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0. Introduction

Let G be a finite simple graph with vertex set V(G) and edge set E(G). Let C be a cycle of G. An edge {v, w} in E(G)\ E(C)
with v, w in V(C) is a chord of C. A graph G is said to be chordal if every cycle has a chord.

We recall that a circulant graph is defined as follows. Let S € T = {1,2,..., |_§J} The circulant graph G = Gy(S)
is a simple graph with V(G) = Z, = {0,...,n — 1} and E(G) := {{i,j} | | —il, € S} where |k|, = min{[k[, n — |k|}.
Given i, j € V(G) we call labelling distance the number |i — j|,. By abuse of notation we write C,(a, @y, ..., as) instead of
Ca({ar, az, ..., as}).

Circulant graphs have been studied under combinatorial [2,3] and algebraic [8] points of view. In the former, the
authors studied some families of circulants, i.e. the dth powers of a cycle, namely the circulants C,(1, 2, ..., d) (that we
will analyse in Section 3) and their complements. In the latter, the author studied some properties of the edge ideal of
circulants. Let R = K[xo, ..., x,_1] be the polynomial ring on n variables over a field K. The edge ideal of G, denoted by
I(G), is the ideal of R generated by all square-free monomials x;x; such that {i, j} € E(G). Some algebraic properties and
invariants of R/I(G) can be derived from combinatorial properties of G. Chordality and the induced matching number have
been used to give bounds on the Castelnuovo-Mumford regularity of R/I(G) (see Section 1).

In Section 2 we prove that a circulant graph is chordal if and only if it is either complete or a disjoint union of complete
graphs.

In Section 3 we give an explicit formula for the induced matching number of a circulant graph C,(S) depending on
the cardinality and the structure of the set S. Moreover, by using Macaulay2, we compare the Castelnuovo-Mumford
regularity of R/I(G) with v(G), the lower bound of Theorem 1.3, when G is the dth power of a cycle and n is less than or
equal to 15. We report the result in Table 1.
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Table 1
The behaviour of reg R/I(G) with respect to v(G) for G = C,‘,’.
G v(G) reg R/I(G) G v(G) reg R/I(G)
Gs({1}) 2 2 Ci2({1,2,3}) 2 2
Gs({1,2}) 1 1 C2({1,2,3,4}) 2 2
G({1}) 2 2 C12({1, 2, 3,4,5}) 1 1
G({1,2}) 1 2 Cis({1h) 4 4
Gs({1}) 2 3 Ci3({1,2}) 3 3
Cs({1,2}) 2 2 Ci3({1, 2, 3}) 2 2
Gs({1,2,3)) 1 1 C13({1,2,3,4}) 2 2
Go({1}) 3 3 C13({1,2,3,4,5}) 1 2
Go({1,2}) 2 2 Cia({1}) 4 5
Go({1,2,3)) 1 2 C14({1,2}) 3 3
Cio({1}) 3 3 Cia({1,2,3}) 2 2
Cio({1,2}) 2 2 C1a({1, 2, 3,4}) 2 2
Cio({1,2,3}) 2 2 C1a({1, 2, 3,4,5}) 2 2
Ci0({1,2,3,4}) 1 1 C14({1,2,3,4,5,6}) 1 1
Cn({1}) 3 4 Cis({1}) 5 5
Cn({1,2}) 2 2 Cis({1,2}) 3 3
Ci11({1,2,3}) 2 2 Ci5({1,2,3}) 3 3
C11({1,2,3,4}) 1 2 Ci5({1,2,3,4}) 2 2
Ci2({1}) 4 4 Ci5({1, 2, 3,4,5}) 2 2
C2({1,2}) 3 3 C15({1,2,3,4,5,6}) 1 2

1. Preliminaries

In this section we recall some concepts and notation that we will use later on in this article.
We recall that the circulant graph Cy(1,2, ..., [5]) is the complete graph K,. Moreover, we compute the number of
components of a circulant graph with the following

Lemma 1.1. LetS = {ay,...,a;} be a subset of T and let G = C,(S) be a circulant graph. Then G has gcd(n, ay, ..., a;)

disjoint components. In particular, G is connected if and only if gcd(n, a1, ..., a;) = 1.
For a proof see [1]. From Lemma 1.1 it follows that if n = dk, then the disjoint components of C,(ad, a,d, ..., a;d) are
d copies of the circulant graph Cy(ay, az, ..., as).

Let G be a graph. A collection C of edges in G is called an induced matching of G if the edges of C are pairwise disjoint
and the graph having C has edge set is an induced subgraph of G. The maximum size of an induced matching of G is called
induced matching number of G and we denote it by v(G).

