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Abstract— Employing teams of robots to offer services to hu-
man operators enables the latter to reduce their physical work-
load. In this paper, we focus on the problem of optimally allocating
and scheduling the robot tasks in order to serve human operators.
We formulate a Mixed-Integer Linear Programming problem
that aims to minimize the human waiting time and the energy
spent by the robots, while ensuring that any velocity constraints
of the robots are fulfilled and the task ordering is correct. In addi-
tion, we propose an online re-allocation strategy that takes into
account the possibility of changing human parameters over time.
This strategy determines whether a new optimal solution must be
computed. We validate the proposed framework in a simulated
precision agriculture setting composed of two robots and four
human operators for a harvesting application.

I. INTRODUCTION

Human-robot teams have demonstrated great potential in
various application domains [1], spanning from industrial to
domestic environments and, recently, to agricultural contexts.
This technology enables the integration of the cognitive abili-
ties of humans with the physical capabilities of robots. In these
collaborative teams, a key challenge to address is how to effec-
tively allocate and schedule tasks, with the primary objective
of accommodating human needs.

In this regard, the work in [2] categorizes tasks based on the
number and type of agents involved (human or robotic). A task
assignment flow chart is then proposed, which, however, does
not consider any measure of optimality. In the case of minimiza-
tion of optimality indices, Mixed Integer Linear Programming
(MILP) problems are commonly formulated to minimize the
overall execution time, i.e., the makespan. Among these, the
work in [3] proposes a MILP problem aimed at minimizing
the makespan for a team consisting of a human operator and
multiple robots. A human capability dynamics is defined to
adapt the solution in case of changes. However, in [3] the time
horizon is divided into discrete intervals and constraints are
defined for each, leading to a number of decision variables that
dramatically increase as the time horizon increases. This is
overcome, for instance, in [4] where additional features, such
as the possibility for humans to supervise robots when they
are unable to operate autonomously, and further cost indices
based on the workload and quality measures are also included.
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The optimization of the workload in the MILP formulation is
also considered in [5], where, however, tasks are divided into
several layers based on precedence constraints, and the cycle
time of these layers is minimized. The same layer subdivision
is exploited in [6] where tasks are prioritized according to the
task dependency order. A further MILP application can be
found in [7] where tasks are assigned to the agents on the basis
of a Hungarian algorithm and, then, are scheduled according
to a MILP.

Alternative approaches based on constraint programming
and genetic algorithms are investigated in [8] to solve a MILP
problem minimizing the makespan. However, no dynamic be-
havior of the human operators is taken into account. A genetic
algorithm is additionally adopted in [9] where a simulation
tool is developed to model an assembly procedure. Based on
this tool, a fitness function is defined to optimize for the task
progress, waiting time, and traveled distance. Repetitive tasks
are considered instead in [10] where search algorithms based
on branch and bound optimization and evolutionary search are
explored. Recently, a multi-agent deep reinforcement learn-
ing approach has been proposed in [11] for a collaborative
assembly application. However, no variability in the human
parameters is examined.

In this work, we consider a human-multi-robot scenario
where mobile robots perform service tasks for human agents.
Inspired by the European project CANOPIES, we consider a
precision agriculture setting where, as an example case study,
box filling operations during table grape harvesting season
are carried out. We formulate an optimization problem based
on MILP to minimize a combination of human waiting time
and robot energy and determine the allocation of the service
tasks to the robots and their scheduling. Differently from most
works cited above, we additionally consider that the velocity
of the robotic agents represents an output of the optimization
problem, which can be modulated to minimize the cost func-
tion. Furthermore, to tackle possible variability in the human
parameters, we design an online checking strategy to establish
if a new plan is needed. Compared to our previous work [4],
we focus on a notably different scenario where robots provide
services to human operators. Thus, we formulate an alternative
optimization problem that aligns with the agriculture setting
considering, also time-varying robot velocities. To the best of
our knowledge, this is also the first contribution in the literature
dealing with a human-multi-robot task allocation and schedul-
ing problem in a precision agriculture setup. The proposed
approach can be adapted to any service task and to different
settings, such as assembly operations in industrial scenarios or
assistive applications in domestic environments.



