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Abstract—Nowadays energy demand is an issue regarding the
vitality of cities and the welfare of citizens. The exponential
growth of the cities and the consumers’ demand obliged the
energy producer to find a modern solution to overcome these
problems. The solution was found in decentralised structures all
connected through the Internet and capable of allowing all actors
in the system to interact together. In this study, the effect on the
smart grid’s energy demand of different numbers of consumers,
their behaviour and the energy price variations will be discussed.
A few consumers’ behaviours will be illustrated and taken into
account, how they react to the energy provider’s price schemes,
impelling them into making a decision on whether to shift or
not their demand according to their characteristic parameters
and show how their expenditures and incomes for the electricity
market operator change.

Index Terms—Smart Grids, Agent-based Modelling, Social
Simulation, Demand Modelling.

I. INTRODUCTION

Due to the exponential growth of the cities’ facilities and

an ever-increasing need for a higher demand of energy, high

power quality and a more critical assortment of extra services,

the power industry struggles to address the issues of modern

digital society and the consumers’ needs. Among the power

system society, it is commonly assumed that electricity will

have a larger share of the overall energy consumption in the

future [1].

This concept takes advantage of the large diffusion of

internet access in most homes and the continuing spread of

smart devices, so that they transmit information in such a

way that enables the whole infrastructure to quickly respond

to changes in smart grid condition systems and bring big

contributions improving the overall efficiency, reducing waste

of energy and leading to lower power prices. In this context,

the concept of the smart grid arose to indicate an electrical

system that uses information, bidirectional communication

technologies and computational intelligence in a collaborative

manner that allows the energy distribution and consumption

more effectively and efficiently in an integrated way [2].

In this scenario, creating consumer profiles is very important

in order to predict and avoid peaks using price strategies

to keep the Grid as stable as possible [3]. Accounting for

this novel paradigm, and assuming that consumers follow

predefined behaviours, this paper presents a sensitivity analysis

on the consumption profiles with respect to an awareness

parameter defining the profile, and the number of consumers

in each profile. We also look into how the price of the energy

affects consumers’ willingness to shift their demand as a

means to reduce their energy costs.

The remaining parts of the paper are organised as follows.

In Section IIthe related work is revisited. Section III discusses

the mathematical mode and its implementation. Experiments

and results are discussed in Section IV. Conclusions and future

work are presented in Section V.

II. RELATED WORK

Designing an effective demand response program requires

a deep understanding of energy consumer behaviour and a

precise estimate of the expected result. One way to support

network reliability is to mitigate peak demand (at all times)

and prevent exposure of its infrastructure to critical stress.

The shift in demand or a change in prices creates new peaks,

which are avoided by attributing to the consumer a reactivity

to the change in prices that can be collected through direct

interviews as suggested in [4]. In [5] it is discussed the

necessity to include small prosumers behaviour in the planning

of the electrical system and map all the factors (and their

interactions) that dominate their behaviours and model the

system load profile. While in [6] is presented a conceptual

model of multi-markets environments and the processes that

define the electricity tariffs.

In this changing environment, predicting energy demand

becomes a very complex process. It is necessary to include the

behavior of small prosumers in the planning of the electrical

system, thus being able to map all the factors (and their

interactions) that dominate the behaviors and subsequently

model the system load profile. The Smart Grid concept is

not yet limited within a given layout, but it is expected that

future investments will be in existing and new electricity grid

infrastructures [7].

Another aspect to consider is the definition of an appro-

priate pricing strategy for this intelligent environment, which

represents a very important and complex task to define and

manage. In this regard, demand response programs can be

based on both incentives and prices. These tariff schemes are

now applied dynamically and an attempt is made to define
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a ”bridge” between the two methods, so that the consumer

reacts immediately to changes in energy prices and tries to

adapt his demand as much as possible in order to save money

[8]. A possible pricing scheme is given by characterizing

in a dynamic way a model that focus on demand-supply

optimization under various and specific interaction with a spot

market [9].

