be implemented efficiently even in sys-
tems with limited resources (IoT and smart meters). Another crucial aspect is the
reliability of the theory under non-sinusoidal conditions; in these cases, the met-
rics adopted must still provide accurate and useful results. It should also make it
possible to assess power quality, identify possible sources of distortion and deter-
mining the burdens caused by harmonics on the power grid. Finally, there must be
an accurate breakdown of the different power contributions, to optimise both the
energy use and the economic costs of the grid.
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However, despite the multiplicity of efforts and results proposed over the years
by power theories [42] (Bodeanu, Akagi-Kanazawa-Nabae, Emanuel, Czarnecki,
Fryze, Sharon, Page-Filipski, Depenbrock, etc.) it can be said that there is still no
generalized theory that meets all the proposed criteria. For example, at present,
under non-sinusoidal conditions and the presence of harmonics, var-meters give
different results with errors of up to 200% because they present an operating prin-
ciple based on definitions developed eighty years ago for balanced and symmetrical
three-phase systems [43, 44]. In addition, the increasing presence of harmonics
in the grid corresponds with increasing attention to their effects on the grid itself
[45]. Although many current measurement specifications do not define accuracy
requirements in the presence of harmonics, meters must be able to screen the en-
ergy transmitted at the fundamental frequency from the remaining harmonics. Due
to the separation of fundamental and harmonic components, for each power term,
the IEEE 1459 Standard proposes an optimal set of parameters, suitable for smart
meters [46].

The publication of the IEEE 1459 Standard represents, without a shadow of
a doubt, an important reference point for Power Theory. Furthermore, the scien-
tific community strongly supports the mutual integration [47] of Standard IEEE
1459 and Standard IEC 61000-4-30 [48]; this would simultaneously include both
the study of power flows and the evaluation of power quality parameters. This
would lead to a deeper understanding of the phenomena related to energy util-
isation. The IEC 61000-4-30 standard defines the measurement methods, time
aggregation, accuracy and evaluation, for each energy quality parameter to ob-
tain reliable, repeatable and comparable results. TEC 6100-4-30 standardises the
measurements of: Power frequency; Supply voltage magnitude; Flicker; Voltage
dips/sags and swells; Voltage interruptions; Supply voltage unbalance; Mains sig-
nalling voltage; Rapid voltage changes; Magnitude of current; Current unbalance;
Voltage and Current harmonics, and interharmonics (IEC 61000-4-7 [49]).

The combination of these concepts and definitions is not just a pure mathemat-
ical formalisation but has as its goals the evaluation of the quality of electricity
transmission and utilisation, the improvement of pricing, and the development of
more accurate measurement methods. In this context, the use of smart meters
certainly represents a key element, as they provide the necessary capabilities to
continuously monitor and improve energy management.

Therefore, thanks to smart meters and the ability to extract all these parame-
ters and indices (features), there is the possibility of implementing a multitude of
new digital services and functionalities, aimed at fully meeting the Smart Energy
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objectives. Monitoring, billing and Power Quality, but above all the implementa-
tion of techniques and algorithms capable of extracting useful information to profile
and disaggregate the monitored loads, assess their state of health, define feedback
and efficiency retrofits are just some of the potentialities offered. A true energy
intelligence is at the heart of the energy digitisation process.

1.7 Smart Meter Influence Parameters

As previously stated, to be considered “smart”, smart meters must possess min-
imum measurement, processing, communication and management and control re-
quirements. In general, it is fundamental to highlight that, although there is no
complete standardisation in this regard, the effectiveness and efficiency of a network
of metering and sub-metering systems are closely related to (Figure 1.5:

e i) the quality and quantity of measurement information collected from the
field;

e i) to the ability to convey the system’s information quickly (concerning the
dynamics of the application) and reliably.

The first property refers to the Quality and Quantity of the measurement in-
formation extracted from the system or more generally to the Monitoring Quality
(MQ) and the Electrical Signature Quality (ESQ), which certainly also influence the
cost of the smart meter; while the second property is related to the communication
system employed by the smart meter.

Electrical Communication, ||

Signature
Quality svity L

Figure 1.5: Influencing parameters that have the greatest impact on the
performance of a smart monitoring process.

Thus, the MQ, the ESQ and the communication methodology implemented
represent fundamental pillars in Smart Monitoring processes. The accuracy of
the sensors and the measurement chain, the sampling frequency of the data, their
resolution and the reliability of transmission play a crucial role in generating reliable
information on energy consumption. The quality of the final result is closely linked
to these properties of the smart meters.
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1.7.1 Monitoring Quality - MQ

It refers to the metrological capabilities of the smart meter, i.e. it reflects the
accuracy required by smart meters and defines the precision of energy consumption
measurements. MQ is a crucial parameter for assessing the effectiveness of the
metering system. Typically, meters are classified into different accuracy categories,
such as classes A, B and C, according to IEC EN50470-1/2 [50, 51]. The choice
of accuracy class greatly influences the quality of the collected data. For example,
class A meters offer far less measurement uncertainty than class C meters, but at
the same time, the cost is higher.

It should be emphasised that an incorrect acquisition of energy consumption
(data collection) has repercussions on the entire analysis process. This is an aspect
that is often considered less relevant, but which has greater consequences on the
quality of the final results, as any measurement errors will propagate throughout the
process regardless of the type of application. From the acquired quantities, typically
voltage and current, other parameters, quality or system performance indices can be
determined, and AT algorithms can be implemented for energy efficiency, diagnosis
and energy retrofit, in accordance with smart energy objectives.

Therefore, as data acquisition is commonly related to the use of meters and
smart meters installed in the vicinity of the electrical systems being monitored, the
accurate definition of the MQ parameter becomes essential to ensure the reliability
of measurements and the representative of the data acquired.

1.7.2 Electrical Signature Quality - ESQ

It refers to the computational capabilities of the smart meter, i.e. the number of
electrical parameters extracted from the electrical signature of a monitored load or
electrical system.

ESQ represents a highly technical parameter in smart monitoring processes;
as mentioned earlier, the electrical signature represents everything a device leaves
behind once it is powered, e.g. the entire harmonic spectrum of voltage and current
absorbed. The ESQ allows one device to be accurately distinguished from others,
as each device has a unique electrical signature that distinguishes it from other
devices.

However, it is important to emphasise that an indiscriminate increase in the
number of measured parameters (i.e. a high ESQ) does not always benefit the
process in question, as many of the extracted features may have a low sensitivity to
variations in the monitored system. When this happens, the increase in the number
of measured features could lead the analysis algorithms to make wrong decisions,
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e.g. in a Load Profiling process to under- or over-estimate the actual number of
energy states of the monitored system, as analysed in [52, 53]. No less important
is the fact that the more parameters one decides to measure and/or calculate on
board the measuring instrument, the higher the hardware and software costs to be
borne; just think of the parameters relating to the IEC 61000-4-7 standard [12],
which to be measured require the use of devices capable of performing a frequency
analysis through FFT (Fast Fourier Transform), hence the use of high sampling
frequencies.

Therefore, the high number of non-significant characteristics may in some cases
produce worse results than the use of traditional power indices such as active power,
non-active power and apparent power. In other situations, it may be necessary to
push the quality of the monitored electrical signature to high levels, including
harmonic information. Therefore, it is crucial to conduct a careful and balanced
analysis of ESQ parameters, sometimes using feature selection algorithms, with the
aim of monitoring and analysing only those parameters that are highly sensitive
to changes in the operational state of the monitored devices. The careful choice of
parameters is therefore essential to ensure efficient, effective and intelligent moni-
toring.

1.7.3 Communication system

Smart metering applications typically favour communication technologies that have
particular aptitudes for operating in industrial environments, with good robustness
to electromagnetic interference, and that are also characterised by ease of instal-
lation, integration with other industrial devices, and above all are inexpensive to
implement [32]. For these reasons, despite the advantages of wireless solutions,
in industrial environments, the choice typically falls on systems based on wired
technologies. In addition, whenever possible, attempts are made to exploit existing
communication infrastructures; the following is a brief description of some of those
most frequently used in smart monitoring contexts.