II. PROBLEM SETTING

As introduced above, we consider a team of mobile robots
and human operators working in an agricultural field, where a
depositing station is available, as depicted in Figure 1. More
specifically, every human performs operations in the field and,
at the completion of each operation, a robot service task is
necessary to enable the continuation of the person’s activities.
As an example case study, we assume that the humans are
filling boxes with grape bunches during the harvesting season;
once a box is filled, a robot is required to execute a service
task that involves reaching the human operator, replacing the
full box with an empty one, and transporting the full box to
a depositing station where a new empty box is picked up.
Therefore, our objective is to determine the allocation of the
service tasks to the robots, i.e., which robot performs each
task, as well as their scheduling, i.e., the start and end time
of each task, while taking into account possible constraints
on the robots and variations in the human behavior. In the
remainder of the section, we introduce the notation to formulate
the problem and state it formally.
In general, let S = {s1, s2, .., sn} be a set, in the following we
use the notation i ∈ S to denote the i-th element of the set and
|S| for its cardinality. Similarly, in case two indices are utilized
for the elements of the set, i.e., S = {s1,2, s1,2, .., sn,m}, we
use the notation (i, j) ∈ S to denote the element si,j .

A. Agents and tasks

We denote by R the set of n mobile service robots, i.e.,
|R| = n, and H the set of u human operators, i.e., |H| = u.
Minimum and maximum cruising velocities to navigate the
field are considered for each robot r and denoted as vmin,r and
vmax,r, respectively. Moreover, we assume that an assigned
position at the depositing station is defined. We refer to the
latter as base position of the robot and denote it as br. For each
human h, we denote his/her position in the field as xh and
define the length of the path that robot r has to follow to reach
the human from its base position as lr,h. Note that this length
coincides with the one of the reverse travel, from the human
operator to the robot base position.

As previously introduced, each human h performs a set of
q ordered operations Oh = {τoh,1, ..., τoh,q}, meaning that the
start time of τoh,i follows the end time of τoh,i−1, ∀i ∈ {2, ..., q}.
Let oh,i and oh,i be the start and end time of the human op-
eration τoh,i, respectively, it holds oh,i−1 ≥ oh,i. The overall
set of human operations is given by O = O1 ∪ ... ∪ Ou. In
addition, we define the time needed by the human h to per-
form a single operation as δoh. For simplicity of notation, we
assume that each human operator carries out q operations and
all operations of a human operator h have the same duration
δoh. However, it is straightforward to include a different number
of operations qh for each human h and different durations. In
general, the human parameters can vary over time, i.e., he/she
might change his/her position (i.e., lr,h might change) or op-
eration duration δoh. For instance, when an operator’s fatigue
increases, his/her operating times will probably also increase.

For each human operation (h, i) ∈ O, we define a respective
service activity that a robot has to carry out. This is composed

Fig. 1: Illustration of the field with two robots and four humans.

of two tasks: i) a picking task τph,i, where a robot navigates
the field to reach the human h and assists him/her by pick-
ing up any load provided by the human for the operation τoh,i,
and ii) a subsequent depositing task τdh,i, in which the robot
reaches a depositing station and releases any load provided
by the human. We denote the times for the robot r to pick
up a load at a human position and release it at the depositing
station as δpr and as δdr , respectively. In our case study, during
the picking task, the robot approaches the human and performs
a box replacement, while during the depositing task, the same
robot reaches the depositing station and releases the full box
to grab an empty one. We define the set P collecting the pick-
ing tasks, i.e., P = P1 ∪ ... ∪ Pu with Ph = {τph,1, ..., τ

p
h,q},

and the set D collecting the respective depositing tasks, i.e.,
D = D1 ∪ ... ∪ Du with Dh = {τdh,1, ..., τdh,q}. We denote the
start and end time of each picking task τph,i as p

h,i
and ph,i,

respectively, and the start and end time of each depositing
task τdh,i as dh,i and dh,i, respectively. Based on the above
sets, we introduce the binary decision variable Ph,i,r ∈ {0, 1},
that is equal to 1 when the robot r performs the picking task
(h, i) ∈ P , and is 0 otherwise, and the binary decision variable
Dh,i,r ∈ {0, 1}, that is equal to 1 when the robot r performs
the depositing task (h, i) ∈ D. Note that the cardinality of the
sets O, P , and D is identical. With an abuse of notation, we use
the same indices for these sets, i.e., the index (h, i) ∈ O is used
to refer to the human operation τoh,i as well as the respective
picking τph,i and depositing tasks τdh,i.

