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ABSTRACT
This research proposes a multi–input multi–output model

(MIMO) to identify the modal properties of a motorbike during
the riding test. The MIMO process verifies that a linear combi-
nation of all inputs causes each output, and there are no causal
relationships between the inputs. If there are causal relationships
between one of the outputs, the MIMO process redefines the
input signals. The process verifies the connection between input-
output and the presence of noise extraneous to the inputs and
outputs. The MIMO process represents a multiple-input system
with a single output. The peculiar aspect is the decoupling of
individual information. In the presence of coupling between
the separate inputs, the authors propose the principal component
analysis (PCA) to decouple the inputs.
Keywords: Multi-input Multi-output, Modal properties, Com-
fort Assessment, Ride Test

NOMENCLATURE
φi phase offset [rad]
L road irregularity lenght [Hz]
v motorbike speed [ms−1]
t time [s]
x1 (t), x2 (t) input [m]
x3 (t) output [m]
x1·12,(i−1) (t) conditioned input record [m]
Si j ( f ) cross-spectral density function [dB]
M mass matrix
C damping matrix
K stiffness matrix
G impedance matrix
H frequency response matrix
mi j virtual signal
S Hermitian matrix
Zi fictitious process
pi,n poles
†Joint first authors
∗Corresponding author: cavacece@unicas.it
Documentation for asmeconf.cls: Version 1.34, December 13, 2023.

Qr residue
zi,n zeros
PCA principal component analysis

1. INTRODUCTION

Motorbike manufacturers analyze the vibrations on the driver
and passengers inside the motorbike generated by the rough road
surface. Motorike testing procedures are defined by the inter-
national ISO standard. The researchers consider mechanical
models equivalent to concentrated parameters offering a quan-
titative assessment of motorbike accelerations in terms of natural
frequencies and motorbike dissipative properties [1]. A combina-
tion of masses, stiffness, and damping parameters represents the
motorbike components. The lumped parameter models and the
finite element method use models for distributing these parame-
ters to form complete matrices of mass, stiffness, and damping
for each component. If research considers large complex sys-
tems, better computing may require simplifying the mechanical
model. Suppose the mathematical model analyzes the vibrations
of a motorbike due to excitation of the unidirectional terrain. In
that case, the simplified approach considers the molded car tires
as a spring-damper system, ignoring the non-linear behavior of
the tires [2]. The noise of the engine, the road, and the dynamic
action induced by the wind, are inputs that generate the mechan-
ical vibrations acquired in the different parts of the interior of a
machine, such as mechanical system outputs. The experimen-
tal modal analysis uses several agitators to excite the mechanical
structure according to the three axes and simultaneously acquires
a large number of response signals. Single-input single-output
(SISO) estimation methods or simplified mathematical models
should not be used in such cases [3]. Comprehensive research on
motorbike dynamics should consider the autospectrum between
each input and all other signals (including other input signals).
This approach allows the analysis of all the mechanical system
input/output relations through the frequency response function
estimators for MIMO models. The success of frequency re-
sponse function estimation provides the correct understanding of
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the different effects of excitation signals, signal-to-noise ratios,
and noise on input or output signals [4]. This research consid-
ers the motorbike as a multi-input, multi-output system, where
additional inputs in the form of noise on measured signals might
affect the behaviour of the motorbike. The Authors consider the
motorbike to be linear and time invariant during stationary ran-
dom processes. The frequency response matrices of multi-input
multi-output process include the modal properties of the motor-
bike. The theorem of partial fraction expansion develops the
frequency response matrices in terms of residues and poles of the
mechanical system.

FIGURE 1: TWO-INPUT, SINGLE-OUTPUT SYSTEM, EQN. (??): z =
(r ,φ) [3]

FIGURE 2: COHERENT AND UNCOHERENT SIGNALS, EQN. (??):
z = (r ,φ) [3]

2. SPECTRAL FUNCTIONS

The direct approach identifies the output x3 (t) arising from
inputs x1 (t) and x2 (t).

The finite Fourier transforms F.T. of any pair of data x (t)
and x (t) of length T will be defined by the following relations

X ( f ) = x (t) e− ȷ2π f tdt

Y ( f ) = y (t) e− ȷ2π f tdt (1)

The autospectral density functions Sxx ( f ), Syy ( f ) and the
associated cross–spectral density function Sxy ( f ) associated with
transient random processes x (t) and y (t) will be defined by the
following relations:

Sxx ( f ) = E
󰀅
|X ( f )|2

󰀆
Syy ( f ) = E

󰀅
|Y ( f )|2

󰀆
and

Sxy ( f ) = E
󰁫
|X∗ ( f ) · Y ( f )|2

󰁬
(2)

where E [. . .] indicates the expected value operation. The
Sxx ( f ), Syy ( f ) and Sxy ( f ) relations are two–sided functions
with −∞ < f < ∞. The symbol ∗ indicates the complex con-
jugate quantity. The definitions of Sxx ( f ), Syy ( f ) and Sxy ( f )
relations are appropriate also for stationary random processes.

