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Abstract
Genome-wide genetic screens using CRISPR-guide RNA libraries are widely performed in mammalian cells to
functionally characterize individual genes and for the discovery of new anticancer therapeutic targets. As the ef-
fectiveness of such powerful and precise tools for cancer pharmacogenomics is emerging, tools and methods for
their quality assessment are becoming increasingly necessary. Here, we provide an R package and a high-quality
reference data set for the assessment of novel experimental pipelines through which a single calibration exper-
iment has been executed: a screen of the HT-29 human colorectal cancer cell line with a commercially available
genome-wide library of single-guide RNAs. This package and data allow experimental researchers to benchmark
their screens and produce a quality-control report, encompassing several quality and validation metrics. The R
code used for processing the reference data set, for its quality assessment, as well as to evaluate the quality
of a user-provided screen, and to reproduce the figures presented in this article is available at https://github
.com/DepMap-Analytics/HT29benchmark. The reference data is publicly available on FigShare.

Introduction
Genome-wide CRISPR-Cas9 screens are being increas-

ingly used to explore various genotype–phenotype associa-

tions, to identify genes whose function is essential for cell

viability and proliferation (essential genes or fitness

genes), and new potential targets for personalized antican-

cer therapies.1–6 Several methods exist for assessing the

quality of the data sets derived from these screens, evalu-

ating sequence quality, single-guide RNA (sgRNA) count

distributions, and negatively selected genes.7 In addition,

comprehensive analyses have been performed to evaluate

the level of reproducibility and integrability of large-scale

cancer dependency data sets assembled from indepen-

dently performed CRISPR-Cas9 screens.8,9 However,

to date, no easy-to-use tool kit is available to assist exper-

imental scientists in assessing newly established

genome-wide CRISPR-Cas9 genetic screening workflows

employing pooled sgRNA libraries in their laboratories.

In Behan et al., we performed genome-wide CRISPR-

Cas9 fitness screens of 339 cancer cell lines from the Cell

Models Passport panel.6,10 We analyzed the resulting

data with an ad hoc computational pipeline designed to

identify new anticancer therapeutic targets at a genome-

scale. To this aim, we defined quality control assess-

ment practices and applied stringent quality control

criteria, finally retaining data for 324 cell lines. Via a
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target-prioritization bioinformatic pipeline, we predicted

and validated a novel selective therapeutic target for co-

lorectal cancers with microsatellite instability: the

Werner syndrome ATP-dependent helicase (a finding simul-

taneously reported by other independent studies).6,11–13

Results and data sets from this study are publicly avail-

able on the Project Score data portal (https://score

.depmap.sanger.ac.uk).14 As part of this effort, we

screened the HT-29 colorectal cancer cell line with the

same experimental settings in multiple batches and dates,

to assess the robustness and reproducibility of our ex-

perimental pipeline.

In this study, we provide an analytical tool imple-

mented in the HT29benchmark R package and high-

quality data from 30 screens of the HT-29 cell line

yielding reliable gene essentiality profiles.15 We propose

the use of these data and software as a simple tool kit for

benchmarking and validating the correct establishment of

a genome-scale CRISPR-Cas9 knockout screening pipe-

line, through the execution of calibration experiment

using the Human Improved Genome-wide Knockout

CRISPR sgRNA library (the Sanger library, available on

Addgene).16 By performing a single calibration screen of

the HT-29 cell line with the Sanger library and settings de-

scribed in Behan et al., experimental scientists can assess

the quality and reproducibility of their experimental work-

flow by processing resulting data with the HT29bench-

mark R package, which implements a diversified set of

metrics to compare new data with expected outcomes.