B. Cost indices and problem formulation

We define the waiting time wh,i for the human operation
(h, i) as the difference between the starting time of the op-
eration and the end of the previous picking task by a robot,
i.e.,

wh,i = oh,i − ph,i−1 with i > 1. (1)

Indeed, a human cannot start an operation if the previous pick-
ing has not been performed by a robot, e.g., in our setting, a
robot needs to replace a full box with an empty one in order
for the human to start a new box filling operation. In the case
of first operation of a human operator, i.e., i = 1, we consider
wh,1 = oh,1, ∀h ∈ H.

We introduce the average traveling velocity vph,i of the pick-
ing task (h, i) as the ratio between the length of the path fol-



lowed by the robot and the respective travel time, i.e.,

vph,i =

∑
r∈R Ph,i,rlr,h(

ph,i −
∑

r∈R Ph,i,rδ
p
r − p

h,i

) . (2)

Note that the term
∑

r∈R Ph,i,rδ
p
r provides the time spent in

assisting the human and picking up the load for the operation
(h, i), which is excluded for the calculation of the robot’s actual
travel time. Based on the above, we define an energy-like term
eph,i for the picking task (h, i) which increases with higher
velocities of the robot performing the task [12], i.e.,

eph,i = ke

(
1/vmin − 1/vph,i

)
, (3)

with ke a positive constant, and vmin the minimum robot ve-
locity of the team, that is vmin = minr∈R vmin,r. Therefore,
the lower the robot velocity during the picking traveling, the
lower the energy cost eph,i, which reaches 0 when vph,i = vmin.

Similarly, we define an energy-like term edh,i for the deposit-
ing task (h, i) defined as

edh,i = ke
(
1/vmin − 1/vdh,i

)
, (4)

where it holds

vdh,i =

∑
r∈R Dh,i,rlr,h

dh,i −
∑

r∈R Dh,i,rδdr − dh,i
. (5)

The problem addressed in this work is formalized as follows.

Problem 1. Consider a system composed of u humans, per-
forming agricultural operations O, and n mobile robots, per-
forming picking P and depositing tasks D to assist the humans.
The objective is to determine the allocation variables Ph,i,r and
Dh,i,r, as well as the tasks start and end times of the picking
and depositing tasks, p

h,i
, ph,i, dh,i, dh,i, in such a way to

minimize a combination of the human waiting time, wh,i, and
robots energy, eph,i, e

d
h,i, ∀(h, i) ∈ O, r ∈ R, while fulfilling

the robots’ velocity constraints and the correct order of the
tasks execution. Furthermore, the solution must adapt to any
changing human parameter.

To solve the above problem, we design: i) an optimal alloca-
tion and scheduling module and ii) a re-allocation strategy that
updates, if needed, the allocation and scheduling to account
for the variation of time-varying human parameters.

The first module is based on the formalization of a MILP
problem. Specifically, its input is given by the robots’ velocity
bounds, vmin,r, vmax,r, the lengths lr,h of the paths from the
base positions of the robots to the humans, the durations δpr
and δdr of the load picking and releasing activities, respectively,
as well as the duration of the human operations δoh, ∀h ∈ H,
r ∈ R. Based on these parameters, the module determines the
optimal allocation variables and the start and end times of the
picking and depositing tasks. It also provides the start and end
times of the human operations oh,i, oh,i ∀(h, i) ∈ O based
on the picking times. We consider that each human starts a
box filling operation as soon as an empty box is available to
him/her. We refer to the output variables of the MILP prob-
lem as decision variables. Note that in the MILP problem we

assume constant human parameters, while their variations are
tackled by the second module.

For the second module, we assume that a human awareness
system is available which estimates the position xh of each
human in the field and the duration δoh of the operations. Such
a system is out of the scope of this paper but many works can
be employed such as [13], [14]. Based on these estimations,
we evaluate the variation with respect to the parameters used at
allocation time. We also examine if they lead to any violation
of the constraints for task execution. In this case or if a signifi-
cant variation is recorded, re-allocation and re-scheduling are
performed to generate a new optimal task allocation plan.

