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Repetitive focal vibrations can induce positive and persistent after-effects.

There is still no satisfactory interpretation of the underlying mechanisms.

A rationale, which can provide consistency among different results, is highly

desirable to guide both the use of the application and future research. To

date, interpretive models are formulated to justify the results, depending on

the specific protocol adopted. Indeed, protocol parameters, such as stimulus

intensity and frequency, intervention time and administration period, are variable

among different studies. However, in this article, we have identified features of

the protocols that may allow us to suggest a possible common mechanism

underlying the effectiveness of focal vibration under different physiologic and

pathologic conditions. Since repetitive focal muscle vibration induces powerful

and prolonged activation of muscle proprioceptors, we hypothesize that this

intense activation generates adaptive synaptic changes along sensory and motor

circuits. This may lead to long-term synaptic potentiation in the central network,

inducing an enhancement of the learning capability. The plastic event could

increase proprioceptive discriminative ability and accuracy of the spatial reference

frame and, consequently, improve motor planning and execution for different

motor functions and in the presence of different motor dysfunctions. The

proposed mechanism may explain the surprising and sometimes particularly

rapid improvements in motor execution in healthy and diseased individuals,

regardless of specific physical training. This hypothetic mechanism may require

experimental evidence and could lead to extend and adapt the application of the

“learning without training” paradigms to other functional and recovery needs.
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1. Introduction

Specific, intensive, long-term physical training is usually
required to achieve improvements in motor performance or motor
recovery after functional impairment. An ambitious goal is to
minimize the required training period or to ameliorate outcomes
with non-invasive complementary approaches. Proprioceptive
training has been shown to be frequently proposed (Aman
et al., 2015) as a feasible procedure to improve motor function,
due to the crucial role of proprioceptive signals in motor
control (Wiesendanger and Miles, 1982). To ameliorate motor
performance, several authors stimulated proprioceptive sensors
by applying a prolonged and repeated mechanical vibration on a
muscle or tendon (RFV, repeated focal vibration). RFV has been
found to induce, in most cases, long-term (days, weeks, or months)
improvements of motor performances in both healthy and diseased
individuals (Murillo et al., 2014; Souron et al., 2017a; Alghadir
et al., 2018; Fattorini et al., 2021). Even though the results were
mainly related to the function of the single treated muscle, RFV has
been found to induce complex, unexpected, and still unexplained
motor effects also involving untreated muscles. Moreover, RFV
ameliorates motor performance in diseased individuals even in the
presence of opposite motor disabilities, such as muscle weakness
and paresis or spasticity on the other (Karnath, 1994; Kerkhoff,
2003; Brunetti et al., 2006, 2012, 2015; Filippi et al., 2009;
Pietrangelo et al., 2009; Camerota et al., 2011, 2016, 2017; Celletti
et al., 2011, 2015, 2017a; Marconi et al., 2011; Caliandro et al., 2012;
Pettorossi and Schieppati, 2014; Pettorossi et al., 2015; Rabini et al.,
2015; Pazzaglia et al., 2016; Attanasio et al., 2018; Russo et al., 2019).

Therefore, to provide a possible justification for the
focal vibration effectiveness in such variety of effects it is
necessary to propose a common mechanism of action in
normal and dysfunctional conditions. The basic idea of
this proposed mechanism is that a repeated high frequency
mechanical stimulation may facilitate synaptic plasticity along the
proprioceptive pathway and in central motor area. These changes
should be able to increase the responsiveness of the network and its
adaptive abilities (Marconi et al., 2008, 2011; Rocchi et al., 2018).
This is in analogy with what has already been observed in other
sensory systems, where non-specific stimulation of other sensory
system has been shown to induce specific and selective learning,
enhancing sensory discrimination and motor learning (Pleger
et al., 2003; Frenkel et al., 2006).

