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a b s t r a c t

We identify market inefficiency as a pivotal explanatory variable of the puzzling volume–
volatility relationship. The result, that can bring together into a coherent framework
many apparently conflicting findings, follows from translating the realized volatility into
the corresponding pointwise Hurst–Hölder exponent. This allows to measure, at any time
t , markets’ departures from the martingale property, i.e. from efficiency as stated by the
Efficient Market Hypothesis. We find that when efficiency is not accounted for, a positive
contemporaneous relationship emerges; conversely, it disappears as soon as efficiency
is taken into account.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

An extensive literature document a positive relation between price volatility and trading volume in the financial
arkets, but the causal connection originating such a relation represents an open and challenging question, from
oth a theoretical and empirical point of view. Various models, which can be regarded as complementary rather than
ompetitive [1], have been introduced to explain this relationship. They include the long debated Mixture of Distributions
ypothesis (MDH) [2–8]; the Sequential Arrival of Information Hypothesis (SAIH) [9–13]; the Dispersion of Beliefs Hypothesis
DBH) [14–17]; the Noise Trader Hypothesis (NTH) [1,18,19].

The MDH posits that both volume and volatility are driven by the same underlying information flow, i.e. both change
imultaneously as soon as information is processed by market participants. As a consequence, the volatility per transaction
s monotonically related to the volume of the same transaction. The basic version of the MDH does not consider effects as
he lagged reactions to news or the interaction among types of traders. This simplification is questioned by the SAIH, which
ims to explain the evidence of a lead–lag relationship between returns and volumes. The DBH, which can coexist with
oth the MDH and the SAIH, posits that a greater dispersion in traders’ beliefs generates excess volatility and volume. Since
nformed traders generally share homogeneous beliefs about fair prices, they tend to trade within a small range of prices
round the fair value. By contrast, uninformed traders have more heterogeneous beliefs because they do not properly
ssess their relative positioning with respect to the fair value; as a consequence, they are less capable to interpret the noisy
ignals from volume and price changes, what causes excess volatility and volume. Similarly, the NTH focuses on how the
ctivity of uninformed noise traders can destabilize the information proxied by excess trading volume, potentially creating
ispricing and causing informed (institutional) traders to respond to the noisy trading rather than to fundamentals.
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Even if it is still unclear when each of the above mechanisms prevails on the others, it is almost obvious that the
umber of investors participating in the market can enhance liquidity provision and mitigate volatility. However, both
he lack and the excess of liquidity entail market inefficiency: while the former typically characterizes the stock market
rashes, the latter can lead to bullish mispricing and speculative bubbles. In both cases, pathological patterns appear that
ltimately imply a deviation of the market from its physiological condition of efficiency. In this regard, a large number
f contributions document that efficiency actually is nothing but the result of imbalances that can last even for relatively
ong spans of time [20–25]. This suggests that a deeper understanding of the volume–volatility relation can come from
nalyses conditional to the level of efficiency of the market. Thus, the idea behind our contribution is to investigate
he volume–volatility relationship by distinguishing between volatility that is ‘‘too low’’ or ‘‘too high’’ relative to values
ompatible with market efficiency.
Several approaches have been studied to account for and tackle inefficiencies in financial markets. For example, using

he local entropy and the symbolic time series analysis, Risso [26] measures the evolution of the daily informational
fficiency for different stock market indices and finds some evidence that the probability of having a crash increases as
he informational efficiency decreases. A similar approach is proposed in a recent contribution by Brouty and Garcin
27]; using the Shannon entropy applied to a symbolic representation of price returns at a given time scale, they
onstruct an indicator of the information embedded in the data and derive its exact and asymptotic distribution when
he Efficient Market Hypothesis holds, developing a statistical test of market efficiency. In Ito et al. [28] a non-Bayesian
ime-varying vector autoregressive model is developed to estimate the time-varying market efficiency in G7 countries.
ery recently, considering an alpha-stable distribution and a dependence structure between price returns, Ammy-Driss
nd Garcin [29] provide a dynamic estimation method for the Hurst exponent and the memory parameter of a fractional
évy-stable motion, two efficiency indicators. Examining the effects of COVID-19 pandemic, they find strong inefficiencies
or US indices as compared to Asian and Australian indices. Other approaches combine several indicators to study the
henomenon: e.g. Feng et al. [30] use the correlation-corrected balanced estimation of diffusion entropy to evaluate
he evolution of the local scaling behavior of exchange rate series, and find that during the global financial crisis the
caling behavior displays distinctive patterns; Kristoufek and Vosvrda [31] introduce a measure of efficiency based on the
orrelation structure of the returns and the local herding behavior revealed by a low fractal dimension. Applying their
easure to a portfolio made of 41 stock indices, they discriminate different degrees of efficiency among markets referred

