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For the sake of clarity, in the following, we report a simple example in which nrot = 9,
nsym = 1 and, hence ntot = 9. The main mesh sector is contained in −20◦ < ϕ < 20◦.

In Figure 7, we show the mesh used, and we focus on a single far interaction between
two boxes: the source (red) and field box (green). The number of DOFs in the source box m
is equal 427, the number of the DOFs in the field box n is equal to 418. Hence the matrix
interaction Lbc size is equal to 418× 427. To compute this matrix, we need to evaluate the
interactions matrix between the nine replicated sources boxes (which are located in the
nine sectors of the whole torus) and the field box (which is located in main sector). The
rank of each box–box interaction is reported besides in Figure 7, next to the correspondent
replicated mesh.
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Lbc(j) between the source box (red) and the field box (green).

Using the first approach, we compress each single matrix Lbc (j). It is worth noticing
that, as expected, the rank decreases as the distance increases. Doing this in such a way, we
obtain a computation cost equal to

c1 = (418 + 427)× (139 + 128 + 116 + 105 + 95 + 95 + 103 + 116 + 128) = 866, 125.

Using the second approach (i.e., making compression of overall matrix Lbc) we obtain
a rank equal to 134 and hence the computational cost is equal to

c2 = (418 + 427)× 134 = 113, 230.

Summing up, the computation gain using the second approach, defined as c2/c1,
is equal to 7.6, proving the higher performance of the latter method with respect to the
first one.

3.4. DOF-Based Approach

Another strategy we implemented is based on assuming the individual DOFs as the
fundamental “objects” in Section 3.1.1.

We remark that in the ELEMENT-based approach, where the fundamental objects were
the individual elements of the FEM (Finite Element Method), and the box–box interaction
matrix is not a submatrix of the whole matrix L. Therefore, interaction L∗ij for boundary
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edges will involve more than one box–box interaction matrices. When the number of
this boundary DOFs is quite large, as for complex meshes of irregular shapes, we have a
reduced efficiency of the overall compression method.

This loss of efficiency calls for a different approach, based on the DOFs rather than
the individual elements of the FEM. Specifically, in the DOFs-based strategy, we assign an
individual DOFs to a box, if its barycenter belongs to the box. Hereafter, we refer to this
method as DOF-based method.

The specific changes in the QR-recursive algorithm are:

(1) In the Boxes Generation Algorithm, we assume the object to be individual DOFs.
(2) In Equation (24) we change the definition of the set E as follows:

E(b) def
= is the set of elements having their DOFs support in the box b. (53)

The rest of the algorithm is unchanged.
In force of the new definition of E, all element–element interactions are kept into

account and, hence, matrix Lbc, defined in (26), is a submatrix of the complete matrix L.
This will result in a higher efficiency on compression of the matrix, if compared to the
ELEMENT-based approach. Figure 8 shows an example of subdivision of DOFs between
two adjacent boxes. It is worth noting that the yellow elements are shared among DOFs
in different boxes and hence, the related calculation is duplicated in the two different
box–box interactions.
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The elements belonging to the interface between the two boxes, require to be replicated in the box–box
matrix assembly.

From a general perspective, the QR-recursive method requires the recursive subdivi-
sion of the elementary sources, i.e., the objects, which may be the DOFs, as a whole or the
elements of the FEM.

The performances for these two choices will be compared in terms of:

• time required to assembly the compressed operator L,
• the compression versus accuracy, signature.

Specifically, we expect the DOF-based approach to be more effective in term of Com-
pression/Accuracy signature. Indeed, as previously explained, in the DOF-based strategy
we have no replication of the L∗ij evaluating the box–box interaction matrices, whereas it
does in the ELEMENT-based approach. Therefore, for a given accuracy, we expect the Com-
pression of the DOF-based approach larger than one obtained using the ELEMENT-based
approach. Consequently, for a prescribed accuracy, the DOF-based strategy will result in a
shorter computational time when solving an individual time-step of the transient.
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Summing up, in choosing the proper strategy, we have to consider two aspects:
(i) the time required to assembly the compress operator and, (ii) the time needed for the
solution of the transient. Regarding (i) the ELEMENT-based approach outperforms the
DOF-based one, and vice versa, concerning (ii) the DOF-based approach outperforms
the ELEMENT-based one. Therefore, in short-transients the assembly time is dominant
and ELEMENT-based approach is more efficient. On the contrary, in long-transients the
DOF-based approach is more effective.

