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ABSTRACT 
The curvature analysis of the linear and circular tractrix 

curves for the planar motion of vehicles is formulated as based 

on the application of the classical differential geometry, along 

with the Bresse and return circles. In particular, a two-wheel 

(bicycle) model of four wheels vehicles was assumed and the 

evolutes of the corresponding fixed centrodes, being the related 

moving centrodes represented by straight lines, are determined, 

along with the evolutes of the linear and circular tractrix curves. 

The proposed formulation has been implemented in Matlab, 

in order to simulate and analyze the vehicle behavior in terms of 

curvature, when the front wheel center follows a straight line or 

a circle. Significant numerical and graphical results allowed the 

validation of the proposed formulation in different conditions. 

Keywords: Vehicle kinematics, bicycle model, curvature 

analysis, Bresse’s circles, tractrices. 

1. INTRODUCTION
The manoeuvring of vehicles riding on wheels, such as cars,

buses and trucks, during parking, the changing of lanes when 

overtaking obstacles and other vehicles, entering into 

roundabouts, as well as maneuvering upon leaving, are of great 

interest not only for the safety of bicycles, motorcycles and 

pedestrians, but also for the design of safe roads and highways 

[1-4]. In particular, assuming a bicycle model, the path of the rear 

wheel is a tractrix or equi-tangential curve, which is different 

from that traced by the front wheel that plays the role of directrix. 

One of the earliest examples of an "inverse tangent problem" 

and determination of a curve by the process of integration, was 

proposed by Claude Perrault during a meeting that was held in 

Paris in 1693, as reported in [5-6]. However, the equation of this 

curve has already been derived by Newton in 1676 and studied 

later by mathematicians of calibre of Leibniz, Huygens and 

Euler. The name "tractrix", from Latin "tractus", to pull, was 

given by Huygens, but a reverse tractrix can be also drawn by 

pushing a drawbar. The linear tractrix can also be generated as 

the involute of a catenary, which was discovered by Jakob 

Bernoulli in 1691. In addition to the linear tractrix, a circular 

tractrix can be drawn, when the directrix is a circle, the 

corresponding method can be further extended to a general 

tractrix, referring to a generic planar curve. The geometric 

properties of the tractrix and catenary, as transcendental curves, 

have been analyzed and discussed in several geometry book [7-

11]. However, the curvature analysis of linear and circular 

tractrices for the planar motion of four wheels vehicles, which 

are sketched by using the bicycle model, is proposed here for the 

first time, as based on the fundamentals of the kinematics of 

planar mechanisms, while extending the previous results 

reported in [12] and [13]. 

In fact, in this paper the focus is the curvature analysis of the 

linear and circular tractrices, which has been developed by using 

the moving and the fixed centrodes and determining the evolute 

of the fixed centrode, along with the inflection and cuspidal 

circles. Fundamentals on centrodes and geometric loci can be 

found in [14-18], along with several applications in [19-22]. 

In particular, the curvature analysis of the linear and circular 

tractrix curves for the planar motion of vehicles is formulated as 

based on the application of the classical differential geometry, 

along with the Bresse and return circles. A two-wheel (bicycle) 

model of four wheels vehicles was assumed and the evolutes of 

the corresponding fixed centrodes, being the related moving 

centrodes represented by straight lines, are determined, along 

with the evolutes of the linear and circular tractrix curves.  

The proposed formulation has been implemented in Matlab, 

in order to simulate and analyze the vehicle behavior in terms of 

curvature, when the front wheel center follows a straight line or 

a circle. Significant numerical and graphical results allowed the 

validation of the proposed formulation in different conditions. 
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2. CURVATURE ANALYSIS: LINEAR TRACTRIX 
The linear tractrix is the trajectory of the rear wheel center of 

a bicycle model, while the front wheel center traces a straight 

line. The vehicle chassis is sketched through a rigid link that 

connects both wheel centers, which is known as the drawbar. 