o different geographic areas.
All these contributions, whose list is obviously far from being exhaustive, suggest that it is reasonable assuming

hat market (in)efficiency is related somehow to the degree of regularity of stock prices. Starting from this posit, we
odel the stock market by means of a general and flexible class of stochastic processes precisely built to let the degree
f regularity change through time. We refer to ‘‘a class’’ of stochastic processes because – as detailed in Section 2 –
any models share the property of a time-changing regularity. Mostly, such models have in common the fact that they

ocally behave as a fractional Brownian motion, in the sense that their local regularity at time t0 (measured by the local
urst–Hölder exponent in a neighborhood of t0) equals the exponent of a fractional Brownian motion of parameter H(t0).

Assuming that the stock price owns this property, we introduce and theoretically justify the Hurst–Hölder dynamical
exponent as a measure of market efficiency. Following this approach, we bring to light nonlinearities that are not detected
when analyzing the relationship as a whole. In fact, if volumes and volatility provide informative support about the
current market sentiment, their explanatory power finds its fulfillment when combined with other variables such as,
for example, market efficiency imbalances. Market phases depicted by a strong positive relationship between volumes
and price regularity may reveal inefficiencies, which can be thought as a sort of perturbed elastic force applied to an
equilibrium state. The stronger the impact of new information the stronger the force, with arbitrage opportunities acting
as a damping friction which tend to restore the equilibrium condition. This mechanism clearly provides insights for both
traders and regulators: the former could exploit it to decide the timing of their buy/sell orders; the latter could assess
more easily and timelier where and when inefficiencies arise.

The remainder of the paper is organized as follows: in Section 2 we motivate why the local degree of market efficiency
can be captured by the Hurst exponent; in Section 3, using a class of estimators based on variation statistics, an explicit
relationship is established between volatility and Hurst–Hölder exponent; finally, in Section 4 we analyze the conditional
nonlinearities appearing in the volume–volatility relation for the index S&P500.

2. Market efficiency through the Hurst–Hölder exponent

We preface the definitions of pointwise and uniform Hölder exponent, which quantify the (Hölder) regularity of the
paths of a stochastic process and will be useful in the sequel.

Let (Xt,ω : t ∈ T , ω ∈ Ω) be a random field with continuous and nowhere differentiable trajectories, defined over a
rectangle T ⊂ Rd.

Definition 1. The pointwise Hölder exponent of (Xt,ω) in a neighborhood of point t is the stochastic process (αX
t,ω : t ∈ T )

defined as

αX
t,ω := sup

{
α : lim sup

h→0

|Xt+h,ω − Xt,ω|

|h|α
= 0

}
αX

: t ∈ T ) measures the local Hölder regularity of (X ) at t.
t,ω t,ω

2
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When (Xt,ω) is a continuous Gaussian process, by virtue of zero–one law, there exist a non random quantity aXt such
hat P(αX

t,ω = aXt ) = 1.

efinition 2. Let J ⊂ T be a non-degenerate rectangle. The uniform Hölder exponent is the stochastic process

βX
J,ω := sup

{
β : sup

s,s′∈J

|Xs,ω − Xs′,ω|

|s − s′|β
< ∞

}
.

βX
J,ω measures the global Hölder regularity of (Xt,ω) over J .

It is βX
J,ω ≤ inft∈J αX

t,ω .
The Efficient Market Hypothesis [32] posits that a market is efficient if the discounted price sequence (St ) reflects

information Ft accumulated up to time t . The condition translates into requiring that (St ) be a martingale. The Lévy’s
characterization theorem states that the continuous stochastic process (Bt , t ≥ 0), adapted to a right-continuous filtration
Ft , t ≥ 0), is an Ft-Brownian motion if and only if B is a local martingale and its quadratic variation ⟨B⟩2,t = t .

