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Analytical Regularization Approach to Plane
Wave Diffraction From Circular Hole

in Infinite Resistive Plane
Mario Lucido , Senior Member, IEEE, and Alexander I. Nosich , Fellow, IEEE

Abstract— In this article, the diffraction of a plane wave from a
circular hole in an infinite resistive plane is addressed. In contrast
to the holed perfectly electrically conducting (PEC) screens,
neither the equivalence principle combined with the image theory
nor the Babinet principle can be applied here, and the problem
has to be solved directly. The method adopted in this article
belongs to the family of methods of analytical preconditioning.
The revolution symmetry allows us to reduce the problem to an
infinite set of dual integral equations in the vector Hankel trans-
form (VHT) domain for suitable unknowns vanishing outside
the hole. Such equations are transformed into matrix equations
by means of the Helmholtz-Galerkin discretization technique.
The orthogonal eigenfunctions of the most singular part of the
integral operator, reconstructing the behavior of the fields at
the edge and around the center of the hole, are selected as
expansion functions, thus leading to fast converging Fredholm
second-kind matrix equations, whose elements can be expressed
as quickly evaluable proper integrals. Numerical results show
the near-field and far-field characteristics for various cases; the
in-house software code is validated by means of comparisons with
general-purpose commercial software.

Index Terms— Circular hole, Helmholtz-Galerkin technique,
method of analytical preconditioning, plane-wave diffraction,
resistive plane.

I. INTRODUCTION

THE diffraction from a hole in an infinite perfectly
electrically conducting (PEC) screen represents one of

the most popular among the classical problems in elec-
tromagnetic theory. Starting from the famous paper by
future Lord Rayleigh [1], which dates from the late 19th
century, much effort has been devoted to this subject
up to the present day. The techniques proposed in the
huge number of papers published range from the asymp-
totic techniques adopted for electrically large apertures, the
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Bethe-Bouwkamp model for small apertures, the closed-form
solution in terms of oblate spheroidal vector wavefunctions
for circular apertures, various semi-analytical and numerical
techniques, and the reader can refer to the very-well writ-
ten books, comprehensive reviews, and recent papers for an
overview [2], [3], [4], [5], [6], [7], [8], [9], [10]. What is
important to note is that a large part of the produced literature
is founded on two approaches. In the first one, the equivalence
principle, combined with the image theory, leads to an equiv-
alent problem in which fictitious magnetic surface currents
replacing the aperture radiate in the free space. The second
approach is based on the electromagnetic form of the Babinet
principle, according to which the field diffracted by the hole is
related to the field scattered in a suitable complementary prob-
lem. It is worth emphasizing that both approaches, resulting
in boundary value problems whose unknowns are defined on
finite supports, are founded on the PEC nature of the screen
and cannot be applied when nonperfect materials are involved.

The analysis of the diffraction from holes in infinite
penetrable screens was attempted for the first time by Neuge-
bauer [11], where generalized Bethe conditions were proposed
and, in turn, used to calculate approximate solutions of Kirch-
hoff type. More or less ten years later, Ashour [12] analyzed
the problem at hand in the geomagnetic context, i.e., in the
static case, by means of dual integral equations formulation.
In 2007, the analysis of the diffraction by small circular
apertures in screens of finite conductivity was addressed
by Popov et al. [13] by means of a perturbation approach
generalizing the Kirchhoff theory. Only very recently, a full-
wave technique, based on dual integral equations formulation
and the method of moments, for the analysis of the field
penetration through a circular aperture in a thin resistive plate,
however, restricted to the axially symmetric case, have been
proposed by Lovat et al. [14].

It can be immediately understood that, despite what hap-
pened for PEC-holed infinite screens, the attention of the
scientific community to the analysis of the diffraction by holes
in absorbing screens has been quite nuanced and certainly
discontinuous over the past 70 years. This, in part, should
surprise because, undoubtedly, a holed penetrable screen rep-
resents a more reasonable approximation of a real problem.
On the other hand, this tells that such a problem is tremen-
dously more complicated than the one involving a PEC holed
screen because it must be solved directly. Moreover, general-
purpose commercial software cannot handle infinite objects
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and accurate numerical simulations require the discretization
of large (with respect to the wavelength) volumes or surfaces
resulting in a huge cost in terms of computation resources.
What has been said so far allows us to conclude that the
problem at hand needs to be better investigated.

In this article, the diffraction from a circular hole in an
infinite resistive plane is considered. The semi-analytical tech-
nique adopted, belonging to the class of the methods of analyt-
ical preconditioning [15], [16], has been already successfully
applied by the authors to the analysis of propagation, radiation,
and scattering problems [17], [18], [19], [20], [21], [22], [23].
A holed resistive plane appears as a reasonable model of
the small-thickness with respect to the wavelength and pen-
etrable (i.e., material) plate [24]. Namely, the thin plate
can be approximated with a plane and a certain set of the
two-side generalized boundary conditions for the electromag-
netic field. If, additionally, the plate material is optically
dense or highly conductive, then the generalized boundary
conditions take the form of resistive conditions. This enables
one to reduce the scattering problem to solving a surface
integral/integral-differential equation for the effective elec-
tric surface current density, i.e., the jump of the tangential
to the holed resistive plane component of the magnetic
field.

Based on the azimuthal symmetry of the problem, by invok-
ing the Fourier series expansion and the vector Hankel
transform (VHT), such an equation can be recast as an infinite
set of dual integral equations in the spectral domain for the
VHT of the azimuthal harmonics of the effective electric
surface current density. In contrast to what happens for the
thin resistive disk, the spatial domain counterparts of the
unknowns are now defined on infinite support. To overcome
this problem, such classical unknowns are, then, replaced by
the azimuthal harmonics of an auxiliary function coinciding
with the tangential component of the electric field in the
hole, however, vanishing outside the hole. In this way, the
original second-kind hypersingular integral equations defined
on the holed resistive plane, i.e., on infinite support, are
replaced by the second-kind singular integral equations con-
fined to the hole. Helmholtz decomposition of the azimuthal
harmonics of the auxiliary function leads to the adoption
of new scalar unknowns in the spectral domain. It is worth
observing that the proposed integral equation formulation
includes the case of a holed PEC plane, obtained by set-
ting the resistivity to zero. In that case, the second-kind
singular integral equations reduce to first-kind hypersingular
ones.

The discretization of the dual integral equations is provided
by expanding such unknowns in terms of orthogonal eigen-
functions of the most singular part of the integral operator,
reconstructing the behavior of the electric field at the hole rim
and at its center, in a classical Galerkin scheme. In this context,
Galerkin projection acts as a perfect preconditioner and the
resulting matrix equations are of the Fredholm second-kind
in l2, i.e., the approximate solution obtained by truncating
the matrix equation tends to be the exact solution of the
problem as the truncation order tends to infinity. Moreover,
the convergence is even fast, i.e., highly accurate results

can be achieved by filling a coefficient matrix of a small
size. To conclude, the analytical procedure introduced by
Lucido et al. [22] and [23] allows writing the elements of
the coefficient matrix as fast converging proper integrals, thus
guaranteeing negligible computation times.