The method of a pricing scheme proposed by [10] is to

introduce an incentive towards consumers who reduce con-

sumption. Connectivity is at the heart of this new network

infrastructure, provided by the Internet of Things (IoT). Thus

an enormous volume of data was introduced which requires

techniques far superior to conventional methods for adequate

analysis and decision-making. Big data analysis and machine

learning techniques are essential to achieve these benefits.

Security also becomes a critical issue [11]. In [12] is presented

a survey of management methods of consumption peaks based

on individual consumer behaviour.

This paper proposes a study focused on the consumer side,

in particular on 3 classes of them, and on their daily energy

habits and how these vary depending on the sensitivity and

the change in the price of energy during a day.

III. THE MODEL

The following model consider the effect consumer’s be-

havioural pattern (cost minimisation) has on the operator’s

pricing strategies (profit maximisation) and vice-versa.

A. Theoretical Setup

Within a given market we consider a number of N ∈ N indi-

viduals. Each individual falls within one of the three consumer

types (Type A, Type B, Type C) with Ni, i ∈ {A,B,C},

representing the number of agents of type i.

Each of the types has its own parameter of awareness,

denoted by SA , SB and SC . These parameters lie within the

interval [0%, 100%] and represent their willingness to change

their demand due to changes in prices. Some consumers may

be stubborn, with Si, i ∈ {A,B,C}, being low, whereas others

might think more ecological, with Si, i ∈ {A,B,C}, being

higher. We also assume that every type of consumer has a

different demand of consumption during one day and therefore

represents a different kind of household.

Table I shows the initial setup of the baseline model. We

consider a consumer pool with 60 agents of type A, with

medium awareness (SA = 30%) and a demand profile with

a small peak in the morning and a big peak in the evening

(working household). Also there are 25 agents of type B which

are considered very stubborn (SB = 10%) and their electricity

demand shows a small peak in the afternoon and a big peak

TABLE I
BASELINE MODEL FOR 100 AGENTS

Agents Awareness Demand

Type A NA = 60 SA = 30% working household
Type B NB = 25 SB = 10% night owl
Type C NC = 15 SC = 80% home-office household

in the night (night owl). Finally there are 15 type C agents,

which behave more ecological (SC = 80%) and have a nearly

constant demand of electricity during the day with a small

peak at night (home-office household).

Given a setup, we will calculate the electricity expenditures for

each type of consumer during one day given by the formula

Ci =

24
∑

t=1

PtD
i
t,

where Ci, i ∈ {A,B,C} represents the expenditures for

electricity of a certain type of consumer for one day, Pt

describes the price of one kWh at time t ∈ {1, ..., 24} and

Di
t represents the demand for electricity of a consumer of

type i at time t in kWh. We will refer to these values Ci as

the baseline expenditures.

In order to analyse how changes in prices affect the be-

haviour of the consumers, we need to consider both, the

parameter of awareness and the magnitude of price changes.

Therefore we assume that the grid operator charges new prices

given by P̃t, t ∈ {1, ..., 24}. This will be done in the following

way. Each agent i has a possibility of increasing or decreasing

the demand at time t given by:

qit := min

{

100, a1

∣

∣

∣

∣

∣

P̃t − Pt

Pt

× 100

∣

∣

∣

∣

∣

+ a2Si

}

,

with a1, a2 > 0 and a1 + a2 = 1. The parameters a1
and a2 represent the weight of changes in prices relative

to the parameter of awareness of each type of consumer.

Taking the minimum of 100 and the weighted sum ensures

the admissibility of using qit as a probability in percentage.

We ensure that the total amount of used electricity during one

day stays the same, which means that all the demand reduced

at one point needs to be added at another time of the day.

Therefore the condition:

24
∑

t=1

Di
t =

24
∑

t=1

D̃i
t, i ∈ {A,B,C},

has to hold, where D̃i
t represents the amount of electricity used

by type i at time t after making changes to his demand.

We also assume that every consumer i has a certain level of

minimum demand for electricity di = mint∈{1,...,24} D
i
t at

every time of the day, so it is not allowed to shift all its demand

at once. This is ensured by the constraint

D̃i
t ≥ di, ∀t ∈ {1, . . . , 24}, ∀i ∈ {A,B,C}.

