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Abstract
This paper introduces a new statistical methodology for estimating Duncan dissimilar-
ity indexes of occupational segregation by sex in administrative areas and time periods. 
Given that direct estimators of the proportion of men (or women) in the group of employed 
people for each occupational sector are not accurate enough in the considered estimation 
domains, we fit to them a three-fold Fay–Herriot model with random effects at three hier-
archical levels. Based on the fitted area-level model, empirical best predictors of the cited 
proportions and Duncan segregation indexes are derived. A parametric bootstrap algorithm 
is implemented to estimate the mean squared error. Some simulation studies are included 
to show how the proposed predictors have a good balance between bias and mean squared 
error. Data from the Spanish Labour Force Survey are used to illustrate the performance of 
the new statistical methodology and to give some light about the current state of sex occu-
pational segregation by province in Spain. Research claims that there is a sex gap that per-
sists despite advances in the inclusion of women in the labour market in recent years and 
that is related to the unequal sharing of family responsabilities and the stigmas still present 
in modern societies.

Keywords Small area estimation · Fay–Herriot model · Labour force survey · Duncan 
segregation index · Sex occupational segregation

Mathematics Subject Classification 62D05 · 62P25 · 62J05

1 Introduction

The Duncan segregation index (DSI) is a dissimilarity index proposed by Duncan and 
Duncan (1955) to measure segregation by location and, because of its properties and ease 
of calculation, is widely used in sociological studies. The DSI is a measure of segregation 
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that can be applied to individuals differentiated by a dichotomous classification variable in 
groups defined by sex, race, origin, religion or culture, among others. Locations should be 
interpreted in a broad sense. Examples of locations are residential areas, education levels 
or occupation sectors. The current research explores the use of the DSI to measure occu-
pational segregation by sex, where the group variable is sex and the location variable is 
occupation sector.

In this paper, the DSI measures the dissimilarity between the higher-than-expected 
presence of men (women) over women (men) in different sectors of labour occupation. To 
do so, it compares the percentage of men and women employed in each occupation sec-
tor and provides a numerical value that is lower the closer the occupational distribution 
is to equality. If all job sectors have equal proportions of employed men and women, the 
DSI becomes zero. On the opposite side, the DSI becomes one and segregation reaches its 
maximum.

Many authors have explored the properties of the DSI or have applied it in sociological 
studies. Among the most important contributions, Taeuber and Taeuber (1965) analyzed 
the segregation of the Afro-American population in Chicago neighborhoods; Reardon and 
Firebaugh (2002) used the DSI to measure inequalities and interpreted it as a relative mean 
deviation; Reardon and O’Sullivan (2004) reviewed the properties of the DSI and proposed 
alternative indicators; Alonso-Villar and Del Río (2010) presented data on occupational 
segregation by sex in Spain; Roberto (2016) analyzed data on race segregation in US cit-
ies; Salardi (2016) investigated the evolution of gender and racial occupational segregation 
across labour markets in Brazil; and Das and Kotikula (2019) discussed the factors that 
drive gender-based employment segregation.

As a general feature, the studies cited above assume that the available information is 
completely reliable. In practice, data may come from surveys and are, therefore, subject 
to sampling errors. If data come from administrative registers or surveys with large sam-
ple sizes, the DSI calculation is straightforward. Nevertheless, direct estimation techniques 
may be unreliable if the sample sizes are small, and this is a problem that merits methodo-
logical research.

Obtaining DSI estimates for small areas, and over time, can be done using labor force 
survey data. In order to do so, we can calculate direct estimators of the proportions of men 
and women among the employed population in each sector and then plug these estimators 
into the DSI formula. However, if domain sample sizes are small, direct estimators will not 
be sufficiently precise. Consequently, they will not produce good DSI estimates. In fact, 
direct estimators are calculated using only data from the domain of the dependent vari-
able and the corresponding sampling weights. On the other hand, they have good bias and 
variance properties under the sampling design distribution, when the sample sizes are large 
enough. Otherwise, they are not precise and it is desirable to use model-based estimators to 
reduce variability by introducing auxiliary information in the inferential process.