Starting from ’80s, the many controversial results about the Brownian nature of the price sequences (see e.g. [33]
for a review) led to consider alternative models such as the fractional Brownian motion (fBm) with Hurst parameter
H ∈ (0, 1) [34]. Defined as the only zero mean, self-similar Gaussian process with covariance

E(BH
t B

H
s ) =

1
2
(t2H + s2H − |t − s|2H ), (2.1)

he fBm has (i) Hölder continuous paths of order α, for any α ∈ (0,H), (ii) 1
H -variation on any time interval [0, t] equal to

E(|BH
1 |

1/H )t [35,36]; (iii) pointwise and uniform Hölder exponents almost surely equal to the Hurst exponent H [37,38].
hus, the Hurst parameter dictates the regularity of the paths of the fBm: for H ∈ (0, 1/2), the trajectories are rougher
nd rougher as the distance 1/2 − H increases; in contrast, for H ∈ (1/2, 1), the trajectories are smoother and smoother

as the distance H − 1/2 increases.
From the Lévy’s characterization theorem and condition (ii) it follows that the fBm is not a semimartingale except

when H = 1/2, case in which it reduces to a Brownian motion. Furthermore, conditions (i)-(iii) allow to characterize the
martingale property through the value of the Hurst–Hölder exponent, provided that one refers to the class of processes
that locally behave as the fBm.1

Since for modeling purposes a constant H can be too limiting, the fBm is further generalized into the multifractional
Brownian motion (mBm) [37], defined replacing H by an η ∈ (0, 1)-hölderian function Ht aimed to ensure the square
integrability of the process. Even more recently, Loboda et al. [40] and Ayache and Bouly [41] study an mBm with random
Hurst exponent, which they refer to as Itô-mBm and show that the process is locally self-similar in the sense stated below
(see Eq. (2.3)). The mBm BHt

t has covariance function

E(BHt
t BHs

s ) = DHt ,Hs

(
|t|Ht+Hs + |s|Ht+Hs − |t − s|Ht+Hs

)
. (2.2)

here DHt ,Hs =

√
Γ (2Ht+1) sin(πHt )Γ (2Hs+1) sin(πHs)

2Γ (Ht+Hs+1) sin
(
(Ht+Hs)π

2

) is a normalizing factor which ensures unit variance at unit time. If

βH
[0,1],ω > supt∈[0,1] Ht then, for any non degenerate J ⊂ [0, 1], αBHt

t,ω
a.s.
= Ht and βBHt

J,ω
a.s.
= inft∈J Ht , that is, with probability

, the pointwise Hölder exponent of the mBm equals Ht and the uniform Hölder exponent of the mBm over J equals
nft∈J Ht [37,42].

Unlike fBm, the increments of mBm are no longer stationary, but Benassi et al. [43] prove that if supt Ht < min(1, η),
t any point t there exists an fBm with parameter Ht tangent to the mBm (see [44] for a discussion of tangent processes).
n other words, the mBm locally behaves like an fBm in the sense that, at any point t

lim
ϵ→0+

(
BHt+ϵu
t+ϵu − BHt

t

ϵHt

)
u∈R+

d
= C

1
2
(
BHt
u

)
u∈R+ . (2.3)

here d
= denotes the equality in distribution and C1/2 is a scale parameter which ensures that the mBm has variance C

t unit time [45]. Relation (2.3) justifies the estimation of Ht by using quadratic variation estimators originally introduced
o estimate the constant parameter H of an fBm (see Section 3).

Under the assumption of a market whose prices can be modeled by a process that locally behaves as an fBm, properties
bove suggest that Ht is much more informative than volatility, because it accounts for both irregularity and departure

1 This class is somewhat extensive, since it includes not only the multifractional Brownian motion (mBm) and the Multifractional Processes with
Random Exponents (MPRE), recalled in the following as natural generalizations of the fBm, but also the Generalized multifractional Brownian motion
(GmBm), the bifractional Brownian motion and the mixed fBm, the Weyl and Riemann–Liouville fractional Ornstein–Uhlenbeck (fOU), the fractional
Riesz–Bessel motion (fRBm), or the Generalized Cauchy Process (GCP) (see [39] for a review). The characterization does not necessarily hold if,
e.g., time-changed processes are introduced. In fact, while the martingale property is preserved by continuous time change, the Hölder property is
generally not.
3
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Table 1
Financial interpretation of Ht .
Ht Stochastic properties Agents’ beliefs Market pattern

> 1
2 Persistence

Smooth paths
⟨X⟩2,t = 0

New information confirm
outstanding positions

‘‘Low’’ volatility - Momentum
Positive inefficiency (PI)
Overconfidence/Underreaction

=
1
2 Independence

Martingale
⟨X⟩2,t = 2

Information fully
incorporated by prices

‘‘Normal’’ volatility
Sideways market
Efficiency (E)

< 1
2 Mean-reversion

Rough paths
⟨X⟩2,t = ∞

New information disrupt
outstanding positions

‘‘High’’ volatility - Reversals
Negative inefficiency (NI)
Overreaction

from the martingale case. Furthermore, unlike volatility (whose value can be judged ’’high’’ or ’’low’’ only by comparison
with the previous ones), Ht is an absolute and not a relative indicator. These arguments along with the existence of
relationship that we document in Section 3 between the pointwise Hölder exponent at t and the volatility at the

ame time, motivated us to study the volume–volatility relationship in terms volume-Hurst/Hölder exponent relationship,
ccording to the financial interpretation given Table 1 [46,47].