From this constraint also follows that the grid operator has to

provide a minimum capacity of NAd
A + NBd

B + NCd
C of

electricity at every time t in order to keep the grid stable.

In order to fulfill cost reduction for the consumers, the demand

is always shifted to the time of the day with the lowest price

which is allowed for changes.
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Fig. 1. Type of Behaviour and Prices

B. Data

In order to achieve meaningful results with this simulation,

we need the most reliable data possible, so we build our

behaviour profiles using the profiling work done in the paper

[13]. The plots of the demand profiles can be seen in Figure 1.

Using some typical households consumption value, we

construct the following Table II.

Another important parameter for our work is the

hourly energy price e/MW. Due to difficulty to re-

TABLE II
DIFFERENT BEHAVIOUR CONSUMPTION (KW)

Hour Type A Type B Type C

0:00 0.508 1.088 0.502
1:00 0.507 1.276 0.506
2:00 0.513 1.466 0.512
3:00 0.552 1.481 0.514
4:00 0.588 1.254 0.856
5:00 0.611 0.849 1.056
6:00 0.815 0.648 1.087
7:00 0.997 0.423 1.079
8:00 1.324 0.438 0.851
9:00 1.67 0.435 0.863

10:00 0.412 0.441 1.077
11:00 0.433 0.447 1.056
12:00 0.441 0.437 1.012
13:00 0.432 0.429 0.844
14:00 0.468 0.445 0.877
15:00 0.855 0.652 1.049
16:00 1.291 0.647 1.276
17:00 1.708 0.861 1.259
18:00 2.14 1.249 1.491
19:00 1.933 1.488 1.073
20:00 1.27 1.274 0.611
21:00 1.133 1.093 0.425
22:00 0.478 0.886 0.442
23:00 0.392 0.852 0.451

trieve a reliable source, we used the ComEd website

(https://hourlypricing.comed.com) to take data and then we

manipulated them to create a Plot of the energy price during

the day as can be seen in Figure 1(d).

C. Simulation Setting

We simulate a vector with 24 entries, where each com-

ponent j ∈ {1, ..., 24} follows a Bernoulli distribution with

probabilities qij for the realisation 1 (the consumer is allowed

to increase or decrease the demand during this hour) and

(1− qij) for the realisation 0 (the consumer is neither allowed

to decrease demand, nor to shift demand to this time). We

run the simulation 10000 times and considered the average

consumption of every type of consumer.

The new prices P̃t are obtained in the following way: the

prices for the six hours with the highest electricity demand

are increased by 20% compared to the initial prices Pt, the

prices for the six hours with the lowest electricity demand are

decreased by 20%. The other prices stay unchanged.

IV. RESULTS

A. Baseline Model

In the baseline model we run the simulation with the

parameters given in Table III. Also, the price vector is plotted
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Fig. 2. Base Model plots
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TABLE III
BASELINE PARAMETERS

a1 a2 Change in Prices Price Vector

0.5 0.5 20% PV1

in Figure 1(d) that shows how it evolves over time.

As we can see in Figure 2 all agents changed their be-

haviour. Noteworthy is that agents of type C are the only one

who could save more money due to their high parameter of

awareness, and created a new peak in their demand around 14

o’clock. But due to their small amount, this did not make any

difficulties to the grid stability, see Figure2(d).

TABLE IV
OUTPUT BASE MODEL/1

A B C SG operator

EXPENDITURES(%) +2.39 +1.69 -5.02 -
INCOME(%) - - - +1.16

As the variance of the demand as a measure for balanced

consumption during a day, the highest peak and the sum of

the three highest demands decreased dramatically, this case

can be considered a success for the grid operator.

TABLE V
OUTPUT BASE MODEL/2

INITIAL FINAL % VARIATION

Demand Variance 1387.1 693.3 -50.01%
Highest Peak (KWh) 181.9 147.3 -19.1%
Sum of 3 Peaks (KWh) 494.15 410.5 -16.9%

B. First Variation

In this first variation changes were made to the weight of

the awareness a1 and the weight of the price changes a2.