For example, in energy distribution networks, when there is no ad-hoc net-
work for communication and little data to exchange, smart meters implement PLC
(Power Line Communication) technology. That is, a much higher frequency carrier
signal is superimposed on the electrical current of the distribution system, which
can then be easily separated using filters. In this way, the distribution system
current and the data signal share the same transmission medium. A large num-
ber of devices can be connected even over long distances with data rates of up to
14 Mbps. Today, PLC systems in modern smart grids are being replaced by the
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M-Bus (Meter-Bus - EN 13757). Developed by the University of Bremen and the
University College of London, it is a simple and cost-effective European standard
for networking and remote reading of smart meters. The system is fully compli-
ant with the European standard EN 1434; it offers a high number of connectable
devices, robustness, minimal cost and acceptable transmission speeds.

In industrial networks and the field of distributed automated systems, we find
“Fieldbuses”, a term set in the IEC to define the communication standard between
different devices, which can be control or field devices (sensors). Serial standards
for fieldbuses include RS-485 and CAN (Controller Area Network - ISO 11898-1).
Initially applied in the automotive sector, CAN is now also used in many embedded
industrial applications, where a high level of noise immunity is required. Another
widely used standard is Modbus, a serial communication protocol consisting of a
single master and slaves (max. 247). The master is the device that establishes com-
munication and exchanges data with each of the slaves. The slaves are the smart
meters installed in the system and the master is the central unit that manages, co-
ordinates, interrogates and records the information received in special databases.
The Modbus protocol was born and exalts its characteristics in industrial environ-
ments, guaranteeing stability and reliability even over long distances (max. 1200
metres) in the presence of disturbances.

Finally, among the most popular communication technologies that smart me-
ters implement today, one cannot miss the Ethernet protocol. Currently, as a wired
technology, it covers more than 70 per cent of the entire home networking mar-
ket and is now a standard present and distributed in all companies, homes and
buildings. It allows data of all kinds and types to be exchanged, guaranteeing low
costs, high bandwidth, and reaching transmission speeds of over 1000 Mbps. The
cabling is extremely simple, modular, and hierarchical, and thanks to appropriate
measures, it is possible to make the system robust to electromagnetic noise.

Thus, there is no single communication technology for smart meters, but the
choice depends on the application context. The “best” solution is the one that
offers features and performance that are perfectly compatible with the application
specifications with the industrial need to keep implementation and development
costs sustainable and competitive.
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1.8 Cyber security in the smart energy field

One of the main issues related to digitisation is data confidentiality, which becomes
crucial in the context of energy consumption monitoring. The increasing integration
of digital technologies and smart metering systems, such as smart meters, exposes
energy infrastructures to an increasing number of cyber attacks [54]. Indeed, the
collection of detailed data by devices such as smart meters increases concerns about
data privacy and ownership [55]. These attacks can have serious consequences,
such as the theft or manipulation of data, and, in extreme cases, compromise the
stability of the electricity grid, with extensive economic and social repercussions.
To get an idea, in the context of the Smart Grid, Advanced Metering Infrastructure
can pave the way for hackers who might attempt to control smart meter switches to
cause load fluctuations, or even manipulate and alter the load requirements of the
grid. The result is that power flows are altered, compromising the stability of the
electricity system, and creating the possibility of a domino effect that can lead to a
blackout. A cyber attack can bring entire infrastructures to their knees and cause
huge losses. According to an analysis conducted by Siemens [56], approximately
EUR 223.5 billion in total losses incurred by small and medium-sized enterprises in
Germany alone in 2021 were recorded. The value of unreported cases is probably
higher.

It is evident that in this scenario, energy companies, which traditionally only
dealt with system engineering processes (such as design, implementation, integra-
tion, procedures and maintenance), must now integrate cyber security services and
technologies into these processes. This can lead to significant changes in the con-
figurations, capabilities and constraints of new systems.

However, today there is a significant gap between the Information Technology
level and the Operational Technology level. While continuous IT security measures
in Information Technology are already taken for granted in many locations, the
situation is unfortunately different in Operational Technology. This is why it is
essential that the understanding of cyber security of energy systems also exists
at the operational level. In practice, a comprehensive and systematic approach
is needed to ensure security and multi-level protection against cyber attacks, as
recommended by the international standard IEC 62443 [57] and the “Security of
Industrial Automation and Control Systems” (TACS). This standard concerns all
stakeholders: operators, system integrators or manufacturers. Everyone has their
area of responsibility. This is the only way to guarantee cyber security holistically,
with an end-to-end system approach.
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Furthermore, according to an IEA report [54], in the operational environment
of energy, there are five critical cyber security concepts to be understood as shown
in Figure 1.6:
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Figure 1.6: Five cyber security concepts for smart energy.

o Resilience: It must be the overall strategy to ensure business continuity.
Resilience includes security measures that mitigate impacts before, during
and after incidents. It is a process of continuous improvement that requires
a comprehensive approach, combining cybersecurity techniques with systems
engineering and operations to prepare for, adapt to and recover quickly from
disruptions. Information sharing and interoperability are crucial elements
of resilience. Resilience is defined as the “ability to prepare for and adapt
to changing conditions and withstand and recover rapidly from disruptions.
Resilience includes the ability to withstand and recover from deliberate attacks,
accidents, or naturally occurring threats or incidents.”

o Security by design: This is the most cost-effective approach to security. Se-
curity must be built into systems and operations from the outset, rather than
added later. This principle also applies to existing systems, where safety must
be integrated during upgrades and retrofitting. Security by design combines
organisational policies with security procedures and supporting technologies,
including physical and logical techniques such as access control and authori-
sation management.

e [T and OT: Although similar, they have significant differences. Operational
technologies (OT) in the energy context have different security requirements
than information technology (IT), mainly due to the physical consequences
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that security incidents can cause in energy systems. While IT focuses on data
confidentiality, OT prioritises data availability, authentication and integrity.
The increasing interconnection between IT, OT and IoT increases vulnera-
bilities, requiring appropriate security measures based on a risk assessment.

o Risk assessment and mitigation: Fundamental to improving security. It is
necessary to assess the organisation’s risk exposure and identify vulnerabil-
ities, estimating the impact and likelihood of incident scenarios. The risk
mitigation strategy must consider operational constraints and costs and must
be continuously updated through periodic reviews or in response to security
incidents.

o (Cyber security standards and guidelines: They must support the risk man-
agement process and the establishment of security programmes and policies.
Existing standards and guidelines must be used to improve resilience, secu-
rity and interoperability in the OT environment, selecting the right ones for
the right purposes at the right time.

In order to address the growing threats, it is therefore essential that all actors
involved in the energy sector integrate cyber security into their corporate culture in
order to first and foremost safeguard the consumer and the infrastructure involved.
From designers to system integrators to operators, everyone should adopt and apply
cyber security practices in their organisational processes and structures.

Therefore, in a context where cloud-based smart monitoring solutions and the
Internet of Things (IoT) are becoming increasingly prevalent, especially among
small and medium-sized enterprises and in the residential sector, ensuring the se-
curity and confidentiality of transmitted data is crucial to prevent serious economic
and social consequences.

In detail, confidentiality can be seen from a double point of view: the security
side and the attacker side. The first one regards the need to make the system secure
from an authorized entity, user, or system. Together with integrity and availability,
confidentiality is one of the three pillars of the CIA (Confidentiality, Integrity, and
Availability) triad that must be guaranteed to implement an information system
that is as secure and resilient as possible. They aim to ensure that information
has not been modified and guarantee that only legitimate users have access to
the information when they need it [58]. Data must be protected by encryption
and decryption mechanisms, two-factor authentication, security tokens, and so on.
The most common encryption systems implement symmetric and asymmetric al-
gorithms: Advanced Encryption System (AES) and Triple-DES (3DES) belong
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to the first category. The second one includes, among the others, Rivest-Shamir-
Adleman (RSA) and Elliptic Curve Cryptography (ECC) [59]. These algorithms
aim to start from plaintext and obtain a ciphertext by applying mathematical func-
tions that characterize the computational complexity to be resolved, determined
by the length of the encryption key, which is a string of bytes. If no encryption
method is applied, data are transferred as plaintext and subject to the risk of cyber
attacks such as sniffing, profiling, eavesdropping and unauthorized interception by
third parties [60], allowing reading and interpreting the information. For exam-
ple, as demonstrated in the author’s previous activities [61, 62], by leveraging the
Side-Channel it is possible to go and profile activities performed by a user or more
generally running on an IoT device, thus also on smart meters.

This requires a delicate balance between the protection of sensitive information
and the need for utility innovation and operations. For example, security protocols,
although essential, often do not offer sufficient protection against sophisticated
attacks, leaving open vulnerabilities that can be exploited through unconventional
methods, such as side-channel attacks.