Assuming as starting configuration of the vehicle that for which 

the projected lines of the front and back wheels lie at right angles, 

the linear tractrix shows a cusp at the rear wheel center and an 

asymptote coinciding with the straight path. 

Referring to Fig. 1, an arbitrary configuration AB of the 

drawbar is shown, while the front and rear wheel centers, A and 

B, trace the straight path and the linear tractrix curve (dashed 

line), respectively. The starting configuration of the bicycle 

vehicle model is A0B0 and the drawbar remains tangent to the 

tractrix curve during the planar motion. 

The equation of the linear tractrix can be obtained in 

Cartesian form by assuming a drawbar of length a and the 

reference frame OXY, the origin O coinciding with A0 and the Y-

axis oriented along the straight path. In particular, one has 

 

2 2
2 2log

  
   
 
 
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y a a x

x
       0  x a  (1) 

 

where the Y-axis is the directrix. 

Referring to Fig. 1, when the front wheel center A moves 

along the Y-axis and consequently, the rear wheel center B traces 

the linear tractrix, the instant center of rotation I coincides with 

the center of curvature  of the tractrix curve and the drawbar 

AB is always oriented along its tangent line. This means that the 

moving centrode l is a line identical to the rear wheel axis, while 

the fixed centrode  coincides with the tractrix evolute, since 

representing also the locus of its centers of curvature. 

 

 
 

FIGURE 1: LINEAR TRACTRIX T, MOVING l AND FIXED  

CENTRODES, ALONG WITH THE EVOLUTE e OF . 

The equation of the fixed centrode  can be obtained as the 

trajectory of the instant center of rotation I, which can be found, 

in turn, as the intersection between the normals to the paths of 

points A and B, according to the Chasles theorem. 

The locus of the centers of curvature is called the evolute of 

the curve, whereas the original curve is the involute of the new 

one. The tangent to the evolute is the normal to the tractrix 

(involute), its length T, measured between the two curves, 

being the radius of curvature of the tractrix. In the case of Fig. 1, 

the tractrix is an involute of the fixed centrode  and the fixed 

centrode  is the evolute of the tractrix. 

The radius of curvature T of the linear tractrix of Eq. (1) is 
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and its evolute takes the form 
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which is a catenary, whose vertex is at point B0 (a, 0). 

Moreover, the tangent to the evolute e of the catenary (fixed 

centrode ) that plays the role of its involute, coincides with the 

normal to the catenary of radius of curvature  and center of 

curvature . The evolute of the catenary is given by 
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where xe and ye correspond to the coordinates of  and a is 

length of the drawbar AB. 

In order to develop the curvature analysis of the linear tractrix 

for the planar motion of vehicles that are sketched through a 

bicycle model, the inflection and return circles are determined. 

These loci are tangent to each other and to the fixed and 

moving centrodes at the instant center of rotation, during their 

pure rolling motion. In particular, the inflection circle I is the 

instantaneous locus of all points of the moving plane, showing 

an inflection point in their trajectories, while the return circle R, 

the mirror image of the inflection circle, is the locus of the 

centers of curvature of all moving points at infinity. 

Thus, referring to Fig. 2 and applying the Euler-Savary 

equation, one has that     where the moving centrode is a 

straight line (  l ) and  is the diameter of both circles I 

and R, which are tangent to the centrodes at the instant center of 

rotation I, where W and R are the inflection and cuspidal poles. 

The inflection circle I includes the front wheel center A of the 

drawbar AB, since it moves along a straight line (Y-axis). In 

particular, each circle has been expressed in vector form through 

a position vector, as reported in [12]. 
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A significant property of a family of the catenary curves, 

which are also the fixed centrodes of the drawbar AB planar 

motion and, at the same time, the evolutes of the corresponding 

tractrix curves, is that they envelope a straight line passing 

through the origin O of the fixed frame OXY of Fig. 1. 