The remainder of this article is organized as follows.
Section II is devoted to presenting the formulation of the
problem, the Helmholtz-Galerkin technique, and the expres-
sions of the near and far diffracted field. In Section III,
numerical results are provided. The near-field and far-field
characteristics are shown for different values of the radius
of the hole, the resistivity, the incidence angle, and the
polarization of the impinging plane wave. Moreover, compar-
isons with the commercial software CST Microwave Studio
(CST-MWS) are provided in order to validate the implemented
in-house software code. The conclusions are summarized
in Section IV and three Appendixes contain auxiliary
derivations.

II. PROPOSED SOLUTION OF THE PROBLEM

This section is aimed at showing the fundamental steps
of the proposed solution. In Section II-A, the problem is
formulated in terms of an infinite set of dual integral equations
in the VHT domain. Subsequently, in Section II-B, the adopted
Helmholtz-Galerkin discretization technique, leading to the
Fredholm second-kind matrix equations, is presented. To con-
clude, in Section II-C, the near- and far-zone expressions of
the field diffracted by the hole are derived.

A. Infinite Set of Dual Integral Equations in the VHT Domain

In Fig. 1(a), the geometry of the problem at hand is
sketched: an infinite material plate of relative dielectric per-
mittivity εr , conductivity σ , and thickness τ , with a circular
hole of radius a in the free space is considered. A cylindrical
coordinate system (ρ, φ, z), with the z axis orthogonal to
the plate and the origin located at the center of the hole
on the median surface S, and a spherical coordinate system
(r, θ, φ), such that ρ = rsθ and z = rcθ , where st = sin t
and ct = cos t , are introduced. The scattered field is excited
by an impinging plane wave propagating in the upper half-
space, E inc(r) = E0e−jk·r and H inc(r) = 1/(ωµ0)k ×

E0e−jk·r , where r identifies the observation point, E0 is a
constant vector, k = −k0(sθ0cφ0−φ ρ̂ + sθ0sφ0−φ φ̂ + cθ0 ẑ),
k0 = ω

√
ε0µ0 = 2π/λ is the free space wavenumber, ω is

the angular frequency, ε0 and µ0 are the dielectric permittivity
and the magnetic permeability of the free space, λ is the free
space wavelength, whereas the incidence direction is identified
by the angles θ = θ0 and φ = φ0.

In the half-space above the holed material plate, the total
field, (E(r), H(r)), can be written as the superposition of the
incident plane wave, the plane wave reflected by the plate
without the hole, (E refl(r), H refl(r)), and the perturbation due
to the hole, which is the diffracted field, (Ediffr(r), Hdiffr(r)),
i.e., E(r) = E inc(r) + E refl(r) + Ediffr(r) and H(r) =

H inc(r) + H refl(r) + Hdiffr(r). Whereas, in the half-space
below the holed plate, the total field is given by the super-
position of the plane wave transmitted by the plate without
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Fig. 1. Geometry of the problem, incident plane wave, and adopted
notations. (a) Infinite holed material plate of relative dielectric permittivity εr ,
conductivity σ , and thickness τ . (b) Holed resistive plane of resistivity R.

hole, (E tr(r), H tr(r)), and, again, the perturbation due to
the hole, i.e., E(r) = E tr(r) + Ediffr(r) and H(r) =

H tr(r) + Hdiffr(r). On the other hand, the scattered field,
(E sc(r), H sc(r)), is defined as the difference between the total
field and the incident field, i.e., E sc(r) = E(r) − E inc(r) and
H sc(r) = H(r) − H inc(r).

Supposing that σ ≫ ωε0εr and τ < dskin ≪ λ , where
dskin =

√
2/(ωµ0σ) is the skin depth, the field inside the

plate can be neglected, and the infinite thin material plate
can be approximated with a zero-thickness resistive plane
located on the median surface S [see Fig. 1(b)]. In that case,
the following two-side generalized boundary conditions have
to be satisfied by the electromagnetic field on the median
surface S [24]:

ẑ ×
(
E
(
ρ, φ, 0+

)
− E

(
ρ, φ, 0−

))
= 0 (1a)

1
2

ẑ ×
(
E
(
ρ, φ, 0+

)
+ E

(
ρ, φ, 0−

))
× ẑ = R J (ρ, φ) (1b)

for ρ ≥ a and 0 ≤ φ < 2π , where R is the resistivity
(i.e., the surface resistance) of the plane and J (ρ, φ) = ẑ ×

(H(ρ, φ, 0+)− H(ρ, φ, 0−)), i.e., the jump across the median
surface S of the tangential component of the magnetic field,
defines the effective electric surface current density.

Additionally, we assume that the plate material is a
good conductor (its conductivity is σ ≫ ωε0εr ), hence,
R = 1/(στ), i.e., the resistivity is purely real-valued [24].
By imposing the local power boundedness condition and
the Silver-Muller radiation condition on the diffracted field,
which is possible if R is not a purely imaginary number (see
Appendix A), a uniquely solvable boundary value problem
for the Maxwell equations is obtained [15], [25]. It is worth

noting that, since the plane waves reflected and transmitted
by the infinite plane without holes can be simply expressed
in closed form, the only unknown quantity in the bound-
ary value problem at hand is the field diffracted by the
hole.

By applying the second Green’s formula or starting from
the integral representation of the vector potential, (1) can
be written in terms of a surface integral or, alternatively,
integral-differential equation for the effective electric surface
current density J (ρ, φ) [26]. As the diffracted field can be
represented as a convolution integral involving the free-space
dyadic Green’s function, the Silver-Muller radiation condition
is satisfied automatically if the Green’s function satisfies that
condition. On the other hand, taking advantage of the revolu-
tion symmetry, all the involved functions can be conveniently
expanded in the Fourier series. In this way, indeed, due to
the orthogonality properties of the azimuthal harmonics, the
problem can be equivalently formulated in terms of an infinite
set of 1-D integral equations for the azimuthal harmonics of
the effective electric surface current density. By invoking the
VHT of the order n ∈ Z (VHTn) [27]

P̃
(n)

(w) =

∫
+∞

0
H(n) (wρ) P(n) (ρ) ρdρ (2)

where

H(n) (wρ) =

 J ′
n (wρ)

n Jn (wρ)

wρ
n Jn (wρ)

wρ
J ′

n (wρ)