Data and code, including the HT29benchmark R pack-

age, are available at https://score.depmap.sanger.ac.uk/

downloads, FigShare and https://groups-dashboards.fht

.org/iorio/14–17

Materials and Methods
Reference data set generation: CRISPR-Cas9 screens
The protocol used for the generation of Cas9-expressing

HT-29 cell lines and transduction of the Sanger library

is described in Behan et al. and Tzelepis et al.6,16 Briefly,

we used the commercially available Sanger Library v1.0

(67989; Addgene), encompassing 90,709 sgRNAs target-

ing 18,009 genes, and a second version of the same library

(Sanger library v1.1), including all the sgRNAs from v1.0

plus 1004 nontargeting sgRNAs, and 5 additional

sgRNAs targeting 1876 selected genes encoding kinases,

epigenetic-related proteins, and predefined fitness genes,

for a total of 10,381 additional sgRNAs. Plasmids were

packaged using the ViraPower Lentiviral Expression Sys-

tem (K4975-00; Invitrogen) as per the manufacturer’s in-

structions. Cells were transduced with a lentivirus

containing Cas9 in T25 or T75 flasks at *80% confluence

in the presence of polybrene (8 lg mL�1) and incubated

overnight followed by replacement of the lentivirus-

containing medium with a fresh complete medium.

Blasticidin selection commenced 72 h after transduction

at an appropriate concentration determined for each cell

line using a blasticidin dose–response assay (blasticidin

range, 10–75 lg mL�1), and cell viability was assessed

using the CellTiter-Glo 2.0 Assay (G9241; Promega).

Cas9 activity was assessed as described previously.16

Cell lines with Cas9 activity over 75% were used for

sgRNA library transduction.

A total of 3.3 · 107 cells were transduced with an ap-

propriate volume of the lentiviral-packaged whole-

genome sgRNA library to achieve 30% transduction

efficiency (100 · library coverage). The volume was de-

termined using a titration of the packaged library and

assessing the percentage of blue fluorescent protein

(BFP)-positive cells by flow cytometry. Transduction

efficiency was assessed 72 h after transduction. Samples

with a transduction efficiency between 15% and 60%

were used for puromycin selection. The appropriate con-

centration of puromycin for each individual cell line was

determined from a dose–response curve (puromycin

range, 1–5 lg mL�1), and cell viability was assessed

using a CellTiter-Glo 2.0 Assay (G9241; Promega). The

percentage of BFP-positive cells was reassessed after a

minimum of 96 h of puromycin selection. For samples

with <80% BFP-positive cells, puromycin selection was

extended for an additional 3 days and the percentage of

BFP-positive cells was assessed again.

Cells were grown for 14 days following transduction

with the Sanger Library (v1.0 or v1.1) and selection

with a minimum of 5.0 · 107 cells reseeded at each pas-

sage (500 · library coverage). Approximately 2.5 · 107

cells were collected, pelleted, and stored at �80�C for

DNA extraction. Genomic DNA was extracted from

cell pellets using either the QIAsymphony automated ex-

traction platform (QIAsymphony DSP DNA Midi Kit,

937255; Qiagen) or by manual extraction (Blood &

Cell Culture DNA Maxi Kit, 13362; Qiagen) as per the

manufacturer’s instructions. Illumina sequencing and

sgRNA counting were performed as described in Tzele-

pis et al.16 Experiment identifiers and settings are fully

described in Supplementary Table S1, summarized in

Table 1, and further detailed in the methods section of

Behan et al.6

Overall, we performed two independent experiments

with the Sanger v1.0 library and four experiments with

the Sanger v1.1 library. These can be regarded as biolog-

ical replicates of HT-29 CRISPR screens, while each ex-

periment has been performed with a varying number of

technical replicates (from 3 to 9) for a total of 30 individ-

ual screens, as indicated in Table 1.
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Reference data set preprocessing
We quantified and preprocessed post library-transduction

and control library-plasmid sgRNA read counts as described

in Behan et al., removing sgRNAs with <30 reads in the

library-plasmid and keeping only sgRNAs in common be-

tween the two versions of the Sanger libraries.17 Subse-

quently, we normalized counts across technical replicates,

scaling each sample by the total number of reads. Post-nor-

malization, we computed sgRNA log fold-changes (LFCs)

