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Abstract: Porous shallow-water equations (PSWE) are a mathematical model for urban flooding
simulation that has gained popularity because of its modest computational burden. Under certain
initial conditions, PSWE may admit multiple exact solutions. This implies that (i) a criterion is
required to identify the unique physically relevant solution among the alternatives, and that (ii) the
corresponding numerical models should incorporate this criterion. In the present paper, a procedure
for the disambiguation of PSWE multiple exact solutions is proposed and a 1-d PSWE numerical
scheme from the literature is modified to embed the disambiguation ability.

Keywords: shallow-water equations; porosity; urban flooding; non-conservative products

1. Introduction

Urban flood modeling is a challenging task because different spatial and time scales
are involved in the hydrodynamic processes, due to the geometric complexity of the urban
environment. Of course, a detailed solution of shallow-water equations (SWE) with the
accurate modeling of all the buildings and obstacles may lead to excessively refined numer-
ical grids, with an increase in the computational burden. Recently, porous shallow-water
equations (PSWE) have been proposed to cope with this difficulty by treating the urban
fabric as a porous medium where the obstacles are incorporated into the mathematical
model itself.

From a mathematical point of view, PSWE are a system of non-strictly hyperbolic
partial differential equations characterized by the presence of non-conservative products
that model the interaction between fluid and obstacles. These non-conservative products
are challenging because discontinuous solutions cannot be defined in the usual sense
of distributions. In addition to this difficulty, it has been demonstrated that the PSWE
Riemann problem is characterized by multiple exact solutions for certain classes of initial
conditions. These alternative solutions are characterized by different flow depths and
velocities, and they involve different energy-dissipation mechanisms [1], influencing the
flood propagation celerity and the flood depth through the urban fabric [2]. This implies
that a criterion must be introduced to select the unique, physically meaningful solution
among the alternatives.

The finite volume numerical schemes available for the approximate solution of the
PSWE model are usually based on the solution of a Riemann problem at cell interfaces [3–8].
Due to the existence of multiple mathematical solutions for the PSWE Riemann problem
with certain initial conditions, a similar ambiguity is transferred to the PSWE numerical
models based on the solution of a Riemann problem. This implies that different numerical
models may converge to structurally different approximate solutions in the cases where
multiple exact solutions are possible [9]. It is desirable that a numerical model for the
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approximate solution of the PSWE captures the unique physically meaningful solution
among the alternatives.

Despite the results that are available in the literature, little importance has been
attributed until now to modeling problems related to the existence of multiple solution
in PSWE. In the present work, the physically meaningful solution of one-dimensional
(1-d) PSWE for an example Riemann problem with multiple solutions is chosen after
a comparison with the solution supplied by a 2-d SWE numerical model. Finally, this
disambiguation rule is incorporated into an existing PSWE numerical scheme [3] and the
corresponding numerical results are presented and discussed.

2. Mathematical Model

Under the assumption of horizontal bed and negligible friction, 1-d PSWE can be
written as [2]:

∂ϕu
∂t

+
∂ϕf(u)

∂x
+ h(u)

∂ϕ

∂x
= 0, (1)

∂ϕ

∂t
= 0. (2)

In Equations (1) and (2), the meaning of the symbols is as follows: x and t are the
longitudinal space coordinate and the time coordinate, respectively; ϕ ∈ [0, 1] is the
porosity; u =

(
h hu

)T is the vector of conserved variables, where h ≥ 0 is the flow depth;

u is the longitudinal velocity; T is the matrix transpose symbol; and h(u) =
(
0 −0.5gh2)T

is a vector taking into account the forces exerted by the obstacles on the flow. In Equation
(1), which is a vector equation that takes into account mass conservation and the second
principle of Newton’s dynamics, the conserved variable vector u can be a discontinuous
function. This allows modeling the discontinuities of the flow field (shocks) such as moving
bores and standing hydraulic jumps. Of course, the geometry itself admits discontinuities,
for example, through the boundaries between areas with different urban fabric densities.
For this reason, the trivial Equation (2), stating that the porosity does not vary in time,
has been added. The balance system of Equations (1) and (2) is not conservative, due
to the presence of the non-conservative product h(u)∂ϕ/∂x. This means that the classic
Rankine–Hugoniot Conditions, which define the moving shocks in conservative systems of
hyperbolic equations, are meaningful for Equations (1) and (2) only if ϕ is continuous. In
the case of discontinuous ϕ, flow discontinuities must be carefully defined case by case,
using external physical knowledge [10].