III. OPTIMAL ALLOCATION AND SCHEDULING

In the following, we describe the cost function and con-
straints involved in the MILP formulation. As far as the cost
function is concerned and according to Problem 1, the follow-
ing is defined

c =
∑

(h,i)∈O αwh,i + β eph,i + γ edh,i, (6)

where α, β, γ are positive weights. The rationale behind this
cost function is that, for each human operation (h, i) we aim
to minimize the total human waiting time as well as the overall
energy spent by robots to serve human operations, given by
the energy for the picking phase, eph,i, and the energy for the
depositing phase, edh,i. It is worth noticing that in general, in
order to reduce the humans’ waiting time, the robot velocity
has to be increased, leading to higher energy consumption;
therefore, the objective terms related to the human waiting
time and the robots’ energy are antagonistic and their priority
is balanced by α, β, γ weights.

With regard to the constraints, the following are defined.
1) Picking tasks assignment:∑

r∈R Ph,i,r = 1, ∀(h, i) ∈ P. (7)

The above constraint ensures that each human operation (h, i)
is served by only one robot, i.e., by considering all robots in
R, only for one of them it must hold Ph,i,r = 1.

2) Depositing tasks assignment:

Dh,i,r = Ph,i,r, ∀(i, r) ∈ P, r ∈ R. (8)

This equality enforces that, if a robot performs a picking task,
it also performs the associated depositing task to release any
load at the depositing station. Therefore, in case the robot r
executes the picking task (h, i), i.e., Ph,i,r = 1, it must hold
Dh,i,r = 1; in the same way, if the robot is not assigned
to the picking task, i.e., Ph,i,r = 0, it will not perform any
corresponding depositing task, i.e., Dh,i,r = 0.

3) Picking tasks duration:

ph,i − p
h,i

≥ Ph,i,r
lr,h

vmax,r
+ Ph,i,rδ

p
r , (9a)

ph,i − p
h,i

≤ Ph,i,r
lr,h

vmin,r
+ Ph,i,rδ

p
r , (9b)

∀(h, i) ∈ P, r ∈ R. These inequalities establish the duration
of each picking task. In detail, the quantities lr,h/vmax,r and



lr,h/vmin,r represent the minimum and maximum travel time
for the robot r to reach the human h, respectively. Therefore,
the inequality (9a) ensures that the duration of the picking
task (h, i), i.e., ph,i − p

h,i
, is greater than the minimum travel

time required by the robot r assigned to the task, i.e., such
that Ph,i,r = 1, plus the load picking time δpr . Similarly, the
inequality (9b) ensures that the duration of the picking task
(h, i) is lower than the maximum travel time required by the
robot assigned to the task plus the load picking time.

4) Depositing tasks duration:

dh,i − dh,i ≥ Dh,i,r
lr,h

vmax,r
+Dh,i,rδ

d
r , (10a)

dh,i − dh,i ≤ Dh,i,r
lr,h

vmin,r
+Dh,i,rδ

d
r , (10b)

∀(h, i) ∈ D, r ∈ R. By following a similar approach to con-
straints (9a)-(9b), the above inequalities define the duration
of the depositing tasks: the constraint in (10a) ensures that
the duration of each depositing task (h, i) is greater than the
minimum travel time required by the robot r assigned to the
task, i.e., such that Dh,i,r = 1, plus the time to release the load
δdr ; the inequality (10b) enforces the duration of the depositing
task (h, i) to be lower than the maximum travel time required
by the assigned robot plus the time to release the load.

5) Depositing tasks start time:

dh,i = ph,i,∀(h, i) ∈ P. (11)

This equality, together with (8), ensures that after a picking
task the respective depositing is made, i.e., the start time of the
depositing task (h, i) is equal to the end time of the picking
task (h, i).

6) Picking tasks end time:

ph,i ≥ oh,i +
∑

r∈R Ph,i,rδ
p
r , ∀(h, i) ∈ P. (12)

The above establishes when the robot has to arrive at the human
position for the picking tasks. More specifically, it requires
that the end time of the robot travel for the picking task (h, i),
that is given by the ph,i −

∑
r∈R Ph,i,rδ

p
r , is greater than or

equal to the end time oh,i of the human operation (h, i). In this
way, no robot will wait in proximity to humans, but they will
approach the operators only when necessary to perform the
service and pick up a load.