between individual replicate read counts and library-

plasmid read counts for each experiment, keeping the tech-

nical replicates separated (Supplementary Fig. S1). These

preprocessing steps were performed with the ccr.Normfold-

Changes function of our previously published CRISP-

RcleanR R package, using default parameters.18 The same

preprocessing steps can be now performed through our re-

cently published, user-friendly, interactive web front-end

to CRISPRcleanR: CRISPRcleanRWebApp (publicly accessi-

ble at https://crisprcleanr-webapp.fht.org), which does not

require any bioinformatics/programming knowledge and

can be used via the web browser.19

Resulting data at all the intermediate preprocessing lev-

els are included in our reference data set (available at:

https://score.depmap.sanger.ac.uk/downloads, at https://

groups-dashboards.fht.org/iorio/, and on FigShare).17

Example of user-provided data
To demonstrate and test the diverse functionalities of the

HT29benchmark R package, we used (as an example of

user-provided data) a low-quality screen of the HT-29

cell line, which was discarded from the analysis set in

Behan et al. as showing a low inter-replicate reproduc-

ibility, poor detection of known essential genes as signif-

icantly depleted across replicates, and encompasses six

technical replicates of an HT-29 screen, obtained follow-

ing the same screening protocol and the preprocessing

steps described above.6,17

Receiver operating characteristic analysis
To compute receiver operating characteristic (ROC) and

precision/recall (PrRc) curves, required to perform high-

level quality control assessment of CRISPR-Cas9 screens,

we used the HT29R.individualROC function of the

HT29benchmark R package, which implements the

ROC_Curve and PrRc_Curve functions of the CRISP-

RcleanR package (version 2.2.1), which itself implements

the roc and coords functions of the pROC open-source R

package (version 1.18.0).18,20

Fitness-effect threshold
Following the approach we presented in Pacini et al., we

used a rank-based method to compute a fitness effect sig-

nificance threshold for each HT-29 reference screen, thus

identifying a set of significantly depleted (or essential)

genes at a fixed level of 5% false discovery rate (FDR),

based on their depletion LFCs.9 Specifically, in a given

screen, we first ranked all genes in increasing order of av-

erage depletion LFCs (based on the differential abundance

of their targeting sgRNAs at the end of the assay versus

plasmid control). Then we scrolled the obtained ranked

list from the most depleted gene to the least depleted

one, and we considered the depletion LFC r of each en-

countered gene as a potential threshold, that is, calling

all genes with a depletion LFC <r significantly depleted.

Among the significantly depleted genes at a candidate

threshold r, we focused only on those belonging to any

of two prior known sets of essential (E) and nonessential

(N) genes.19 Considering these two sets as reference posi-

tive and negative controls, respectively, allowed us to com-

pute a positive predictive value (PPV), thus an FDR

(FDR = 1� PPV). We finally select as fitness-effect signif-

icance threshold the largest r, yielding an FDR £0.05. We

implemented this procedure using the roc and coords func-

tions of the pROC open-source R package (version 1.18.0)

implemented in the HT29R.ROCanalysis and HT29R.FD

Rconsensus functions of the HT29benchmark R package.20

Data visualization
We used R base graphics plus the following R libraries and

packages (listed in alphabetical order), all available on Bio-

conductor or on The Comprehensive R Archive Network

(CRAN) repository: crayon version 1.5.1; enrichPlot

Table 1. Reference HT-29 screening data set

Library
Experiment
identifiers No. of replicates Cas9 activity (%)

Average transfection
efficiency (%)

Average puromycin
selection efficiency (%)

v1.0 HT29_c903 6 94.8 32.33 83.53
HT29_c904 3 94.8 27.57 89.97

v1.1 HT29_c905 9 94.8 33.42 80.81
HT29_c906 6 94.8 35.65 88.40
HT29_c907 3 94.8 32.40 89.07
HT29_c908 3 94.8 32 79.33