 (3)

is the kernel of the VHTn , Jν(·) and J ′
ν(·) are, respectively,

the Bessel function of the first kind and order ν and its first
derivative with respect to the argument [28]

P(n) (ρ) =

∫
+∞

0
H(n) (wρ) P̃

(n)
(w) wdw (4)

denotes the inverse VHTn (VHT−1
n ) and the symbols

P(n) (ρ) =

(
P(n)

ρ (ρ)

−jP(n)
φ (ρ)

)
(5a)

P̃
(n)

(w) =

(
P̃(n)

C (w)

−jP̃(n)
D (w)

)
(5b)

have been introduced, the nth azimuthal harmonic of the
transverse with respect to the z axis and longitudinal, i.e.,
along the z axis, components of the scattered electric field can
be respectively written as follows [29]:

Esc(n)
t (ρ, z) =

∫
+∞

0
H(n) (wρ) G̃ (w) J̃

(n)
(w)

· e−j
√

k2
0−w2|z|

wdw (6a)

E sc(n)
z (ρ, z) = −j

sgn (z)
2ωε0

∫
+∞

0
Jn (wρ) J̃ (n)

C (w)

· e−j
√

k2
0−w2|z|

w2dw (6b)
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where
√

k2
0 − w2 = −j

√
w2 − k2

0

G̃ (w) =

(
G̃C (w) 0

0 G̃D (w)

)

=


−

√
k2

0 − w2

2ωε0
0

0 −
ωµ0

2
√

k2
0 − w2

 (7)

is related to the spectral domain, i.e., the w-domain, counter-
part of the free-space dyadic Green’s function, and J̃

(n)
(w)

is the VHTn of the nth azimuthal harmonic of the effective
electric surface current density. Hence, the equations in the
spatial domain can be replaced by the following infinite set of
dual integral equations in the spectral domain:∫

+∞

0
H(n) (wρ) J̃

(n)
(w) wdw

= 0, for ρ < a (8a)∫
+∞

0
H(n) (wρ)

(
G̃ (w) − RI

)
J̃
(n)

(w) wdw

= −Einc(n)
t (ρ, 0) , for ρ > a (8b)

with n ∈ Z, where the nth azimuthal harmonic of the
tangential component of the incident electric field evaluated
on the median surface S can be written as follows:

Einc(n)
t (ρ, 0) = −jn+1e−jnφ0H(n)

(
k0sθ0ρ

)
E0t . (9)

Equation (8a) simply states the vanishing of the nth
azimuthal harmonic of the effective surface current density
in the hole. On the other hand, the hypersingular nature of the
second-kind integral equation in (8b), defined on an infinite
support (ρ > a), can be deduced from the asymptotic behavior
of G̃(w).

It is clear that the discretization technique developed in [23]
for the plane-wave scattering from a thin resistive disk and,
hence, for unknowns and integral equations defined on finite
support, cannot be directly applied. To overcome this problem,
an alternative integral formulation is devised as follows:

By means of the known identity [30]∫
+∞

0
Jn (wρ1) Jn (wρ2) wdw =

δ (ρ1 − ρ2)

ρ1
(10)

it is simple to show that

Ẽ
inc(n)

t (w, 0) = −jn+1e−jnφ0
δ
(
w − k0sθ0

)
w

E0t . (11)

Hence, by introducing the auxiliary unknown function
J̄ (ρ, φ) of nth azimuthal harmonic J̄(n)

(ρ) such that

˜̄J
(n)

(w) =

(
G̃ (w) − RI

)
J̃
(n)

(w) + Ẽ
inc(n)

t (w, 0) (12)

the dual integral equations (8) can be rewritten as follows:∫
+∞

0
H(n) (wρ)

(
G̃ (w) − RI

)−1
˜̄J
(n)

(w) wdw

= −
1
R

Etr(n)
t (ρ, 0) , for ρ < a (13a)

∫
+∞

0
H(n) (wρ) ˜̄J

(n)

(w) wdw

= 0, for ρ > a (13b)

where (see Appendix B)

Etr(n)
t (ρ, 0) = Rjn+1e−jnφ0 H(n)

(
k0sθ0ρ

)
·

(
G̃
(
k0sθ0

)
− RI

)−1
E0t (14)

is the nth azimuthal harmonic of the tangential component
of the transmitted electric field evaluated on the median
surface S.

The asymptotic behavior of the kernel in (13a), i.e.,

1

G̃T (w) − R

w→+∞
∼ κT w2(pT −1) (15)

for T = C, D, where κC = −j2ωε0 and κD = −1/R,
pC = 1/2 and pD = 1, reveals the singular nature of the
corresponding second-kind integral equation. Moreover, from
(4), (6a), (8a), (12), and (13b), it is simple to conclude that
the auxiliary unknown function coincides with the tangential
component of the electric field in the hole, i.e., J̄ (ρ, φ) =

E t (ρ, φ, 0) for ρ < a, and vanishes for ρ > a. Hence,
based on the Fourier series expansion properties and the
behavior of the electric field at the edge [31], the following

physical behavior of the components of J̄(n)
(ρ) can be readily

established:

J̄ (n)
t (ρ) =

{
ρ||n|−1| (a − ρ)pt Ĵ (n)

t (ρ) , for ρ < a
0, for ρ > a

(16)

for t = ρ, φ, where pρ = −1/2, pφ = 0 and Ĵ (n)
t (ρ)

are well-behaved functions. Under this assumption about the
functional spaces to which the azimuthal harmonics of the
auxiliary unknowns belong, the unique solvability of the dual
integral equations (13) can be immediately demonstrated by
means of Parseval equality [32].

It is interesting to observe that the proposed integral
equation formulation is very general including the case of a
holed PEC plane, which can be readily obtained by setting
the resistivity to zero. In that case, the second-kind singular
integral equation in (13a) reduces to a first-kind hypersingular
integral equation. Despite that, the discretization technique
described in Section II-B can be applied even in such a case
providing to consider the vanishing of the φ-components of
the unknowns at the edge, which simply requires a different
definition of the expansion bases.

B. Regularizing Helmholtz-Galerkin Discretization Technique

An expression in closed form of the solution of the dual
integral equations (13) is not available, hence, a discretization
scheme has to be adopted to resort to an approximate numer-
ical solution of the problem.

Now, in accordance with the VHT, the trivial choice of the
components of J̄(n)

(ρ) as independent unknowns in the spatial
domain leads to two vector unknowns in the spectral domain.
On the other hand, Helmholtz decomposition allows writing
J̄(n)

(ρ) as the superposition of a surface curl-free contribution,
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J̄(n)

C (ρ) =

(
d/dρ

n/ρ

)
8

(n)
C (ρ), and a surface divergence-free

contribution, J̄(n)

D (ρ) = −j
(

n/ρ

d/dρ

)
8

(n)
D (ρ), where 8

(n)
T (ρ)

for T = C, D are suitable potential functions [33], the VHTn
of which have only one nonvanishing component [34], i.e.,

˜̄J(n)
C (w) =

(
J̃ (n)

C (w)

0

)
(17a)

˜̄J(n)
D (w) =

(
0

−j J̃ (n)
D (w)

)
. (17b)

Hence, the choice of J̄(n)

C (ρ) and J̄(n)

D (ρ) as new unknowns
allows us to deal with scalar unknowns in the spectral domain,
J̃ (n)

C (w) and J̃ (n)
D (w). Such a choice will be done below.