TABLE VI
FIRST VARIATION PARAMETERS

RUN a1 a2 Change in Prices Price Vector

1 0 1 20% PV1
2 0.25 0.75 20% PV1
3 0.75 0.25 20% PV1
4 1 0 20% PV1

1) First Variation: RUN 1

TABLE VII
OUTPUT RUN 1/1

A B C SGoperator

EXPENDITURES(%) +0.27 +1.83 -9.14 -
INCOME(%) - - - -0.71

As in this case only the parameter of awareness influences

the behaviour, type C agents could even save more money.

But due to their high willingness to change the demand, a new

peak is generated around 14 o’clock. This leads to a higher

demand variance and even a higher peak.

TABLE VIII
OUTPUT RUN 1/2

INITIAL FINAL % VARIATION

Demand Variance 1387.1 1410.3 +1.66%
Highest Peak (KWh) 181.9 212.2 +16.5%
Sum of 3 Peaks (KWh) 494.15 483.7 -2.12%
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(b) Price

Fig. 3. First run plots

2) First Variation: RUN 2

TABLE IX
OUTPUT RUN 2/1

A B C SG operator

EXPENDITURES(%) +1.33 +1.83 -7.05 -
INCOME(%) - - - +0.24

In this scenario we can see that the new demand peak at 14

o’clock still exists, but it is smaller.

The demand variance, the highest peak and the sum of the

three peaks all decreased, but all less than compared to the

baseline model.

TABLE X
OUTPUT RUN 2/2

INITIAL FINAL % VARIATION

Demand Variance 1387.1 899.5 -35.2%
Highest Peak (KWh) 181.9 163.8 -9.97%
Sum of 3 Peaks (KWh) 494.15 441.23 -10.7%

3) First Variation: RUN 3

TABLE XI
OUTPUT RUN 3/1

A B C SGoperator

EXPENDITURES(%) +3.54 +1.69 -2.67 -
INCOME(%) - - - +2.21

As the weight of price changes gets more and more im-

portant, the high parameter of awareness for agents of type C
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Fig. 4. Second run plots

does not affect their behaviour that much anymore. And due to

the low parameter of awareness for type B agents, increasing

the influence of price changes makes them spend less money.

The demand variance, the highest peak and the sum of the

three peaks all decreased in a similar amount as in the baseline

model.

TABLE XII
OUTPUT RUN 3/2

INITIAL FINAL % VARIATION

Demand Variance 1387.1 676.8 -51.2%
Highest Peak (KWh) 181.9 154.6 -15.1%
Sum of 3 Peaks (KWh) 494.15 421.52 -14.7%

❯ ❱ ❲ ❳ ❨❩ ❨❯ ❨❱ ❨❲ ❨❳ ❯❩ ❯❯ ❯❱
❭❪❫❴❵

❱❩

❲❩

❳❩

❨❩❩

❨❯❩

❨❱❩

❨❲❩

❨❳❩

❯❩❩

❛❜
❝

❞❡❢❢❣❤✐ ❥❧♠♥ ♦♣♠❢✐ q❢r♥

st✉✈✉✇①② ③④⑤①⑥✉⑦⑧t
⑨④⑩ ③④⑤①⑥✉⑦⑧t

(a) smart grid Load

❶ ❷ ❸ ❹ ❺❻ ❺❶ ❺❷ ❺❸ ❺❹ ❶❻ ❶❶ ❶❷
❼❽❾❿➀

❻➁❻❺➂

❻➁❻❶

❻➁❻❶➂

❻➁❻➃

❻➁❻➃➂

❻➁❻❷

❻➁❻❷➂

➄➅
➆
➇
➈➉
➊
➋
➌

➍➎➏➐➑➒

➓➔→➣→↔↕➙ ➛➜➝↕➞→➟➠➔
➡➜➢ ➛➜➝↕➞→➟➠➔

(b) Price

Fig. 5. Third run plots

4) First Variation: RUN 4

TABLE XIII
OUTPUT RUN 4/1

A B C SGoperator

EXPENDITURES(%) +4.62 +1.62 -0.15 -
INCOME(%) - - - +3.21

In a scenario where the parameter of awareness does not

affect the behaviour of agents anymore, there is no difference

among their reactions, as all of them face the same price

changes.