2.1 Complete Model for Conditioned Inputs

The original input values are xi (t)with i = 1, 2, . . . , n and the
output signal is y (t) = xi+1 (t). Preliminary classification of input
signals xi (t) with i = 1, 2, . . . , n required as a priori knowledge.
Principal Component Analysis (PCA) is a general approach to
explore signal correlation patterns xi (t) with i = 1, 2, . . . , n.

The functions Hi ( f ) indicate the optimum frequency re-
sponse functions between each input signals xi (t) and the output
signal y (t). The unknown independent noise term n (t) indicates
the deviations between the theoretical linear model (Figure 1) and
the experimental investigations.

The complete model indicates x1·12,(i−1) (t) as the condi-
tioned input records. The term xi ·12,...,(i−1) (t) represents the con-
ditioned input xi with reffering to the previous input xi−1 (t).
The PCA removes the linear effects caused by input signals
x1 (t) , . . . , xi−1 (t) on input signal xi (t).

If conditioned inputs are q terms, the output Y = Xq+1 as-
sumes the following relation:

Y ( f ) = Xq+1 ( f ) =
q󳕗
i=1

Hi ( f ) Xi ·12,...,(i−1) ( f ) + X(q+1)·12,...,q∗

(3)

with X(q+1)·12,...,q∗ ( f ) the noise term N ( f ).

2.2 Residual Spectra by Gaussian Elimination

If q = 2, the mechanical system presents two inputs x1 (t),
x2 (t) and one output x3 (t) (Fig.1). The inputs x1 (t), x2 (t) must
not be related (Fig.2). An additional contaminating noise n (t) is
added to the inputs x1 (t) and x2 (t) to generate the output x3 (t).
In the frequency domain, the output of the system is the following
relation:

X3 ( f ) = H1 ( f ) X1 ( f ) + H2 ( f ) X2 ( f ) + N ( f )

=
󰀅

H1 ( f ) H2 ( f )
󰀆 󰀝

X1 ( f )
X2 ( f )

󰀞
+ N ( f ) , (4)

The cross–spectral density functions become the following rela-
tions

S11 ( f ) H1 ( f ) + S12 ( f ) H2 ( f ) = S13 ( f )󰀕
S22 ( f ) − S21 ( f ) S12 ( f )

S11 ( f )

󰀖
H2 ( f ) =

S33 ( f ) − S21 ( f ) S13 ( f )
S11 ( f ) (5)
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Solving for H1 ( f ) and H2 ( f ) using Gaussian elimination

H2 ( f ) = S23·1 ( f )
S22·1 ( f ) and

H1 ( f ) = S13 ( f )
S11 ( f ) −

S12 ( f ) S23·1 ( f )
S11 ( f ) S22·1 ( f ) (6)

The residual spectral density function Si j ·k ( f ) can be gener-
alized as

Si j ·k ( f ) = Si j ( f ) −
Si j ( f ) Sk j ( f )

Skk ( f ) (7)

FIGURE 3: FICTITIOUS PROCESSES AND MEASURED SIGNALS,
EQN. (??): z = (r ,φ) [3]

2.3 Principal Component Analysis

The cross–spectral density matrix of three processes x1 ( f ),
x2 ( f ) x3 ( f ) provides the following matrix

S ( f ) =
󰀵󰀹󰀹󰀹󰀹󰀷

S11 ( f ) S12 ( f ) S13 ( f )
S21 ( f ) S22 ( f ) S23 ( f )
S31 ( f ) S32 ( f ) S33 ( f )

󰀶󰀺󰀺󰀺󰀺󰀸
(8)

The matrix S is Hermitian matrix. The property is that
Hermitian matrix S is equal to its conjugate transpose: S =
S∗T = SH .