. Estimation of Ht

Variation statistics have been extensively used to estimate the pointwise Hurst–Hölder exponent of a real financial
ime series. Detailed discussions, to which we refer, can be found in [48–51]. In the following, we will recall only some
teps to clarify the relationship that links the volatility to the Hurst–Hölder exponent.
Following [24,52], we consider n observations of mBm X equally spaced with respect to the unit time interval [0, 1].

y virtue of limit (2.3), one has

Xt − Xt− 1
n

∼ N

(
0, C

(
1

n − 1

)2Ht
)

(3.1)

or t =
2
n , . . . , 1. Since the kth absolute moment of a normal r.v. Y ∼ N (0, σ 2) equals E

(
|Y |

k)
=

2k/2Γ ((k+1)/2)
Γ (1/2) σ k,

ntroducing a window of size ν ≪ n (with ν even) and considering t > ν
n , the quantity

M (k)
t =

1
ν

ν−1∑
i=0

|Xt− i
n

− Xt− i+1
n

|
k (3.2)

atisfies

E
(
M (k)

t

)
=

2k/2Γ ((k + 1)/2)
Γ (1/2)

Ck/2
(

1
n − 1

)kHt

. (3.3)

n particular, when k = 2 one has

E
(
M (2)

t

)
= C

(
1

n − 1

)2Ht

, (3.4)

ith plimν→∞

M(2)
t

E
(
M(2)

t

) = 1.

Since C is unknown, one way to get rid of it is first to calculate the quantity

M ′(2)
t =

2
ν

ν/2−1∑
i=0

|Xt− 2i
n

− Xt− 2(i+1)
n

|
2 (3.5)

nd then observe that

M ′(2)
t

M (2)
t

=
C
( 2
n−1

)2Ht

C
( 1
n−1

)2Ht
= 22Ht , (3.6)

rom which one has the estimator

Ĥ2,ν,n
t =

1
log2

M ′(2)
t
(2) . (3.7)
2 Mt

4



M. Frezza, S. Bianchi and A. Pianese Communications in Nonlinear Science and Numerical Simulation 121 (2023) 107204

i

w
u
w
t

O

T

f

I

S

a
c

t

H
a
v
b
v
a
r

4

4

o
a

Since estimator (3.7) is unbiased but with a low rate of convergence, [53] use it to correct the biased estimator of Ht
ntroduced in [54] and refined in [22] which reads as

Ĥν,n,C∗

t = −

log
(

1
ν

∑ν−1
i=0 |Xt− i

n
− Xt− i+1

n
|
2
)

2 log (n − 1)
+

log C∗

log (n − 1)
(3.8)

ith C∗ arbitrarily chosen. The bias is ascribable to the shift dictated by the difference h =
log(C∗/C)
log(n−1) , C being the real

nknown parameter of the process. Since the rate of convergence of Ĥν,n,C∗

t is O(ν−1/2(log n)−1), an unbiased estimator
ith this rate of converge can be built by minimizing the quadratic mean error of the sequence of differences between
he two estimates. In fact, denoted by ξt a random variable with mean zero, one can write

Ĥ2,ν,n
t = Ht + ξt . (3.9)

n the other side, it is also

Ĥν,n,C∗

t = Ht +
log(C∗/C)
log(n − 1)

. (3.10)

herefore,

h :=
log(C∗/C)
log(n − 1)

= Ĥν,n,C∗

t − Ĥ2,ν,n
t + ξt ,

rom which, by averaging with respect to the number of estimates, it follows

h =
1

n − ν + 1

n∑
i=ν

(
Ĥν,n,C∗

t − Ĥ2,ν,n
t

)
.