Small area estimation (SAE) methodologies provide more reliable granular level esti-
mates by fitting statistical models to unit-level or area-level data and obtaining predictors 
based on them. This is the usual way to incorporate additional information from other 
domains, auxiliary variables and hierarchical, spatial or temporal data dependency struc-
tures. As a result, indiscriminate increases in survey sample sizes are avoided. The term 
“small area” is commonly used to refer to a small geographic area or a subgroup of the 
population defined according to some combination of socio-demographic characteristics 
but where, in any case, direct estimation is not accurate enough due to the smallness of 
the sample size. For instance, if a survey is designed to obtain precise direct estimates at 
national level and results disaggregated by region, or for a certain minority group, are of 
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interest, these unplanned estimation domains are called small areas. Budget and lack of 
planning in the initial design are the most common causes of small or even zero sample 
sizes, prompting the need for further statistical research.

Rao and Molina (2015), Pratesi (2016) and Morales et al. (2021) provide an introduc-
tion to SAE and, in particular, to the area-level model-based approach derived from the 
seminal paper of Fay and Herriot (FH) (1979). In this regard, area-level linear mixed mod-
els, adapted to hierarchical structures or temporal correlations, offer a solution to this prob-
lem. A baseline example is the estimation of domain totals, means and proportions, using 
empirical best linear unbiased predictors (EBLUP) based on the FH model.

Regarding the generalizations of the FH model, some temporal extensions were given 
by Pfeffermann and Burck (1990), Rao and Yu (1994), Ghosh et  al. (1996), Datta et  al. 
(1999, 2002), You and Rao (2000) and Singh et al. (2005). Marhuenda et al. (2016) pro-
pose tests for the variance parameter in the FH model. In addition, some extensions of 
the FH model assuring estimates in the interval [0,  1] have been proposed in the litera-
ture. For example LMMs with suitable transformations (González-Manteiga et al., 2002) 
and Beta regression models (Janicki, 2020). Concerning the estimation of the proportions, 
Esteban et al. (2012), Marhuenda et al. (2013, 2014) and Morales et al. (2015) have pro-
posed predictors based on variants of the FH model. Multivariate FH models were stud-
ied by Huang and Bell (2004), Porter et al. (2015), González-Manteiga et al. (2008) and 
Benavent and Morales (2016, 2021). Under area-level Poisson, binomial or multinomial 
regression mixed models, predictors of counts and proportions were introduced by Boubeta 
et al. (2016, 2017), Burgard et al. (2021, 2022), Krause et al. (2022), Morales et al. (2022), 
López-Vizcaíno et al. (2013, 2015) and Chambers et al. (2016). All in all, the above non 
exhaustive collection of relevant papers have in common that they have introduced area-
level SAE methodology for predicting domain proportions and totals. This is a partial step 
that this paper also deals with.

Nevertheless, the scientific literature also presents numerous contributions to SAE based 
on unit-level models. Molina and Rao (2010) have proposed empirical best predictors 
(EBP) based on a nested error regression model (NER). Marhuenda et al. (2017), Guadar-
rama et al. (2022) and Esteban et al. (2022) have extended the EBP approach to two-fold, 
temporal and multivariate NERs. Hobza and Morales (2016) and Hobza et al. (2018) have 
fitted a logit mixed model to unit-level poverty data and derived EBPs for poverty propor-
tions. Tzavidis et al. (2008), Marchetti et al. (2012) and Tzavidis et al. (2015) have intro-
duced robust estimators by using a quantile regression approach. Against this background, 
the EBP approach and the quantile regression procedures can be applied to predict domain 
indicators defined by non-linear transformations of means, totals and proportions. Thus, 
they represent alternative methodologies to the one proposed in this manuscript based on 
area-level models.