According to the reasoning presented by Lucido et al. [23],
it is possible to show that the physical behavior in (16) can
be reconstructed by expanding the unknowns in the spectral
domain in complete and nonredundant series of Bessel func-
tions of the first kind [35], i.e.,

J̃ (n)
T (w) =

+∞∑
h=−1+δn,0

γ
(n)
T,h f̃ (n)

T,h (w) (18)

where δn,m is the Kronecker delta function

γ
(n)
D,−1 = α(n)γ

(n)
C,−1 (19a)

α(n)
= j

sgn (n) |n|!

0
(
|n| + 1

/
2
)
√

2
(
|n| − 1

/
2
)

a |n|
(19b)

sgn(·) and 0(·) are, respectively, the Signum function and the
Gamma function [28], and

f̃ (n)
T,h (w) =

√
2η

(n)
T,h

J
η

(n)
T,h

(aw)

w pT
(20a)

η
(n)
T,h = |n| + 2h + pT + 1 (20b)

such that the following orthonormality property can be readily
established [30]:∫

+∞

0
f̃ (n)
T,k (w) f̃ (n)

T,h (w) w2pT −1dw

= 2
√

η
(n)
T,kη

(n)
T,h

∫
+∞

0

1
w

J
η

(n)
T,k

(aw) J
η

(n)
T,h

(aw) dw

= δh,k (21)

with h, k = −1 + δn,0, . . . ,+∞.
Hence, by using the expansions (18) in a Galerkin scheme

and observing that the convolution integrals resulting from
the Galerkin projection reduce to algebraic products in the
spectral domain, the dual integral equations (13) are recast as
the following linear system of algebraic equations:

+∞∑
h=−1+δn,0

γ
(n)
T,h

∫
+∞

0

f̃ (n)
T,k (w) f̃ (n)

T,h (w)

G̃T (w) − R
wdw

= −jn+1e−jnφ0 E0t
f̃ (n)
T,k
(
k0sθ0

)
G̃T

(
k0sθ0

)
− R

(22)

with k = −1 + δn,0, . . . + ∞, where t = ρ, φ for T = C, D,
respectively.

Remembering (15), (19a), and (21), by means of simple
algebraic manipulations, the matrix equation (22) can be
rewritten as follows:

x(n)
+A(n)x(n)

= c(n) (23)

where the vector of the unknown coefficients, x(n), the coeffi-
cient matrix, A(n), and the free-term vector, c(n), are specified
in Appendix C.

By adopting the technique developed in [23], it is possible
to demonstrate that, even in such a case, Galerkin projection
acts as a perfect preconditioner and the obtained matrix
equation (23) is of the Fredholm second-kind in l2, i.e., the
existence of the solution arises from the uniqueness and
the solution of the truncated matrix equation converges to
the exact solution of the infinite algebraic problem as the
truncation order tends to infinity. Moreover, as will be shown
in Section III, since the expansion functions reconstruct the
physical behavior of the unknowns, few of them are needed
to achieve reasonably accurate solutions, thus leading to a
small-size coefficient matrix. On the other hand, by using the
analytical procedure introduced by Lucido et al. [22] and [23],
the elements of the coefficient matrix, which are 1-D improper
integrals of oscillating and slowly decaying functions, are
alternatively written as linear combinations of fast converging
proper integrals efficiently numerically evaluated by means
of an in-house software code implementing an adaptive
Gauss-Legendre quadrature routine in C++ environment [36].

C. Near-Field and Far-Field Reconstruction

Once J̄(n)
(ρ) is found, the VHTn of the nth azimuthal

harmonic of the effective electric surface current density can
be immediately obtained

J̃
(n)

(w) =

(
G̃ (w) − RI

)−1
(

˜̄J
(n)

(w) − Ẽ
inc(n)

t (w, 0)

)
(24)

and the nth azimuthal harmonic of the electric field scattered
by the holed resistive plane reconstructed by means of (6).
On the other hand, even the nth azimuthal harmonic of the
electric field scattered by the resistive plane without hole can
be reconstructed by using (6) as long as J̃

(n)
(w) is replaced

by

J̃
(n)

0 (w) = −

(
G̃
(
k0sθ0

)
− RI

)−1
Ẽ

inc(n)

t (w, 0) (25)

which is the VHTn of the nth azimuthal harmonic of the
effective electric surface current density on the resistive plane
without hole (see Appendix B). Hence, by the definitions of
diffracted and scattered fields, it is simple to conclude that the
nth azimuthal harmonic of the electric field diffracted by the
holed resistive plane coincides with the scattered electric field
generated by J̃

(n)
(w) − J̃

(n)

0 (w), i.e.,

Ediffr(n)
t (ρ, z)

=

∫
+∞

0
H(n) (wρ) G̃ (w)

(
J̃
(n)

(w) − J̃
(n)

0 (w)
)

· e−j
√

k2
0−w2|z|

wdw
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=

∫
+∞

0
H(n) (wρ) G̃ (w)

(
G̃ (w) − RI

)−1
˜̄J
(n)

(w)

· e−j
√

k2
0−w2|z|

wdw (26a)

Ediffr(n)
z (ρ, z)

= −j
sgn (z)
2ωε0

∫
+∞

0
Jn (wρ)

(
J̃ (n)

C (w) − J̃ (n)
0,C (w)

)
· e−j

√
k2

0−w2|z|
w2dw

= −j
sgn (z)
2ωε0

∫
+∞

0
Jn (wρ)

(
G̃C (w) − R

)−1
˜̄J (n)
C (w)

· e−j
√

k2
0−w2|z|

w2dw (26b)

where (6), (11), (24), and (25) have been used.
Note that the kernels in (26) have no real-valued poles if

the resistivity R is real (see Appendix A). Then, by means
of the stationary phase method, the far-diffracted electric field
can be expressed in closed form as

Ediffr
s

(
r
) r→∞

∼
e− jk0r

r
Fs (θ, φ) (27)

for s = θ, φ, where

Fθ (θ, φ) = −
ωµ0

2
cθ

(
G̃C (k0sθ ) − R

)−1

×

+∞∑
n=−∞

e jn(φ+
π
2 ) ˜̄J (n)

C (k0sθ ) (28a)

Fφ (θ, φ) = −
ωµ0

2

(
G̃D (k0sθ ) − R

)−1

×

+∞∑
n=−∞

e jn(φ+
π
2 ) ˜̄J (n)

D (k0sθ ) (28b)

and the bistatic radar cross section (BRCS) and the total
scattering cross section (TSCS), defined by the diffracted field,
can be expressed as

σBRCS (θ, φ) = lim
r→∞

4πr2
∣∣Ediffr (r)∣∣2∣∣E inc (r)∣∣2 =

4π
∣∣F (θ, φ)

∣∣2∣∣E0
∣∣2

(29a)

σTSCS =
1

4π

∫ π

0

∫ 2π

0
σBRCS (θ, φ) sθ dφdθ

=
1∣∣E0
∣∣2
∫ π

0

∫ 2π

0

∣∣F (θ, φ)
∣∣2 sθ dφdθ.