This property can be proven by considering the family of the 

catenary as a function of the parameter a, namely, 
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and imposing the tangency condition between each curve of the 

family and the envelope curve: 
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Thus, Eq. (6) leads to the expression of the parameter a, i.e., 
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which is substituted into Eq. (5) to give the envelope curve as 
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This is the equation of a straight line passing through the 

origin O of OXY and tangent to each catenary of the family. 

 

 
 

FIGURE 2. CURVATURE ANALYSIS: INFLECTION I AND 

RETURN R CIRCLES. 

3. LINEAR TRACTRIX: RESULTS 
The first part of the proposed formulation, based on the Eqs. 

(1) to (8), was implemented in Matlab, to produce the graphical 

and numerical results shown in Figs. 3 and 4. In particular, Fig. 

3a shows the linear tractrix (dashed-line), the fixed  (catenary) 

and the moving l (straight-line) centrodes, along with the evolute 

e of the catenary. The inflection I and the return R circles are 

also shown for a specific configuration of the drawbar AB.  

Moreover, as expected, the center of curvature  of the 

catenary coincides with the cuspidal center R of the return circle 

R, while the inflection circle I passes through the front wheel 

center A and the inflection pole W. 

 

 
a) 

 

      
b) 
 

FIGURE 3. LINEAR TRACTRIX: FIXED  AND MOVING l 

CENTRODES, EVOLUTE e OF , INFLECTION I AND THE 

RETURN R CIRCLES. 
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Figure 3b illustrates a family of inflection and return circles, 

whose diameter changes according to the radius of curvature of 

the catenary at the instant center of rotation for different drawbar 

configurations. Figure 4a shows some interesting curvature 

properties of the tractrix curve, which can be useful to foresee 

the planar motion of the bicycle vehicle model according to the 

length a of the drawbar AB. 

 

 
a) 

 

 
b) 

 

FIGURE 4. CURVATURE PROPERTIES OF THE LINEAR 

TRACTRIX CURVE: a) FAMILY OF TRACTRIX CURVES 

(DASHED LINES), ALONG WITH THE FAMILY OF THEIR 

EVOLUTES (THICK CONTINUOUS LINES); b) DIAGRAM OF 

THE RADIUS OF CURVATURE  T FOR THE FAMILY OF 

TRACTRICES. 

In fact, increasing a, a family of almost parallel linear tractrix 

curves (dashed-lines) is generated, along with a related family of 

catenary curves, as shown in Fig. 4a. Moreover, the envelope of 

the same family gives the straight line r passing through the 

origin O of the fixed reference frame OXY, while, for a generic 

line s passing through O, one has a family of straight lines that 

are tangent to the correspondent family of catenary curves. 

Correspondingly, Fig. 4b depicts the variation of the radius of 

curvature T of the tractrix curve versus X for different lengths a 

of the drawbar AB, where the straight lines r* and s* correspond 

to r and s of Fig. 4a, respectively. In particular, a line s passing 

through the origin O intersects all tractrix curves of the family, 

one for each length a of the drawbar AB, at points whose 

corresponding centers of curvature lie on parallel lines that are 

tangent to their related catenary curves, as shown in Fig. 4a. 

Moreover, referring to Fig. 4b, the radii of curvature T of the 

family of tractrix curves, as functions of a, change of the same 

value, while increasing the angular coefficient of the line s*, the 

range of variation of the corresponding radius of curvature is 

constant, but higher. When this line coincides with the envelope 

line of the family of catenary curves, this property is preserved, 

but the centers of curvature are also aligned along the same line 

normal to each tractrix curve. 

 

4. CURVATURE ANALYSIS: CIRCULAR TRACTRICES 
Before to develop the curvature analysis and referring to the 

bicycle kinematic model of Fig. 5 and Fig. 6, which sketches a 

vehicle chassis that moves in the OXY plane along a circular path, 

the equations of the inner and outer circular tractrices are here 

recalled, since obtained previously in [12] and [13]. 