Let F be the minimal free resolution of R/I(G). Then

F:0->F—>F1—>...—>F—R/IG—0

where F; = G}j R(—j)Pii. The i are called the Betti numbers of F. The Castelnuovo-Mumford regularity of R/I(G), denoted
by reg R/I(G) is defined as

reg R/I(G) = max{j —i: fi; # O}.

Let G be a graph. The complement graph G of G is the graph whose vertex set is V(G) and whose edges are the non-edges
of G. We conclude the section by stating some known results relating chordality and induced matching number to the
Castelnuovo-Mumford regularity. The first one is due to Froberg ([4, Theorem 1]).

Theorem 1.2. Let G be a graph. Then regR/I(G) < 1 if and only if G is chordal.

The second one is due to Katzman ([7, Lemma 2.2]).

Theorem 1.3. For any graph G, we have reg R/I(G) > v(G).

When G is the circulant graph C,(1), namely the cycle on n vertices, we have the following result due to Jacques [6].

Theorem 1.4. Let C, be the n-cycle and let I = I(C,) be its edge ideal. Let v = L%J denote the induced matching number of
Cy. Then

regR/l = { Y yon

0,1 (mod 3)
v+1 ifn 2

(mod 3).
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Fig. 1. Some edges of a non-chordal cycle of G.

2. Chordality of circulants

The aim of this section is to prove the following

Theorem 2.1. Let G be a circulant graph. Then G is chordal if and only if there exists d > 1 such that n = dm and
G=0C(d, 2d, ..., |5]d)

The (<) implication is trivial. If d = 1, then G is the complete graph K;,, while if d > 1, then G is the disjoint union of

d complete graphs K.

To prove (=) implication we need some preliminary results.

Lemma 2.2. Let G = Cy(S) be a circulant graph. Let us assume that there exists a € S with k = ord(a) > 4 such that

[a, 2a, ..., {gJa} Zs.

Then G is not chordal.

Proof. Since k > 4, then {a} C {a,2a, ..., [¥]a}. If {a, 2a,..., LgJa} ¢ S, then we have two cases:

(1S) {a,2a,...,ra,(r+t)a} CSand (r+1)a,...,(r+t—1)a ¢ S,withr > 1 and t > 2;
(2S) {a,2a,...,ra}gSand(r—l—l)a,...,L%Ja¢5,with]§r< L’Z—‘J.

(1S) We want to find a non-chordal cycle of G. We consider the edges {0, (r + t)a}, {0, a}, {a, (r + 1)a} (see
Fig. 1). If (r + 1)a is adjacent to (r + t)a, then we found a non-chordal cycle of G. Otherwise, we apply the division
algorithm to r + t and r + 1, that is

r+t=(r+1)qg+s 0<s<r.

From the vertex (r + 1)a we alternately add a and ra to get the multiples of (r + 1)a, until q(r 4+ 1)a. If s = 0, then
we get (r + t)a, otherwise 0 < s < r and sa € S so we join q(r + 1)a and (r + t)a. The above cycle has length greater
than or equal to 4 because the vertices 0, a, (r 4+ 1)a, (r + t)a are different. Furthermore, it is non-chordal because by
construction any pair of non-adjacent vertices in the cycle has labelling distance in {(r + 1)a, ..., (r +t — 1)a}.

(2S) As in case (1S), we want to construct a non-chordal cycle of G. We write k = L%J + f’z—‘1 and L%J =qr+t
with 0 <t <r — 1. Now we write [£] = gr + s, where

e if k even
T lt+1 ifkodd,

and we take the cycle on vertices

k k

k k
[O, ra, 2ra, ..., qra, LEJa, LEJa + ra, L%J + 2ra, ... LEJa + qra}. (2.1)

Since r < L%J, then ¢ > 1 and in the case ¢ = 1, s > 0. That is, the cycle on vertices (2.1) has length at least 4
and it is not chordal because by construction any pair of non-adjacent vertices in the cycle has labelling distance in
{r+ Da,.... %]a}.

In any case G is not chordal and the assertion follows. O

An immediate consequence of the previous lemma is

Corollary 2.3. Let G = Cy(S) be a circulant graph. If there exists a € S with k = ord(a) > 4 such that gcd(a, n) ¢ S, then G
is not chordal.
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Lemma 2.4. Let G = Cy(S) be a circulant graph. If a, ..., a; € S and gcd(ay, ..., a;) ¢ S, then G is not chordal.

Proof. We proceed by induction on r.
Let r = 2 and let aq, a; € S be such that ¢ = gcd(aq, ay) ¢ S. We consider

a = ged(ay, n), b = ged(ap, n), d = ged(a, b).