(29b)

III. NUMERICAL RESULTS

This section is devoted to the demonstration of the fast con-
vergence of the proposed technique in reconstructing near-field
and far-field characteristics for the problem at hand, for
varying values of the radius of the hole, the resistivity of the
holed plane, the incidence angle, and the polarization of the
impinging plane wave.

In order to examine the convergence rate of the proposed
method, the following relative computation error is introduced:

err N (M) =

√√√√√√
∑N−1

n=−N+1

∥∥∥x(n)
M+1 − x(n)

M

∥∥∥2

∑N−1
n=−N+1

∥∥∥x(n)
M

∥∥∥2 (30)

where the symbol ∥·∥ denotes the usual Euclidean norm,
x(n)

M is the truncated vector of the expansion coefficients, M is
the number of expansion functions used for each unknown,
whereas 2N − 1 harmonics are considered according to the
estimation formula proposed in [37]. It is remarkable to note
that, by exploiting all the symmetries of the coefficient matrix,
just N M(2M + 1) of 4M2(2N − 1) matrix elements have to
be numerically evaluated.

Moreover, comparisons with the results provided by
CST-MWS are presented to validate the implemented software
code and to show that the proposed method drastically outper-
forms CST-MWS in terms of computation time and memory
occupation. To this purpose, all the simulations are performed
on a laptop equipped with an Intel Core i7-10510U 1.8 GHz,
16 GB RAM.

In Fig. 2, the problem for a = 2λ , R = 1 k�, and TE
incidence with φ0 = 0◦ and θ0 = 0◦, 30◦, 60◦ is analyzed.
In Fig. 2(a), the relative computation error is shown. As can
be clearly seen, the asymptotic convergence is substantially
independent of the incidence angle, which instead affects
the number of azimuthal harmonics to be considered (N =

2, 15, 21, respectively). As expected, the convergence is really
very fast as at most seven expansion functions for each
unknown and a computation time of at most 2 s are needed to
achieve a relative computation error of 1%, whereas 13 expan-
sion functions and 4 s allow achieving an error of 0.1%.
In Fig. 2(b), the amplitude of the auxiliary unknown along
the direction θ = 90◦ and φ = 0◦, 180◦ is plotted. According
to (15), the auxiliary unknown assumes constant values at
the hole rim because its ρ-component vanishes. Fig. 2(c)
shows the BRCS in the plane φ = 0◦, 180◦. As expected,
two maxima substantially directed along the specular with
respect to the incidence direction and the forward direction
appear.

Fig. 3 is related to the second case analyzed: a = λ , 2λ , 4λ ,
R = 1 k� and TM incidence with φ0 = 0◦ and θ0 = 30◦. The
relative computation error is plotted in Fig. 3(a). In this case,
the numbers of both the expansion functions and the azimuthal
harmonics, needed to achieve a given accuracy, increase if the
hole radius gets larger. Anyway, the convergence is really very
fast in all the cases examined. Indeed, N = 11, 15, 23 has
to be set for a = λ , 2λ , 4λ , respectively. Moreover, at most
M = 8 and a computation time of 3 s are needed to achieve
a relative computation error of less than 1%, whereas at most
M = 16 and 8 s allow to reach a relative computation
error of less than 0.1%. It is important to note that the fast
convergence for varying values of the radius of the hole with
respect to the wavelength can be immediately reinterpreted
as the effectiveness of the proposed full-wave method for
varying values of the frequency. Fig. 3(b) shows the amplitude
of the auxiliary unknown along the direction θ = 90◦ and
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Fig. 2. (a) Relative computation error, (b) amplitude of the auxiliary function
along the direction θ = 90◦ and φ = 0◦, 180◦, and (c) normalized BRCS in
the plane φ = 0◦, 180◦ for the holed resistive plane with a = 2λ , R = 1 k�

and TE incidence with φ0 = 0◦ and θ0 = 0◦, 30◦, 60◦.

φ = 0◦, 180◦. In that case, the ρ-component of the auxiliary
unknown does not vanish, and a divergent behavior can be
observed at the hole rim [see (16)]. As expected, the BRCS
behavior in the plane φ = 0◦, 180◦ plotted in Fig. 3(c) shows
that the number of sidelobes increases by increasing the radius
of the hole.

Fig. 3. (a) Relative computation error, (b) amplitude of the auxiliary function
along the direction θ = 90◦ and φ = 0◦, 180◦, and (c) normalized BRCS in
the plane φ = 0◦, 180◦ for the holed resistive plane with a = λ , 2λ , 4λ ,
R = 1 k� and TM incidence with φ0 = 0◦ and θ0 = 30◦.

In Fig. 4, the case of a = 2λ , R = 0.1, 1, 10 k� and
TE incidence with φ0 = 0◦ and θ0 = 30◦ is considered.
Fig. 4(a) shows the behavior of the relative computation error.
Of course, the resistivity level does not affect the number
of azimuthal harmonics to be considered (N = 15 in that
case). However, it has an impact on the number of expansion
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Fig. 4. (a) Relative computation error, (b) amplitude of the auxiliary function
along the direction θ = 90◦ and φ = 0◦, 180◦, and (c) normalized BRCS
in the plane φ = 0◦, 180◦ for the holed resistive plane with a = 2λ ,
R = 0.1, 1, 10 k� and TE incidence with φ0 = 0◦ and θ0 = 30◦.

functions to be used as higher is the accuracy required for
the solution, although the convergence is in any case very
fast. Indeed, in the three cases examined in this example,
a relative computation error of 1% is achieved by using
from 6 to 9 expansion functions for each unknown with a
computation time of about 3 s, whereas an error of 0.1%

Fig. 5. Amplitude of the auxiliary function along the direction θ = 90◦

and φ = 0◦, 180◦ for the holed resistive plane with a = λ , R = 1 k�,
and normal incidence (θ0 = 0◦) with the electric field along the direction
θ = 90◦ and φ = 90◦, 270◦, reconstructed by means of the presented
method, and using CST-MWS by approximating the holed resistive plane
with a zero-thickness resistive annular ring of internal radius a and external
radius ā for ā = 2.5λ , 5λ , 7.5λ , 10λ .

requires from 9 to 30 expansion functions with a computation
time ranging from 2 to 15 s. Fig. 4(b) shows the amplitude of
the auxiliary unknown along the direction θ = 90◦ and φ =

0◦, 180◦. It is interesting to note that such behavior tends to
the amplitude of the incident field for increasing values of the
resistivity, i.e., the scattered field tends to vanish, coherently
with the total transparency expected when the resistivity tends
to infinity. This conclusion is confirmed by the BRCS behavior
in the plane φ = 0◦, 180◦ plotted in Fig. 4(c), which shows
a reduction in all the directions by increasing the resistivity
level.