2. New idea for learning along the
proprioceptive system

Sensory stimulation, such as repetition of tactile, visual or
auditory stimuli, has been shown to improve perceptual resolution
(Pleger et al., 2003; Frenkel et al., 2006; Clapp et al., 2012;
Beste and Dinse, 2013), persisting over time. This after-effect
was attribute to a specific mechanism termed “learning without
training,” a “learning induced in simple or complex motor or
sensory performance without specific training, with the aim of
changing perception and behavior” (cit. Beste and Dinse, 2013).
These authors suggest that these effects, elicited by repetitive
sensory stimulation, are likely due to the induction of synaptic

modification, like Long-term Potentiation (LTP) and Long-term
Depression (LTD) mechanisms, along the afferent pathways and
in the primary and secondary somatosensory areas. Specifically,
with regard to the tactile system, it has been shown that the
spatial discrimination threshold is lowered by high-frequency
tactile stimulation and it returns to control after low frequency
stimulation (Ragert et al., 2008). These behavioral results resembled
those induced by high frequency-LTP and low frequency-LTD
in vitro (Bliss and Lomo, 1973; Stanton and Sejnowski, 1989;
Bliss and Collingridge, 1993; Abraham and Williams, 2003).
Furthermore, an important role of N-methyl-D-aspartate (NMDA)
receptors in this synaptic plasticity has been demonstrated in
human behavioral studies using memantine, a substance that
selectively blocks the NMDA receptors (Dinse et al., 2003).
A single dose of memantine was found to suppress learning, both
behaviorally and in cortical circuits, providing evidence for the
involvement of NMDA receptors in training-independent sensory
learning.

In analogy with these findings, we suggest that the high
frequency, long-lasting proprioceptive stimulation may elicit
learning in the proprioceptive pathway through a change in
synaptic activity that increases the input resolution and the learning
capability. The proposed RFV-induced adaptive mechanism could
guide further researches to analyze central excitability changes and
to define the best practices to combine the RFV after-effects with
traditional rehabilitation and reconditioning protocols.

To provide evidences for the suggested mechanism, we report
the RFV after-effects, observed in healthy and diseased individuals,
in section 1. In the section 2, we highlight the characteristics of
vibratory stimulation that support the induction of plastic events
underlined our proposed mechanisms. Finally, in section 3 we
report spinal and cortical nervous circuitry changes that could
justify long-lasting RFV after-effects.

3. Section 1: Immediate and
sustained complex motor
improvements induced by RFV

3.1. In healthy individuals

Several studies have examined the effects of focal vibration on
healthy individuals. In a recent review (Fattorini et al., 2021) the
focus was on the long-lasting after-effects of RFV, ranging from
24 h to several months after the end of RFV, in healthy individuals.
In most of the articles listed in the review, only one muscle
was stimulated. Only occasionally two or more muscles were
stimulated in the same experiment. These investigations reported
improvements in strength (Pietrangelo et al., 2009; Lapole and
Pérot, 2010; Iodice et al., 2011, 2019; Souron et al., 2017b; Feltroni
et al., 2018), power (Pietrangelo et al., 2009), fatigue resistance
(Fattorini et al., 2006; Casale et al., 2009; Aprile et al., 2016; Feltroni
et al., 2018), rate of force development (Fattorini et al., 2006).
These effects were detected at the first test after the end of RFV,
as early as 24 h (Filippi et al., 2009; Lapole and Pérot, 2010; Brunetti
et al., 2012; Contemori et al., 2021), or < 60 min (Iodice et al.,
2011; Aprile et al., 2016; Feltroni et al., 2018; Filippi et al., 2020;
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Contemori et al., 2021). The different authors considered such short
latency as an important expression of a direct RFV action on the
nervous system. Then, the effects continued with a persisting or
increasing trend until the end follow up, lasting days (Casale et al.,
2009; Lapole and Pérot, 2010; Iodice et al., 2011), weeks (Fattorini
et al., 2006; Aprile et al., 2016; Souron et al., 2017b; Feltroni et al.,
2018; Filippi et al., 2020; Contemori et al., 2021), months (Filippi
et al., 2009; Pietrangelo et al., 2009; Brunetti et al., 2012). In some
of these studies, the same protocol in the same subject produced
effects that commonly require different, specific physical training
protocols. For example, quadriceps vibration improved both peak
power and fatigue endurance (Filippi et al., 2020), or peak velocity
and fatigue endurance (Fattorini et al., 2006; Aprile et al., 2016;
Filippi et al., 2020), or power and knee laxity (Brunetti et al., 2012).