From Corollary 2.3, we have that if one between a, b does not belong to S, then G is not chordal. Hence a, b € S. We
have that d divides ¢ and we distinguish two cases. If d € S, since ¢ = td ¢ S for some t, then by Lemma 2.2 G is not
chordal. Therefore, from now on we suppose d ¢ S. Since a and b divide n, then Icm(a, b) = % divides n. We want to find
a non-chordal cycle of G having length 4. Let ra + sb = d (mod n) be a Bézout identity of a and b. From Lemma 2.2, if

one between ra and sb is not in S, then G is not chordal. Hence, let us assume ra, sb € S. Now we consider the cycle
{0, ra, ra + sb = d, sb}.

Since d ¢ S, then the edge {0, d} ¢ E(G). We distinguish two cases about ra — sb. If ra — sb ¢ S, then the assertion follows.
If ra —sb € S, then we set

a by n
kd = gcd(ra — sb, n k= cd(r(f) s<7), f).
ged( )= k=g 1) t55) g
If kd is not in S, then from Corollary 2.3 G is not chordal. Hence, we consider kd € S. Since gcd(%, g) = 1, then

gcd(k, g) = gcd(k, g) =1, and

gcd(k, %’) -1 = gcd(kd, %) —d. (2.2)

Hence lcm(kd, %) = k%’ divides n. We distinguish two cases. If k = 1, then we obtain the contradiction d € S, arising

from the assumption ra — sb € S. If k # 1, then k is a new proper divisor of n. We set a’ = kd and b’ = % we apply the
steps above and we find a kK’ so that K%Y divides n, and so on. By applying the steps above to a’ and b’ a finite number of
times, we could either find a k' equal to 1 or we could get new proper divisors of n, that are finite in number. We want
to study the case n = % Let

va +zb =d
be a Bézout identity, we assume va’ — zb’ € S, and we set

hd = gcd(va’ +zb’, n).

We have that h% = hn divides n, that is hn = n and h = 1. It implies d € S, that is a contradiction arising from
the assumption va’ — zb’ € S. Hence va’ — zb’ ¢ S and {0, va’, d, zb'} is a non-chordal cycle of G. It ends the induction
basis. For the inductive step, we suppose the statement true for r — 1 and we prove it for r. We have to prove that if
gcd(ay, ..., a;) € S, then G is not chordal. By inductive hypothesis if gcd(ay, ..., a,—1) ¢ S, then G will be not chordal.
Hence we assume b = gcd(aq,...,a,—1) € S. By applying the inductive basis to a, and b, we obtain that G is not
chordal. O

Now we are able to complete the proof of Theorem 2.1.

Proof of Theorem 2.1 (=). Under the hypothesis that G is chordal, we also assume that G is connected and we prove that
d = 1, that is G = K,,. By contradiction assume that the graph is not complete, namely G = Cy(ay, ..., a;) with s < L%J.
From Lemma 1.1, G is connected if and only if gcd(ay, ..., a5, n) = 1. Let b = gcd(ay, ..., a).

If b ¢ S, then from Lemma 2.4 G is not chordal. If b € S, we have 1 = gcd(n, a4, ..., a5) = gcd(n, ged(ay, . . ., as)) =
gcd(n, b). If 1 ¢ S, then from Lemma 2.4, G is not chordal. Then 1 € S and from Lemma 2.2 the graph G is not chordal,
that is a contradiction. If G is not connected, then it has a = gcd(n, S) distinct components, each of m = ord(a) vertices.
By Lemma 2.2, S = {a, 2aq, ..., L%Ja} and each component is the complete graph K;,. O

Example 2.5. Here we present three examples of non-chordal circulant graphs G,(S).

1. Taken = 15and S = {2, 3,4, 7}. If we take a = 2, then ord(a) = 15 and 2a = 4,3a =6,n—4a = 7,and n—6a = 3.
Hence, we are in case (1S) of Lemma 2.2 with S = {a, 2a, 4a, 6a}. We observe that the cycle on vertices

{0, a, 3a, 4a} = {0, 2, 6, 8}

is not chordal because 6 ¢ S.
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2. Take n = 10, S = {3,4} and a = 3. We have ord(a) = 10. Moreover n — 2a = 4, hence this is the case (2S) of
Lemma 2.2 with S = {a, 2a}. We have | 5| = [§] =5, and
S5=qr4+t=2-2+1.
Hence, we take the cycle on vertices
{0, 2a, 4a, 5a, 7a,9a} = {0,6,2,5,1,7}

that is not chordal because 1, 2 and 5 do not belong to S.

3. Wetaken = 30 and S = {2, 3,4,5,6,8,9, 10, 12, 14, 15}. We observe that gcd(5,2) = 1 ¢ S, hence we are
in the case of Lemma 2.4 with a; = a = 5 and a, = b = 2. We observe that ord(a) = 6, ord(b) = 15 and
2a =10,3a = 15,b,2b,...,7b € S. We take a Bezéut identity of a and b

l=ra+sb=5-1—-2-2.