Libraries, experiment identifiers, and transfection/selection efficiencies across screens.
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version 1.14.2; GGally version 2.1.2; ggplot2 version 3.3.6;

ggrastr version 1.0.1; grid version 4.1.0; gridExtra version

2.3; gtable version 0.3.0; RcolorBrewer version 1.1.3; Ven-

nDiagram version 1.7.3; and vioplot version 0.3.7.15

Enrichment analysis
We performed Gene Ontology (GO) enrichment analysis

to identify biological processes (BP) overrepresented in

the list of HT-29-specific fitness genes. For this analysis,

we used the org.Hs.eg.db R package (version 3.14.0) to

retrieve the gene universe and the clusterProfiler R pack-

age (version 4.2.2) to perform the enrichment analysis of

the HT-29-specific genes.21

Data records
The entire HT-29 reference data set described here is

available at different intermediate levels of preprocessing

on the Project Score website https://score.depmap.sanger

.ac.uk/downloads, at https://groups-dashboards.fht.org/

iorio/, and on FigShare.17

The main data folder contains four subfolders:

� 00_rawCounts assembled—Containing one tsv

file for each HT-29 screen. Each file comprises

the control library-plasmid sgRNA counts, as

well as 14 days postselection sgRNA counts

across technical replicates;

� 01_normalised_and_FCs—Containing Rdata

files of normalized counts and depletion LFCs

for the six screens, plots of counts’ distribution

pre- and postnormalization, and boxplots showing

LFCs’ distributions (PDF files);

� 02_lowLev_QC—subdivided in the following

four subfolders:

(1) FC_distr—LFC distribution plots for each of

the six screens, in PDF;

(2) FC_Rep_corr—Between-technical replicate

correlation plots for each of the six screens,

in PDF;

(3) PrRc_curves_ind_rep—Plots of technical

replicate’s PrRc curves quantifying essen-

tial/nonessential gene classification perfor-

mances across the six screens, in PDF;

(4) ROC_curves_ind_rep—Plots of technical

replicate’s ROC curves quantifying essen-

tial/nonessential gene classification perfor-

mances across the six screens, in PDF;

� 03_HL_QC_Stats—Density plots of depletion

LFCs for reference gene sets across the six exper-

iments with quality control values, in PDF.

Results
In the HT29benchmark package, we have implemented a

set of reference metrics for the assessment of quality and

reproducibility of CRISPR screens. In particular, these

metrics assess sgRNA LFC distributions, screen out-

comes’ reproducibility across technical replicates, inter-

screen similarity, and screens’ ability to detect known

fitness genes among the significantly depleted ones. In

this study, we report results from applying these metrics

to technically validate our HT-29 reference data set, as

well as to showcase how our package can be used to eval-

uate an example of user-provided data set. Furthermore,

we report a set of reliable HT-29-specific fitness genes,

which we have identified via a joint analysis of all the

screens in our reference data set.

These genes are expected to be detected as signifi-

cantly essential in any CRISPR screen of the HT-29

cell line performed with the experimental settings under-

lying the generation of our reference data set, and using

the Sanger library.17 All the technical validations pre-

sented here can be re-executed by a user on its own

data through our HT29benchmark R package.

HT29benchmark R package overview
The HT29benchmarkR package allows assessing quality

and reproducibility of both reference and user-provided

CRISPR screens of the HT-29 cell lines using the Sanger

library and the experimental settings described in Behan

et al.6 More in detail, the HT29benchmark package im-

plements several routines, from our previously published

CRISPRcleanR package18 wrapped in novel ad hoc

designed functions, providing a powerful and easy-to-

use tool able to:

� Download the HT-29 reference data set.

� Inspect and visualize sgRNA depletion LFC dis-

tributions of each screen.

� Evaluate intrascreen reproducibility of depletion

LFCs at the sgRNA level, as well as at the gene level.

� Evaluate interscreen similarity of depletion

LFCs at the sgRNA level, as well as at the

gene level.

� Evaluate individual screen performances in cor-

rectly partitioning known essential (positive con-

trol) and known nonessential (negative control)

genes, when considered rank-based classifiers

based on gene depletion LFCs—through ROC

and PrRc curves, as well as Recall at a fixed FDR.

� Visualize depletion LFC distributions for positive

and negative control genes (as well as for their

targeting sgRNAs) and compute Glass’s D scores
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quantifying the difference of their average deple-

tion LFCs in the screen under consideration.