The concept of “side channels” refers to information unintentionally emitted
by a device during its operation, such as electromagnetic emissions, energy ab-
sorption or temperature variations. These emissions can be monitored to gather
sensitive information, even without direct access to systems or data. For example,
as demonstrated in [62, 63] and shown in Figure 1.7, by monitoring the electro-
magnetic field emitted by an IoT device, it is possible to identify what type of
application is running on the device, what type of web-mail the user is using and
thus generally spy sensitive information for fraudulent purposes. Furthermore, it is
possible to identify whether a system uses robust security protocols by monitoring
the electromagnetic field emitted during data transmission. This type of analysis
makes it possible to assess whether data is transmitted unencrypted or encrypted,
taking advantage of the fact that encryption requires a higher computational load.

In this context, chapter 6 analyses these aspects and proposes an innovative
approach to detect the security of communications by monitoring and analysing
the electromagnetic emissions of a device during data transmission, intending to
identify possible vulnerabilities in security protocols, using Side Channel [64]. The
proposed solution aims to be integrated into modern smart meters, improving cyber
security and offering a more robust defence against cyber attacks.
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Figure 1.7: The Side Channel concept: how a hacker can breach data
security and privacy.

1.9 Smart Energy applications

In the context of the digitisation and smart use of energy, the field of possible
applications is much broader than one might imagine, encompassing a wide range of
solutions aimed at improving efficiency, sustainability and intelligent management
of energy resources. The following is a summary of some of the applications that
will be explored and studied in the following chapters.

1.9.1 Digital Twin

In the context of the evolution of energy systems towards digitisation, the Digital
Twin concept offers the opportunity to create virtual replicas of simple or com-
plex physical systems, enabling the optimisation of the development and testing
phases of algorithms and methods aimed at monitoring, analysis, management and
optimisation of energy processes.

The use of the digital twin for optimising Smart Monitoring processes can have
a significant impact on the management of electrical systems, both simple and
complex. The digital twin makes it possible to monitor, control and optimise
the real system through its virtual counterpart, as shown in Figure 1.8. This
technology finds application in several sectors, including energy systems, enabling
more efficient management, optimisation of smart energy management processes
and predictive diagnosis and maintenance [65].
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This is due to the possibility of simulating any operational scenario on which
virtual policies and efficiency and optimisation techniques can be implemented and
tested. In complex electrical systems, such as distribution networks or industrial
plants, the use of the digital twin to optimise Smart Monitoring processes becomes
even more relevant [66]. The complexity of systems requires advanced data man-
agement and detailed modelling to identify correlations and interactions between
different components. This makes it possible to improve the accuracy of algorithms,
e.g. for predictive diagnosis [67], by identifying potential failures even in complex
scenarios.
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Figure 1.8: Digital twin concept and how it can improve smart monitoring
applications.

In this scenario, Load Profiling is a useful tool for the creation of the digital twin
model itself. In fact, by identifying and characterising, according to appropriate
criteria, the operational states of the monitored physical system, it is possible
to construct a virtual representation of it. In this way, it is possible to obtain
a numerical, or analytical, model that serves as the digital counterpart of the
physical system, indistinguishable for practical purposes. Practically, energy flow
management can be improved and made more efficient, in line with smart energy
objectives.

However, there are still some limitations (data integration and reliability, scal-
ability, privacy and security, etc.) that can be addressed to further improve the
effectiveness and applicability of this technology [68]. Among these, data reliability
refers to the quality and goodness of the data used to feed and build the digital
twin, which can affect the accuracy of simulations and analyses. If the input data
collected in the field does not correctly describe the system to be modelled, the dig-
ital model will be far removed from the real one. This requirement is essential and
is closely linked to the measurement chain involved in the initial Smart Monitor-
ing process, from which the input characteristics for the digital twin are measured
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using smart meters, and then appropriately extrapolated. It therefore becomes of
paramount importance to understand how data quality affects the analysis process.
In detail, again following a measurement approach, the concept of quality is related
to the MQ and ESQ parameters mentioned above.

In this context, chapter 2 presents an innovative energy dataset “eLAMI” [37]
generated using an ad-hoc developed digital model of a residential system, which
can overcome the current challenges related to data scarcity. eLAMI, based on
real measurements, thanks to the implementation of combined stochastic models,
highlights the need for a higher quality of the electrical signature in intelligent mon-
itoring processes, expanding the “feature space” to be analysed by highlighting its
importance in digital analysis processes based on Machine Learning and Artificial
Intelligence.

1.9.2 Load Profiling

To reduce energy consumption, it becomes of paramount importance to become
aware of how much one is consuming and, consequently, to adopt energy-saving
behaviour. Recent studies show that the main barriers to improving energy con-
sumption are caused by consumers’ lack of knowledge about the energy market and
inadequate awareness of their consumption [69]. Consumers must first of all have
a good understanding and knowledge of their consumption habits and how these
behaviours influence their energy consumption profile and trends. It is therefore
essential to provide the end user with specific and customised guidelines on how to
use electricity efficiently, to reduce the energy, economic and environmental impact,
while not interfering with the user’s consumption habits and comfort.

To this end, an appropriate Load Profiling process can be useful in identifying
the end user’s consumption pattern, making consumption forecasts, formulating
strategies for optimal management and defining the operating conditions and na-
ture of individual devices. This analysis provides detailed information on electrical
load behaviour, such as peak and low consumption periods, seasonal variations,
usage trends and specific load characteristics [70]. Load profiling is crucial for
planning and optimising energy resources, identifying potential energy savings, as-
sessing energy demand and managing the electricity grid and electrical systems [71].
In practice, through Load Profiling it is possible to identify and characterise the
operational states of operation of a monitored electrical device or complex system
(Figure 1.9). Where operating state refers to a particular combination of voltage
and current quantities describing a nominal and non-nominal operating state of
the monitored electrical system, whether simple or complex.
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Figure 1.9: Load Profiling: a-d) Identification and characterisation of the
operational states of a device as the quality of the electrical signature
changes; b) Concept of state machine representation of an electrical
device.

In this context, chapter 3 analyses the crucial role played by smart meters in
load profiling applications [52], assessing the influence of monitoring quality and
electrical signature quality in the process. The proposed methodological approach
is not limited to electricity but can be extended to other physical quantities and
multi-physical systems, offering a framework to define an MQ target and optimise
the number of useful features for different application scenarios (feature quality).

1.9.3 Predictive Diagnosis

Diagnostics is a procedure aimed at identifying faults in equipment or systems
through the analysis of collected data relating to relevant physical quantities. This
activity requires the use of specific tools and techniques to examine the data and
draw meaningful conclusions about the condition of the equipment or system (Fig-
ure 1.10). The main objective of diagnostics is to detect, locate and identify the
fault to take the necessary corrective actions and ensure the reliability of the equip-
ment in the short and long term.

Predictive Diagnosis is based on the use of advanced algorithms and analysis
methods, such as machine learning and artificial intelligence, to predict and de-
tect failures or anomalies in electrical systems in advance [72, 73]. By collecting
real-time data from sensors and monitoring devices, predictive models can iden-
tify warning signals, performance anomalies, drifts or critical conditions that may
indicate a potential impending failure. Predictive diagnosis allows preventive mea-
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sures to be taken, maintenance to be planned proactively, maintenance costs to be
reduced and the reliability of electrical systems to be improved [74].

Predictive maintenance, the next step in predictive diagnosis, is defined as main-
tenance “carried out following the identification and measurement of one or more
parameters and the extrapolation according to appropriate models of the remaining
time before failure”. Predictive maintenance, in fact, through an upstream study
of the device or process, aims to identify the critical, information-rich parameters
to be studied. Once the quantities and parameters to be monitored have been
identified, mathematical models and automatisms must be developed to signal an
anomaly in operation or an impending failure.
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Figure 1.10: Typical process aimed at diagnosing anomalies and faults of
an electrical device under monitoring.

It is evident that profiling a load and mapping it into a “state machine” can
therefore offer various possibilities in terms of detection and predictive diagnosis
since once a standard state profile of the load has been defined, diagnostic and
efficiency evaluations can be made concerning standard operation according to
certain criteria and thus understand whether the monitored load is moving away
from a “state of normal operation”. Of course, all these techniques and methods
cannot be done without a data collection phase and thus a measurement process
that inevitably influences all subsequent operations. The reason, as mentioned
earlier, is related to the quality of the measured and collected data, in particular
the MQ and ESQ parameters. These two factors play a crucial role. For this
reason, it is necessary to combine traditional maintenance practices with new and
more innovative strategies based on predictive actions, typical of smart energy.