In particular, the drawbar AB has fixed length a and it 

represents the vehicle chassis, while rA indicates the radius of the 

circle followed by the front wheel center A, b = OB  the radius 

of the circle followed by the rear wheel center B,  denoting the 

angle swept by A with respect to the X-axis and angle  defines 

the angular position of rA with respect to a. 

In order to describe the path of the rear wheel center B, the 

position vector b of point B is obtained as 

 

 b r aA             (9) 

 

Moreover, rA and a are expressed in Cartesian form as 
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T
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T

= a a    (11) 

 

where rA is the radius of the circular path of A. 

Thus, according to what obtained in [?] and [?], one has 

 

 

 

 

tan
2log

tan
2








 



 

A

A

r a b
a

b
r a b

              (12) 

4 Copyright © 2023 by ASME



 

where 2 2 Ab r a  is the magnitude of vector b and rA > a. 

Solving Eq. (12) for , two solutions can be obtained because 

of the absolute value of the logarithmic function argument. 

These two solutions represent specific cases of the circular 

tractrix, the inner and the outer cases, namely, 
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where k = b a  and ( ) As b r a . 

 

 

 
 

FIGURE 5. INNER CIRCULAR TRACTRIX, ALONG WITH 

THE FIXED  AND MOVING l CENTRODES. 

 

 

 
 

FIGURE 6. OUTER CIRCULAR TRACTRIX, ALONG WITH THE 

FIXED  AND THE MOVING l CENTRODES. 

In particular, the first of Eqs. (13) gives the inner tractrix of 

Fig. 5, whereby the curve lies inside the circle of radius rA, since 

it is traced by the rear wheel center B, while the front wheel 

center A follows the circular path. Similarly, the second of Eqs. 

(13) gives the outer tractrix of Fig. 6, in which a branch of the 

curve lies inside the circle of radius rA, the other branch lying 

outside. At the starting configuration, the drawbar AB of length 

a is assumed aligned with the X-axis and having its front wheel 

center A moving along the circle of radius rA. The difference 

between the inner and the outer circular tractrix curves is the 

starting position of the rear wheel center B, which is located 

inside the circle for the case of Fig. 5 and outside for that of Fig.6. 

Still referring to the sketch of Fig. 5, in general, the planar 

motion of the chassis of the vehicle can be represented by means 

of the fixed and moving centrodes, which are in contact at the 

instant center of rotation I on the ground (fixed centrode) and on 

the moving plane AB that is attached to the vehicle (moving 

centrode), respectively. The path normal to the traction curve 

maintains a constant angle with the drawbar of length a, all 

instant centers lying on the same line of the drawbar. This means 

that the moving centrode is a line l normal to the rear wheel axis 

and, consequently, the fixed centrode coincides with the evolute 

of the circular tractrix, which can also be obtained as its involute. 

The circular tractrix is an involute of the fixed centrode , 

while the fixed centrode  is the evolute of the tractrix. The 

tangent to the evolute is the normal to the circular tractrix 

(involute); its length T , measured between the two curves, is the 

radius of curvature of the circular tractrix (involute). 

The radius of curvature  of a curve can be expressed as 
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the first and second derivatives being taken w.r.t. the parameter 

in question; in our case the parameter is angle , the partial 

derivatives being 
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The first and second derivatives of angle , are given by 
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for the inner circular tractrix of Fig. 5, for the outer circular 

tractrix of Fig. 6, in turn, we have 
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The locus of the center of curvature  of the circular tractrix 

is the evolute of the curve; the circular tractrix can be generated 

as its involute. The evolute  of the circular tractrix represents 

also the fixed centrode of the planar drawbar motion since the 

moving centrode l coincides with the straight line normal to the 

drawbar AB at the rear wheel center B. Thus, the equation of  

can be readily obtained in parametric form as 
 

2 2




   



x' y'
x x y' x y' H

x'y'' y'x''
    (21) 