The determinant and the rank of Hermitian matrix S repre-
sent the relationship between the processes xi (t). The cases are
as follows:

• if the processes xi (t) with i = 1, 2, 3 present a linear rela-
tionship, the determinant of matrix S is zero and its rank is
less than three;

• if the rank of matrix S is 3, there is no linear relationship
between the processes xi (t);

• if the matrix S presents full rank, the Eq.(4) represents the
output of the system;

• if the rank the matrix S is less than 3 the method of PCA
helps to create new variables m11, m12 and m13 which are
mutually uncorrelated. The new variables mi j generate a
matrix M ( f ). The fictitious processes Z1, Z2 and Z3 de-
scribe the measured signals X ( f ) = M ( f ) Z ( f ) with

M ( f ) =
󰀵󰀹󰀹󰀹󰀹󰀷

m11 ( f ) m12 ( f ) m13 ( f )
m21 ( f ) m22 ( f ) m23 ( f )
m31 ( f ) m32 ( f ) m33 ( f )

󰀶󰀺󰀺󰀺󰀺󰀸
(9)

The new variables mi j and the fictitious processes Zi offer
the following relations of the measured signals X ( f ):

󰀻󰁁󰁁󰀿
󰁁󰁁󰀽

X1 ( f )
X2 ( f )
X3 ( f )

󰀼󰁁󰁁󰁀
󰁁󰁁󰀾
=

󰀵󰀹󰀹󰀹󰀹󰀷
m11 ( f ) m12 ( f ) m13 ( f )
m21 ( f ) m22 ( f ) m23 ( f )
m31 ( f ) m32 ( f ) m33 ( f )

󰀶󰀺󰀺󰀺󰀺󰀸
󰀻󰁁󰁁󰀿
󰁁󰁁󰀽

Z1 ( f )
Z2 ( f )
Z3 ( f )

󰀼󰁁󰁁󰁀
󰁁󰁁󰀾

(10)

The Eq.(10) underlines that a set of uncorrelated processes Zi ( f )
produce the measured signals Xi by the transformation matrix M
with i = 1, 2, 3 (Fig.3).

3. MODAL IDENTIFICATION BY FREQUENCY RESPONSE
FUNCTIONS

Parameter identification estimates unknown parameters in a
given dynamical model describing the real system. The proposed
method observes the measurable external variables affecting the
systems in order to find the value for the missing parameter [5].
The residue Qr , the zeros zi,n and the poles pi,n of the system
are are the unknown parameter vectors. The observations of the
in- put and output signals, xi (t), over the time interval t1, t2, . . .,
tn form the following set of data: DN = x1 (1), x2 (1), x3 (1),
x1 (2), x2 (2), x3 (2), . . ., x1 (N), x2 (N), x3 (N). If Hi ( f ) are the
systems affected by unknown parameters zi,n and pi,n and N ( f )
denotes the set of non-measurable exogenous signals influencing
the systems, an exact mathematical model (and a corresponding
simulator) for Hi ( f ) is available by using experimental investi-
gations. This framework represents the white box identification.
The method adopts a suitable function f̄ mapping the experimen-
tal observations f̄ == x1 (1), x2 (1), x3 (1), x1 (2), x2 (2), x3 (2),
. . ., x1 (N), x2 (N), x3 (N). The frequency response matrix H (s)
is the inverse of the system impedance matrix G−1 in the Laplace
domain (s = ıω = ı2π f ). The frequency response matrix H (s)
of lumped mechanical system assumes the following form:

H (s) =
󰀓
s2 · M + s · C + H

󰀔−1
(11)

with M mass matrix, C damping matrix and K stiffness ma-
trix. Therefore, the frequency response matrix H (s) includes the
modal properties of the mechanical system. The theorem of par-
tial fraction expansion affirms that any response function Hi (s)
is a ratio of two polynomials Pi (s) and Qi (s):

Hi (s) =
Qi (s)
Pi (s)

=

󰀃
s − zi,1

󰀄 󰀃
s − zi,2

󰀄
. . .

󰀃
s − zi,n

󰀄
󰀃
s − pi,1

󰀄 󰀃
s − pi,2

󰀄
. . .

󰀃
s − pi,n

󰀄 (12)

where zi,1, zi,2, . . ., zi,n are the zeros and pi,1, pi,2, . . ., pi,n are
the poles with i = 1, 2 of frequency response matrix H (s).

4. ROAD PROFILE MATHEMATICAL MODELING

The most intensive source of excitation of the motorbike
is the road. The factors of the road: length, height, shape,
irregularities frequency, and the motorbike speed influences the
vertical dynamic behaviour. The irregularities can offer a periodic
or random profile of the road. A periodic signal represents the
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TABLE 1: STATISTICAL LENGHT AND AMPLITUDE FOR ROAD IR-
REGULARITY

Road type h0 [mm] L [m]

Motorway-Highway 10–20 10–15
Urban roads (asphalt concrete) 10–20 1.0–2.0
Pavement roads (cobbles) 30–40 0.15–0.30
Offroad 50–70 0.10–0.15

road profile to evaluate the vertical dynamics study. The angular
frequency ω = 2πv can be expressed as function of the road
irregularity lenght L and motorbike speed v. The Table 1 shows
some statistical data. A Fourier series represents the road profile
with different frequencies ω1, ω2, . . ., ωn, amplitudes bo, b1, b2,
. . ., bn of the harmonic components

h (t) =b0 + b1 sin (ω1t + φ1) + b2 sin (ω2t + φ2) + . . .
+bn sin (ωnt + φn) (13)

where φ1, φ2, . . ., φn are the phase offsets for each harmonic
function.