In this context, chapter 4 presents a Load Profiling-based diagnostic methodol-
ogy capable of determining the health status of the monitored device and anticipat-
ing the occurrence of a fault [75], to effectively direct maintenance resources where
required. The proposed diagnostic method can be applied without prior knowl-
edge of the monitored system and uses the ESQ as a key parameter, evaluating its
sensitivity and impact on the diagnostic process.
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1.9.4 Non-Intrusive Load Monitoring

Knowledge of the specific consumption of individual devices entails empowering
consumers by making them aware of their energy consumption habits and how much
this has contributed to total consumption. In general, There are two approaches
to carrying out load monitoring: the first is the use of Intrusive Load Monitoring
(ILM) methods and the second is the use of Non-Intrusive Load Monitoring (NILM)
methods. In the ILM approach, the measuring device must necessarily be inside
the plant and close to the monitored system, hence the term “intrusive”. NILM
consists of measuring electrical consumption using a meter, usually placed in the
electrical panel upstream of the devices of interest [76, 77]. The qualification “non-
intrusive” derives from the fact that no additional equipment is required at the
ends of the devices to be monitored. As the electrical signatures of the devices
overlap, with the NILM to understand the contribution of each device, these must
be separated using appropriate algorithms, typically machine learning and Al. This
operation is called aggregate consumption disaggregation (Figure 1.11).
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Figure 1.11: Functional representation of a Non-Intrusive Load monitor-
ing process.

In this way, the combined consumption only needs to be monitored at a single
point in the system, which has several advantages such as reducing the costs of
installing the metering equipment, as there are fewer of them, and thus also of
maintenance. On the other hand, there is a saying, known to all, which goes
“What is not there, will not break” (Henry Ford).

Using NILM techniques, it is possible to determine the electricity consumption
and operating conditions of individual appliances based on the analysis of the com-
posite load measured by the main power meter [78]. The information can be used
to formulate load planning strategies for optimal energy utilisation. Furthermore,
especially in the residential context, it could be useful to illustrate within the en-
ergy billing following metering, not only the amount that has to be paid but also
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the consumption of each load and how much each appliance has contributed to this
figure. Such an indication would not only help to detect any malfunctioning of the
appliances but would also raise consumer awareness of environmental issues and
make them more conscious of their impact.

In this context, in chapter 5 a new unsupervised approach for energy monitor-
ing is presented, exploiting the advanced concept of Electric Signature Quality to
overcome traditional limitations [79]. This offers new perspectives on intelligent
energy management in the context of increasing digital evolution.
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Chapter 2

Innovative Approaches to
Advanced Smart Energy
Applications: Overcoming
Challenges with Simulated
Datasets

2.1 Highlights

e Challenges of Smart Energy applications: Smart Energy applications
are particularly challenging due to the scarcity of energy resources and high
costs. Smart energy management is influenced both by user behaviour and
by automated algorithms that aim to optimise and efficiently consumption
and reduce waste.

e Simulated datasets as an innovative solution: Developing effective
methodologies for monitoring consumption requires large amounts of data,
which are detailed and often difficult to obtain due to the cost of monitor-
ing campaigns. The “eLAMI” simulated dataset [37], based on real mea-
surements, overcomes these limitations by offering over 400 discriminating
electrical parameters on 36 household appliances in a residential context.

e Improved electrical signature quality: eLAMI highlights the need for
improved electrical signature quality in intelligent monitoring processes, ex-
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panding the “feature space” to be analysed by highlighting its importance
in digital analysis processes based on Machine Learning (ML) and Artificial
Intelligence (AI).

e Stochastic models for realistic scenarios: To ensure fidelity with real sce-
narios, the proposed data simulation approach implements combined stochas-
tic models that simulate energy consumption and manage state transitions
for each load. The data produced, while only considering nominal operating
conditions, are suitable for most Smart Monitoring applications.

e Data validation and accessibility: eLAMI dataset has been experimen-
tally validated by comparing simulated data with real measurements. The
data is publicly and freely accessible on the IEEE Dataport, providing scien-
tists with a valuable resource for research and innovation in the field of Smart
Monitoring and Energy Digitisation.

e Applicability and future development: The data produced by eLAMI
is suitable for numerous Smart Monitoring applications, with possible future
development in fault and anomaly simulation to optimise fault identification
and localisation algorithms.

2.2 Introduction

In this new paradigm, in which energy efficiency and the development of new digital
services based on the measurement of energy parameters have become strategic,
smart meters assume a fundamental role. As highlighted in the previous chapter
(chapter 1), on the one hand they perform the primary task of monitoring energy
consumption; on the other hand they can provide new quantities useful for modern
smart energy applications. These quantities include those related to the electrical
signature of a device, power quality and the trend of energy use over time, to name
a few, which could enable the implementation of new high value-added services for
energy and facility management. In other words, the smart meter may be the key
technology to implement modern algorithms and emerging techniques in the field of
smart energy applications, such as load profiling, load disaggregation through Non-
Intrusive Load Monitoring (NILM), digital twinning of equipment, and predictive
fault detection and diagnosis on both plants and networks.

In more detail, the aforementioned techniques are generally based on machine
learning algorithms or optimisation techniques that exploit electrical parameters
related to the electrical signature of a load and/or power quality parameters.
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Whichever approach is followed, all these techniques require the implementation
of two fundamental steps to reliably train and tune the algorithms to the case study
under consideration:

e a) the accurate measurement of energy consumption and parameters related
to electrical signatures and other parameters that depend on the devices
involved;

e b) monitoring over a sufficiently large time interval to acquire an adequate
amount of data (monitoring campaigns).

The first step a) is crucial as it strictly influences the quality and quantity
of the information collected. It is very important to have energy measurements
characterised by low uncertainties and, at the same time, to provide various en-
ergy parameters, such as harmonic and inter-harmonic power, current and voltage
values, total harmonic distortion, power factor, etc., that can characterise how a
device, or a group of devices, is consuming electrical energy. In practice, it is crucial
to ensure an adequate level of electrical signature quality - ESQ (subsection 1.7.2.

Concerning the second point b), monitoring over large time intervals is very
important not only to provide big data to the intelligent energy algorithms but
also to enable the algorithms to work on operating conditions that provide reliable
information about the monitored process or equipment. For example, to optimise
the energy consumption of a household, it is important to monitor consumption
patterns considering different days and the effects of seasonality. Similarly, in an
industrial context, it is strategic to carry out monitoring campaigns such as to
include variations in production and work cycles to define, for example, possible
correlations with product production and sales volumes. Another example, such
as the diagnosis or predictive maintenance of devices and networks, to predict
equipment failures, it is important to have a reliable monitored energy footprint
that is true to the energy status of the devices considering all possible operating
conditions of the devices.

Since the above-mentioned requirements impose to perform very expensive and
time-consuming measurement campaigns, in the last years some datasets have been
proposed in the literature to facilitate the development of new algorithms address-
ing the cited emerging needs. Many are papers that propose the use of a dataset to
train or tune smart energy algorithms. In particular, real datasets are composed
of data, collected on the field, while simulated ones are obtained through suitable
software simulators.
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However, these datasets do not fulfil all the requirements for effective use of the
data: the limited amount of electrical parameters monitored, the variability of the
data, the seasonality, the proximity to real scenarios and the definition of current
operating states are just some of the missing or incomplete information that make
them unsuitable for modern Smart Energy applications.

To overcome these limitations, an innovative energy-electricity dataset is pre-
sented in this chapter. The main advantages of the proposal are: i) the variability
of the data, in terms of the operating states of electrical loads and the adoption
of appropriate consumption models; ii) the total number of electrical parameters
available (433 in this case), which is enormously superior to the aforementioned
datasets, such as the complete analysis of frequency behaviour and the calcula-
tion of harmonics; iii) the seasonality of the data. Furthermore, the presented
dataset is a hybrid solution between simulated datasets and those based on real
data. In fact, it is generated through simulation, starting from real measurements,
and customised employing an effective calculated variability model. Finally, it was
validated with an additional a-posteriori measurement campaign on real loads.
From the output shown, the intention is to highlight how important it is today
to ensure a higher Electrical Signature Quality in intelligent monitoring processes.
in accordance with what is mentioned in subsection 1.7.2. The developed dataset,
namely eLAMI [37], is made publicly available to the whole research community at
[80] (download here) through a modular structure, allowing customized downloads
and analyses.