3.5. Handling Small Size Boxes

In the present work, a relevant modification of boxes construction has been developed
with respect to the previous work, which will result in increasing efficiency of the overall
QR-recursive method.

As explained in (see Appendix A), the boxes subdivision is carried out until the
number of objects (element or edge) in each box is smaller than a chosen threshold (smin1).
During this process, a small number of objects may occur in the resulting childless boxes.

This is obvious and due to the fact that (i) we use a cube which is recursively equally
subdivided in eight children and, (ii) the shape of the mesh (which is quite arbitrary) does
not match the cube. As matter of fact, a fragmented number of objects could result in the
childless, which might be very different from prescribed smin1.

These “small” childless have a drawback for all the interactions between and with the
other boxes. Indeed, the QR factorization is quite inefficient, because the resulting rank will
be approximately equal to the minimum matrix dimension (which is linked to the number
of objects in the underlying box). So, for this kind of interaction matrix, no compression is
achieved, and the overall efficiency of the method will be degraded.

To face the problem, one could think of changing the shape of the boxes, trying to
match somehow the box shape with the one of the current meshes. This approach is not
viable, because the cube is the simplest shape which is able to tessellate the 3D space and
ensures well-separate box interactions. This is due to the underlying integral operator
which is 1/r decaying, being r the distance between the source and field point.

In order to overcome this limitation, we fuse the childless boxes having a number
of objects (elements or DOFs) smaller than a prescribed threshold, into larger boxes. The
larger box for this fusion is selected by considering both the geometrical distance from the
small box and the total number of resulting objects. The latter criterion is to better balance
the computational load among processes. The detail of the fusion algorithm is provided
in Appendix C.

3.6. Handling Electrodes

Electrodes are of great interest in fusion application devices (e.g., in computing the
halo currents [29]). As explained in Section 2.3, the CARIDDI code makes use of electrodes
to impose simultaneously symmetric periodic boundaries and prescribed currents at the
boundaries. So, it is important to understand the impact, from the numerical point of view,
of the electrodes on the solution of the overall algebraic system.

As we have shown in Section 2.3, in presence of electrodes, the resulting algebraic
system is given by (9) and discretized in time domain as in (22).

As a matter of principle, two simple approaches could be used to solve such an
algebraic system:

1. Apply an iterative method to solve the augmeted system

[
L + ∆t R ∆t BT

B 0

][
I(k+1)

φ(k+1)

]
=

[
LI(k) + V(k+1)

S −V(k)
S

M(k+1)

]
. (54)

2. Elimining I(k+1) by substituing the first equation of the system (22) into the second
one. This subsitution yields the resulting linear system
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−∆t B (L + ∆t R)−1BTφ(k+1) = M(k+1) − (L + ∆t R)−1
(

LI(k) + V(k+1)
S −V(k)

S

)
. (55)

Both these methods have heavy limitations.
In the first approach, the main problem is related to the preconditioner. Indeed, it is

not possible to use the resistive preconditioner P =

[
R 0
0 0

]
, since it is trivially singular.

Other choices for preconditioners are not trivial.
In the second approach, the evaluation of the matrix (L + ∆t R)−1BT results in a large

computational burden because it requires a number of inversions equal to the number
of columns of BT, i.e., equal to NE + Np. Indeed, in practical fusion device applications,
this number is of the order of ten thousand. In addition, (L + ∆t R)−1BT is definitively
computed by means of iterative inversion, introducing an error on the resulting matrix,
which may badly affect the accuracy of the overall solution.

We implement an efficient method that guarantees both low computation costs and
accuracy, described in the following. We make use of the following change of variable

I = KZ + I0, (56)

where the columns of K span the null space of the matrix B, It can be shown that is possible
to obtain a K sparse matrix. I0 is an arbitrary solution of the second equation in (22). For
instance, one can chose for each instant

I(k+1)
0 = B+I(k+1)

h , (57)

where B+ is the Moore–Penrose pseudoinverse of B. Moreover, the computational cost for
evaluating (57) is low, because B+ can be computed once and for all.

Using (56), system (22) can conveniently be rewritten as

KT(L + ∆tR)KZ(k+1) = N(k+1), (58)

where N(k+1) is the known term:

N(k+1) = KT
(

LZ(k) + V(k+1)
S −V(k)

S

)
K. (59)

By setting
A
′
= KT(L + ∆tR)K, (60)

the resulting system is
A
′
Z(k+1) = N(k+1)

Z(0) = 0, I(0)0 = B+I(0)h
k ≥ 1

(61)

where the second equation in (61) condition matches the initial prescribed current distribu-
tion at the electrodes.