We take the cycle on vertices {0, 5, 1, —4}. The quantity ra —sb =5 + 4 = 9 belongs to S and k = gcd(9, 30) = 3,
while gcd(k, ab) = gcd(3, 10) = 1 and n = abk = 30. Hence we write

1=vab+sk=10—-3-3,
and we take the cycle on vertices {0, 10, 1, —9}. The quantity 10 + 9 = 19 does not belong to S, hence the cycle
above is not chordal.
3. Induced matching number of circulant graphs

In this section we compute the induced matching number for any circulant graph C,(S). Then we plot a table
representing the behaviour of regR/I(G) with respect to the lower bound described in Theorem 1.3, when G is the dth
power of the cycle, namely G = G,(1, 2, ..., d). For the computation we used Macaulay2 (see [5]).

Definition 3.1. Let G be a graph with edge set E(G). We say that two edges e, e’ are adjacent if eNe’ = v and v € V(G).
We say that e, €’ are 2-adjacent if there exist v € e and u € ¢’ such that {u, v} € E(G).

Remark 3.2. From Definition 3.1, an induced matching of G is a subset of E(G) where the edges are not pairwise adjacent
or 2-adjacent.

Then we have the following

Theorem 3.3. Let G = Cy(S) be a connected circulant graph, let s = |S| and let r = minS. Then v(G) = L@J where
_{52+(|A|+1)s ifi¢s
s+ 0AI+ s -2 ifSes,
with
A= {r+a - aeS and r+aeV(G)\S}.
If G has d = gcd(n, S) components, then v(G) = d - v(Cy4(S")), where " = {s/d : s € S}.
Proof. We consider some disjoint subsets of E(G), E; i = 1, ..., m consisting in an edge e; = {u,v =u+s} forans € S,

the edges {v, w = v + s} for an s € S adjacent to e;, and the edges {w, w + s} for an s € S 2-adjacent to e;. By suitably
choosing the e;, the {e;}i—1....m is the biggest induced matching and m = v(G). So we have only to count the edges in any
set E;.

We assume that s = |S|, r = minS and S = {ap =1, ay, ..., a;_1}, we assume that the edge e = {0, r} is in the induced
matching, and let E’ be the set containing e and the edges adjacent or 2-adjacent to e. The edges adjacent to e are {0, a;}
fori=1,...,s—1and {r,bj =1+ a;} fori = 0,...,s — 1. The above edges are all distinct. The edges 2-adjacent to e

are {gj,aq;+a;} forje{1,...,s—1},ie{0,...,s — 1} and {b;, b; + a;} for i,j € {0, ..., s — 1}. The edges above may not
be all distinct. In fact, it can happen that some b; coincides with some a, in that case {b;, b; + a;} = {ax, ar + a;} for any
i€ {0,...,s—1}. Then, we only consider {bj, bj + a;} for i € {0, ..., s — 1} when b; € A. To sum up, in the set E’ we find:

(a) The s edges {0, a;} fori e {0,...,s — 1};
(b) The s? edges {aj,a;+a;} fori,je{0,...,s —1};
(c) The s - |A| edges {b, b+ a;} fori e {0,...,s— 1} and b € A.

If a,_, = g then bs_1 = r + a;,_1 € A and the edges {a;_1, as_1 + a;_1 = 0} of point (b) and {bs_1, bs_1 + a;_1 = r} of
point (c) are already counted. The assertion follows.

For the case disconnected, let d = gcd(n, S) be the number of disjoint connected components of the graph G. Since
the components are disjoint, it turns out that v(G) is d times the induced matching number of one component. That
component is G,/q(S") where S’ = {s/d : s € S}, hence the assertion follows. O
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The formula in Theorem 3.3 can be written in a compact way when G is the dth power of a cycle. We set C,f =
G({1,2,...,d}.

Corollary 34. Let G = C,f be the dth power of a cycle and d < L%J. Then

v(6) = Ldin'

Proof. We want to apply Theorem 3.3, with s = d and |E(G)| = nd. We have r = 1 and A = {d + 1}. Hence it follows
thatt =d?> +d+d-1=d?+2d = d(d + 2), that is

v(6) = Ld(dnj— 2)J = Ldin'

In Table 1, we compare the values of reg R/I(Cg) forn < 15and 1 < d < |5]. We highlight that the regularity of
R/I(G) is strictly greater than v(G) in two different cases:

(1) when G = C, nand n=2 (mod 3).
(2) when G = C->'"" and n is odd.

The two anomalous cases were expected: in case (1), we know from Theorem 1.4 that regR/I(G) = v + 1; in case
(2), v(G) = 1 while G = G,(|5]) that is a cycle and hence it is not chordal; hence from Theorem 1.2 we know that
regR/I(G) = 2. In general, it seems that apart from cases (1) and (2), the Castelnuovo-Mumford regularity of the dth
power of a cycle grips the bound of v(G).
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