� Derive HT-29-specific essential/nonessential

genes, by analyzing all screens in the reference

data set jointly and then using these sets as posi-

tive/negative controls to estimate to what extent a

user-provided screen meets expectations, based

on the metrics listed above.

Inspection of sgRNA LFC distributions
The HT29R.FCdistribution function of the HT29bench-

mark package allows inspecting sgRNA LFC distributions

and it computes statistics such as average range, median

and interquartile range, 10th–90th percentile range, skew-

ness, and kurtosis. We have applied these metrics to the

screens in our reference HT-29 data set, observing that

the LFC distributions and their parameters meet the

FIG. 1. (a) Distributions of sgRNA depletion LFCs and their average parameters (with confidence intervals) across
the different screens in the reference HT-29 data set, and in an example user-provided screen performed using
reagent and experimental settings described in Behan et al.6 and the Sanger Library. (b, c) Outcomes from an
evaluation of interscreen similarity. Distributions of pairwise Pearson’s correlation scores computed between gene
essentiality profiles of replicates for each of the six HT-29 reference screens (blue dots), considering depletion LFCs
of highly reproducible/informative sgRNAs only. Their value is abundantly larger than the quality control threshold
defined from the analysis of the Project Score data set (dark blue dashed vertical line), both at sgRNA (b) and gene
levels (c). The distribution of correlations from comparing replicates of the same screen in Project Score is shown in
green, while the distribution of correlations from comparing each possible pair of technical replicates (across
different cell lines) is shown in gray, with densities varying according to the level inspected (sgRNA or gene). The
magenta points indicate correlation between pairs of replicates of an example user-provided screen of the HT-29
cell line (performed using the same setting of Behan et al.6 and the Sanger library, which in this case exceeds the
reproducibility threshold). LFC, log fold-change; sgRNA, single-guide RNA.
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expected shape/values of a typical CRISPR-Cas9 recessive

screen (Fig. 1a).22,23 This function can also take in input

data from a user provided screen, allowing a comparison

between reference and new data, which might unveil unex-

pected distribution shapes, outliers, and other data incon-

sistencies, thus allowing a first exploratory assessment of

a new screen of the HT-29 cell line (Fig. 1a).

Intrascreen reproducibility assessment
To assess screen reproducibility across technical repli-

cates, we defined a reliable measure of intrascreen simi-

larity. In our previous work, we observed that comparing

technical replicates of the same screen at the level of ab-

solute post-transduction sgRNA count profiles produces

meaningless outcomes, due to individual sgRNA counts

varying in different ranges, which are determined by

their initial amount in the library plasmid.23 This pro-

duces a strong Yule–Simpson effect resulting in a gener-

ally high background correlation between any pair of

genome-wide sgRNA count profiles.24 As a result,

when using this criterion as a reproducibility metric,

pairs of technical replicates of the same screen are indis-

tinguishable from two individual technical replicates of

different screens (Supplementary Fig. S2A).

Due to only a small fraction of genes having an impact

on cellular fitness upon CRISPR-Cas9 targeting, pairs of

technical replicates from different screens tend to yield

generally highly correlated dependency profiles even

when considering sgRNA (or gene level) depletion LFCs

(Supplementary Fig. S2B, C), instead of absolute counts.

For these reasons, in Behan et al., we followed an ap-

proach similar to that introduced in Ballouz and Gillis

and identified a set of library-specific informative, and

highly reproducible, sgRNAs pairs targeting the same

gene and with an average pairwise correlation of their de-

pletion LFC pattern >0.6 across a set of 332 cell lines

from Project Score (Supplementary Table S4).6,25 This

yielded a total of 838 unique informative sgRNAs. Per

construction, the depletion patterns of these sgRNAs are

both reproducible and informative, as they involve genes

carrying an actual and sufficiently variable fitness signal.