We note that the matrix KTRK is sparse and positively defined. This matrix can be
used as new preconditioner and, similar to R, can be easily factorized and applied.

For the solution of Equation (61) we can still make use of the QR-recursive method,
in the same form developed without the electrodes. Indeed, the matrix product A

′
X can

be easily obtained by the same ordinary product (namely Ax) using a pre- and post-
multiplication for the sparse matrix K.
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4. Results
4.1. Testcase #1

The system consists of a sector (one-ninth) of the ITER magnet system structures,
which is composed by 18 Nb3Sn Toroidal Field (TF) coils, 6 Poloidal Field (PF) NbTi coils,
6 Central Solenoid (CS) Nb3Sn Coils, and by their supporting structures [39–41]. There
are also 18 superconducting Correction Coils located between the TF and PF coils whose
aim is to correct field errors due to manufacturing tolerances. All the coils are made of
superconducting strands cooled with supercritical Helium flowing at a temperature of 4.5 K.
During the ITER operation, the superconducting coils shall work at a temperature lower
than their critical temperature in order not to lose their superconducting state; therefore, it
is very important to assess the thermal loads acting on the structures and make sure they
are not compromising the functioning of the system.

The thermal loads on the superconducting coils are mainly due to the neutron heating
coming from the plasma. AC loss in the superconducting cables and eddy currents in the
surrounding metallic structures are due to a changing magnetic field. Several analyses
have been done in the past with the direct method of the code CARIDDI to compute eddy
currents and Joule losses in the cold metallic structures during normal operation plasma
scenarios and during instability events such as disruptions.

A 40-degree Finite Element Model of the ITER magnet system has been built, the
model includes the metallic structure of two TF coils (TF Stainless Steel case and cover and
radial plates), the supports of the PF coils, the Correction coil Rails and supports, as well as
the vacuum vessel thermal shield, cryostat, and vacuum vessel (see Figure 9). The mesh
has 117,371 elements and 203,084 nodes. The mesh number of DOFs is 154,514. In this
testcase no injected currents are present, hence NE is equal to zero, and periodic symmetric
boundaries are applied: the number of boundary faces (i.e., Np) present at πα are 2304
(see Section 2.3). All the components are made of Stainless Steel 316 LN working at 4.5 K,
except the supports of the CC coils where some copper (Cu) sheets used as a thermal sink
are present; the electrical resistivity is assigned to each component as a constant value
evaluated at its working temperature.
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During normal operation, eddy currents can develop in the metallic structures due
mainly to ramp ups and ramp downs of the plasma current. The TF coils are fed with a
constant current; therefore, they do not contribute to the changing magnetic field. The other
coils such as the PF coils, the CS, and the plasma itself are axisymmetric sources that are
not meshed but they are represented as external sources.

The scenario that has been analyzed is identified as DINA-2016 (DINA is the ITER
reference plasma equilibrium and evolution code used to analyze the plasma behavior
during normal operation and instabilities [42]).

The currents flowing in the each of the six PF and CS coils during the DINA 2016
scenario is shown in the following Figure 10.
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As an example of results obtained with the CARIDDI code, the power and the energy 
dissipation in the TF coil case system is shown in Figure 12. As can be noted, the energy 
is also increasing during the plasma flat top (time interval from 300 s to 1000 s) due to the 
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Figure 10. Testcase#1. The PF (a) and CS (b) excitation current during the plasma event (different
colors are used for different coils).

In Figure 11, we report the evolution of plasma currents (Figure 11a), the radius
(Figure 11b), and the height (Figure 11c) of the barycenter of the plasma during the scenario.
It can be already noted from these signals that the plasma height is affected by a high-
frequency noise due to the plasma control.
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As an example of results obtained with the CARIDDI code, the power and the energy
dissipation in the TF coil case system is shown in Figure 12. As can be noted, the energy is
also increasing during the plasma flat top (time interval from 300 s to 1000 s) due to the
mentioned control noise.
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Figure 12. Testcase#1: The power (a) and the energy dissipation (b) in the TF coil case system. 