In addition, much more complex and multi-joint motor
functions have been analyzed in other studies. Body balance (Filippi
et al., 2009; Brunetti et al., 2015), movement fluidity (Aprile et al.,
2016), and accuracy (Contemori et al., 2021), have been found to
improve after RFV. Improvements in body balance, particularly
under closed-eye conditions, were obtained by stimulating the
quadriceps muscle by RFV (Filippi et al., 2009; Brunetti et al.,
2015). All these effects cannot be the result of simple re-modeling
of restricted nervous circuits since balance involves a multi-
modal muscular activation on different body segments to manage
the center of body mass. Moreover, smoothness of a multi-joint
movement is a parameter that requires precise proprioception-
mediated efferent-afferent control for the coordination of multiple
muscles in different body segments (Aprile et al., 2016; Contemori
et al., 2021). In conclusion all the above studies support the
effectiveness of the RFV not only in modulating the local
motor responses in the territory of the vibrated muscle but also
in interfering with the central circuits controlling posture and
movements.

3.2. In diseased individuals

Studies are available on subjects with different motor
impairments, caused by central neurological diseases, peripheral
neuropathies, aging, osteoarthritis, orthopedic problems,
consequences of surgery. The same RFV protocol facilitated
motor recovery both in the presence of negative signs of motor
deficit as well as in asthenia, weakness, paresis, poor body
balance, etc., (Brunetti et al., 2006, 2012, 2015; Filippi et al., 2009;
Pietrangelo et al., 2009; Celletti et al., 2011, 2015, 2017a,b; Rabini
et al., 2015; Pazzaglia et al., 2016; Attanasio et al., 2018), and in the
presence of positive signs, spasticity, hypertonia, contractures, etc.,
(Camerota et al., 2011, 2016, 2017; Marconi et al., 2011; Caliandro
et al., 2012; Celletti et al., 2017b; Russo et al., 2019; Toscano
et al., 2019). In contrast, in such opposite pathological conditions
motor recovery could be commonly achieved by using deeply
different and highly specific physical exercises or pharmacological
interventions.

This uncommon and, seemingly, paradoxical aspect is
associated with other non-obvious findings, highlighted in other
studies, which show positive effects involving districts and
functions outside of the part treated. RFV could, at least in part,
attenuate a local functional deficit and this, in turn, could lead to a

development of new and more adequate compensatory strategies
(Camerota et al., 2011, 2017; Marconi et al., 2011; Pazzaglia et al.,
2016). However, usually, compensatory strategies would develop
gradually, with a relatively long time, while improvement of
muscular strength and/or power was induced immediately (after
1 or 24 h) in chronic patients (Brunetti et al., 2006; Filippi et al.,
2009; Celletti et al., 2011, 2017a; Rabini et al., 2015). Body balance,
mainly in closed eye conditions, (Brunetti et al., 2006, 2015; Filippi
et al., 2009; Rabini et al., 2015; Attanasio et al., 2018) largely
improved. Findings in chronic patients were often detected in the
absence of any other physical therapy (Filippi et al., 2009; Celletti
et al., 2011, 2015; Brunetti et al., 2015; Rabini et al., 2015; Pazzaglia
et al., 2016; Attanasio et al., 2018; Russo et al., 2019). When RFV
was integrated with a conventional rehabilitation program, a
powerful potentiating effect emerged compared with rehabilitation
alone (Brunetti et al., 2006; Marconi et al., 2011; Caliandro et al.,
2012; Rabini et al., 2015). Improvements of the balance in static
(Brunetti et al., 2006, 2015; Filippi et al., 2009; Celletti et al., 2011,
2015; Rabini et al., 2015; Pazzaglia et al., 2016; Attanasio et al.,
2018) and dynamic conditions (Celletti et al., 2011, 2015; Rabini
et al., 2015; Pazzaglia et al., 2016; Attanasio et al., 2018) suggested
the involvement of untreated muscles and joints.

Unexpected effects have been observed even in the perception
of position and movement, both for the subjective straight ahead
(Karnath, 1994; Kerkhoff, 2003) and for the velocity of body
movement (Pettorossi and Schieppati, 2014; Pettorossi et al.,
2015), suggesting that intense proprioceptive activation increases
the perception of movement over time and changes the internal
arrangement of the spatial reference frame.

4. Section 2: Features of protocols
for achieving the sensory-motor
learning

4.1. Proprioceptive activation

The most common characteristics of the RFV used in the
studies cited above includes oscillation with vibratory frequency of
100 Hz and application time of at least 10 min. Direct evidence
of the effectiveness of these high frequency and duration was
provided by different studies, also involving the space perception
after RFV (Pettorossi and Schieppati, 2014; Pettorossi et al., 2015).
The magnitude and persistence of the effect have been shown
to be consistently observed using frequencies above 80 Hz and
application time more than 8 min (Pettorossi et al., 2015).