When considering these informative sgRNAs only,

correlation scores from comparing technical replicates

of the same screens were significantly higher than those

from comparing pairs of technical replicates from differ-

ent screens (Supplementary Fig. S2D, E) of the Project

Score data set. This allowed us to define a threshold

value discriminating the two distributions both at the

sgRNA- and gene level (R = 0.55 and R = 0.68, respec-

tively), as defined in Behan et al. (Fig. 1b, c), and to

use this value as a required minimal quality while evalu-

ating intrascreen reproducibility.6

The function HT29R.evaluateReps of the HT29bench-

mark package allows a robust assessment of input

screens, producing plots such as those shown in

Figure 1b and c. All technical replicate pairs in the HT-

29 reference screens exceed the reproducibility threshold

defined in Behan et al. (blue circles in Fig. 1b, c), while

interscreen reproducibility of user-provided data is eval-

uated (magenta circles in Fig. 1b, c), and compared with

those obtained for the reference HT-29 data set.

Interscreen similarity evaluation
As a second measure of reproducibility, we evaluated the

results’ comparability across different screens in our ref-

erence data set. Thus, we considered genes (or sgRNAs)

passing preprocessing filters in all the six HT-29 screens,

computed LFCs’ profiles and averaged them across tech-

nical replicates, ending up with six different LFC profiles

(one for each screen). We computed Pearson’s correla-

tion scores comparing each pair of these profiles. This

analysis is performed (and results can be visualized) by

the HT29R.expSimilarity function included in our

HT29benchmark package, which (as before) can be

used on a user-provided screen to assess its similarity,

in terms of depletion LFCs, to the six HT-29 reference

screens. For consistency with the reproducibility measure

introduced in the previous section, this function allows

considering the entire Sanger library or highly informa-

tive sgRNAs only, and to evaluate screens’ similarity

both at the sgRNA and gene level (Fig. 2 and Supplemen-

tary Fig. S3A–C).

Screen classification performances
The ability to discriminate prior known essential and

nonessential genes based on their depletion LFC ob-

served in a CRISPR-Cas9 recessive screen is widely

used to assess the quality of that screen.4,6,8,9,23,26,27

In particular, a good-quality CRISPR screen will tend

to detect genes involved in fundamental cellular pro-

cesses, and other core fitness genes, as highly depleted

invariantly across screened cell types. Robust reference

sets of core essential and nonessential genes can be used

as a gold standard to evaluate screens’ performances.17,28

The HT29R.PhenoIntensity function provides a measure

of screen quality by leveraging the intensity of the pheno-

type exerted by inactivating these genes. To quantify this

effect, in Behan and colleagues, we computed a Glass’s D
score, respectively, for reference essential genes (i.e.,

genes that reduce cellular viability/fitness upon inactiva-

tion; E) and (more stringently) for ribosomal protein

genes (R).18,29

These scores account for the difference between the

average depletion LFCs of the genes in E (respectively,
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R) and that of genes known to be nonessential (N) in re-

lation to the standard deviation of the depletion LFCs of

the genes in E (respectively, R), as follows:

D Xð Þ = jl LFC x �Xð Þ½ � � l LFC x �Nð Þ½ �j=r LFC x �Xð Þ½ �

where X e {E, R} and l and r indicate mean and standard

deviation, respectively. The Ds for the screens in the ref-

erence data set were consistently >2 for ribosomal protein

genes and >1 for the other essential genes (with a Glass’s

D >0.8 widely considered an indicator of large effect

size), thus indicative of generally good data quality

(Fig. 3a and Supplementary Fig. S4). In addition, as

depicted in Figure 3a and b, in this case, applying this

metric to the example user-provided screen yielded val-

ues within the expected ranges.

In addition to the Glass’s Ds, we implemented and in-

cluded in our package the HT29R.ROCanalysis function

computing and visualizing ROC and PrRc curves to eval-

uate the ability of each screen in correctly partitioning

prior known essential (E) and nonessential (N) genes,

when considered a rank-based classifier based on

sgRNA- or gene-depletion-LFCs (as explained in the pre-

vious sections). Applying this function to the HT-29 ref-

erence data set, as well as to example user-provided data,

yielded the results shown in Figure 3c and d. Also, in this

case, our reference data set yielded very good-quality

scores.