The structure below is as follows: first, the state of the art regarding public
energy datasets is briefly addressed; then the design of the synthetic data generator
is described, highlighting its requirements and properties. Finally, some results of
the proposed dataset are reported and appropriate observations and considerations
are given.

2.3 Background

The growing demand for new monitoring devices with smart algorithms and tech-
niques has led to the development of several datasets capable of tuning performance.

In Table 2.1, some examples of public datasets with data collected from the
field are shown; they differ for the number of devices, number and type of provided
electrical parameters and length. In the following, they are briefly described.
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Table
Data

2.1: Main Characteristics of Some Public Dataset Based on Real
Name Number Appliances Parameters Period
AMPds[81] 20 P,Q,S,V,1 1 year
AMPds2[82] 20 P,Q,S,V.I 2 years
BLUED|83] 50 P,Q,V,I 1 week
Dataport[84] 8598 P,S 4 years
DRED|85] 12 p 6 months
ECO[86] 45 P,V.I 8 months
ENERTALK(87] 75 P.Q 1714 days
IAWE[8S] 63 P,Q,S,V,I 73 days
REDD|[89] 92 PV, 119 days
REFIT[90] 20 P 2 years
UK-DALE[91] 109 PQS,VI 2247 days

AMPds [81] The Almanac of Minutely Power dataset is a public dataset,
published in 2013, containing 1 year of collected data of residential appliances
from a single household in Canada. This first version contains measurements
of electricity, water and natural gas at one-minute intervals, for a total of
525600 readings per year per meter.

AMPds2 [82] This second version of the AMPds dataset differs from the
previous one only in the number of total readings, 1051200, corresponding to
2 years of acquisition.

BLUED ([83] The Building-level fully labelled dataset for electricity disag-
gregation was released in 2012 with 1 week of electricity data from 1 building
in the USA. This dataset contains not only the steady-state but also the state
transition of each appliance.

Dataport [84] The Dataport database was created by Pecan Street Inc. and
published in 2015. It contains electricity data from 722 houses and com-
mercial buildings across different cities in the USA. As it has a sampling
period of 1 minute for aggregate and appliance signals, this is considered a
low frequency dataset.

DRED ([85] The Dutch Residential Energy Dataset was released in 2015 and
contains energy consumption data from a household in Netherlands, with a
total duration of over six months. It includes electricity measurements for
the aggregate and sub-metered signal of each device.

ECO [86] Electricity Consumption and Occupancy dataset was collected in 6
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Swiss households over 8 months. It contains data recordings of active power,
voltage and current at low frequency sampling rate.

e ENERTALK [87] The ENERTALK dataset was created in Korea from 22
houses with a total period of 1714 days and it was published in 2019. It
provides active and reactive power measurements (both aggregate and each
device), with a sampling frequency of 15 Hz.

e iAWE [88] Indian Dataset for Ambient Water and Energy was released in
2013, from recordings of electricity, water and ambient data in a house in
New Delhi, for a total duration of 73 days. The electrical data were recorded
with a sampling period from 1 to 6 seconds over 63 electrical appliances.

e REDD [89] Reference Energy Disaggregation Dataset has been published in
2011. It contains 119 days of collected data from 6 households in the USA
and includes both high and low frequency recordings.

e REFIT [90] The REFIT Electrical Load Measurements dataset includes
cleaned electrical consumption data from 20 households in the UK from 2
years of recordings in 2016. It contains electrical data with a sampling pe-
riod of 8 seconds and active power as the only parameter.

e UK-DALE [91] UK-Domestic Appliance Level Electricity was published in
2015 and it contains 2247 days of data by 5 residential buildings in the UK.
Just like REDD, it reports high and low-frequency data and all appliances
are sub-metered.

Collecting data to build a dataset is a fairly complex process. As long mea-
surement campaigns have to be carried out, the process requires a considerable
amount of time, effort, and instrumentation to measure and record data. One of
the main limitations of the real datasets in the literature today is the small number
of reported electrical parameters (almost 5 parameters - P, @, S, V, I).

This could represent a limitation for algorithms in the field of Smart Energy.
In particular, considering methods for load profiling, NILM and fault or predictive
diagnosis, the optimal choice of needed parameters is still a research topic: therefore
the availability of a large number of electrical quantities, able to define the complete
“electrical signature of the load”, could help in performing an accurate selection.

Furthermore, real datasets are often characterised by missing data due to several
problems that may occur during the measurement campaigns, time mismatching
between individual load data and aggregate data or possible errors due to malfunc-
tioning and inaccuracy of the adopted instrumentation.
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The absence of information about the current operating states of each device
can also be a limitation for these datasets, e.g. in the case of supervised artificial
intelligence algorithm training or in the definition of consumption quality as well
as system efficiency indices. A solution to the aforementioned problems could be
the simulation of data.

A simulated dataset does not require lengthy monitoring campaigns, saving
time, costs, and instrumentation. All these advantages are provided as long as
the simulation process is correctly implemented, which is not trivial in terms of
suitable modelling and computational costs.

In literature, some simulated datasets are presented as reported in Table 2.2
and discussed below.

Table 2.2: Main Characteristics of Some Public Dataset Based on Simu-
lated Data

Name Number Appliances Parameters Period
AMBAL[92] 14 - 1 days
SHED[93] 66 P,S,V, 1 14 days
SmartSim[94] 25 P 7 days

SynD[95] 21 P,S,V, 1 180 days

e AMBAL [92] Automated model builder for appliance load dataset was pub-
lished in 2017 and it comprises 14 domestic loads at a sampling rate of 1 Hz
for a time duration of one day. The AMBAL dataset allows the user to build
models using real energy consumption data, based on parameterised signa-
ture sequences. The main operational phase of the AMBAL dataset includes
pre-processing, extraction of active segments, segmentation, and model fit-
ting.

e SHED [93] Simulated high-frequency energy disaggregation dataset, released
in 2018. It is a commercial dataset containing the power consumption of
66 buildings at a sampling frequency of 1/30 Hz. The data is generated
synthetically and based on modelling the current flowing through an electrical
device and is matched with the real model of electrical devices.

e SynD [95] SynD is a synthetic dataset that was published in 2020 and simu-
lates readings of electricity consumption for a house for 180 days. The mea-
surements campaign was based on the monitoring of 21 different residential
devices from 2 households in Austria. In particular, the consumption patterns
were observed, the absorption profiles of each device were then extracted and
finally, the dataset was generated.
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e SmartSim [94] A Device Accurate Smart Home Simulator for Energy Ana-
lytics was released in 2016 and is a simulated dataset of 1 week total duration.
It uses the energy modelling of individual devices to build the final dataset
to generate accurate domestic energy traces that are qualitatively and quan-
titatively similar to real energy data traces.

Despite the large number of simulated datasets in the literature, most of them
still suffer some of the aforementioned problems, such as limited number of saved
electrical parameters, absence of harmonic and power quality information of sea-
sonality, monthly, and daily variability, as well as variability of operating states;
furthermore, they often provide a low likelihood value with respect to real scenario
profiles.

2.4 Design of Dataset generation

In this section, the design process of the eLAMI (electrical Loads Acquisition for
Monitoring Instruments) dataset and its implementation is described. First, the
main requirements that a modern energy data set must have to be able to offer
smart services are discussed. Then, issues concerning the choice of simulator and
possible solutions are addressed. Selected electrical loads, consumption models and
a description of the simulator close the section.

2.4.1 Requirements

A modern energy dataset for monitoring and investigating consumers’ energy be-
haviors must have specific characteristics. The main requirements, applicable to
domestic or industrial scenarios, are:

a) High number of saved electrical parameters, both in time and frequency do-
main;

b) High likelihood to real scenario profiles;
¢) Faithful representation of the devices;

d) Considering the metrological performance of commonly used energy smart
meters;

e) Presence of Power Quality and harmonic data;
f) Appropriate observation times congruent with the objectives;

¢) The current operating state of the monitored device.
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As regards a) having a large number of electrical parameters allows for a better
representation of the electrical signature of the load. In this way, for example, as
also mentioned before, energy efficiency algorithms can drastically increase their
performance. Therefore, in the eLAMI dataset, 433 electrical parameters are cal-
culated at each measurement interval. In addition, an electricity scenario as close
to reality as possible is represented in the above-simulated data set. In particular,
the reported consumption refers to a family of 2 persons, one of whom works in
smart working.

Having a good match between the simulated scenario and the real one, simply
summarized as likelihood, is crucial as it offers the possibility, for instance, of
training AT algorithms on consistent data, as mentioned in ). This avoids possible
mismatches between performance obtained in simulation and real scenarios.