Since C∗ is chosen arbitrarily, the corrected estimate (which does not depend on C) is

Ĥ (ν)
t = Ĥν,n,C∗

t − h. (3.11)

n [54] it is proved that

Ĥν,n,C∗

t |H=0.5 ∼ N
(
0,

1
2ν log2(n − 1)

)
(3.12)

ince the result continues to hold for Ĥ (ν)
t , this allows to test the significance of the departures of Ht from the equilibrium

value 0.5.
Because of (3.1), the quantity 1

ν

∑ν−1
i=0 |Xt− i

n
− Xt− i+1

n
|
2 appearing in the numerator of the first fraction of Eq. (3.8) is

n estimate of the variance σ 2
t of the process increments at time t , for a window of size ν. Thus, denoting it by σ̂ 2

t,ν , one
an write

Ĥν,n,C∗

t = −
log σ̂ 2

t,ν

2 log (n − 1)
+

log C∗

log (n − 1)

hat is, setting w1 = −
1

log(n−1) and w2 =
log C∗

log(n−1) ,

Ĥν,n,C∗

t = w1 log σ̂t,ν + w2. (3.13)

Eq. (3.13) states the relationship between volatility and regularity, both referred to time t , provided that the Hurst–
ölder exponent is estimated through (3.11). Fig. 1 displays the linear fit (3.13) for the set of S&P500 data that will be
nalyzed in Section 4. The fit returns an R-square equal to 0.9912, as expected by the analytical nature of the relation. This
ery relationship shows that the Hurst–Hölder exponent not only retains all the information contained in the volatility,
ut also expresses when the price process deviates from the martingale condition. Thus, we will investigate the volume–
olatility relationship in terms of volume-Hurst/Hölder parameter; this will make it possible to decompose the correlation
nd study what happens as the degree of market efficiency changes (i.e., as volatility becomes "too high’’ or "too low’’
elative to the level that is considered compatible with the equilibrium represented by the semimartingale case).

. Data and analysis

.1. Data and preliminary analysis

The analysis considered the daily closing prices and trading volumes of the index S&P500, taken as the benchmark
f the U.S. stock market from May, 3rd 1978 to December, 31st 2017 for a sample of 10,005 observations. Following
n established practice in the literature, raw trading volumes are converted by natural logarithm and then filtered to
5
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Fig. 1. Relation (3.13) fitted on the series S&P500 analyzed in Section 4. The dotted lines display the 95% confidence bounds. The fit is almost perfect
as indicated by the R-square equal to 0.9912.

Table 2
Descriptive statistics and Augmented Dickey–Fuller test. The test specifications are: for Rt and Ṽt , autoregressive model variant (no constant no
rend), with critical values: −2.57 (1%), −1.94 (5%), −1.62 (10%). For Ĥ (ν)

t , autoregressive model with drift variant (constant no trend), with critical
alues: −3.44 (1%), −2.87 (5%) and −2.57 (10%).

Mean Min Max StDev Skewness Kurtosis ADF

Rt 0.0003 −0.2290 0.1096 0.0109 −1.1513 30.1988 −102.2726
Ĥ (ν)

t 0.4995 0.2934 0.6288 0.0454 −0.7221 4.4761 −7.2159
Ṽt −1.8998 −3.4555 1.5669 0.3884 −0.1022 4.1067 −26.4568

Table 3
Linear fitting models between volume and logarithm of realized volatility, and between volume and the estimated Hurst–Hölder exponent (in
parentheses the 95% confidence bounds for the coefficients of the regression).
Fitting model γ0 γ1 SSE R2 Adj-R2 RMSE

(A) Ṽ (ν)
t = γ0 + γ1 log σ̂

(ν)
t 2.069

(1.794, 2.345)
0.433
(0.376, 0.490)

38.21 0.318 0.317 0.2845

.
(B) Ṽ (ν)

t = γ0 + γ1Ĥ
(ν)
t 2.132

(1.849, 2.415)
−4.267
(−4.832, −3.703)

38.17 0.319 0.317 0.2844

remove the linear trend and avoid spurious regressions, e.g. [55–57]. The descriptive statistics along with the results of
the Augmented Dickey–Fuller (ADF) test for stationarity with lag one are reported in Table 2. The assumption of a unit
root process is rejected for each series, allowing for a vector-autoregressive analysis. Fig. 2 displays the log-return Rt (top
eft panel), the corresponding estimates Ĥ (ν)

t with ν = 21 (bottom left panel), the log-volumes Vt (top right panel) and
he corresponding detrended series (Ṽt ) (bottom right panels). The estimates of Ht fluctuate around the value 1/2, and
as soon as Ht departs from this value, the market tends to correct its direction and return to equilibrium [58]. Fixing a
95% confidence interval, we deduce that the market can stay far from the equilibrium also for quite long periods and
large downward spikes are observed, for example, for October 19, 1987 (Black Monday) or during the financial crisis of
2007–2009, culminating in the collapse of the S&P500 of over 9% on October 15, 2008.