We use this case to check the performances of the new features introduced for the 
QR-recursive method. The number of DOFs is limited, to allow the validation of the accu-
racy of the method against the direct solution. 

The finite element mesh uses both hexahedral and pentahedral elements: mixed ele-
ment types are very usual in meshing generators. To prove the accuracy of the QR-recur-
sive method, we show in Figure 13 the ohmic loss dissipated in all the passive structures 
during the event. 
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tom) the relative error of the QR-recursive based method with respect to the Direct computation. 

In order to evaluate the efficiency of the preconditioner R together with the interpo-
lation scheme (see Section 3.2), in Figure 14 we show the number of iterations required to 
converge to the relative error equal to 1 × 10−5, versus time. Please note that the initial 
guess is effective: indeed, the total number of iterations is reduced by a factor of about 
four compared to the approach without initial guess estimation. 

Figure 12. Testcase#1: The power (a) and the energy dissipation (b) in the TF coil case system.

We use this case to check the performances of the new features introduced for the QR-
recursive method. The number of DOFs is limited, to allow the validation of the accuracy
of the method against the direct solution.

The finite element mesh uses both hexahedral and pentahedral elements: mixed
element types are very usual in meshing generators. To prove the accuracy of the QR-
recursive method, we show in Figure 13 the ohmic loss dissipated in all the passive
structures during the event.
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Figure 13. Testcase#1: (Top) the power dissipated during the transient in all passive structures.
(Bottom) the relative error of the QR-recursive based method with respect to the Direct computation.

In order to evaluate the efficiency of the preconditioner R together with the interpola-
tion scheme (see Section 3.2), in Figure 14 we show the number of iterations required to
converge to the relative error equal to 1 × 10−5, versus time. Please note that the initial
guess is effective: indeed, the total number of iterations is reduced by a factor of about four
compared to the approach without initial guess estimation.
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Figure 14. Testcase#1. The number of GMRES iterations required to converge to a relative error equal
to 1 × 10−5, versus time, with and without initial guess estimation.

In order to evaluate the performances of the iterative method, we plot the achieved
compression versus the accuracy. Specifically, the compression is defined as:

Compression =
Dimension of full matrix (A)

Dimension of the compressed matrix
(
Aqr
) . (62)

It measures the efficiency of the overall compression method.
The memory required to store either the compressed or the original matrices is propor-

tional to the number of required multiplications to evaluate the matrix-by-vector product.
Hence, this parameter is indeed the gain of computational cost.

The accuracy is defined as follows. First, we compute the fully populated matrix L
and, hence, the dynamical matrix A

A = R ∆t + L. (63)

By setting vector x equal to all one’s, we compute the product without error

Pc = Ax . (64)

Using the QR-recursive method we compute the approximated product:

Pa = Aqrx . (65)

The accuracy is defined as

Accuracy =
‖Pc − Pa‖
‖Pc‖

. (66)

Figure 15 highlights the overall performances of the various proposed techniques
for the QR-recursive method. Moreover, it proposes a comparison with a state-of-the-art
method based on the hierarchical matrices (H-matrices) [25,43–45] and implemented in
the state-of-the-art library. To this end, we made for the CARIDDI code the interface for
Hlibpro, which is a library implementing H-matrix algorithms for the approximation of a
dense matrix arising from an integral formulation. See [46].
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Figure 15 clearly proves that DOF-based with fusion is the most effective compression
method among those proposed in this paper and that it is in line with the state-of-the-art
one (H-matrices). Moreover, the boxes’ small size fusion is effective both for DOF-based
and for ELEMENT-based techniques.

From a computational point of view, to improve the efficiency, it is also mandatory to
balance the load among the processes in parallel computation. The coding strategy imple-
mented with these recursive QR-recursive approaches is in line with this goal. In Figure 16
we report the Memory/Computation (Lnear + Lfar) load versus the MPI processes involved
in the computation. Figure 16 reports proper balancing among different MPI processes.
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4.2. Testcase #2