Regarding the frequency 100 Hz, it is important to underline
that this frequency is an appropriate vibration frequency to
stimulate the muscle spindles (Burke et al., 1976; Roll and Vedel,
1982) and to evoke the phenomenon of “spindle driving,” i.e.,
Ia afferent discharge is driven at the same stimulation frequency
(Bianconi and Van Der Meulen, 1963). Thus, RFV at 100 Hz may
drive the Ia afferent discharge at the same frequency. Interestingly,
such a frequency is often used to induce plastic reorganization of
central nerve networks, in vitro (Bliss and Lomo, 1973; Stanton
and Sejnowski, 1989; Bliss and Collingridge, 1993; Abraham and
Williams, 2003) and in vivo (Iriki et al., 1989) by means of an
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FIGURE 1

Flow chart of repeated focal vibration (RFV) after-effects on nervous excitability. The suggested cascade of functional implications is illustrated.

elevated glutamate synaptic release. This can lead to synaptic
events such as LTP and result in an immediate and sustained
change in synaptic responsiveness, followed, later, by sustained
reorganization of the synaptic pathway.

Regarding the duration, it is well-known that prolonged
stimulation allows activation of transcription and transduction of
proteins that influence genomic expression at the nuclear level.
The activation of these mechanisms could explain the persistence
of the effect over time (Lynch, 2004). In vitro and in vivo studies
show that stimulation (or training) must be repeated and organized
in a spaced training, i.e., over days, to allow optimal memory
consolidation, which is superior to that achieved by a massive
training. Similarly, the consequence of intense sensory stimulation
requires repetition over consecutive days to ensure long persistence
of the training-independent sensory learning (Smolen et al., 2016).

In conclusion, the similarities between the characteristics of
vibratory and in vitro stimulation suggest that the effects of
vibratory protocols may be fundamentally due to an LTP-like
mechanism that can develop plastic reorganization in the CNS.

4.2. Status of the vibrated muscle

Another aspect to note concerns muscle status during
vibration. In the reported studies showing complex and sudden

after-effects, the vibration was applied while the subject maintained
the vibrated muscle in a state of mild voluntary isometric
contraction. In the absence of this condition, the results were
contradictory, showing either short (Fattorini et al., 2021) or no
effects (Brunetti et al., 2006, 2012, 2015; Fattorini et al., 2006;
Marconi et al., 2008; Filippi et al., 2009; Pettorossi et al., 2015).

The apparently more effective results of RFV, applied on
contracted muscle, seem to support the mechanism of synaptic
learning. Vibration coupled with voluntary activation of nerve
circuits, involved in the control of the treated muscle (expressed
by muscle contraction), could be a typical model of the Hebbian
paradigm for inducing plastic changes in the central nervous
system (Marconi et al., 2008, 2011; Pettorossi and Schieppati, 2014;
Pettorossi et al., 2015). However, we cannot rule out that vibration
effectiveness is due to the stimulus power absorption by the
biological system. Indeed, the stimulus transmission is modulated
by mechanical coupling and proprioceptive response. The former
is related to the muscular stiffness i.e., fibers recruitment and
their length, promoting the transmission of vibrations by reducing
input damping and distortion (Fattorini et al., 2016, 2017). The
latter concerns the proprioceptive local modulation managed by
γ-drive able to regulate the spindle sensitivity (Burke et al.,
1976).
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FIGURE 2

The proposed repeated focal vibration (RFV) synaptic changes and the reported effects on the sensory system. The possible increase of the motion
perception and the improvement of the internal and external reference system might favor motor planning and execution.

5. Section 3: Evidence of
long-lasting excitability changes
induced by RFV in the nervous
circuits

Several studies have investigated the effects of muscle vibration
on nerve circuits, exploring some parameters of spinal and cortical
excitability. Spinal excitability is affected by muscle vibration, as
shown by depression of the H-reflex after vibratory stimulation
(Souron et al., 2017a; Rocchi et al., 2018). These effects have
been attributed to a decrease in motoneuron excitability by
corticospinal electrical stimulation studies (Souron et al., 2019). In
addition, intense vibratory stimulation has been found to induce
both a decrease in spinal excitability and a cortical excitability
modulation revealed by comparing cortical versus thoracic or
cervico-medullary evoked potentials (Kennouche et al., 2022;

Pfenninger et al., 2023). It should be noted that the duration of
these spinal and cortical changes has not been evaluated because
the above studies were conducted under acute conditions. However,
other authors showed that H reflex and reciprocal spinal inhibition,
after RFV, returned to baseline within 60 min (Rocchi et al., 2018).