The inspection of Equation (1) shows that 1-d PSWE formally coincide with 1-d SWE
in a horizontal rectangular channel with variable width where the porosity is considered
instead of the channel width. This mathematical identity is not fortuitous because the
porosity of the PSWE model is a measure of the building density in urban areas. In
particular, the reduction in porosity coincides with the increase in building density and
then with the decrease in transverse space available for the flow passage.

2.1. Eigenstructure and Elementary Waves

For h > 0, the eigenvalues of the Jacobian associated with the system of Equations (1)
and (2) are [3]

λ0(u) = 0, λ1(u) =
√

gh(F(u)− 1), λ2(u) =
√

gh(F(u) + 1), (3)

where F(u) = u/
√

gh is the Froude number. The corresponding eigenvectors, which are
not written here for the sake of brevity, are reported in [3]. From Equation (3), it is evident
that the PSWE are non-strictly hyperbolic on the hypersurfaces u±

√
gh = 0 of the (h, u, ϕ)

space. This introduces the possibility of multiple solutions for certain initial conditions.
We note that the PSWE 1- and 2-characteristic fields coincide with the corresponding

characteristic fields of the ordinary 1-d SWE. This means that the elementary waves (shocks
and rarefactions) associated with the 1- and 2-characteristic fields coincide with those of



Environ. Sci. Proc. 2022, 21, 55 3 of 8

the 1-d SWE (see, for example, [11]). In particular, shock waves contained in the 1- or
2-characteristic fields are defined by means of the classic Rankine–Hugoniot Conditions.

2.2. Definition of Flow Discontinuities at Porosity Jumps

When the porosity is discontinuous, classic Rankine–Hugoniot Conditions cannot be
used to define the corresponding flow discontinuities and a description of the discontinuity
internal structure is needed [10]. In the present work, it will be assumed that geometric
discontinuity consists of a region where the porosity varies monotonically. It is assumed
that this region of rapid porosity variation is much shorter than the longitudinal scale of the
urban flood propagation problem, ensuring that it can be safely modelled as a geometric
discontinuity.

To complete the description of the discontinuity internal structure, it is assumed
that, if u1 are u2 are the states immediately to the left and to the right of a porosity jump,
respectively, and ϕ1 and ϕ2 are the corresponding porosities, the following is true [12]:

h1 +
u2

1
2g

= h2 +
u2

2
2g

+ ∆H, (4)

ϕ1h1u1 = ϕ2h2u2. (5)

In Equation (4), ∆H is a loss of energy such that ∆Hu1 ≥ 0 is always verified. From
the physical point of view, Equation (4) expresses the fact that specific energy is invariant
through the porosity jump, unless ∆H 6= 0. When ∆H 6= 0 is assumed, the corresponding
dissipation physical mechanism needs to be specified. Finally, Equation (5) expresses the
fact that discharge is invariant through the porosity discontinuity.

In the present paper, both of the two following alternatives are considered:

(1) ∆H = 0; in this case, it is assumed that h and u vary smoothly through the discontinuity,
keeping the flow character (subcritical or supercritical) unchanged; critical conditions
may establish where porosity is minimum;

(2) ∆H 6= 0, and the hydraulic jump is chosen as a physical mechanism that is able
to explain this energy loss; in this case, the supercritical flow entering the porosity
discontinuity is reverted into a subcritical flow, and the flow is smooth through the
porosity discontinuity with the exception of the hydraulic jump location; critical
conditions may establish where porosity is minimum.

2.3. An Example of Multiple Solutions

This mathematical and physical analogy between the 1-d PSWE model and the 1-d
SWE model in rectangular channels with variable width implies that the exact solutions
found in [12] for the 1-d SWE model can be applied to the 1-d PSWE model as well. Consider
the solution of the system of Equations (1) and (2) with the following discontinuous initial
and geometric conditions (the Riemann problem):

u(x, 0) =
{

uL, x < 0
uR, x > 0

, ϕ(x) =
{

ϕL, x < 0
ϕR, x > 0

. (6)

In [12], it is demonstrated that this Riemann problem may admit (but not necessarily)
a class of multiple solutions when ϕL < ϕR and the flow from the right is supercritical with

− Kjump(ϕL/ϕR) ≤ F(uR) < −Ksp(ϕL/ϕR). (7)

The dimensionless numbers Ksp(ϕL/ϕR) and Kjump(ϕL/ϕR) are positive limit Froude
numbers defined in [12] (not reported here for the sake of brevity). An additional class
of multiple solutions is possible for ϕL < ϕR and F(uR) < −Kjump(ϕL/ϕR), but this
possibility is neglected in the present work.
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The following is considered the example where the states and the porosities in
Equation (4) are uL =

(
1.00 −2.00

)T , uR =
(
1.00 −9.40

)T , ϕL = 0.60, and ϕR = 1.00.
These initial conditions characterize a right supercritical flow that impacts on a porosity
reduction and satisfies the condition of Equation (7). Supercritical flow conditions are
also initially present to the left. The corresponding Riemann problem admits three dif-
ferent exact solutions (named S1, S2, and S3, respectively) that are plotted in Figure 1
(flow depth at time t = 5 s), where an arrow represents the flow direction through the
porosity discontinuity.
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Figure 1. Flow depth exact solution at time t = 5 s: (a) solution S1; (b) solution S2; and (c) solution S3.