Comparisons with CST-MWS are provided in order to vali-
date the implemented in-house software code and to show the
effectiveness of the proposed method. The integral equation
solver of CST-MWS combined with the zero-thickness rep-
resentation of the scatterer has been considered. Obviously,
CST-MWS is not able to simulate the considered in finite
object, hence, the holed resistive plane has been approximated
with a zero-thickness resistive annular ring of internal radius a
and external radius ā. In Fig. 5, the amplitude of the auxiliary
function along the direction θ = 90◦ and φ = 0◦, 180◦ for a =

λ , R = 1 k�, θ0 = 0◦ (normal incidence), and incident electric
field along the direction θ = 90◦ and φ = 90◦, 270◦, recon-
structed by using ten expansion functions and two azimuthal
harmonics (for n = ±1), i.e., 800 matrix coefficients, in order
to achieve a relative computation error less than 0.1% with
a computation time of 1.5 s, is compared with the behavior
obtained by using CST-MWS for four values of the external
radius (ā = 2.5λ , 5λ , 7.5λ , 10λ ). It is clear that the solution
provided by CST-MWS tends to be the one obtained by means
of the proposed method as the external radius increases. In the
very simple case examined, a quite good approximation is
obtained by considering at least ā = 7.5λ . However, it is
possible to show that higher values of ā have to be used for
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Fig. 6. Diffracted and total near electric fields in the plane φ = 0◦, 180◦ for a = 2λ , R = 0.1 k� and TE incidence with φ0 = 0◦ and θ0 = 0◦, 30◦, 60◦.
(a) Diffracted near electric field for θ0 = 0◦, (b) total near electric field for θ0 = 0◦, (c) diffracted near electric field for θ0 = 30◦, (d) total near electric field
for θ0 = 30◦, (e) diffracted near electric field for θ0 = 60◦, and (f) total near electric field for θ0 = 60◦.

increasing values of a and/or θ0. In Table I, the number of
mesh cells and the corresponding computation times needed
to reconstruct the solution by means of CST-MWS for all
the cases examined in Fig. 5 are shown and compared with
the proposed method. As can be seen, 0.6 to 9.3 million
mesh cells have been used and the required computation

time varies from 90 to 542 s. The obvious conclusion is
that the proposed method drastically outperforms CST-MWS.
As, in contrast to CST-MWS, our technique possesses a
mathematically guaranteed convergence, it is fair to view the
found agreements as a validation of the former and not the
latter.
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Fig. 7. Normalized TSCS for varying values of the normalized frequency (k0a) and R = 1, 20, 50 �, and total near electric field in the plane z/a = 0 for
R = 1 � at three resonance frequencies, for normal incidence (θ0 = 0◦) with the electric field along the direction θ = 90◦ and φ = 90◦, 270◦. (a) Normalized
TSCS, (b) total near electric field at k0a = 11.9984001, (c) total near electric field at k0a = 15.1742413, and (d) total near electric field at k0a = 18.3380831.

TABLE I
MEMORY OCCUPATION AND COMPUTATION TIME REQUIRED BY

CST-MWS TO RECONSTRUCT THE AUXILIARY FUNCTION ALONG
THE DIRECTION θ = 90◦ AND φ = 0◦, 180◦ BY APPROXIMATING

THE HOLED RESISTIVE PLANE WITH A ZERO-THICKNESS
RESISTIVE ANNULAR RING OF RADII a AND ā FOR a = λ ,

ā = 2.5λ , 5λ , 7.5λ , 10λ , R = 1 k�, AND NORMAL
INCIDENCE (θ0 = 0◦) WITH INCIDENT ELECTRIC

FIELD ALONG THE DIRECTION θ = 90◦ AND
φ = 90◦, 270◦ , AND COMPARISON WITH

THE PROPOSED METHOD

For the sake of completeness, in Fig. 6, the diffracted and
total near electric fields in the plane φ = 0◦, 180◦ are shown

for a = 2λ , R = 0.1 k� and TE incidence with φ0 = 0◦ and
θ0 = 0◦, 30◦, 60◦. As expected, the amplitude of the diffracted
field is symmetric with respect to the holed resistive plane and
the hotspots are substantially directed along the specular with
respect to the incidence direction and the forward direction.
On the other hand, the total field behavior clearly shows the
interference between the incidence and reflected waves, and
the perturbation of the field due to the diffraction phenomenon.

To conclude, the natural mode resonances of the holed
resistive plane are analyzed. For the sake of brevity, the
following discussion is limited to the normal incidence of
the plane wave (θ0 = 0◦). As a result, only the harmonics
n = ±1 contribute to the field representation.

According to [20], the resonance frequencies can be indi-
viduated by the peaks of TSCS. In Fig. 7(a), the TSCS
is plotted for varying values of the normalized frequency,
k0a, and for R = 1, 20, 50 �. This behavior has been
reconstructed by using from 4 to 35 expansion functions in
order to achieve a relative computation error of less than
0.1% for each simulation point with a computation time
ranging from 0.4 to 5 s. It can be immediately observed
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Fig. 8. Normalized TSCS for varying values of the normalized frequency (k0a) and total near electric field in the plane z/a = 0 for one natural mode
resonance, for R = 1, 20, 50 and normal incidence (θ0 = 0◦) with the electric field along the direction θ = 90◦ and φ = 90◦, 270◦. (a) Normalized TSCS,
(b) total near electric field for R = 1 � and k0a = 8.7965602, (c) total near electric field for R = 20 � and k0a = 9.0065497, and (d) total near electric
field for R = 50 � and k0a = 9.2005400.

that, coherently with the BRCS behavior shown in Fig. 4(c),
the TSCS reduces as the resistivity increases, i.e., by moving
toward the total transparency condition. Moreover, many peaks
can be observed in all the cases examined that are as smoother
out as the surface resistivity is higher. This behavior can be
directly connected to lower values of the associated resonance
quality factors. In Fig. 7(b)–(d), the in-plane (z/a = 0)

total electric field behavior at the three consecutive resonance
frequencies k0a = 11.9984001, k0a = 15.1742413, and
k0a = 18.3380831, marked in Fig. 7(a), is shown. Such
kinds of resonances, with an azimuthal index n = 1, are
commonly called dipole-mode resonances [20] and show the
hotspots stretched only along the incidence magnetic field
direction. As expected, the number of hotspots increases by
increasing the resonance frequency. Moreover, a bright edge
can be observed at the hole rim due to the field singularity [31],
and the field substantially vanishes outside the hole in the hole
plane.