As with spinal tests, several studies have reported changes in
cortical excitability after muscle vibration (Souron et al., 2017a).
Acute effects, after a single session of FV, are equivocal regarding
cortical excitability, showing evidence of potentiation, decrease,
or absence of effects in magnetic evoked potentials (MEPs),
short intracortical inhibition (SICI), intracortical facilitation
(ICF) (Rosenkranz and Rothwell, 2006; Souron et al., 2017a;
Kennouche et al., 2022; Pfenninger et al., 2023). The reason
for these discrepancies may be due to differences in the
frequency, amplitude, duration, and application modes of vibration
(Rosenkranz and Rothwell, 2006). Conversely, studies on chronic,
long-lasting effects of RFV on the cortical excitability, are few
(Marconi et al., 2008, 2011). In these studies, on magnetic
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stimulation of primary motor cortex, before and after RFV, Marconi
and co-workers obtained long-lasting effects in both healthy
(Marconi et al., 2008), and diseased subjects (Marconi et al., 2011),
showing a time course consistent with that described in section 1
(2–3 weeks, the duration of follow-up). Furthermore, in the second
work (Marconi et al., 2011) neurophysiological tests were correlated
with recovery of motor functions. Interestingly, these researchers
applied RFV protocol in tune with the parameters described in
section 2 and used by the studies mentioned in section 1. Authors,
in both the studies, evidenced a that short intracortical inhibition
(SICI) changed persistently increasing in the treated muscles, and
decreasing in the untreated antagonist. Such a rebalance, between
agonist-antagonist muscles, suggests a specific and simultaneous
up- and down-regulation of intracortical GABAergic circuits
(Marconi et al., 2008, 2011). In these experiments, intracortical
facilitation, motor threshold and H-reflex were tested. Intracortical
facilitation did not change, and the motor threshold decreased
only in post-stroke patients (Marconi et al., 2011), remaining
unchanged in healthy subjects (Marconi et al., 2008). H-reflex,
tested 1 h after RFV ending, was unchanged both in healthy
and diseased individuals. This is not in contrast with Rocchi
et al. (2018), since they showed that the H-reflex returned to the
baseline within 60 min after RFV ending. Finally, in post-stroke
patients, a significant and parallel correlation was shown among
SICI increase, threshold reduction and motor improvements. The
authors suggested that cortical changes could allow more efficient
and selective muscle activation, associated with an improvement
in the role of the antagonist, which can reduce the mechanical
impedance of the joint during the movement (Marconi et al., 2008,
2011). A current view is that a SICI increase could lead to highly
coordinative abilities (Stinear and Byblow, 2003; Dai et al., 2016;
Mouthon and Taube, 2019), in healthy and diseased individuals, to
avoid the possible development of unwanted co-contractions and
dyssynergia, which could be an obstacle to movement (Liepert et al.,
2000; Stinear and Byblow, 2003; Marconi et al., 2011; Dai et al.,
2016; Mouthon and Taube, 2019).

A possible schematic sequence of these plastic changes, after
RFV application, is shown in Figure 1. The cortex evidenced
persistent rearrangements, that are temporally coherent with
the behavioral results reported in section 1, whereas the spinal
excitability showed only transient change. Therefore, the spinal
cord excitability change does not seem relevant for long-term
effects, even if it could initially contribute to facilitate the induction
of the persistent cortical plastic events.