As said in ¢) it is necessary to take into account both how the electrical energy
is consumed, but also how the individual load behaves in terms of electrical oper-
ation in reality. In particular, equipment is represented here as “state machines”,
simulating the corresponding nominal operating states. This choice turns out to
be valid, having decided to simulate the assumed scenario in a permanent regime.
Of course, in reality, between the different “operating states” there are transients
that can lead to more or less marked variations in electrical quantities. However,
these short variations, being of much shorter duration than typical measurement
times, are negligible in the calculation of the parameters of interest.

As regards d), furthermore, these variations can also be related to the natural
duty cycle of the equipment or be due to the uncertainty of the monitoring system
used [96]. eLAMI reports this variability thanks to the mathematical model for
generating absorption profiles implemented.

As said in e) today, given the widespread use of electronic equipment, it can
be said that the study of the harmonic behaviour of electrical loads is of great
interest. For example, the analysis of the frequency spectra of voltage and current
absorption of devices can provide useful information on the health of loads and in
general of the entire system, also in terms of the quality of the power supply system
(Power Quality). eLAMI in this case reports a considerable amount of harmonic
and quality parameters.

About the observation time of the monitored system f), it must be chosen
in such a way as to meet the objectives of the applications for which it was hy-
pothesized. Classification, clustering, NILM, Load Profiling, and energy retrofit
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algorithms in most cases aim at analyzing the system over sufficiently long time
horizons. In this case, eLAMI refers to a time horizon of one year. As regards, g),
an operating state of the monitored device can be defined as a steady-state volt-
age and current joint profile, whose availability allows the dataset user to evaluate
the proper load working cycle and extract electrical signature quality indices and
detect possible incoming anomalies.

Indeed, referring to electrical signature as mentioned in section 1.7, it not only
deals with the typical quantities (P, Q, Irums, etc.) but with the entire frequency
spectrum of voltage and current profiles absorbed by the electrical load. Such
informations are therefore also state-related, i.e. they can change for each operating
state of the load.

Therefore, the proposed simulator must be designed to generate voltage and
current profiles under all possible load states tested and for a predefined simulated
time, to get the spectrum information. An issue raised at this stage is related to
the way the frequency spectrum could be faithfully simulated. The approach here
is to make measurements on real loads under different tested operating states and
adopt acquired information as a basis to generate simulated profiles.

Based on the knowledge of these quantities and the known usage habits of the
electrical loads, it is possible to create the dataset by using the acquired informa-
tion. Any accidental failures or malfunctions that might occur in the real electrical
system are neglected in the current status of the simulator. This is reasonable
as these are very rare events in reality that, when compared with the simulation
time frame, can be neglected. The simulator’s modular structure would eventually
permit to add such situations in a fairly easy fashion.

2.4.2 Electrical Loads Description

According to the aforementioned requirements of a new simulated energy con-
sumption dataset for the residential appliances with innovative saved electrical
parameters, namely eLAMI, has been developed. The choice of simulating a resi-
dential building consumption profile has the aim to provide a means with innovative
characteristics compared to the datasets currently present in the literature for the
evaluation of new techniques and algorithms in the field of Smart Energy, including
NILM, Load profiling, Management Systems, and Energy Efficiency algorithms.

eLAMI refers to 360 days of simulation of a house having 36 connected ap-
pliances, as described in Table 2.3. But in the future other years will be added.
The “ID” is the appliance identifier, Ng is the overall discrete number of tested
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Figure 2.1: House Scheme and Electrical Loads Distribution. The blue
zone represents the “Partial 1”7 with 7 electric loads; the pink zone rep-
resents the “Partial 2” with 10 electric loads; the green zone represents
the “Partial 3”7 with 19 electric loads

operating states (including the OFF state) and the Pnom is the upper bound each
appliance can absorb, according to the manufacturer’s indications. At each mea-
surement interval, 433 electrical parameters are computed, whose details are re-
ported in subsection 2.4.4. In addition to the information on the individual load,
the same parameters are also calculated for the total aggregate and three partial
sub-aggregates consisting of subsets of loads. In addition to the calculated quanti-
ties, current operating state is also provided.

The partial aggregates are provided for the three different identified zones of
the virtual house. For each zone, a subset of loads was defined. The combination
of loads for each sub-group was chosen to obtain aggregates with a progressive
number of loads, as shown in Figure 2.1. This is an important feature for the
structure of eLAMI as it offers researchers the possibility to test the algorithms on
an increasing number of loads, therefore on an increasing complexity level.

Although all loads are connected in parallel, their supply is carried out by means
of radial lines. Therefore, in eLAMI, the voltage at the terminals of each load is
not the same but depends on the load conditions.

Moreover, the reported OFF state, for some devices, is an indication of a
standby state. Therefore, the absorbed current is slightly different than zero.
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Table 2.3:

Electrical Loads Specifications. Returns the appliance iden-

tifier (ID), the name of the loads (Appliance), the number of states
tested (Ng) and and the maximum active power that each load can ab-

sorb (PNom)

-
w

Appliance

Ns

PNom [W]

CO O UL Wi

Beard Trimmer
Blender
Boiler
Coffee Machine
Dehumidifier
Desk Lamp
Electrical Oven
Electric Toothbrush
Fan
Fan Heater
Fridge
Hair Clipper
Hair Dryer
Hair Straightener
Headphones Charger
Hoover
Infrared Heater
Iron
Kettle
Lamps Bathroom
Lamps Bedroom
Lamps Closet
Lamps Corridor
Lamps Entrance
Lamps Kitchen
Lamps Livingroom
Microwave
Notebook
PC-Desktop
Printer
Router
Smart TV
Smartphone Charger
Toaster
TV
Washing Machine

BN DN DN DNDNDDNDNDNDDNDDNDNDNDNDDNDDNDN WNDN WN N DN WERDNDNDND NN

4
60
220
1200
190
10
2400

40
1900
140

420
65

600
1350
1300
2000

30
90
75
55
65

125

145
1300

60

300

750

105
25
640
85
800
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Figure 2.2: Block Diagram of Data Acquisition Setup

2.4.3 Simulation basis: data acquisition

In order to define the frequency spectrum of a load, as mentioned above, it is
necessary to experimentally acquire its absorption profile. Through a measure-
ment campaign in Industrial Measurement Laboratory (LAMI) in the University
of Cassino and Southern Lazio, 36 residential typical electric loads (Table 2.3) have
been acquired. Current and voltage waveforms for each devices has been recorded
and get the corresponding reference profiles for use in data generation software.

The block diagram of the experimental setup for data acquisition is shown
in Figure 2.2. The adopted power supply system is a Pacific Smart Source, an
electrical network emulator which allows reproducing any mains profile both in
terms of amplitude and harmonic content [97]. In particular, it has been used as
arbitrary voltage generator to supply the electric loads.

In order to emulate real working conditions, the power grid voltage was first
acquired and the corresponding harmonic characteristics were calculated up to the
50th harmonic order. The harmonic coefficients obtained, in terms of amplitude
and phase, are used as an input for the Pacific Power Source. The emulated mains
voltage profiles both with and without load, are shown in Figure 2.3, Figure 2.4
along with the harmonic contents. For clarity, the distribution of percentage har-
monic coefficients from 2nd to 13th order is shown. The harmonic coefficients
shown in Figure 2.4 were obtained by extrapolating the characteristics of the har-
monics of the voltage signals and evaluating the amplitudes in percentage terms
with respect to the corresponding fundamental tones.