Fig. 3 shows a scatterplot of Ṽt versus Rt (left panel) and a boxplot of the distribution of Rt for various volume intervals
(right panel). The scatterplot reveals that large changes in the index are associated with high volume levels, while the
boxplot shows that the dispersion of the distribution of Rt tends to increase with volumes. As expected, these results
confirm the existing literature of a positive association between volume and volatility.

4.2. Volume–volatility and efficiency

Before examining the role of (in)efficiency in the correlation between volume and volatility, we observe how the latter
is interchangeable with the Hurst exponent estimated through (3.11). This can be seen by the virtually undistinguishable
results provided by the two fits between volume and the logarithm of realized volatility, on one side, and between volume
and the estimated Hurst–Hölder exponent, on the other ( Table 3). All values are estimated (Ĥ (ν)

t and log σ̂
(ν)
t ) or averaged

(Ṽ (ν)
t ) on a window of one trading month (ν = 21). To eliminate the serial dependence which could affect the results of
the analysis, we considered data on a monthly time scale.

6
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Fig. 2. Top left: log-returns Rt , Top right: log-volumes Vt , Bottom left: estimated Hurst–Hölder exponent Ĥ (ν)
t with the confidence interval at α = 0.05,

ottom right: detrended log-volumes Ṽt .

Fig. 3. Dataplots of the contemporaneous price–volume relationship. Left panel: scatterplot of Ṽt against Rt . Right panel: boxplots for various
olume classes, labeled A through F. The volume classes are in increasing order of standardized log-volume: A, Ṽt < −1.4; B, −1.4 ≤ Ṽt < −0.5; C,
0.5 ≤ Ṽt < 0; D, 0 ≤ Ṽt < 0.5; E, 0.5 ≤ Ṽt < 1; F, 1 ≤ Ṽt ≤ 1.6. The center line in the boxplot is the median of Rt , for each given volume class,

he height is the interquartile range, the whiskers represent the 99% interval, and the ‘+’ symbol denotes outliers.

Furthermore, denoted by F the distribution of the log index changes, we define the following subsamples

Negative exceedances Positive exceedances

Ṽ (ν)−
t : Ṽ (ν)

t ↦→ Ṽ (ν)
t 1

{R̄(ν)t <F−1(α)} Ṽ (ν)+
t : Ṽ (ν)

t ↦→ Ṽ (ν)
t 1

{R̄(ν)t >F−1(1−α)}

Ĥ (ν)−
t : Ĥ (ν)

t ↦→ Ĥ (ν)
t 1

{R̄(ν)t <F−1(α)} Ĥ (ν)+
t : Ĥ (ν)

t ↦→ Ĥ (ν)
t 1

{R̄(ν)t >F−1(1−α)}

Σ̂
(ν)−
t : log σ̂

(ν)
t ↦→ log σ̂

(ν)
t 1

{R̄(ν)t <F−1(α)} Σ̂
(ν)+
t : log σ̂

(ν)
t ↦→ log σ̂

(ν)
t 1

{R̄(ν)t >F−1(1−α)}

that filter out volumes, Hurst parameters and log-volatilities corresponding to negative or positive exceedances with
respect to the quantiles F−1(α) and F−1(1−α), respectively. Fig. 4 displays the correlations for both negative (solid lines)
and positive (dotted lines) exceedances, for several critical values of α. In both cases the correlations increase and their
behavior is almost identical whether one considers realized volatility or the estimated Hurst–Hölder exponent.

Fig. 5 displays that the correlations with the j-days forward volumes increase for negative exceedances and decrease
for positive exceedances, and again the behavior is virtually the same considering volatility or the opposite of the
Hurst–Hölder exponent.

To further investigate how volume and Hurst–Hölder exponent co-move and to remove the serial dependence triggered
by the window size of the estimator of H , as mentioned above, we have sampled the time series at a resolution of ν days;
t
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Fig. 4. Correlations for negative (solid lines) and positive (dotted lines) exceedances for different critical values of α. Notice that, because of the
nverse relationship (3.13), the positive correlation with the volume is preserved by considering in the formula the opposite of the Hurst–Hölder
xponent.