6. Discussion

In this article, we argue that the motor improvements induced
by RFV could find a possible theoretical explanation in the
ability of non-specific sensory stimulation to induce long-term
hetero- and homo-synaptic effects in the CNS, such as LTP, and
subsequent neural plastic rearrangements (Beste and Dinse, 2013).
This possibility was observed in the tactile, visual, and acoustic
sensory systems where unspecific repetitive stimulation induced
better discrimination of inputs (Pleger et al., 2003; Frenkel et al.,
2006; Clapp et al., 2012; Beste and Dinse, 2013). Beste and Dinse
(2013) referred to this mechanism as “learning without training,”

to emphasize how the effects were not related to the stimulus
specificity. It is conceivable that similar learning can be observed
in the proprioceptive sensory system following RFV. This can be
considered a form of proprioceptive training (Aman et al., 2015)
that can induce both a local increase of sensory discrimination
and a central neural plasticity, synergistically improving motor
performance (flow chart of the effects is depicted in Figure 2). We
pointed out that RFV may generate synaptic potentiation in the
proprioceptive circuits and can shift the activity of neural circuits
to a different level to enable the system to be more responsive
and adaptive. Evidence to support this adaptive mechanism of
action is based on certain features of the vibration stimulation
protocol that are decisive in achieving functional benefits. The
first piece of evidence is the need to use high frequency vibratory
stimulation. In fact, positive effects have been observed only after
the application of vibration frequencies above 80 Hz, up to 300 Hz,
mostly 100 Hz (Rosenkranz and Rothwell, 2004, 2012; Pietrangelo
et al., 2009; Iodice et al., 2011; Pettorossi and Schieppati, 2014;
Pettorossi et al., 2015). Other authors reported that it is possible
to induce positive and persistent after-effects with prolonged
and repeated stimulation and these are relevant parameters for
inducing plastic processes (Smolen et al., 2016). Furthermore, the
effectiveness of RFV increases when the subject pays attention to
the area where the vibration is applied or it is associated with
the contraction of the activated muscle (Rosenkranz and Rothwell,
2012; Pettorossi et al., 2015). This further supports the possible
induction of heterosynaptic LTP, as occurs in Hebbian synaptic
plastic rearrangements (Hebb, 1949; Marconi et al., 2008, 2011).

Several studies have shown significant improvements in balance
control, suggesting that RFV increases proprioceptive circuit
resolution. In fact, the improvement in balance control under
closed-eye conditions (Filippi et al., 2009; Celletti et al., 2011,
2015; Brunetti et al., 2012, 2015; Rabini et al., 2015; Attanasio
et al., 2018) and the changes in motion perception (Karnath,
1994; Pettorossi and Schieppati, 2014; Pettorossi et al., 2015) seem
reasonably due to an enhanced ability of proprioceptive signals to
perceive position and motion. This could also be promoted by a
refinement of whole-body position and motion representation in
space, in relation to spatial coordinates (Karnath, 1994; Pettorossi
and Schieppati, 2014; Pettorossi et al., 2015; Contemori et al., 2021).
These sensorial ameliorations might synergically act with central
motor changes. On the other hand, intracortical excitability shows
the presence of different modulation of SICI relative to agonist and
antagonist muscles (Marconi et al., 2008, 2011). Consequently, joint
stabilization can be more efficient, by adapting the joint impedance
to functional demands. In fact, appropriate modulation of joint
impedance can improve muscle strength, power, resistance to
fatigue, as well as fluidity and precision of movement. Fine-tuning
of joint impedance is critical for the accuracy of motor execution
and motor learning. In addition, effective rebalancing of joint
impedance, even if localized to a few joints, can be instrumental
in improving complex, multi-joint motor tasks, such as balance
control and gate, and in refining motor accuracy (Aprile et al., 2016;
Contemori et al., 2021). Finally, the ability to optimize functional
joint stabilization and impedance is a key determinant of motor
learning ability.

In conclusion, it seems evident that the shared features
of stimulation protocols, proposed by the studies cited above,
could develop motor learning independent of training, which
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potentially opens up new applicative possibilities. The present view
suggests that appropriate proprioceptive stimulation procedures
may provide new perspectives, which can improve, and develop
motor strategies even in complex motor tasks, in which the
proprioceptive modality is engaged.

It is to note that listed RFV studies involve mostly protocols
adopting vibration frequency set at 100 Hz. New researches are
needed to verify the effective role of protocol characteristics in
the presence of different functional and pathological conditions
and in combination with specific rehabilitation training. These
studies should consider the fact that vibratory stimulation should
be intense and reiterate and should exploit the combined activation
of different signals to facilitate synaptic potentiation through an
hebbian mechanism. Furthermore, new experiments are needed
to directly confirm the neural changes elicited by high-frequency
stimulation, possibly using strategies able to interfere with the
induction of short- and long-term synaptic changes.
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