The solution S1 (Figure 1a) is characterized by a right supercritical flow that enters a
sudden porosity reduction in x = 0 and produces a reflected shock on the right, while the
flow is partly transmitted on the left (left shock). A critical state is present immediately to
the left of the porosity reduction, while the flow between the right shock and the porosity
jump is subcritical. The energy is conserved through the porosity jump (∆H = 0).

In solutions S2 (Figure 1b) and S3 (Figure 1c), there is no reflection of the supercritical
flow from the right but only transmission. In solution S2 (Figure 1b), the incoming super-
critical flow is reverted into subcritical by means of a hydraulic jump collocated inside
the rapid porosity transition (∆H 6= 0), while critical conditions are found immediately
to the left of the porosity discontinuity. In solution S3 (Figure 1c), the right flow remains
supercritical through the porosity discontinuity (∆H = 0), producing two advancing shocks
on the left.

It is important to observe that solution multiplicity is not only caused by the use of
two different flow discontinuity definitions (∆H 6= 0 or ∆H = 0). In fact, solutions S1 and
S3 are both characterized by invariant energy (∆H = 0) through the porosity discontinuity.

2.4. Rectangular Channel Analogy and Disambiguation of Multiple Solutions

Following the analogy between the 1-d PSWE model and the 1-d SWE model in rectan-
gular channels with variable width, it is possible to reformulate the task of disambiguating
the PSWE multiple solution as the task of disambiguating the multiple SWE solutions.
Furthermore, we observe that the 1-d SWE model in horizontal rectangular channels with
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variable width is a simplification of the 2-d SWE model, where (i) a main flow direction
is individuated, (ii) the flow velocity component transverse to the main flow direction is
neglected, and (iii) the variations of flow depth and the parallel component of the flow
velocity along the transverse direction are neglected. The loss of physical information
due to the dimensional reduction of the 2-d SWE model initiates the emergence of multi-
ple solutions in the 1-d SWE model, with the initial conditions specified in Equation (5).
This suggests that, for a given problem, the comparison between the 2-d SWE solution
and the 1-d SWE multiple solutions can be used to choose the unique physically relevant
1-d alternative.

The approximate solution of the example Riemann problem contained in Section 2.3
is tackled with the 2-d SWE numerical model described in [13] that considers a channel
with length L = 200 m. The channel consists of a left reach, whose width is BL = 0.6 m, and
a right reach, whose width is BR = 1 m (see Figure 2). A linear contraction, located at the
center of the channel (where x = 0 m), connects the right reach to the left one by means
of two straight walls that are inclined by 45◦ with respect to the street axis. The linear
contraction, which is Lc = 0.20 m long, is sufficiently short with respect to the total length
to be considered a true geometric discontinuity. A non-uniform unstructured triangular
mesh is used, with an average size ∆s = 0.50 m at the channel ends and ∆s = 0.05 m in the
vicinity of the contraction. All of the channel boundaries are free-slip walls, except for the
left and right sides, which are open ends, and the initial conditions coincide with those of
the 1-d model. The plane view of the flow depth around x = 0 is represented in Figure 2 at
time t = 5 s.

Environ. Sci. Proc. 2022, 4, x FOR PEER REVIEW 5 of 8 
 

 

rapid porosity transition (ΔH ≠ 0), while critical conditions are found immediately to the 
left of the porosity discontinuity. In solution S3 (Figure 1c), the right flow remains super-
critical through the porosity discontinuity (ΔH = 0), producing two advancing shocks on 
the left. 

It is important to observe that solution multiplicity is not only caused by the use of 
two different flow discontinuity definitions (ΔH ≠ 0 or ΔH = 0). In fact, solutions S1 and 
S3 are both characterized by invariant energy (ΔH = 0) through the porosity discontinuity. 