7) Human sequence:

oh,i = oh,i + δoh, (13a)

oh,i ≥ ph,i−1, (13b)

∀(h, i) ∈ O. The above constraints impose the correct se-
quence of human operations. Firstly, (13a) imposes that the
final time of the operation (h, i), i.e., oh,i, is equal to the start
time of the same operation, i.e., oh,i, plus the duration of the
human operation, i.e., δoh. Secondly, (13b) requires that, in or-
der for the human h to start the operation i, the picking of the
previous operation i− 1 must be completed, i.e., the start time
of the operation (h, i) must be greater than or equal to the end
time of the picking task (h, i−1). For instance, in our scenario,
each human operator needs the full box to be replaced with an
empty one in order to start the next harvesting operation.

8) Execution of one task at a time:

p
s,k

− ph,i ≥ −M(2− Ph,i,r − Ps,k,r)−M(1− Uh,i,s,k,r),

(14a)
ps,k − p

h,i
≥ −M(2− Ph,i,r − Ps,k,r)−M Uh,i,s,k,r,

(14b)

ds,k − dh,i ≥−M(2−Dh,i,r −Ds,k,r)−M(1−Qh,i,s,k,r),
(14c)

ds,k − dh,i ≥ −M(2−Dh,i,r −Ds,k,r)−M Qh,i,s,k,r,
(14d)

ds,k − ph,i ≥ −M(2− Ph,i,r −Ds,k,r)−M(1− Vh,i,s,k,r),
(14e)

ds,k − p
h,i

≥ −M(2− Ph,i,r −Ds,k,r)−M Vh,i,s,k,r,

(14f)

∀(h, i), (s, k) ∈ O, r ∈ R, where M is an arbitrarily large
positive constant, and Uh,i,s,k,r, Qh,i,s,k,r, Vh,i,s,k,r ∈ {0, 1}
represent auxiliary binary decision variables. These constraints
specify that each robot can perform only one task at a time,
i.e., at each time instant, a robot can be either idle or involved
in a picking or a depositing task. In detail, let us consider
the case where a robot r is assigned to both the picking tasks
(h, i) and (s, k), i.e., Ph,i,r = Ps,k,r = 1. Then, (14a) and
(14b) state that it must either hold that (s, k) is executed after
(h, i) is completed, i.e., p

s,k
≥ ph,i with Uh,i,s,k,r = 1, or

the opposite, i.e., p
h,i

≥ ps,k with Uh,i,s,k,r = 0, but it is
not possible that the two tasks are executed simultaneously.
Note that if the robot r is not involved in both the picking
tasks, i.e., it holds that at least one of the allocation variables
is zero, Ph,i,r = 0 or Ps,k,r = 0, then no constraints are
enforced by (14a) and (14b) with respect to the relative start
and end times. Similarly, (14c) and (14d) state that, if a robot
performs two depositing tasks (h, i) and (s, k), then it must
either hold that (s, k) is executed after (h, i) is completed, or
the opposite. Finally, (14e) and (14f) state that also in case
a robot performs a picking task and a depositing one, they
cannot be simultaneously executed by the same robot. Hence,
the constraints in (14) overall guarantee that each robot only
executes at most one task at a time.

In summary, the decision variables are obtained by solving
the following MILP problem:

min
∑

(h,i)∈O

αwh,i + β eph,i + γ edh,i (15a)

s.t. Constraints (7)-(14) (15b)

IV. ONLINE RE-ALLOCATION AND -SCHEDULING

Since the human parameters can generally vary over time,
online re-allocation and re-scheduling might be needed to adapt
the solution. Specifically, for each human operator h, a varia-
tion of the respective duration of the operation, δoh, and his/her
location in the field, xh, can occur. Clearly, the latter case leads
to a change in the lengths lr,h of the paths from the robot base
positions to the human h, ∀r ∈ R. Let ts be the time when the



solution in use is computed, i.e., the decision variables are set
by solving (15), and tc be the time when a change in the hu-
man parameters is recorded. In the following, we denote with
y(t) the value of variable y computed at time t, e.g., δoh(tc)
represents the value of δoh computed at time tc.