In Fig. 8(a), the same TSCS behavior as in Fig. 7(a)
is plotted, however, the normalized resonance frequencies of
the same natural mode resonance for different values of the

resistivity, i.e., k0a = 8.7965602 for R = 1 �, k0a =

9.0065497 for R = 20 �, and k0a = 9.2005400 for R =

50 �, are marked, whereas the corresponding in-plane total
electric field behavior is shown in Fig. 8(b)–(d). As can be
seen, Fig. 8(b)–(d) are substantially indistinguishable. This
demonstrates that the resonance frequencies can be tuned by
acting on the resistivity level. This very interesting property
is particularly attractive when dealing with materials like
graphene for which the resistivity level can be simply tuned
with the aid of a DC bias.

IV. CONCLUSION

The plane wave diffraction from a circular hole in an
infinite resistive plane has been carried out by means of the
generalized boundary condition and a guaranteed and fast con-
vergence semi-analytical technique. The proposed formulation
overcomes the need of dealing with unknowns defined on an
infinite support and includes the PEC case as a limit case.
The accuracy and efficiency of the proposed technique have
been demonstrated by the numerous results provided and the



LUCIDO AND NOSICH: ANALYTICAL REGULARIZATION APPROACH TO PLANE WAVE DIFFRACTION 6889

comparisons with CST-MWS. It is worth observing that the
accurate analysis of the absorption characteristics and of the
surface wave propagation (in the case of complex R) can be
readily performed with the proposed method and will be the
subject of future papers. Moreover, the proposed method is
fully applicable to the analysis of a holed graphene plane and
can be readily generalized to study a thin holed dielectric plate.
Future perspectives are the generalization of the proposed
method to analyze the diffraction from arrays of circular holes
in resistive planes and holed planes in layered media.

APPENDIX A

Let us consider the infinite material plate shown in Fig. 1(a)
assuming that there is no hole, i.e., a = 0.

Supposing that σ ≫ ωε0εr and τ < dskin ≪ λ , the
plate can be approximated with a zero-thickness resistive
plane [24], located on the plate median surface S. This plane
is characterized with the aid of the two-side generalized
boundary conditions (1), where R = 1/(στ). Moreover, the
dyadic Green’s function of the 3-D space containing the
infinite resistive plane can be readily obtained by means of
the separation of variables and expressed in closed form in
the spectral domain.

In the presence of an infinite resistive plane, to guarantee
the solution uniqueness of the scattering problem associated
with a finite-size scatterer, a radiation condition at infinity
is needed. This condition can be established by analyzing
the far-zone behavior of the corresponding Green’s function,
which is compliant with the principle of radiation (no field
sources at infinity). Such analysis brings us to an expression
similar to (43) of [38] (without the second term), i.e., the
asymptotic behavior of the field diffracted by the finite-size
scatterer can be expressed as the sum of a spherical wave and
a guided cylindrical surface wave, if the latter exists(

Ediffr (r) , Hdiffr (r)) r→∞
∼

(
E sph (r) , H sph (r))

+

(
Eguid (r) , Hguid (r)) (A1)

where

E sph
θ,φ

(
r
)

= ±ζ0 H sph
φ,θ

(
r
)

=
e− jk0r

r
Fθ,φ (θ, φ)

(A2a)

E sph
r
(
r
)
, H sph

r
(
r
)

∼ o
(

1
r

)
(A2b)(

Eguid (r) , Hguid (r)) = e−

√
w2

T −k2
0 |z| e− jwT ρ

√
ρ

·

(
G E

T (φ) , G H
T (φ)

)
(A2c)

ζ0 =
√

µ0/ε0 is the intrinsic impedance of the free space, T =

C, D, G E,H
T (φ) is a suitable vector functions, whereas wT is

the propagation constant of one of two possible natural waves
of different polarization, supported by the resistive plane. Such
propagation constants satisfy the dispersion equations

G̃T (wT ) − R = 0 (A3)

which have explicit solutions

wC = k0

√
1 −

(
2R
ζ0

)2

(A4a)

wD = k0

√
1 −

(
ζ0

2R

)2

. (A4b)

Note that w = wC and w = wD are also the poles, complex
in the general case, of the integrand in (13a).

The natural waves of the resistive plane are the residues
in these poles. As one can see, these natural waves are
guided waves with purely real propagation constants larger
than k0, i.e., they take power to infinity (at ρ → ∞), only
if R is purely imaginary and either ImR < 0 for wC or
ImR > 0 for wD. In the case considered in this article,
when R is purely real, either of these natural waves decays
exponentially at infinity, hence the second term in (A1) can be
safely neglected. This leaves us with the first term, which is
a spherical wave satisfying the usual Silver-Muller radiation
condition. As known from [39], the asymptotic form of that
condition, given by (A2a) and (A2b), is equivalent to the
differential form, limr→∞ r(Ediffr(r)−ζ0 Hdiffr(r)× r̂) = 0 · θ̂ .

APPENDIX B

In the case of plane-wave scattering from the uniform
resistive plane discussed in Appendix A, the diffracted field
vanishes. Hence, in the half-space above the plane, the total
field is the superposition of the incident and the reflected plane
waves, whereas, in the half-space below, the field is given by
the transmitted plane wave.