We have considered the extension of the two-fold Fay–Herriot (FH2) model to three lev-
els of hierarchy. At this regard, the FH2 model has been introduced by Rao and Yu (1994) 
and studied by Esteban et al. (2012), Marhuenda et al. (2013) and Morales et al. (2015), 
among others. It is a model adapted to area-level data indexed by areas and subareas. The 
three-fold Fay–Herriot (FH3) model, recently proposed by Marcis et al. (2023), can further 
describe data structured in areas, subareas and time periods or subsubareas. This is the case 
of the employment data used to estimate sex segregation by province, occupation sector 
and time period. The proposed area-level methodology introduces sample weights into the 
inferential process, taking into account the sampling distribution. Under the FH3 model, 
Krenzke et al. (2020) have estimated adult literacy of US counties and Cai and Rao (2022) 
have studied some variable selection methods. Based on the FH3 model, we have obtained 
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EBLUPs of male and female domain proportions in the set of employed for each occupa-
tional sector and derived DSI predictors. We have not used a specific model for proportions 
because we are interested in using a three-fold nested model that allows the population to 
be hierarchised in provinces, occupational sectors and time periods. Indeed, our contribu-
tion focuses on the estimation of DSIs. So as to estimate the corresponding mean squared 
errors (MSE), we have introduced a parametric bootstrap algorithm by following Hall and 
Maiti (2006) and González-Manteiga et  al. (2008, 2010). The bootstrap procedure also 
allows studying the loss of precision of model-based predictors when using added auxiliary 
variables obtained with sampling errors.

As for the issue at hand, modern societies promote the fair treatment and legal pro-
tection of women and minority groups, and governments look for places where systemic 
discrimination occurs. This motivates research into statistical methodologies for mapping 
segregation at different levels of aggregation. In this sense, we introduce a new statistical 
methodology for mapping DSIs and present an application to data from the Spanish Labour 
Force Survey (SLFS). This can be of great help to policy makers to decide where to imple-
ment specific equality policies. According to the EUROSTAT 2016 NUTS classification, 
the SLFS is designed to obtain reliable direct estimators in NUTS 3 regions (provinces). 
However, SLFS sample sizes are rather small in provinces crossed by occupational sectors. 
At this regard, our study aims to estimate DSIs by province from the last quarter of 2020 
to the last quarter of 2021, both included. Other papers also modelling SLFS data include 
Baíllo and Molina  (2009) and Herrador et al. (2011).

The rest of the paper is organized as follows. Section 2 introduces the data, the DSI and 
the SAE problem. Section  3 presents the FH3 model, the residual maximum likelihood 
estimators (REML) of the model parameters, the EBLUPs of the domain proportions of 
employed men and women, the DSI predictors and the MSE estimators. In a simulation 
study we may be interested in: (1) analysing the effect of increasing the sample size or 
the number of domains (among other elements), or (2) testing the behaviour of estima-
tors and predictors in scenarios close to that of the application to real data. While we have 
addressed both issues, we have moved the latter to Supplementary Material. Thus, in order 
to learn from the simulations, the usual section order has been reversed as follows. Sec-
tion  4 includes some simulation experiments to investigate the performance of the DSI 
predictors and MSE estimators. Sect.  5 deals with the application to real data. Last but 
not least, Sect. 6 provides some relevant conclusions. The paper contains Supplementary 
Material organised in two sections. Section A describes the steps of the simulation experi-
ments and presents additional results based on artificial data. Section B provides tables 
with supplementary information about the application to real data.