FIGURE 4: EXPERIMENTAL DESIGN FOR RIDE TEST , EQN. (??):
z = (r ,φ) [3]

5. EXPERIMENTAL DESIGN

The SV 106D multi-channel (6-channel) vibration analyzer
meets the requirements of ISO 8041-1:2017 and complies with
measurements according to ISO 2631-1,2 and 5, ISO 5349, and
Directive 2002/44/EC. SV 106D allows simultaneous measure-
ments with two triaxial accelerometers. SV 106D can simulta-
neously perform 1/1 or 1/3 octave real-time analysis with meter
mode [6]. Svantek 106D is positioned on the seat of passenger,
output y = x3 (t). AX6 6-Axis accelerometers are positioned
on the front, input x1 (t), and rear suspensions, input x2 (t). The
experimental investigations have analyzed the conditions of com-
fort on the roads with artificial bumps. The stretches of road
that precede and follow the artificial bumps present the statistical
length and amplitude for road irregularity proposed in Table 1.
The speed of the motorbike is about 50 km/h (Fig.4).

6. RESULTS
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FIGURE 5: ACCELERATION DATA ACQUIRED ON THE FRONT AND
REAR SUSPENSIONS, ON THE SEAT OF PASSENGER DURING
RIDE TEST, EQN. (4) [3]

Figure 5 shows acceleration data acquired on the front and
rear suspensions, on the seat of passenger during ride test in
time domain. Figure 6 shows the evaluated frequency response
functions H1 ( f ) and H2 ( f ) by the proposed MIMO process in
frequency domain. The poles of the evaluated frequency response
functions H1 ( f ) and H2 ( f ) describe two different map in the
Figure 7. The comparison in the Figure 8 illustrates that H1 ( f )
zeros describe a small area relative to the extent represented
by H2 ( f ) zeros. The damping ratio of the frequency response
function H1 ( f ) indicates the range 0.121-1. The damping ratio of
the frequency response function H2 ( f ) shows the range 0.05-0.26
(Fig.9). The Fig.?? shows the comparison between accelerations
obtained by MIMO process and ones deduced by experimental
investigations on the seat of passenger.

7. DISCUSSION

The modal identification shall propose the assessment of the
performance of the motorbike. The frequency responses derived
through the proposed MIMO process highlight the motorbike’s
performance during the riding test. The application of the theo-
rem of partial fraction expansion shows an excellent convergence
between the acceleration, deduced with the frequency responses,
and that acquired in the experimental investigation on the pas-
senger seat. The accelerations acquired on the motorbike’s front,
and rear shock absorber assume the same maximum values, re-
spectively, at 5 Hz and 20 Hz. Frequency response H1 ( f ) has
low acceleration values in the range 0.4-1.6 Hz; assumes high
values 2-12.5 Hz; decreases in the range 16-31.5 Hz. Frequency
response H2 ( f ) accepts high acceleration values in the field 0.4-1
Hz. The areas described by the poles, zeros, and damping ratio
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FIGURE 6: FREQUENCY RESPONSE FUNCTIONS, EQN. (4) [3]
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FIGURE 7: POLES OF FREQUENCY RESPONSE FUNCTIONS,
EQN. (4) [3]
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FIGURE 8: ZEROS OF FREQUENCY RESPONSE FUNCTIONS,
EQN. (4) [3]
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FIGURE 9: DAMPING RATIO VS. FREQUENCY, EQN. (4) [3]
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FIGURE 10: COMPARISON BETWEEN ACCELERATIONS OB-
TAINED BY MIMO PROCESS AND ONES DEDUCED BY EX-
PERIMENTAL INVESTIGATIONS ON THE SEAT OF PASSENGER,
EQN. (4) [3]

values of the H1 ( f ) frequency response are smaller than those
of the poles, zeros, and damping ratio values of the H2 ( f ) fre-
quency response. The front and rear shock absorbers perform
complementary actions to ensure the motorbike’s comfort.

8. CONCLUSION
A MIMO process has been developed to characterize the dy-

namic response of the motorbike excited by road profiles by modal
properties of the motorbike. The MIMO process is calibrated by
the ride test. The least square error evaluates the good agree-

ment between accelerations obtained by MIMO process and ones
deduced by experimental investigations on the seat of passenger.
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