The second test case we present is again related to the ITER device. In particular, we
analyse a fast transient due to an abrupt loss of plasma magnetic and kinetic energy—a
so-called disruption. In particular, following the loss of vertical position control, the plasma
drifts downwards with its physical parameters largely unchanged, until at the time instant
0.28 s the Thermal Quench (TQ) takes place, i.e., the loss of kinetic energy of the plasma in
1 ms. Immediately after, the Current Quench (CQ) occurs, i.e., the loss of plasma current
and magnetic energy exponentially with a time constant of 16 ms, hence up to around 0.4 s,
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when the plasma current is negligible [29]. It is assumed that the plasma keeps axisymmetry
throughout the whole time evolution; however, this is not an intrinsic limitation of the
proposed numerical approach, which can easily deal also with non-axisymmetric plasmas.
The consequences of disruptions may be particularly challenging for both the plasma facing
components and for the conducting structures, hence requiring a careful numerical analysis
of such events. In particular, the interaction of current density induced in the structures
with the magnetic field present in the device gives rise to electromagnetic loads (Lorentz
force density), whose effects must be carefully evaluated through a dedicated subsequent
mechanical and structural analysis. In the case of an axisymmetric plasma event, the main
net force is usually in the vertical direction, but in non-axisymmetric cases horizontal
(sideways) forces may also be present and may pose a specific threat to the integrity of the
structures. In addition, direct plasma-wall contact may give rise to additional problems,
mainly on plasma-facing components, such as the injection of halo currents, the possibility
of electric arches between adjacent structures, the occurrence of significant heat and particle
loads, and the damage produced by the impact of suprathermal (runaway) electrons.

The number of mesh nodes is 504,879, and the number of elements is 346,160. In
addition, in this testcase no injected currents are present, hence NE is equal to zero, and
periodic symmetric boundaries are applied; the number of boundary faces (i.e., Np) present
at πα are 4563 (see Section 2.3). The resulting number of DOFs is 559,574 (see Figure 17).
The present test case is hence complementary to the previous one. First of all, it allows
us to evaluate the performances of the QR-recursive compression on a very fast transient
occurring on the milliseconds time scale, as opposed to the previous case, where the time
scale is of the order of thousands of seconds. Secondly, the number of DOFs is so high that
other methods, used for reference in the previous test case (direct, non-parallel Hlibpro),
cannot be applied. As a consequence, no detailed analyses on the numerical performances
of the method are reported. To have a term of reference also in this case, a coarse mesh,
featuring eight times less elements on exactly the same geometry, has been developed and
solved with the direct method.
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Figure 17. Testcase#2. Mesh (a) and pictorial representation of the current density (b).

Our approach also provides satisfactory results on this very challenging test case,
hence showing the potential of our methods on cases out of reach for other techniques.
Specifically, Figure 17 shows some pictorial representations of the current density patterns
on specific components of the tokamak, while Figure 18 reports a good agreement with the
reference coarse mesh.
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Figure 18. Testcase#2. The overall ohmic loss (a) and the total toroidal current (b) versus time.

From the numerical point of view, the compression gain achieved is about 15 and,
using 64 MPI processes, the time required to assemble the compressed operator is 10 h and
20 min. The total transient time required to simulate the transient is about 4 days. The
Server used in computation in our lab is based on 2 × AMD Epyc 32-Core 7452, 1 TB RAM.

The number of GMRES iterations required is reported in Figure 19. The number always
keeps very low with respect to the number of unknowns, hence showing a satisfactory
behaviour of the preconditioner, even in the time window around 0.3–0.4 s, where the fast
transient occurs.
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Figure 19. Testcase#2. The number of iterations required by GMRES to converge to a relative tolerance
is 1 × 10−5, versus time.

Finally, in Figure 20, we report the Memory/Computation load versus the MPI pro-
cesses involved in the computation. The good load balancing proves the efficency of the
overall code parallelization.
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5. Discussion and Conclusions

In this paper we have presented a comprehensive extension of a QR-recursive compres-
sion technique applied to the CARIDDI code. A number of improvements (the treatment
of rotations and symmetries, and the introduction of electrodes for halo current injections)
and optimizations (DOF-based algorithm, small boxes treatment) have been implemented
with respect to the past.

The numerical performances of the proposed technique are remarkably in line with
those of state-of-the-art methods such as Hlibpro, and the results are successfully com-
pared with exact (direct) methods. In addition, the features of the proposed QR-recursive
compression technique allow the favourable scaling of its properties to cases where direct
methods and other state-of-the-art techniques such as Hlibpro cannot be applied, due
to the high number of discrete unknowns. The test cases reported in the paper clearly
demonstrate this point.