2.4. Rectangular Channel Analogy and Disambiguation of Multiple Solutions 
Following the analogy between the 1-d PSWE model and the 1-d SWE model in rec-

tangular channels with variable width, it is possible to reformulate the task of disambig-
uating the PSWE multiple solution as the task of disambiguating the multiple SWE solu-
tions. Furthermore, we observe that the 1-d SWE model in horizontal rectangular channels 
with variable width is a simplification of the 2-d SWE model, where (i) a main flow direc-
tion is individuated, (ii) the flow velocity component transverse to the main flow direction 
is neglected, and (iii) the variations of flow depth and the parallel component of the flow 
velocity along the transverse direction are neglected. The loss of physical information due 
to the dimensional reduction of the 2-d SWE model initiates the emergence of multiple 
solutions in the 1-d SWE model, with the initial conditions specified in Equation (5). This 
suggests that, for a given problem, the comparison between the 2-d SWE solution and the 
1-d SWE multiple solutions can be used to choose the unique physically relevant 1-d al-
ternative. 

The approximate solution of the example Riemann problem contained in Section 2.3 
is tackled with the 2-d SWE numerical model described in [13] that considers a channel 
with length L = 200 m. The channel consists of a left reach, whose width is BL = 0.6 m, and 
a right reach, whose width is BR = 1 m (see Figure 2). A linear contraction, located at the 
center of the channel (where x = 0 m), connects the right reach to the left one by means of 
two straight walls that are inclined by 45° with respect to the street axis. The linear con-
traction, which is Lc = 0.20 m long, is sufficiently short with respect to the total length to 
be considered a true geometric discontinuity. A non-uniform unstructured triangular 
mesh is used, with an average size Δs = 0.50 m at the channel ends and Δs = 0.05 m in the 
vicinity of the contraction. All of the channel boundaries are free-slip walls, except for the 
left and right sides, which are open ends, and the initial conditions coincide with those of 
the 1-d model. The plane view of the flow depth around x = 0 is represented in Figure 2 at 
time t = 5 s. 

 
Figure 2. Plan view of the water surface elevation with the reference 2-d SWE numerical model at t 
= 5 s around the channel contraction area. The flow is directed from right to left. 

The inspection of Figure 2 shows that the supercritical flow from the right is only 
partially transmitted because a backward shock (the vertical line between the purple and 
cyan areas) moves towards the right. The flow, which is subcritical between the channel 
contraction and the moving right shock, accelerates through the contraction towards the 

Figure 2. Plan view of the water surface elevation with the reference 2-d SWE numerical model at
t = 5 s around the channel contraction area. The flow is directed from right to left.

The inspection of Figure 2 shows that the supercritical flow from the right is only
partially transmitted because a backward shock (the vertical line between the purple and
cyan areas) moves towards the right. The flow, which is subcritical between the channel
contraction and the moving right shock, accelerates through the contraction towards the
critical state. From a comparison with Figure 1, it follows that the physically relevant 1-d
solution of the example Riemann problem considered in Section 2.3 is S1.

3. Numerical Modeling

In this section, the original numerical model by [3] for 1-d PSWE and SWE with
variable width is described, and it is shown how it can be modified to embed the solution
disambiguation presented in Section 2.4.

3.1. 1-d Original Numerical Model

The 1-d physical domain of length L is subdivided in cells Ci (i = 1, 2, . . . , N) of length
∆x = L/N where the solution of the 1-d PSWE model of Equation (1) is approximated by
the 1-d finite volume scheme

ϕiun+1
i = ϕiun

i −
∆t
∆x

[
ψi+1/2g

(
u−i+1/2, u+

i+1/2

)
− ψi−1/2g

(
u−i−1/2, u+

i−1/2

)]
+

∆t
∆x

[
s+i−1/2 + s−i+1/2

]
(8)



Environ. Sci. Proc. 2022, 21, 55 6 of 8

where

s+i−1/2 = ϕif(un
i )− ψi−1/2f

(
u+

i−1/2

)
, s−i+1/2 = ψi+1/2f

(
u−i+1/2

)
− ϕif(un

i ). (9)

In Equations (8) and (9), the meaning of the symbols is as follows: ∆t is the time step;
ϕi is the cell-averaged porosity in the cell Ci; un

i =
(
hn

i hn
i un

i
)T is the cell-averaged vector

u in the cell Ci; g(v, w) is the numerical flux corresponding to the exact or approximate
solution of the 1-d SWE problem for the initial left and right states v and w; ψi+1/2 =
min(ϕi, ϕi+1) is an approximation of the porosity at the interface between the cells Ci

and Ci+1; u−i+1/2 =
(

h−i+1/2 h−i+1/2u−i+1/2

)T
and u+

i+1/2 =
(

h+i+1/2 h+i+1/2u+
i+1/2

)T
are

appropriate approximations of the conserved variables immediately to the left and to the
right of the interface between cells Ci and Ci+1; s+i−1/2 and s−i+1/2 are the contributions to the
cell Ci exerted by the porosity discontinuities at the interfaces i-1/2 and i+1/2, respectively.
In the original numerical model by [3], the variables u−i+1/2 and u+