2 2

 


   



x' y'
y y x' y x' H

x'y'' y'x''
  (22) 

 

Similarly, the second order evolute e of the circular tractrix 

is given by  
2 2
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where xe and ye are the Cartesian coordinates of the center of 

curvature  of the first evolute  of the tractrix, while e is the 

corresponding radius of curvature that can be obtained upon 

replacing Eqs. (28) and (29), and either Eq. (30) or Eq. (31), into 

Eq. (27), for the inner and the outer circular tractrix curves, 

respectively. Thus, the first and second derivatives of Eqs. (21) 

and (22) can be expressed as 
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and 
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 (30) 

 

Thus, the third and fourth derivatives of  
 as expressed by 

the first of Eq. (26) for the inner tractrix, are displayed below  
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Similarly, the third and fourth derivatives of  
 as 

expressed by the second of Eq. (26) for the outer tractrix, are 

given by 
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5. INFLECTION AND RETURN CIRCLES 
As described above, the moving centrode l is represented by 

the axis of the rear wheel center B and, consequently, the fixed 

centrode  coincides with the evolute of the circular tractrix. In 

particular, the moving centrode lies inside the inner circular 

tractrix of Fig. 5, while the moving centrode is composed by two 

branches in the case of the outer circular tractrix of Fig. 6, 

because the drawbar AB of the bicycle vehicle model is located 

along the X-axis and outside the circular path of the front wheel 

center A, at the starting configuration. Referring to Fig. 7, the 

inflection circle I is tangent to l at the instant center of rotation I  

and passes through the corresponding inflection point 'A of A, 

whose position in terms of the oriented segment 'A A , can be 

 

 
 

FIGURE 7. INNER CIRCULAR TRACTRIX: FIXED  AND 

MOVING L CENTRODES, ALONG WITH THE INFLECTION I 

AND THE RETURN R CIRCLES. 

obtained by the Euler-Savary equation as 

 

      
2

' ' λ AIA Ω A A A r A A   (35) 
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2 2
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A A

IA x x y y
A A

r r
 (36) 

 

where IA , λΩ A  and 'A A  are oriented segments, positive from 

the first to the second point, as from I to A. Since point A moves 

along the circular path of radius rA, its center of curvature A 

coincides with the origin O and λΩ A  = rA. Moreover, IA  is 

expressed as a function of the Cartesian coordinates of points I 

and A. The radius of curvature  of the fixed centrode  is 

 

 

   

 

2 2

cos cos


   

  
 

 

A' I A' Ix x y yIA'
 (37) 

 

The center of curvature  of the fixed centrode  coincides 

with the cuspidal pole R, which is opposite to I on the return 

circle R, and consequently, the radius of curvature of  at point 

I is given by the diameter of R, which is equal to that of I.  

Referring to Figs. 7 and 8 respectively, the vector function 

of the inflection circle I is given by the position vector q of point 

Q of I, as 

 

  q i n rI              (38) 

 

where vectors i, nI and r are given by 

 

cos   sin
cos cos

 
 

    
     

    
i

T

A A

a a
= r r   (39) 

 

   cos sin       n
T

I =   cos sin  r
T

=  (40) 

 

Similarly, the vector function of the return circle R can be 

expressed through the position vector p of a point P of R, as 

 

  p i n cR    (41) 

 

where i is obtained by the Eq. (39), while nR and c are given by 

 

   cos sin        n
T

R =  (42) 

 

 cos sin  c
T

=   (43) 

 

 being the radius of curvature of the fixed centrode. 
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FIGURE 8. OUTER CIRCULAR TRACTRIX: FIXED AND 

MOVING CENTRODES, ALONG WITH THE INFLECTION I AND 

THE RETURN R CIRCLES. 