With the implementation of this QR-recursive technique, CARIDDI can be hence
considered as one of the reference codes for the numerical electromagnetic analysis of
fusion devices with realistic geometries.
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Appendix A

Algorithm A1. Boxes Generation

Input
Choose the “objects” (elements or DOF)
smin1 is the minimum number of objects in a box

Output
BoxSet, FatherSet, ChildrenSet

BoxSet def
= is the set of all not empty boxes

ChildlessSet def
= is the set of all box having a number of objects number of objects less equal to

smin1
FatherSet(b) returns the father of the box b
ChildrenSet(b, 1 : 8) returns the eight children of the box b
Create first box b0 // the smallest cube containing the mesh ChildLessSet = {∅}
ChildrenSet = {∅}
BoxSet = {b0}

level = 0 // current level starting from 0
ParentBoxesList = {b0} // temporary
ChildrenList = {b0} // temporary
While ParentBoxesList 6= {∅} // Loop util there are still fathers

level = level + 1 // current level
ChildrenList = {∅} //current level children list
For F ∈ ParentBoxesList // loop over previous level father box F
NumObjectsF = #(F) // set the number of objects in box F
If (NumObjectsF > smin1)

// Subdivide father F in eight children C
For i = 1,8

C = subdivide(F, i) // get i-th children C
NumObjects = #(B) // get the number of objects in box B
If (NumObjects > 0)

// Update Sets
Children(F, i) = C // C is the son of F
FatherSet(Box) = F // F is the father of C
BoxSet = {BoxSet ∪ C}// C will be next level fathers
ChildrenList = {ChildrenList ∪ C}

End if
End for

Else
// father F is childless
ChildLessSet = {ChildLessSet ∪ F}

End if
End while
// Generation Update: current sons will be next level fathers
ParentBoxesList = ChildrenSet
End Algorithm

Appendix B

Lnear(b), Lfar(b) analytic definition
Given a field box b, in [20] we define four lists. Here we reported their definition for

completeness.

• L1(b) is the set of boxes made by b and all childless boxes adjacent to b.
• L2(b) is the set of boxes not adjacent to b at the same level of b and are well separated

by b.
• L3(b), for a childless box b, is the set of descendent of b’s colleagues that are not

adjacent to b, but whose parent boxes are adjacent to b.
• L4(b) is the set of c such that b ∈ L3(c).
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Using these four lists, we can define

Lnear(b) = L1(b) ∪ L4(b)

Lfar(b) = L2(b) ∪ L3(b)

In Figure A1, for a given field box b, we give two examples showing how these various
lists are shaped.
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Figure A1. The four lists used to define Lnear(b), Lfar(b) associated for a given field box b. The
sources boxes are depicted as: (i) pink and yellow for near interactions, and (ii) green and violet for
the far interactions. Note that in left figure there are some empty source boxes. These boxes refer
to the previous level far box–box interaction (indeed with the father of b). So actually, they are not
present in Lfar(b) list.

Appendix C

Algorithm A2. Small Boxes Fusion

Input
smin2 is the minimum number of objects
f smin (> 1) is a parameter controlling maximum distance

ChildLessSet def
= is the set of the childless boxes

Output

ListObject(b) def
= is the set of objects in the box b

ListRetain = {∅} // def
= is the set of the boxes to be retained

ListToFuse = {∅} // def
= is the set of the boxes to be fused

For b ∈ ChildLessSet // loop over all childless boxes
ObjectsNumber = #ListObject(b) // get number of objects in the box b
If ObjectsNumber > smin2

ListRetain = {ListRetain ∪ b} // put b in list of boxes to be retained
Else

ListToFuse = {ListToFuse ∪ b} // put b into list of boxes to be fused
End if

End for
For b ∈ ListToFuse // loop over the boxes to be fused

//compute the distance from b
For x ∈ ListRetain

d(x) = distance(b,x) // distance between b and x
End
// Compute the minimum distance
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Algorithm A2. Cont.

min_d = min
x

d(x)

// set the maximum allowed distance

max_d = fsmin def
= min _d

// Create the set of all boxes whose distance from b is less than max_d
Nearest = {s ∈ ListRetain : d(s) ≤ max_d}
// get the number of objects for this set
For g ∈ Nearest

NumObjectsNearest(g) = #Nearest(g)
End for
// Choose in the set Nearest, the one having the minimum number of objects
z = min

g
NumObjectsNearest(g)

// fuse all objects of the box b into the z box
ListObject(z) = {ListObject(z) ∪ ListObject(b)}
// the objects of the box b must be deleted
ListObject(b) = {∅}

End for
End of the algorithm
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