Fig. 5. Blue solid line: Corr(Ṽ (ν)−
t+j , Ĥ (ν)−

t+j ), Red dotted line: Corr(Ṽ (ν)−
t+j , Σ̂

(ν)−
t+j ), Yellow solid line: Corr(Ṽ (ν)+

t+j , Ĥ (ν)+
t+j ), Green dotted line: Corr(Ṽ (ν)+

t+j , Σ̂
(ν)+
t+j ).

Table 4
Contemporaneous relation, t-statistics in parentheses.
Fitting model (4.1) Fitting model (4.2)

α0 α1 α2 F adj.R2 β0 β1 β2 F adj.R2

0.223* 0.552* −0.039* 288 0.550 0.356* 0.890* −0.716* 1740 0.880
[12.552] [15.558] [−8.293] [5.011] [47.061] [−5.041]

*Significant at 1%.

furthermore, the volumes have been averaged over the same previous ν days to align them with the estimates Ĥ (ν)
t . We

ave considered the following autoregressive fitting models with respect to both the variables:

Ĥ (ν)
t = α0 + α1H

(ν)
t−1 + α2Ṽ

(ν)
t + et (4.1)

Ṽ (ν)
t = β0 + β1Ṽ

(ν)
t−1 + β2Ĥ

(ν)
t + zt (4.2)

ccording to MDH, we expect the same sign for coefficients α1 and β1, and α2 and β2, meaning that both Ṽ (ν)
t and Ĥ (ν)

t
are driven by the same underlying information flow and, therefore, they change simultaneously.

Table 4 shows that all coefficients are significant and the signs of α1 and β1 are both positive, while those of α2 and
β2 are both negative, as expected. The high values of the F-statistic and of the adjusted R2 confirm the goodness of fit of
the model. The stability of results through time is also confirmed by a monthly rolling-window regression of size equal
to the half of the sample (about 20 years). Fig. 6 shows the joint dynamics of α1 and β1 (left panel) and α2 and β2 (right
anel). Both the pairs of values change accordingly, indicating the robustness of the results over time. This is confirmed
y the correlation, which is 0.65 between α1 and β1, and 0.66 between α2 and β2.
From now on, replacing the volatility with the Hurst–Hölder exponent, we exploit the possibility it gives to discriminate

eriods when the market is efficient from those when it is not. First, we consider the fitting model (B) of Table 3 with
espect to the following scenarios:

· T: whole sample (Fig. 7, top-left);
· E: Efficient market sub-sample, when Ĥ (ν)

∈
[ 1

− z σ , 1
+ z σ

]
(top-right);
t 2 α/2 2 α/2

8
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(

b
c
P

Fig. 6. Dynamic of α1 and β1 (left), α2 and β2(right). α2 is multiplied by 10.

Fig. 7. The volume–volatility relationship adjusted for market efficiency. Top left: scenario T; top right: scenario E; bottom left: scenario NI; bottom
right: scenario PI.

Table 5
Confidence intervals Uα =

[ 1
2 − zα/2σ , 1

2 + zα/2σ
]
for different values of α.

α: 0.01 0.02 0.03 0.04 0.05
[0.457, 0.543] [0.461, 0.539] [0.464, 0.536] [0.466, 0.534] [0.467, 0.533]

α: 0.06 0.07 0.08 0.09 0.10
[0.469, 0.532] [0.470, 0.530] [0.471, 0.530] [0.472, 0.528] [0.472, 0.528]

· NI: Negative inefficiency sub-sample, when Ĥ (ν)
t ∈

(
0, 1

2 − zα/2σ
)
(bottom-left);

· PI: Positive inefficiency sub-sample, when Ĥ (ν)
t ∈

( 1
2 + zα/2σ , 1

)
(bottom-right),

where zα/2 is the quantile of the standard normal distribution corresponding to the significance level α and σ =
1

√
2ν log(n−1)

see (3.12)). Table 5 summarizes the confidence intervals for different values of α.
Table 6 reports the results for each scenario. For NI, E and PI, the values are relative to the significance level α = 0.05,

ut similar results can be obtained also for α = 0.10. Coefficients γ1 are significant for each scenario, but the R2 is very
lose to zero only for scenario E, indicating that no relation emerges when the market is efficient. This is confirmed by the
earson correlation coefficient, which declines towards zero as α increases (columns Correlation) only for scenario E, while
9
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Table 6
Outputs of regressions. All values of γ are significant at 1% level.
Scenario γ0 γ1 R2 RMSE F-stat Correlation

(0.01) (0.05) (0.10) (0.20) (0.40)

T 2.132 −4.267 0.319 0.284 220.641
NI 2.450 −4.968 0.226 0.307 28.589 −0.417 −0.475 −0.490 −0.505 −0.512
E 1.713 −3.472 0.059 0.258 17.253 −0.250 −0.245 −0.200 −0.067 −0.000
PI 4.421 −8.308 0.164 0.321 18.236 −0.363 −0.405 −0.336 −0.289 −0.347

Table 7
Contemporaneous relation and efficiency. t-statistics in parentheses.