The demand variance, the highest peak and the sum of the

three highest demands all decreased, but slightly less than to

the baseline model.

TABLE XIV
OUTPUT RUN 4/2

INITIAL FINAL % VARIATION

Demand Variance 1387.1 743 -46.4%
Highest Peak (KWh) 181.9 160.1 -12%
Sum of 3 Peaks (KWh) 494.15 439.08 -11.1%
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Fig. 6. Fourth run plots

C. Second Variation

In this second variation we are analyzing the effects of

different amount of agents from type A,B and C, but keeping

the sum up to the original population of 100.

TABLE XV
SECOND VARIATION PARAMETERS

RUN a1 a2 Change in Prices Price Vector A B C

1 0.5 0.5 20% PV1 25 25 50
2 0.5 0.5 20% PV1 25 50 25
3 0.5 0.5 20% PV1 50 25 25

1) Second Variation: RUN 1

TABLE XVI
OUTPUT RUN 1/1

A B C SG operator

EXPENDITURES(%) +1.93 -0.38 -4.35 -
INCOME(%) - - - -1.72

Due to the high flexibility and the increased number of type

C agents, new peaks of electricity demand appear. They are

higher than the original ones. This scenario would be a clear

disadvantage compared to the baseline model.

Noteworthy is also, that in this scenario the income of the

grid operator decreases due to the increased number of type

C agents.

TABLE XVII
OUTPUT RUN 1/2

INITIAL FINAL % VARIATION

Demand Variance 652.6 1027.2 +57.3%
Highest Peak (KWh) 159.3 203.5 +27.7%
Sum of 3 Peaks (KWh) 425.6 459.9 +8.04%
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Fig. 7. First run plots

TABLE XVIII
OUTPUT RUN 2/1

A B C SGOperator

EXPENDITURES(%) +1.10 +2.74 -5.64 -
INCOME(%) - - - +0.23

2) Second Variation: RUN 2

In a scenario with more agents of type B, the highest peak

get decreased. Also the variance and the sum of the three

highest peaks decreased, but all less than in the baseline model.

Difficult could be the fact that in the new scenario there are

three peaks of nearly the same height. Turning on and off an

external source of electricity multiple times during a day could

be expensive for the supply side.

TABLE XIX
OUTPUT RUN 2/2

INITIAL FINAL % VARIATION

Demand Variance 706 504.1 -28.6%
Highest Peak (KWh) 153.22 130.7 -14.7%
Sum of 3 Peaks (KWh) 420 381.5 -9.16%
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Fig. 8. Second run plots

3) Second Variation: RUN 3

TABLE XX
OUTPUT RUN 3/1

A B C SGOperator

EXPENDITURES(%) +2.36 +1.11 -4.5 -
INCOME(%) - - - +0.4

This scenario is very similar to the baseline model. The

number of type A agents is decreased by ten, while this amount

is added to type C agents. As the results show, the new peak

around 14 o’clock is even higher than in the baseline model.

TABLE XXI
OUTPUT RUN 3/2

INITIAL FINAL % VARIATION

Demand Variance 1122.5 672.3 -40.1%
Highest Peak (KWh) 175.5 147.2 -16.1%
Sum of 3 Peaks (KWh) 474.6 415.9 -12.4%
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Fig. 9. Third run plots

D. Third Variation

In this third variation the initial price vector is changed. In

particular a price vector is used (https://energy-charts.de/).

TABLE XXII
THIRD VARIATION PARAMETERS

a1 a2 Change in Prices Price Vector

0.5 0.5 20% PV2

In this scenario with a new price vector the effects are

exacerbated compared to the baseline model. This means that

in this given setup, the grid operator can decrease the demand

variance, the highest peak and the sum of the three highest

peaks dramatically. As the income for the grid operator stays

nearly the same, this can be considered a win-win situation

for the grid operator.