Finally, as a further quality assessment and reference

to the user, we computed fitness effect significance

thresholds using prior known essential and nonessential

genes at different FDR levels, and we quantified corre-

sponding Recall values of prior known essential genes,

as well as a novel set of human core-fitness genes intro-

duced in Behan and colleagues and various sets of

other essential genes (all available in the CRISPRcleanR

FIG. 2. Interscreen similarity evaluation. (a) Pearson’s correlation scores between profiles of depletion LFCs
computed at the gene level using the subset of reproducible and highly informative sgRNAs (n = 838) between pairs
of HT-29 screens (in green) and between the HT-29 reference screens and example user-provided screen (in pink),
with replicates collapsed by LFC averaging. The distribution in gray is computed as the correlation between each
possible pair of screen replicates in Project Score. (b) Two-sided t-test comparing expected Project Score correlation
scores versus those computed between each pair of screens in the HT-29 reference data set, as well as those
computed between the example data screens versus those computed in the HT-29 reference data set. The
reference data set scores are largely significantly different from expectations, and the user data scores are still
largely different from expectations but not as much as the reference data. (c) Scatter-plot correlation matrix
showing pairwise Pearson’s correlation scores computed within HT-29 references and between user data versus HT-
29 reference screens.
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package) (Supplementary Fig. S5 and Supplementary

Table S2).18,28 Also these results confirmed the high

quality of our reference data set.

HT-29-specific fitness genes
We assembled a list of genes that are consensually signif-

icantly depleted across all our reference HT-29 screens

and thus should be observed as significantly depleted

in new screens of the HT-29 cell line performed with

the Sanger library and the experimental setting described

in Behan et al.6 First of all, for each reference HT-29

screen, we identified a set of genes significantly depleted

at a 5% FDR and its complement, that is, a set of genes

not significantly depleted, using reference sets of essen-

tial (E) and nonessential (N) genes to compute signifi-

cance thresholds (Methods).9,28 Intersecting all these

FIG. 3. Screens’ quality in terms of phenotype intensity and ROC analysis. (a) Distributions of gene depletion LFCs
for one of the screens in the HT-29 reference data set (at the top) and an example user-provided screen (at the
bottom). Glass Delta (GD) scores for reference essential genes (E) and ribosomal protein genes (R) against
nonessential genes are reported at the top of each plot. Vertical lines indicate mean LFCs for each gene set as
indicated by the different colors. (b) Distributions of GD scores of ribosomal protein genes and other essential
genes (as indicated by the different colors), computed across the reference screens with overlaid GDs observed for
the example user-provided screen. (c) ROC and PrRc curves quantifying the ability of a given screen in correctly
classifying prior known essential and nonessential genes, based on their depletion LFCs for one of the screens in
the HT-29 reference data set (at the top) and an example user-provided screen (at the bottom). Recall of prior
known essential genes at a 5% false discovery rate and areas under the curves are also reported, with the former
indicated also by the dashed lines. (d) As for (c) but extended to all the reference screens and the user data, as
indicated by the different colors. GD, Glass’s D; PrRc, precision/recall; ROC, receiver operating characteristic.

8 IANNUZZI ET AL.



sets of screen-specific significantly depleted, respec-

tively, nondepleted, genes yielded a high-confidence

set of HT-29-specific essential, respectively, nonessen-

tial, genes.

We assessed how each reference screen discriminated

these two sets in terms of Glass’s D or Cohen’s d (Meth-

ods).30–32 This enabled us to once again establish a set of

expected values for evaluating a newly performed HT-29

screen. To be consistent with the quality assessment per-

formed by Behan et al., we considered a low-tier quality

threshold, which is 3 standard deviations below the me-

dian for the reference data set (solid line Fig. 4b).6 A sec-

ond, more stringent, threshold is equal to the lower 90

percentile boundary of the values observed for our refer-

ence data set (vertical dashed line in Fig. 4b). The HT-29-

specific fitness genes are also provided in Supplementary

Table S3, partitioned into three tiers based on their aver-

age depletion LFCs across screens.