i+1/2 are reconstructed
at each time step from the variables un

i and un
i+1, respectively, using the assumption of

invariant energy and discharge and maintaining the character of the flow (subcritical or
supercritical), as follows:

h−i+1/2 +

(
u−i+1/2

)2

2g
= hn

i +

(
un

i
)2

2g
, ψi+1/2h−i+1/2u−i+1/2 = ϕihn

i un
i (10)

h+i+1/2 +

(
u+

i+1/2

)2

2g
= hn

i+1 +

(
un

i+1
)2

2g
, ψi+1/2h+i+1/2u+

i+1/2 = ϕi+1hn
i+1un

i+1 (11)

More details about the treatment of variable reconstruction at interfaces when the
energy available is not sufficient are reported in [3]. The solution of Equation (1) with the
initial conditions described in Section 2.3 is approximated with the scheme by [3] using
∆x = 0.20 m and ∆t = 0.005 s. The corresponding numerical results (flow depth h) at time
t = 5 s are plotted in Figure 3 with a dashed line.
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The comparison between Figures 1 and 3 shows that that the numerical model by [3]
(dashed blue line) captures solution S3 (Figure 1c), which is characterized by supercritical
flow through the porosity reduction. In hindsight, this is easily understood since the
variable reconstruction described by [3] preserves the supercritical character of the flow
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coming from the right. In Figure 3, a profile view of the flow depth supplied by the 2-d
SWE model (circles) is also represented. The inspection of the figure makes the shape of
the S1 solution evident, with a backward shock to the right of the contraction and a critical
state immediately to the left of the geometric discontinuity.

3.2. 1-d Modified Numerical Model

The original model by [3] is modified to embed the disambiguation mechanism sug-
gested by the 2-d SWE model. In case Equation (7) is satisfied, an additional variable uR,+

i+1/2
reconstructed at the interface i+1/2 is introduced. The reconstructed variables u−i+1/2, u+

i+1/2

and uR,+
i+1/2 are calculated with an iterative process by imposing the following conditions:

1. the discharge and the energy corresponding to u−i+1/2 coincides with those corre-
sponding to un

i , as already made in Equation (10);
2. u+

i+1/2 is critical;

3. uR,+
i+1/2 is connected to un

i by a shock contained into the second characteristic field;

4. u+
i+1/2 and uR,+

i+1/2 are connected by the condition of discharge and energy invariance,
like in Equation (11);

5. The contribution s+i+1/2 is calculated as:

s+i+1/2 = ϕi+1f
(
un

i+1
)
− ψi−1/2f

(
uR,+

i+1/2

)
. (12)

The results of the modified 1-d PSWE numerical model are represented in Figure 3 with
a continuous red line. The inspection of the Figure shows that the shape of the S1 solution is
nicely captured. In particular, the strength and position of the moving waves (rarefactions
and shocks) compare well with those supplied by the 2-d SWE numerical model, while
the maximum flow depth, immediately to the right of the geometric discontinuity, is
satisfactorily predicted.

4. Conclusions

Porous shallow-water equations are a non-conservative system of hyperbolic equations
that has recently gained popularity for flooding simulation in urban areas. Finite-volume
models for the approximate solution of the porous shallow-water equations are mainly
based on the approximate solution of a local Riemann problem. Under certain initial
conditions, this Riemann problem may admit multiple exact solutions. Of course, it is
desirable that only the physically meaningful Riemann solution, among the alternatives, is
used for flooding computations. In the present paper, it has been shown that a physical
analogy can be established between 1-d porous shallow-water equations and 1-d shallow-
water equations in rectangular channels with variable width. Recalling that the 1-d shallow-
water equations model is nothing but a simplification of the 2-d shallow-water equations
model, the 2-d model has been used here to disambiguate multiple 1-d solutions by
reintroducing the missing physical information. Of course, 1-d porous shallow-water
equations numerical models should be able to capture the physically relevant numerical
solution. For this reason, a reference numerical model from the literature [3] has been
studied, showing why it does not supply the physically meaningful solution and how
a modification can be introduced to correct this behavior. The solution disambiguation
process and the corresponding numerical implementation outlined here have never been
applied before in the field of flood modeling, but the preliminary results seem encouraging.
In the present paper, only one example Riemann problem has been considered, but the
general task of disambiguating the multiple Riemann solution to porous shallow-water
equations will be considered in the future.
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