TABLE XXIII
OUTPUT 1

A B C SGOperator

EXPENDITURES(%) +1.16 +2.95 -8.9 -
INCOME(%) - - - 0.12

E. Fourth Variation

In the last variation the change in prices in percentage is

decreased and increased once.
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TABLE XXIV
OUTPUT 2

INITIAL FINAL % VARIATION

Demand Variance 1387.1 582.9 -57.9%
Highest Peak (KWh) 181.9 145.3 -20.1%
Sum of 3 Peaks (KWh) 494.2 412.9 -16.4%
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Fig. 10. Second run plots

TABLE XXV
FOURTH VARIATION PARAMETERS

RUN a1 a2 Change in Prices Price Vector

1 0.5 0.5 10% PV1
2 0.5 0.5 40% PV1

TABLE XXVI
OUTPUT RUN 1/1

A B C SG operator

EXPENDITURES(%) +0.56 +0.89 -4.5 -
INCOME(%) - - - -0.09

1) Fourth Variation: RUN 1

When the prices of the six hours with the highest demand

are increased only by 10% and the prices for the six hours

with the lowest demand are decreased by 10% less demand is

shifted. This leads to a scenario where there is no new peak

around 14 o’clock. The demand variance, highest peak and

sum of three peaks all decreased.

TABLE XXVII
OUTPUT RUN 1/2

INITIAL FINAL % VARIATION

Demand Variance 1387.1 870.2 -37.2%
Highest Peak (KWh) 181.9 153.4 -15.6%
Sum of 3 Peaks (KWh) 494.2 423.7 -14.3%

2) Fourth Variation: RUN 2

When the prices are changed with a higher magnitude than

in the baseline model, the peak around 14 o’clock appears

again. In this scenario it is nearly as high as the highest peak

in the initial electricity demand. Therefore the situation for the

grid operator did not improve, as the peak is only shifted to

another time.
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Fig. 11. First run plots

TABLE XXVIII
OUTPUT RUN 2/1

A B C SG operator

EXPENDITURES(%) +2.7 +1.94 -10.4 -
INCOME(%) - - - +0.62

TABLE XXIX
OUTPUT RUN 2/2

INITIAL FINAL % VARIATION

Demand Variance 1387.1 754.3 -45.6%
Highest Peak (KWh) 181.9 175.6 -3.53%
Sum of 3 Peaks (KWh) 494.2 432.4 -12.5%
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Fig. 12. Second run plots

F. Discussion

Overall, looking at the baseline model it’s easy to see how

there is an important peak reduction in the Smart Grid Load

(Fig.3d) around 19% and also a reduction of the variance(50%)

relaxing the situation.

As long as a big importance is given to the parameter

of awareness the most ecological agents (type C) will save

more money and the Smart Grid operator will see his income

reduced, whilst if more weight is given to the price, it can

be seen easily that the income will grow significantly. For the

same reason it is easy to see in the Second Variation that if

the population of 100 Agents is formed by the most part of

type C agents, the overall income for the smart grid operator

is reduced, compared to the scenarios where the majority of

the population is made by A or B agents. Even though the

peaks for the Load in all these situations have been reduced

and spread along the 24h.
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In the third variation there is a try to see how changing the

initial price vector affects the overall behaviour. As can be

seen in the Third Variation there are even more effective price

settings, which can be conducted by the grid operator. Finally

in the Fourth Variation it’s easy to see how increasing too

much the price change weight doesn’t lead to a better result

because there is just a shift of the peaks, so the right choice is

to have an appropriate price change weight in order to avoid

peaks.

V. CONCLUSIONS

The objective of this work was to highlight the importance

of taking into account the consumers’ behaviour in planning

an efficient pricing strategy in order to reduce workload at

specific peak hours. A mathematical model for modelling the

behaviour of consumers and smart grid operators is provided.

This model involves the possibility to create a heterogeneous

population of consumers by varying the number of each

consumer profile (in terms of an awareness parameter and a

level of consumption) and an initial price vector and analyse

how they affect the price and the smart grid’s load evolution.

Therefore this simulation-based methodology can be seen as a

guideline and as a decision support tool for the grid operator

to choose the right prices to ensure peak reduction. In order

to use this model in a more efficient way future research has

to be done in terms of considering not only the variations in

the consumption profiles but also in the load profiles.
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