2  Data and Dissimilarity Indexes

This paper introduces and applies the SAE methodology needed to estimate sex occu-
pational segregation by Spanish province and time period. It uses data from the SLFS, 
which is a quarterly survey that follows a two-stage stratified random sampling approach 
to draw samples from each province. Primary sampling units are census sections, which 
are geographical areas with around 500 dwellings or approximately 3000 people. Cen-
sus sections are grouped into strata according to the size of the municipality to which 
they belong. Secondary sampling units are dwellings, and all individuals aged 16 or 
over in the selected dwelling are interviewed. Here, it is important to bear in mind that 
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we are only interested in the subpopulation of employed respondents. Furthermore, 
as we have included the autonomous cities Ceuta and Melilla in the set of provinces, 
D = 52 . Finally, we have chosen T = 5 consecutive quarterly periods: 2020.4, 2021.1, 
2021.2, 2021.3 and 2021.4. The occupation sector (OC) variable has been derived from 
the Spanish National Classification of Occupations (CNO2011). Three categories have, 
however, been aggregated due to the smallness of the sample sizes.

Table 1 describes the encoding of the OC variable, which has R = 7 mutually exclu-
sive categories. The aggregated occupations are denoted with an .∗ , grouping the most 
similar ones based on their definition. The main reason is to avoid zero or very small 
sample sizes, where even suitable statistical models do not provide reliable results. All 
in all, the final set of categories covers a broad spectrum of jobs, achieving an accurate 
level of knowledge about the respondents in terms of their main occupation.

In the following, we will introduce some mathematical notation to define the DSI 
across provinces and time periods. Let Udrt be a subset (estimation domain) of the pop-
ulation, relative to time period t and conformed by Ndrt employed people aged 16 or 
over, resident in province d and working in sector r. Let ydrt1j be a dichotomic vari-
able such that ydrt1j = 1 if the individual j of Udrt is male, and ydrt1j = 0 , otherwise. Let 
ydrt2j = 1 − ydrt1j be the analogous variable for females. The population means of these 
variables are

For d = 1,… ,D , t = 1,… , T  , the DSI of province d at time period t is

In our research, the DSI quantifies sex occupational segregation and measures how evenly 
(or unevenly) the population of both sexes is distributed in each occupational sector. Seg-
regation is measured as the degree to which the spatial distribution of the female group 
deviates from that of the male one. If men and women are distributed in equal proportions 
across occupation sectors, there is no segregation. Therefore, the DSI has a straightforward 
interpretation: it corresponds to the proportion of women (or men) who would have to 
move to another occupational sector to balance the distribution. Accordingly, movements 

(2.1)Ydrt1 =
1

Ndrt

Ndrt∑

j=1

ydrt1j, Ydrt2 =
1

Ndrt

Ndrt∑

j=1

ydrt2j.

(2.2)Sd.t =
1

2

R�

r=1

Sdrt, Sdrt =

������

NdrtYdrt1
∑R

i=1
NditYdit1

−
NdrtYdrt2

∑R

i=1
NditYdit2

������
, r = 1,… ,R.

Table 1  Encoding of OC. The .∗ 
means that the category has been 
aggregated

Code Description

OC1 Directors and managers. Senior public and private figures
OC2 Scientists and intellectual technicians and professionals
OC3

∗ (i) Military occupations. (ii) Technicians and support staff
OC4 Accounting, administrative and other office employees
OC5 Catering, protection and commercial staff
OC6

∗ (i) Unskilled workers. (ii) Primary sector workers
OC7

∗ (i) Plant and machinery operators. (ii) Craftsmen and 
skilled workers in

the manufacturing and construction industries.



 M. Bugallo et al.

1 3

would have to occur from occupations in which the group is overrepresented to occupa-
tions in which it is underrepresented.

In practice, the theoretical DSI values defined in (2.2) should be estimated by using 
SLFS sample data. However, our estimation domains are not planned in the SLFS so 
we first investigate whether the sample sizes are large enough to provide accurate direct 
estimates of the dissimilarities Sdrt’s. For this sake, we will introduce some additional 
notation. Let ndrt and N̂dir

drt
 be the sample size and the estimated population size (sum of 

the sampling weights) of Udrt . Let n =
∑D

d=1

∑R

r=1

∑T

t=1
ndrt be the global sample size. 

