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Abstract: Models of hand–arm systems (HAS) are purely mechanical. These models do not include
the biological active behaviour of the system, even though it has been known since 1997 that there
is a tonic vibration reflex. Since then, several authors have investigated this reflex and related it
to grip force, posture and some others features of mechanical vibration power absorption. Other
scholars proposed models of HAS that do not include the tonic vibration reflex and its consequences.
These models, even partial models, are nonetheless effective in describing many aspects of vibration
exposure. This is probably due to the complexity of the HAS, so that the confounding factors
overwhelm measurements.

Keywords: power absorption; hand–arm; mechanical vibration; synchronization; tonic vibration
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1. Introduction

The power/energy of mechanical vibration absorbed by the hand–arm system (HAS)
has been studied since the early 1970s, as this energy supposedly contributes to the eventual
damage in the HAS. Mathematical models are a common way to better study the input–
output relationship in complex systems but also in HAS investigations. In this regard,
many authors have assessed the nonlinearity in different conditions and there are some
attempts to explain this nonlinearity via the involvement of mechanical and physiological
schemes. On the other hand, while studying models of the HAS, this nonlinearity is
usually disregarded. The model benefits are related to the forecast of energy absorption
by the HAS when exposed to a determined spectrum of mechanical vibration. Therefore,
this nonlinearity should be included in models, particularly because the lack of linearity
suggests the action of a physiological active mechanism which may be connected with
the insurgence of vibration pathology. Nonetheless, the lack of inclusion of muscular
synchronization does not affect the model’s effectiveness.

This paper was written to point out this fact as well as the need to better understand
nonlinearity in power absorption, taking its many features into account.

2. Hand–Arm System Vibration Biodynamics

The first biodynamical study of HAS was dated in 1972 with the work of Reynolds [1].
Radwin et al., in 1987, studied the interaction of grip force and frequency of mechanical
vibrations, finding an influence of the frequency stimulus on grip force [2]. This suggested
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that the muscular activity alters the pattern of force production, both for a spinal response
tonic vibration reflex (TVR), and for a motor drive modification involving superior motor
areas. Successively, in 1994, Burstrom and Lundstrom [3] improved the measurement and
definition of observables related to the biodynamic behaviour of the HAS. In their work,
the authors pointed out that the main experimental conditions influencing measurements
were the vibration direction, the grip force, the vibration level, the hand–arm posture and
the constitution of hand and arm. The work of Martin and Park in 1997 [4] highlighted the
TVR and proposed an electromyographical measurement standard for assessing the TVR
influence in the normalized synchronization index SYNC, both within vibration frequency
and far from it. The authors also suggested the hypothesis that synchronization could affect
muscle fatigue. After this study, it is difficult to avoid considering physiology as part of the
study of the HAS response to mechanical vibrations.

More recently, other works considered the relation between TVR, grip force and
fatigue [5–9]. The findings of these papers were that muscular fiber’s synchronization on
the external vibration frequency probably increased muscular fatigue. The reason must be
sought in the muscular response driven by the stretch reflex, i.e., the muscular contraction
induced by the variations detected by muscular spindles and the Golgi tendon’s receptors.
This reflex allows the fibers that have a firing frequency near that of the vibrational one to
contract more often than the other. This implies that there are some fibers that do not have
rest, while there are others that not affected by the vibration. Evidently, neuromuscular
systems have to satisfy two motor tasks: grip force production and TVR. For this, a capacity
reduction to maintain a force level is expected, and this mechanism is the basis of muscle
fatigue from a physiological point of view. The synchronization and the fatigue have been
measured upon varying the posture and the grip force, while the direction and the level
was fixed. Individual constitution was taken into account, comparing relative grip force to
individual maximum voluntary contraction (MVC). The suggestion of the synchronization
being a motion artifact was definitely rejected after the paper of Ritzman et al. [10].

The finding of this line of research is that absorption of vibration energy does affect
muscular fatigue.

3. Models of HAS

Notwithstanding the lack of implementation of the aforementioned characteristics,
models of HAS have been generated from 1972 [1] to the present day [9]. Models of HAS
include linear and nonlinear characteristics [11] in order to mitigate vibration exposure
deriving from handheld power tools [12] or from rig construction [13]. A noteworthy
review of the work of NIOSH in that respect is the paper from Dong et al. [14].

Models are useful tools for the prediction of the HAS response to vibration exposure
and they work efficiently in that sense, even without the implementation of physiological
nonlinearity; the latter could help model muscular fatigue in the physiological definition,
i.e., the inability to hold the muscular task for extended periods.

In general, the lack of the fatigue and physiological elements imply that models are
representative of the HAS response for limited exposure times and for forces that are small
(as percentages of the MVC).

4. Muscle Fatigue Measurement

The experiments described in this paper share the setup of another abstract—Interference
of vibration exposures in the force production of the hand–arm system—and are designed to
test the effects of muscular fatigue. Subjects are required to grip a handle with forces equal
to 30% and 60% of MVC. Grip force is the result of two opposing components: push and
pull. The subject was able to confirm both push and pull force and was required to balance
it as close as possible to zero while keeping the prescribed grip force. Participants were
exposed to vibration with a frequency of 30 Hz and amplitudes of 5–7.5 and 10 m/s2. The
effect of fatigue was analyzed by measuring the length of time for which participants could
maintain the desired grip force.
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Present results (summarised in Tables 1 and 2) show a limited influence of vibration on
the time for which the subject could endure the motor task. Some subjects even improved
their endurance under vibration, while some others shortened it.

Table 1. Time of endurance in minutes of a motor task of 30% of MVC upon varying the
handle vibration.

No Vib 5 m/s2 7 m/s2 10 m/s2

1 4.53 5.10 4.75 5.03

2 5.02 5.04

3 3.40 2.26

4 4.35 5.12 4.02 3.55

5 4.48 3.40 3.38 4.70

Table 2. Time of endurance in minutes of a motor task of 60% of MVC upon varying the
handle vibration.

No Vib 5 m/s2

1 1.28 1.35

2 2.01 1.00

4 0.45 1.14

5 2.40 2.02

5. Conclusions

The experiments did not evidence a significant effect of the vibration on the time for
which participant could keep the MVC. Results are consistent with those of other laboratory
works [15,16] in which muscular synchronization and muscular fatigue were not evident.

The conclusion is that there are some active mechanisms that intervene in the contrac-
tion while exposed to vibrations and that those mechanisms have to be studied in depth
before we can obtain complete knowledge of muscular synchronization and fatigue. In
other works, we encourage a larger collaboration between vibration experts and physiolo-
gists to overcome the current lack of specific knowledge on the effect of fatigue on the HAS
response.
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