λ0 λ1 λ2 λ3 λ4 F adj.R2

α = 0.01 0.259* 0.001 0.482* −0.070* 0.063* 177 0.602
[14.852] [0.439] [13.883] [−11.695] [7.785]

α = 0.05 0.253* 0.002 0.492* −0.063* 0.059* 171 0.593
[14.467] [0.715] [14.083] [−11.124] [7.036]

α = 0.10 0.246* −0.001 0.507* −0.058* 0.060* 168 0.589
[14.168] [−0.091] [14.605] [−10.862] [6.611]

*Significant at 1%.

it remains stable for PI and increases for NI. These findings are also confirmed by the direct observation of those time
windows displaying very sharp scenarios; for example, (a) in May 1978–March 1986, the market behaves very efficiently
(average Hurst exponent, Ĥ (ν)

t = 0.504) and in fact the correlation equals 0%, (b) January 2007-June 2009, because of the
global financial crisis the market is negatively inefficient (Ĥ (ν)

t = 0.442), and the correlation equals to −68, 9%, (c) March
1992-February 1996, characterized by a rise of price before and during the well- known speculative bubble, the market
is positively inefficient (Ĥ (ν)

t = 0.544), and in fact the correlation equals to −17, 6%.
As observed, the degree of dependence between volumes and the Hurst–Hölder parameter is much weaker in efficient

periods than in inefficient ones. To analyze with more detail the impact of efficiency, we introduce the dummy variable

Dt =

{
1, if Ĥ (ν)

t ∈
[ 1
2 − zα/2σ , 1

2 + zα/2σ
]

0, otherwise
(4.3)

nd consider the following regression model:

Ĥ (ν)
t = λ0 + λ1Dt + λ2H

(ν)
t−1 + λ3Ṽ

(ν)
t + λ4(Ṽ

(ν)
t · Dt ) + εt . (4.4)

hen inefficiency predominates in the market, the volume–volatility correlation is grabbed by λ3, whereas λ3 + λ4
aptures the correlation in periods of efficiency. Table 7 displays the results of regression (4.4) for α equals to 0.01, 0.05
nd 0.10. As α increases, the confidence interval around 1/2 narrows, indicating greater efficiency; in this case, λ3 + λ4
ends to zero, indicating that the volume–volatility correlation vanishes. Fig. 8 shows the values of λ3 (top panel) and
3 + λ4 (bottom panel) for different values of α and for the three scenarios: E (solid black), NI (dotted blue) and PI
dashed red). Data confirm the results outlined by the correlations in Table 6: as α increases, λ3 +λ4 tends to zero, while
emaining almost constant when volatility is high (Ht is significantly low, NI market) or low (Ht is significantly high, PI
arket). This nonlinear behavior can be

. Conclusion

The relation between stock price volatility and trading volume has received a remarkable attention over the past
ecades and constitutes even today a largely debated and controversial issue. In this work, we have investigated whether
tock market efficiency can constitute an explanatory variable for the diversity of results achieved during the years. To
his end, we have proposed and justified as a measure of market efficiency the Hurst–Hölder dynamic exponent and
rovided its financial interpretation. Using data for the S&P500 index from 1978 to 2017, we have estimated market
fficiency in terms of adherence to the martingale paradigm by means of the Hurst–Hölder exponent Ht . This leads to
dentify inefficient periods, during which the market displays volatilities which are higher (Ht < 1/2) or lower (Ht > 1/2)
han the value (Ht = 1/2) consistent with efficiency. Using the Hurst–Hölder exponent as a measure of volatility, we have
ound that when efficiency is not accounted for, a positive contemporaneous relationship emerges and is stable over time;
onversely, it disappears as soon as efficiency is taken into account. In particular, the positive correlation is pronounced
uring time frames of high volatility and tends to disappear when market becomes fully efficient. This can explain to
ome extent the variety of results achieved in literature: a strong/weak positive or even null relation is intimately linked
o time-varying degree of efficiency of market and, in its turn, to the capability of market participants to fully discount
he information flow.
10
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Fig. 8. λ3 (top panel) and λ3 + λ4 (bottom panel) for different values of significance level α.
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