These genes showed fairly consistent depletion LFCs

across screens (Fig. 4d) and were significantly enriched

for previously reported human essential genes (Fisher’s

exact test p = 7.1 · 10�221, Fig. 4c) and for fundamental

FIG. 4. (a) Depletion LFC distributions of HT-29-specific positive and negative essential genes across individual
reference HT-29 screens and example user-provided data. (b) Distribution of distances between HT-29-specific
positive and negative essential genes, quantified through Cohen’s d, across the reference HT-29 screens (the
boxplot) or for the example user-provided data, which in this case do not meet expectations since we consider a
value of 3 SD below the median as the minimum limit for acceptance (black vertical line, QC threshold). A value
equal to Q1� 1.5 · IQR is the threshold for considering a screen as high quality (dashed gray line, Q1 = first
quartile). (c) On the left, comparing the HT-29-specific essential genes and a widely used set of prior known
essential genes highlights a statistically significant overlap (two-sided Fisher’s exact test p-value = 7.1 · 10�221); on
the right, the distribution of LFCs for different gene sets along with the HT-29-specific fitness genes across the
reference HT-29 screens, as well as an example user-provided data. (d) Depletion LFCs of the top 50 HT-29-specific
fitness genes consistently depleted in all experiments, across HT-29 reference screens. (e) Top 10 Gene Ontology
categories (Biological Process) significantly enriched (Benjamini–Hochberg-corrected p-value <0.05) in the HT-29-
specific essential genes. IQR, interquartile range; SD, standard deviation.
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BP such as ‘‘ribosome biogenesis’’ and ‘‘RNA splicing’’

(Fig. 4e), confirming their reliability.

Discussion
CRISPR screens are becoming essential tools to investi-

gate gene function across biological contexts.1 Viability

CRISPR screens are widely used in cancer research to

identify and prioritize new therapeutic targets. Indeed,

large screens have been performed to systematically

identify genes essential for cancer cells’ survival and pro-

liferation.13 As the number of laboratories implementing

these techniques to address a variety of biological ques-

tions increases, so does the need for analytical methods

assessing the quality of the resulting data. In this study,

we present an analytical pipeline, implemented in an

easy-to-use R package assessing the reliability of a

newly established experimental pipeline for genome-

wide CRISPR-Cas9 screens, upon the execution of a

single-calibration experiment: a screen of the HT-29

cell lines with the same library and setting described in

Behan et al.6

In addition, we provide accompanying data from

screening the HT-29 cell line multiple times, within Proj-

ect Score (https://score.depmap.sanger.ac.uk), which we

comprehensively show being suitable to serve as a high-

quality reference.14 With our benchmark, laboratories

setting up CRISPR-screen experiments will be able to test

their pipeline, by running a single-calibration experiment

on the HT-29 cancer cell line with the settings described in

Behan et al.6 We propose an analytical framework in which

common metrics are adopted to assess the user-provided

screen for cross-replicate reproducibility, similarity with

our reference data set, and reliability in detecting known

essential and nonessential genes. In summary, we devel-

oped the HT29benchmark R package (available at https://

github.com/DepMap-Analytics/HT29benchmark), dem-

onstrated its usage, and provided a detailed description of

its functionalities together with the rationale underlying the

quality metric selection in an effort to provide the scientific

community a user-friendly tool for assessing the quality of

their CRISPR screens.

We foresee that its ease of use and its comprehensive col-

lection of evaluation criteria will make data and software a

first-choice tool for robustly evaluating newly established

CRISPR-Cas9 workflows in experimental laboratories.

Code and Data Availability
The R code used for generating the reference data set, for

its quality assessment, as well as to evaluate the quality of

a user-provided screen, and to reproduce all the figures

presented here is available at https://github.com/

DepMap-Analytics/HT29benchmark The HT-29 refer-

ence data set is available at different intermediate levels

of preprocessing on the Project Score website (https://

score.depmap.sanger.ac.uk/downloads) at https://

groups-dashboards.fht.org/iorio/, and on FigShare

(https://doi.org/10.6084/m9.figshare.20480544).
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