We disregard the solution, i.e., the decision variables, de-
fined at time ts when one of the following conditions occur:

1) Any of the problem constraints is violated.
2) The change in the human parameters is higher than a

certain threshold with respect to the values used at time ts.
Obviously, these conditions are only verified for operations or
tasks that are not completed by time ts. To assess if condition
1) is verified, we consider that the updated final time of each
human operation (h, i) is given by

oh,i(tc) = oh,i(ts) + δoh(tc), ∀h ∈ H

where oh,i(ts) is the start time of the operation (h, i) deter-
mined at time ts and oh,i(tc) is the final time of the operation
(h, i) updated according to the variation recorded at time tc.
Next, we check if any of the constraints (9), (10), and (12)
is violated by using the distances lr,h(tc) and the final times
oh,i(tc), i.e., we evaluate the following inequalities

ph,i(ts)− p
h,i

(ts) ≥ Ph,i,r(ts)
lr,h(tc)

vmax,r
+ Ph,i,r(ts)δ

s
r ,

ph,i(ts)− p
h,i

(ts) ≤ Ph,i,r(ts)
lr,h(tc)

vmin,r
+ Ph,i,rδ

s
r ,

dh,i(ts)− dh,i(ts) ≥ Dh,i,r(ts)
lr,h(tc)

vmax,r
+Dh,i,r(ts)δ

d
r ,

dh,i(ts)− dh,i(ts) ≤ Dh,i,r(ts)
lr,h(tc)

vmin,r
+Dh,i,r(ts)δ

d
r ,

ph,i(ts) ≥ oh,i(tc) +
∑

r∈R Ph,i,r(ts)δ
p
r ,

(16)
where the reference time of each variable has been made ex-
plicit for the sake of clarity. If any constraint is violated, the
decision variables must be re-computed according to the pa-
rameters at time tc.

Regarding condition 2), we evaluate whether it holds

|δoh(tc)− δoh(ts)/δ
o
h(ts)| ≥ ωδ, (17)

with ωδ a positive constant, or

|lr,h(tc)− lr,h(ts)/lr,h(ts)| ≥ ωl, (18)

with ωl a positive constant, for any h ∈ H, r ∈ R. The ra-
tionale behind the above inequalities is that we evaluate the
relative variation of the human parameters with respect to the
ones at time ts. If this variation, for the path length or the hu-
man duration, exceeds certain thresholds, the optimality of the
solution in use may be compromised. Hence, a re-computation
of the decision variables is made.

When a re-computation of the decision variables is required,
we solve the optimization problem in (15) by using the updated
parameters, i.e., we use the values δoh(tc) and lr,h(tc) in place
of δoh and lr,h, respectively. The tasks in execution at time tc
remain allocated to the same robots as in the previous solution.

V. VALIDATION RESULTS

To validate the proposed framework, we considered a sim-
ulated table grape harvesting application, as depicted in Fig-
ure 1, with a team composed of n = 2 mobile robots and
u = 4 human operators performing grape box filling tasks. We
considered five vine rows of 30m long in the field and planting
pattern of 3m × 3m. The depositing station was centered at
[5, 1] m. Regarding the humans, their initial positions were
randomly chosen within the vineyard rows. The times δoh to fill
boxes with grape bunches were obtained with a uniform dis-
tribution in the interval [200, 400] s, while we considered that
each human performs q = 3 box filling operations. Regarding
the robots, their base positions were set at [4, 2] m and [6, 2] m.
The times for the box replacements during picking tasks δpr and
for box releases during depositing tasks δdr were set to 10 s and
5 s, respectively. Minimum vmin,r and maximum vmax,r ve-
locities were set to 0.2 m/s and 0.6 m/s, respectively, ∀r ∈ R.
The paths, along with their lengths, from base positions to
human locations were computed according to a RTT planner.
Regarding the cost function in (6), we normalized the terms
in it and selected α = β = γ = 0.5, i.e., same weight for all
the contributions. In addition, we used the thresholds ωδ = 0.2
and ωl = 0.1. We implemented the simulation software with
MATLAB interfaced with Gurobi solver. As mentioned in Sec-
tion II-B, we assumed the availability of a human awareness
method to estimate the changes in the human parameters. A
video showing the simulation results can be found at the link1.