Then, the tangential to the resistive plane components of
the incident/reflected/transmitted field for the TM/TE (with
respect to the z axis) polarization of the impinging plane wave
can be readily derived in explicit form as follows:

E refl
t,P
(
ρ, φ, 0+

)
= 0P E inc

t,P (ρ, φ, 0) (B1a)

E tr
t,P
(
ρ, φ, 0−

)
= τ P E inc

t,P (ρ, φ, 0) (B1b)

ẑ × H inc
P (ρ, φ, 0) =

1
Z P

0
E inc

t,P (ρ, φ, 0) (B1c)

ẑ × H refl
P
(
ρ, φ, 0+

)
= −

0P

Z P
0

E inc
t,P (ρ, φ, 0) (B1d)

ẑ × H tr
P
(
ρ, φ, 0−

)
=

τ P

Z P
0

E inc
t,P (ρ, φ, 0) (B1e)

with P = TM, TE, where

0P
= −

Z P
0

Z P
0 + 2R

(B2a)

τ P
= 1 + 0P (B2b)

are the reflection and transmission coefficients, respectively,
and

ZTM
0 = ζ0cθ0 = −2G̃C

(
k0sθ0

)
(B3a)

ZTE
0 =

ζ0

cθ0

= −2G̃D
(
k0sθ0

)
. (B3b)
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Moreover, the jump across the resistive plane of the tan-
gential component of the magnetic field defines the following
effective electric surface current density:

J P
0 (ρ, φ) = ẑ ×

(
H P

(
ρ, φ, 0+

)
− H P

(
ρ, φ, 0−

))
= ẑ ×

(
H inc

P (ρ, φ, 0) + H refl
P
(
ρ, φ, 0+

)
− H tr

P
(
ρ, φ, 0−

) )
= −

20P

Z P
0

E inc
t,P (ρ, φ, 0) (B4)

where the relations (B1c)–(B1e) have been used.
It is well-known that a generally polarized incident plane

wave can be written as the superposition of a TM and a TE
polarized plane waves. Hence, due to the linearity, by means
of the superposition principle, the effective electric surface
current density and the tangential component of the transmitted
electric field on the resistive plane can be written as follows:

J 0 (ρ, φ) = J TM
0 (ρ, φ) + J TE

0 (ρ, φ)

= −
20TM

ZTM
0

E inc
t,TM (ρ, φ, 0)

−
20TE

ZTE
0

E inc
t,TE (ρ, φ, 0) (B5a)

E tr
t
(
ρ, φ, 0−

)
= E tr

t,TM
(
ρ, φ, 0−

)
+ E tr

t,TE
(
ρ, φ, 0−

)
= τTM E inc

t,TM (ρ, φ, 0) + τTE E inc
t,TE (ρ, φ, 0) .

(B5b)

Therefore, the nth azimuthal harmonic of the corresponding
Fourier series expansions are

J(n)
0 (ρ) = −

20TM

ZTM
0

Einc(n)
t,TM (ρ, 0) −

20TE

ZTE
0

Einc(n)
t,TE (ρ, 0)

(B6a)

Etr(n)
t

(
ρ, 0−

)
= τTMEinc(n)

t,TM (ρ, 0) + τTEEinc(n)
t,TE (ρ, 0).

(B6b)

Observing that ∇t × E inc
t,TM(ρ, φ, 0) = 0 and ∇t ·

E inc
t,TE(ρ, φ, 0) = 0, and according to (17), the VHTn of

J(n)
0 (ρ) and Etr(n)

t (ρ, 0−) are, respectively,

J̃
(n)

0 (w)

=

−
20TM

ZTM
0

Ẽ inc(n)
C (w, 0)

0

+

 0

j
20TE

ZTE
0

Ẽ inc(n)
D (w, 0)


= −

(
G̃
(
k0sθ0

)
− RI

)−1
Ẽ

inc(n)

t (w, 0) (B7a)

Ẽ
tr(n)

t
(
w, 0−

)
=

(
τTM Ẽ inc(n)

C (w, 0)

0

)
+

(
0

−jτTE Ẽ inc(n)
D (w, 0)

)
= R

(
G̃
(
k0sθ0

)
− RI

)−1
Ẽ

inc(n)

t (w, 0) . (B7b)

Moreover, by taking the VHT−1
n of (B7b) and using (9),

formula (14) can be immediately obtained.

APPENDIX C

In this Appendix, the matrix equation in (23) is described.
The vector of the unknown coefficients is

x(n)
=

√
2ωε0x(n)

C
1

√
−jR x(n)

D

 (C1)

where

x(n)
C =

{
x (n)

C,h

}+∞

h=−1+δn,0
(C2a)

x(n)
D =

{
x (n)

D,h

}+∞

h=0
(C2b)

and

x (n)
C,−1 =

γ
(n)
C,−1

α̂(n)
, for n ̸= 0 (C3a)

x (n)
T,h = γ

(n)
T,h, for h > 0 (C3b)

α̂(n)
=

1√
1 − (α(n))2/(j2ωε0 R)

. (C3c)

The coefficient matrix is

A(n)
=


j

1
2ωε0

A(n)
C,C j

√
−jR
2ωε0

A(n)
C,D

−j

√
−jR
2ωε0

A(n)
D,C −RA(n)

D,D

 (C4)

where

A(n)
C,C =

{
A(n)

C,C,k,h

}+∞

k,h=−1+δn,0
(C5a)

A(n)
C,D =

{
A(n)

C,D,k,h

}+∞

k=−1+δn,0,h=0
(C5b)

A(n)
D,C =

{
A(n)

D,C,k,h

}+∞

k=0,h=−1+δn,0
(C5c)

A(n)
D,D =

{
A(n)

D,D,k,h

}+∞

k,h=0
(C5d)

and

A(n)
C,C,−1,−1 =

(
α̂(n)

)2
[

M (n)
C,−1,−1 −

(
α(n)

)2
M (n)

D,−1,−1

]
for n ̸= 0 (C6a)

A(n)
C,C,−1,h = A(n)

C,C,h,−1 = α̂(n)M (n)
C,−1,h, for n ̸= 0, h ≥ 0

(C6b)

A(n)
C,C,k,h = A(n)

C,C,h,k = M (n)
C,k,h, for k, h ≥ 0 (C6c)

A(n)
C,D,−1,h = −A(n)

D,C,h,−1 = −α̂(n)α(n)M (n)
D,−1,h

for n ̸= 0, h ≥ 0 (C6d)

A(n)
C,D,k,h = A(n)

D,C,h,k = 0, for k, h ≥ 0 (C6e)

A(n)
D,D,k,h = A(n)

D,D,h,k = M (n)
D,k,h, for k, h ≥ 0 (C6f)

M (n)
T,k,h =

∫
+∞

0
f̃ (n)
T,k (w) f̃ (n)

T,h (w)

·

(
1

G̃T (w) − R
− κT w2(pT −1)

)
wdw. (C6g)
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The free-term vector is

c(n)
=

 j
1

√
2ωε0

c(m)
C

−j
√

−jRc(m)
D

 (C7)

where

c(n)
C =

{
c(n)

C,k

}+∞

k=−1+δn,0
(C8a)

c(n)
D =

{
c(n)

D,k

}+∞

k=0
(C8b)

and

c(n)
C,−1 = α̂(n)

(
b(n)

C,−1 − α(n)b(n)
D,−1

)
, for n ̸= 0 (C9a)

c(n)
T,k = b(n)

T,k, for k > 0 (C9b)

b(n)
T,k = −jn+1e−jnφ0 E0t

f̃ (n)
T,k
(
k0sθ0

)
G̃T

(
k0sθ0

)
− R

. (C9c)
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