Furthermore, it can be seen from the figures that there are differences between
the voltages in different load conditions. In particular, the voltage under load is
lower and has a slightly different distribution of harmonic coefficients. As expected,
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the voltage profiles of Figure 2.3 do not reproduce a perfect sinewave, since it
contains the harmonics contributions.
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Figure 2.3: Emulated Voltage profiles with load and without load
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Figure 2.4: Percentage harmonic coefficients normalized with respect to
the fundamental frequency

In Table 2.4, is reported a numerical comparison between the main acquired
voltage and the emulated one, both with and without load. The compared values
are: RMS value (Vrus) of both the overall voltage and only the voltage first
harmonic (Vgrms.r). In addition, the offset component (Vpc), the peak value
(Vpk), and the total harmonic distortion (THD) voltage are also compared.
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Table 2.4: Comparison of some characteristics of the voltages: Acquired
Main Voltage (Vay), Emulated Voltage With Load (Vea/—roe¢) and Em-
ulated Voltage Without Load (Vey—nNoLoad)

Vrwms [V]  Vrwmsr [V] Vbe [V] Vek [V] THDvy [%)]

Vam 231.35 230.82 12.79 326.27 3.94
VEM-Load 232.27 231.99 10.06 327.31 4.85
VEM=NoLoad 226.89 226.39 10.07 317.86 4.72

Through the use of a Tektronix P202A Hall effect probe [98], powered by a
Tektronix 1103 power supply [99], with a transformation ratio of 100 mV/A, the
electrical current flowing in the circuit was measured. Using a Tektronix P5200
differential probe [100], with a transformation ratio of 1:500, the voltage supplied
by the Pacific to the electrical loads was measured. A TiePie HS5 [101] was used to
acquire the measurements through a customized software developed in Matlab™
environment. 30 repeated measurements (Nacq) were performed for each operating
state tested. The iterated procedure allowed obtaining the corresponding average
absorption profiles and the associated standard deviations for voltage and current
waveforms. The sampling frequency (Fy) used for profile acquisition is 5 kHz.
For each acquisition (of each load state) 25000 points (Np) were acquired. The
amplitude resolution of the acquisition system, through the TiePie Hsb, was set to
14 bits per channel, with a full scale of 0.8 for the voltage channel and 2 V for the
current channel. Considering the conversion factors of the probes used, therefore
(1:500 and 100 mV/A) this gives 400 V for the voltage channel and 20 A for the
current channel. Values are chosen in relation to the electrical systems considered.
All the sampling characteristics are summarized in Table 2.5.

Table 2.5: Sampling characteristics used for the acquisition of electrical
load profiles

Specifications Descriptions
Fs 5 kHz
Np 25000
Toss 5s
Nacq 30
A /D converter resolution 14 bit
Full scale of the voltage channel 0.8V
Full scale of the Current channel 2V
Voltage probe conversion factor 1:500
Current probe conversion factor 100 mV/A
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2.4.4 Simulator Description

[;.

Electrical Loads Definition of
e = )

INPUT PROCESSING OouTPUT

Loads
Aggregation

il
______;_E;:_____.___

Generation of Features
Absorption

Simulated Saving
Scenario Data

Model Habits Profiles Processing
Acquired
A %
P
Profiles

Figure 2.5: Block diagram of the simulator composed of three steps: “IN-
PUT”, “PROCESSING” and “OUTPUT”

The purpose of this section is to provide a general description of some of the
fundamental parts that make up the innovative simulator created for the realisation
of eLAMI, highlighting the procedures followed in the simulation. All processing
operations were performed in Matlab™ environment.

As shown in Figure 2.5, the simulator consists of three steps: (1) INPUT, (2)
PROCESSING and (3) OUTPUT.

For each section, the chronological flow and the main operations are described.

1) The “INPUT” step consists of 4 macro blocks:

1.1) In “Simulation Parameter” block, specifications for the simulation are
defined, e.g. simulation interval (1 year), measurement time (5 s), and
aggregation criteria, just to cite a few. The content in round brackets
is the assignment of possible parameter values. They are sent to the
following blocks, defining the characteristics of the electrical scenario to
be simulated.

1.2) In “Electrical Loads Stochastic Model”, mathematical relations about
operating state changes are defined according to output got by previous
surveys performed by the authors in residential buildings.

1.3) In “Definition of Consumption Habits”, taking into account the many
factors influencing the electric consumption and adopting the mathe-
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1.4)

matical models defined in the previous block, along with the hypothe-
sized simulation interval, typical consumption habits, or patterns, are
defined and used as input to generate faithful absorption profiles. The
behavioural consumption patterns, defined for each load, take into ac-
count daily variability and seasonality. This is made possible by the
implementation of a stochastic process, studied ad-hoc for the assumed
dynamic system. To explain the suitability of the implemented stochas-
tic model to avoid a mismatch with real scenarios, in this simulation
framework it is absolutely unlikely that the blender or hoover will switch
on during the night as well as lighting or heating during winter periods
for consecutive days is more likely than in summer times. In eLAMI,
the defined stochastic model also considers all these factors. In this way,
for each load, the days turn out to be dependent.

In “Acquired Absorption Profiles” contain the reference absorption pro-
files obtained as described in subsection 2.4.3.

2) The PROCESSING step is composed of:

2.1)

2.2)

2.3)

“Generation of Absorption Profiles” is a block that, taking inputs as de-
scribed before, generates the voltage and current waveforms related to
the conditions to be simulated. Such signals are simultaneously sent to
both “Loads Aggregation” and “Features Processing” to perform differ-
ent operations, as described below. Such waveforms are referred to the
i-th iteration for a specific instant of a simulated day and condition of
each considered appliance. The compounded values define the “Current
Operating State” of each load.

The “Loads Aggregation” block receives the output of “Generation of
Absorption Profiles” and “Simulation Parameter” and aggregates in-
dividual loads in a macro-load condition, i.e. considers all appliances
belonging to a specific category (e.g. bathroom) as they were one only
aggregated load.

In “Features Processing”, all electrical quantities assumed for individual
loads and aggregates are calculated. For electrical parameters calcula-
tions, the simulator implements the definitions of Power in IEEE-1459,
especially referring to single-phase non-sinusoidal case [46]. The cal-
culated electrical parameters refer to: VrysTOT and Ipms™OT, Vrms
and Igys at the fundamental, of harmonics and DC components alone;
active, apparent, non-active and distorted power; power factor and har-
monics distorted parameters, for a total of 26 electrical parameters. Fur-
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thermore, for better identification of electrical loads signature, the simu-
lator also implements the definitions of measurements in IEC61000-4-30
and TEC 61000-4-7 Standards [48, 49], regarding harmonics and inter-
harmonics, including the RMS values of voltage and current groups up to
the 50th harmonic order are calculated, including harmonic sub-groups
(SubG,V, G, V;...G;Vso; SubG,I, G,I;...G,I50) and the corresponding
phase values of each group calculated for a total of 202 parameters. In
addition, the harmonic index of the maximum amplitude tones of volt-
age/current in each group is also provided, the phase of each harmonic
group and the current operating state, to achieve further 205 parame-
ters. Considering the overall processing, the total number of electrical
parameters reported in eLAMI is 433.

3) The “OUTPUT” step is composed of:

3.1) In “Simulated scenario”, the computed electrical parameters are packed
considering the “simulation interval” (e.g. 1 day, 1 month, 1 year) pa-
rameter and their size also depends on the measurement time (e.g. 5
s), which is the time resolution over which the 433 parameters are com-
puted. Future simulated years of eLAMI will be added to the main
folder.

3.2) In “Saving Data” block, a hierarchical structure is created for saving the
dataset, as illustrated in Figure 2.6. The latter was created to make the
data as much usable as possible for the end user. From a hierarchical
point of view, eLAMI is divided into a first level “by months”, then “by
loads” and finally “by calculated electrical parameters”. All information
are stored in granular “.csv” files, one for each basic condition (day of
the month).

2.5 Results

The aim of the work related to eLAMI, is to provide a dataset with innovative
features compared to those currently found in the scientific literature, for the eval-
uation and development of new techniques and algorithms in the field of Smart
Energy applications. Of course, it is of paramount importance that the dataset is
physically consistent with real scenarios.

To this end, the dataset simulator is first validated, then some peculiarities of
the dataset are highlighted, and finally, some examples of eLAMI applications in
the field of Smart Energy are proposed, in particular Load Profiling, NILM and
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Figure 2.6: Saving eLAMI Structure
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Energy Management systems. These examples highlight how important it is in the
field of energy digitisation to increase the level of quality of the monitored electrical
signature.

2.5.1 Validation of Dataset Simulator

For the technical validation of the simulator and the corresponding consistency of
the generated data, a comparison between the measurements obtained from a real
test and a simulated one has been carried out, by assessing their metrological com-
patibility. In particular, the electrical scenario assumed for the test, is composed
of 3 real loads of eLAMI with different electrical characteristics, namely “Fan”,
“Fan Heater” and “Smart TV”. They have been connected to the Pacific network
emulator [97], then fed in parallel with the same voltage signal used for the creation
of eLAMI reference profiles (subsection 2.4.3). At the same time, the absorption
profiles, at the ends of every single load and the “Aggregate”, were monitored using
a laboratory wattmeter, the Precision Power Analyzer WT3000 [102]. The same
scenario, without WT3000 measurement instrument, has been replayed in the sim-
ulation environment, by starting from the reference profiles previously acquired.
Test set-up settings are total test duration (1 hr), measurement time (5 s), and the
total number of measurement points (720).
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At the end of the test, a comparison was made between the results obtained
in the two cases, with the aim of showing: i) a comparison between variability
ranges in the case of real and simulated data; i) the metrological compatibility of
the simulated measurements, and thus of eLAMI, with real acquired values; the
combination of i) and 4i) leads to state the validity of the simulator implementation.