Figure 2-left presents the initial allocation and scheduling
obtained by solving the problem. The first two columns are
associated with the robots and the last four to the humans,
while the y axis represents the time evolution. Each colored
segment is associated with a task (thinner for the depositing
tasks). Specifically, the same color is used to denote the generic
human operation τoh,i and the respective picking τph,i and de-
positing tasks τdh,i. The figure shows that all the constraints
for the correct execution of the tasks are fulfilled: the human
operators wait for the robots to pick up the previous boxes to
start a new box filling operation, and the robots return to the
depositing station after each picking. Furthermore, the robot
velocities respect their allowed range. For instance, by consid-
ering the first task of robot 2, the picking of the first box filled
by human 3, i.e., P3,1,2 = 1, is assigned. The completion time
of this task is 294 s, which is given by the finishing time of
human filling task o3,1 plus the assistance time of 10 s to ex-
change the human full box with an empty one. Then, the robot
has to reach its base station to release the full box and complete
the depositing task at time 324 s. Afterwards, the robot has to
start serving the human 2 and so on. Regarding the humans,
each operation is followed by a minimum idle time of 10 s to
enable the robot to provide assistance and exchange the box.
Additional waiting times equal to 56 s and 90 s are recorded
for the human operations (2, 1) and (4, 1), respectively, as no
robots are available to immediately pick the filled boxes.

We simulated a change in the human parameters at time
tc,1 = 284 s. Specifically, we considered that human 3 moved

1https://youtu.be/ZMBGHU7clTY



Fig. 2: Left: initial plan of the tasks on the left; middle: second plan updated at time tc,1; right: third plan updated at time tc,2.

Fig. 3: Comparison of the plans obtained with different weights
(columns for each agent) in the cost function.

by 25 m reaching the end of the next row in the field. This
led to the violation of constraint (9). Therefore, a reallocation
was performed according to Sec. IV leading to the updated
plan in Figure 2-middle, where the grey dotted line highlights
the time tc,1. No allocation changes were made for the tasks
started before the reallocation time tc,1, while the remaining
ones were updated. For instance, τp4,1 was assigned to r1 at
the initial time and was then allocated to r2 after reallocation.
We then simulated a further change at time tc,2 = 568 s in the
position of human 1 by 5 m. This change did not lead to any
violation of the constraints, but fulfilled the condition in (18).
A new plan was then computed as shown in Figure 2-right.
By doing so, an overall cost equal to 0.3476 was achieved,
compared to a cost equal to 0.3148 of the previous solution.

Finally, we compared the results obtained using different
weights in the cost function to show their influence on the
solution. Figure 3 reports the plans of each agent obtained with
three sets of weights: i) α = 1 and β = γ = 0 (first column of
each agent), ii) α = β = γ = 0.5 (second column), iii) α = 0
and β = γ = 1 (third column). We can observe that in case i),
low human waiting times are recorded for the humans and the
robots’ tasks have short durations (high velocity). In case ii),
higher human waiting times can be observed compared to the
first case due to slowest robots. Moreover, different allocations
of some tasks are obtained. In case iii), the durations of the
robots’ tasks increase significantly compared to case i) leading
to higher human waiting times and overall makespan.

VI. CONCLUSION

In this work, we proposed a framework for allocating and
scheduling tasks in a human-multi-robot scenario. Given the
set of human operations, a MILP problem was defined to estab-
lish which robot and when it should provide service for each

operation. We optimized the waiting time of the humans and
the energy consumption of the robots, while ensuring compli-
ancy with the robot constraints and the correct task ordering.
To take into account the human dynamic behavior, we designed
an online strategy which defines if a re-allocation is necessary
based on the changes in the human parameters. We validated
the approach in an agricultural table grape harvesting appli-
cation, where humans are responsible for filling boxes with
grape bunches, while robots replace the full boxes with empty
ones and transport the full boxes to a designated depositing
station. Future work aims to define adaptive weights in the cost
function and validate the approach on a real-world setup.
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