 

6. CIRCULAR TRACTRICES: RESULTS 
The proposed formulation was implemented in Matlab to 

produce significant graphical and numerical results, as those 

shown in Figs. 9 and 10. In particular, Fig. 9a shows the inner 

circular tractrix (dashed-line), the fixed  and moving l (straight-

line) centrodes, along with the evolute e of . Inflection and 

return circles are also shown for a specific configuration of the 

drawbar AB. Moreover, as expected, the center of curvature  of 

 coincides with the cuspidal center R of the return circle R. 

 

 

 
a) 

 
b) 
 

FIGURE 9. INNER CIRCULAR TRACTRIX: FIXED  AND 

MOVING l CENTRODES, EVOLUTE e OF , INFLECTION I AND 

THE RETURN R CIRCLES. 

 

Figure 9b illustrates a family of inflection and return circles 

for different drawbar configurations, whose starting position is 

assumed to be A0B0. The diameter of I and R changes according 

to the curvature variation of .  

Similar to Fig. 9a, Figure 10a shows the outer circular 

tractrix (dashed-line), the fixed  and moving l (straight-line) 

centrodes, along with the evolute e of . 

 

 

 
a) 
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b) 

 
FIGURE 10. OUTER CIRCULAR TRACTRIX: FIXED  AND 

MOVING l CENTRODES, EVOLUTE e OF , INFLECTION I AND 

THE RETURN R CIRCLES. 

 

The inflection I and return R circles are also shown for a 

specific configuration of the drawbar AB. Of course, the center 

of curvature  of  coincides with the cuspidal center R of R. 

As Fig. 9b, Figure 10b illustrates a family of inflection and return 

circles for different drawbar configurations, whose starting 

position is A0B0. 

Figures 11 and 12 show other two examples for a draw-bar 

length AB = 2.85 m, as the pitch of a common car, and a radius 

rA= 5 m. In particular, Fig. 11a and 11b refer to the case of the 

inner circular tractrix, where the second is a zoom-in of the first. 
 

 
a) 

 
b) 
 

FIGURE 11. INNER CIRCULAR TRACTRIX: a) FIXED  AND 

MOVING l CENTRODES, EVOLUTE e OF , INFLECTION I AND 

THE RETURN R CIRCLES; b) ZOOM-IN OF FIG. 11a. 

 

Figure 11b shows a family of the inflection and return 

circles, which are tangent on the opposite sides, to the fixed 

centrode that is also the evolute of the tractrix. Moreover, the 

evolute of the fixed centrode is also represented. Figure 12 shows 

the case of the outer circular tractrix, where both centrodes, the 

evolute of the fixed centrode, along with the inflection and the 

return circles are represented. Therefore, the proposed algorithm 

has been validated for different conditions and dimensions. 

 

 
FIGURE 12. OUTER CIRCULAR TRACTRIX: FIXED  AND 

MOVING l CENTRODES, EVOLUTE e OF , INFLECTION I AND 

THE RETURN R CIRCLES. 
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7. CONCLUSIONS 
The curvature analysis of the linear and circular tractrix 

curves for the planar motion of vehicles has been formulated as 

based on the application of the classical differential geometry, 

along with the Bresse and return circles. 

In particular, a two-wheel (bicycle) model of four wheels 

vehicles was assumed and the evolutes of the corresponding 

fixed centrodes, being the related moving centrodes represented 

by straight lines, are determined, along with the evolutes of the 

linear and circular tractrix curves. 

The proposed formulation has been implemented in Matlab, 

and validated by means of several numerical examples regarding 

both, the linear and circular tractrices, which have given 

significant numerical and graphical results. 

The bicycle model and the proposed results can be further 

extended to four wheel vehicles, by considering a rectangular 

shape of the vehicle chassis that is attached to the draw-bar 

during its planar motion.  The envelop of this rectangular shape 

will give the vehicle footprint when travelling along tractrix 

curves and this is very useful in several practical applications, 

along with the centrodes, Bresse’s circles and their evolutes. 
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