Starting from (i), a comparison between the values obtained in the real and
simulated cases is shown in Figure 2.7, in terms of variability ranges. In this
figure, the behaviour of Vzus (Figure 2.7.a), Igys (Figure 2.7.b), P (Figure 2.7.c)
and S (Figure 2.7.d) are reported, for each individual considered load and its
corresponding aggregate.
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Figure 2.7: Comparison between WT3000 and eLAMI for devices: “Fan”,
“Fan Heater”, “Smart TV” and “Aggregate”. Comparison made in
terms of features: a) Voltage RMS - b) Current RMS c¢) Active Power
d) Apparent Power

In this case, the variability ranges are overlapped, although WT3000’s related
range is almost always narrower than the simulated one. This is because the
WT3000 has a higher accuracy level than what can be obtained by adopting the
set-up used in the acquired reference profiles for simulation. In any case, since
WT3000 has been chosen as a reference instrument, it is expected that it can
exhibit a far better metrological performance. Furthermore, the reference profiles
for the generation of eLAMI were constructed to take into account the variability
of the data over a time horizon longer than 1 hour (total test duration).
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Of course, increasing the acquisition time would tend to increase the variation
intervals of the WT3000 distributions, due to measurand variability. An interesting
aspect, that can be seen in this figure looking at the WT3000 measured values, is the
behaviour of the Vgys (Figure 2.7.a) ). The 3 loads are simultaneously supplied
by the same power source, each through its own power line: such a setting can
cause a potential voltage drop. As reported in Figure 2.7.c), the Fan Heater is the
load with the highest absorption: consequently, the Vgs at its ends is the lowest
(Figure 2.7.a) ). Conversely, the WT3000 records the highest voltage at the ends
of the “Fan”, which is the closest to the aggregate’s one, i.e. the power source.
Looking at the voltage behaviour of eLAMI, the same trend can be observed.

To demonstrate (i), only the mean value and standard deviation of a few
monitored Features for the “Fan” load are reported, for sake of brevity, in Table 2.6.
In particular, the considered features are: Vi,ne, Iims, P and S. The standard
deviation values of the measurements recorded by the WT3000, naturally, are much
smaller than those related to eLAMI, due to the simulator design parameters, which
had the purpose to replicate a typical commercial smart meter less accurate than
the adopted reference (WT3000). Nevertheless, from a measurement point of view,
the intervals (u-o, u-o) belonging to WT3000 and eLAMI are generally overlapped,
demonstrating the validity of the generated dataset.

Table 2.6: Comparison of mean and standard deviation values obtained
from WT3000 and eLAMI for the electrical load “Fan”. Considered
features: Vyms, Irms, P and S

Feature WT3000 eLAMI
- L
i) 00
P [W] g 30(%.2328 307.;3172
w2 w e

The validity of the algorithms implemented in the simulator for the generation
of eLAMI is evident when analyzing the values and behaviors obtained from the
features analyzed in Figure 2.7 and Table 2.6. Furthermore, the similarity be-
tween the behaviors of the “Aggregate” highlights the consistency of the process
implemented in the simulator.
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2.5.2 Descriptions of the general characteristics of eLAMI
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Figure 2.8: Average Monthly Active Energy Consumption Profiles of the
Aggregate Load

As highlighted above, one of the peculiarities of eLAMI is the variability of the
data, both in terms of operating states of the monitored devices and consumption
habits. Figure 2.8 shows the average monthly active energy consumption profiles
of the aggregate load, for the 24 hours of the day (z-azis), for each month. In
particular, in terms of active energy consumption (y-axis), the curves show: in
green, the average trend, in red the maximum reached for each hourly interval
of the month considered, and similarly in blue the minimum. First of all, when
analysing the individual month, one can see the variability of the absorption curve
during the 24 hours of the day, consistent with what happens in the residential area.
In particular, the curve shows an increase in the early morning hours followed
by a rapid decrease until midday when the second absorption peak occurs. A
further decrease follows this in consumption before arriving at the evening hours
characterized by the highest energy absorption.

In addition to the variability during the day, by comparing the different months,
it can value the seasonality of consumption and thus the variation in electrical-
behavioral habits. In particular, consumption is higher during the winter months
than in the summer months, which is particularly evident when comparing August
and December (2.9). This is because in the winter months, according to defined
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habits, there is greater use of certain high-consumption devices, such as Boiler,
Electric Oven and Microwave. Furthermore, it should be noted that during the
winter months lamp utilization is higher than in the summer months, which has
an impact on the consumption peaks mentioned above.
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Figure 2.9: Aggregate Active Energy Load Curve per Months
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Figure 2.10: Seasonality Example of Some Different Electrical Loads - a)
Boiler - b) Smartphone Charger - ¢) Fan - d) Fan Heater

A further interesting aspect is a non-zero consumption during nighttime hours
present in all months, due to the presence of some devices in standby mode, char-
acterized by minimal but not zero power consumption. This ceiling does not show
much variability in terms of consumption, as the devices on stand-by during the
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night are almost always the same, so the 3 curves (average, minimum and maxi-
mum) almost overlap, with a consumption of less than 0.5 kWh.

In Figure 2.9 the total electricity consumption for each month of the simulated
year is shown. In this case, the seasonality of consumption and thus the variation of
the energy absorbed in the different months is particularly evident. Since there is
no cooling system, total consumption is higher in autumn and winter than in spring
and summer. In particular, starting the year in January, electricity consumption
is high and remains more or less constant until March, and then begins to decrease
in April with the arrival of spring. The lowest peak is reached in August and then
starts to rise again from September forward. The highest electricity consumption
is recorded in December, while the lowest is recorded in August in perfect analogy
with what is shown in Figure 2.8.

In Figure 2.10 is shown the average daily consumption of 4 electrical loads for
each month of eLAMI (in terms of average, maximum and minimum daily con-
sumption), taken as an example, to show the variation in consumption patterns in
eLAMI. Specifically, the devices are: Boiler (Figure 2.10.a), Smartphone Charger
(Figure 2.10.b), Fan (Figure 2.10.c), Fan Heater (Figure 2.10.d). Analyzing Boiler
consumption (Figure 2.10.a), it can be seen that the average consumption in win-
ter is higher than in summer, where it is used only for hot water and not for
heating. In contrast, the Fan Heater (Figure 2.10.d) is only used in winter, from
October to April, peaking in February. The opposite behaviour is obtained by
analyzing the Fan (Figure 2.10.c), which is only used in the summer months, from
June to September, with a peak in August. Unlike the others, the Smartphone
Charger (Figure 2.10.b) does not show substantial variations in consumption be-
tween months. This is because it is used on average every day of the year in the
same way.

2.5.3 Smart Energy Application Examples

Load Profiling

Machine Learning and Artificial Intelligence techniques, in general, are based on
the use of large amounts of input data. However, if these techniques have input
data that do not correctly describe the phenomenon to be studied, the output may
be far from the desired result. This is why feature selection algorithms are very
often used to find the best set of features to build useful and robust models of the
phenomena studied [103].
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Figure 2.11: Example of Load Profiling Application for Desk Lamp - a)
Power consumption per state, b) Active Power as a Function of Power
Factor at 50 Hz, c¢) Phase of 5th Voltage Harmonic Group as a Function
of Active Power, d) Phase of 5th Voltage Harmonic Group as a Function
of Power Factor at 50 Hz

In Figure 2.11.a the active power absorbed by the Desk Lamp in January eLAMI
is reported as a function of the corresponding assumed states. As previously veri-
fied, state variability is present. Consequently, the active power P alone is not able
to discriminate the 4 different load operating state because states 1 and 2, and
similarly 3 and 4, overlap in terms of P. Therefore, in terms of load profiling, other
features must be found for the correct identification of operating states. For exam-
ple, the active power P as a function of the power factor at fundamental is reported
in Figure 2.11.b. This feature can discriminate states 1 and 2 better than P alone,
while states 3 and 4 still remain indistinguishable. Conversely, in Figure 2.11.c it
can be seen that the phase of the voltage 