The estimated sampling fractions (in %), are defined as relative sample sizes as

and are not uniformly distributed in Udrt . The latter is shown in Table 2, which presents the 
deciles of the sample sizes (SS) and the estimated sampling fractions (SF).

It can be observed in Table 2 that 20% (50%) of the Udrt ’s have samples sizes smaller 
than 56 (121) and that the average sample size, equal to 149, is between q0.6 = 143 and 
q0.7 = 175 , indicating that the sample size distribution is positively skewed. Further-
more, sampling fractions allow us to know the percentage of individuals of the subsets 
Udrt who actually belong to the sample. As they are all lower than 1.779, the repre-
sentativeness of the samples in the crosses is quite small. Consequently, this is a SAE 
problem and direct estimators, such as the Hájek estimator, are not accurate enough. 
Therefore, the inference problem requires the incorporation of more sophisticated pre-
diction methods.

Table 3 contains the total and proportion of men and women in the subset of employ-
ees, by main occupation, for the SLFS2021.4 data. Analytically studying occupational 
segregation by sex, categories OC7 and, to a lesser extent, OC1 stand out.

The Hájek estimators of Ydrt1 and Ydrt2 are direct estimators that are calculated by 
using only data of the SLFS sample sdrt of the subset Udrt and the sampling weights wdrt

’s. They are therefore ratios between two quantities, Ŷdir
drt𝜅

 and N̂dir
drt

 , given by

(2.3)fdrt = 100
ndrt

N̂dir
drt

, d = 1,… ,D, r = 1,… ,R, t = 1,… , T,

Table 2  Percentiles of the sample sizes and sampling fractions in the 2020.4−2021.4 SLFS data

q
0

q
0.1

q
0.2

q
0.3

q
0.4

q
0.5

q
0.6

q
0.7

q
0.8

q
0.9

q
1

SS 6 34 56 82 104 121 143 175 218 297 1,013
SF (in %) 0.091 0.202 0.249 0.290 0.350 0.407 0.469 0.538 0.652 0.811 1.779

Table 3  Employed men and women by occupation sector in the SLFS of 2021.4

Occupation sector OC1 OC2 OC3 OC4 OC5 OC6 OC7

Men Total 11,023 31,816 29,101 12,720 31,845 27,798 63,984
Proportion 0.6981 0.3952 0.6311 0.3172 0.3803 0.5083 0.9058

Women Total 5,191 44,518 17,947 28,116 48,398 29,021 6,694
Proportion 0.3019 0.6048 0.3689 0.6828 0.6197 0.4917 0.0942
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Fig. 1 (left) plots the Hájek estimates of the proportion of men who were employed for the 
SLFS of 2021.4. The estimated proportions are sorted by occupation sector and province, 
so that the aggregated data file, at time period t = 5 , is organized into 7 occupation sec-
tors and 52 provinces. The dotted line y = 0.5 , that corresponds to the equal distribution 
between employed men and women, is added. It can be seen that there are main occupa-
tions for which a higher proportion of employed men are expected to be found. Again, 
categories OC1 and OC7 stand out. Figure 1 (center) confirms it definitively. Compared 
to Table 3, these estimates follow the same trend as the sample data. However, they are 
too inaccurate in terms of a SAE problem. In fact, the coefficients of variation (CV) of the 
Hájek estimator take really large values when the sample size is small, decreasing as it 
increases, as can be seen in Fig. 1 (right). Moreover, they have been calculated assuming 
unbiasedness (see Morales et al. (2021), Chap. 3), which gives them an additional advan-
tage. The proposed SAE methodology will allow, without assuming unbiasedness in the 
error estimation, to reduce the variability of the Hájek estimates. Indeed, we will provide 
comparable error measures that will be lower than the CVs of the Hájek estimator for small 
and moderate sample sizes.

As an extreme value in terms of the CV of the Hájek estimates, we should mention 
Melilla and the OC6 category, with an estimated male ratio of 0.10 and a standard devi-
ation close to 0.095. However, its sample size is 10 and, therefore, not large enough to 
provide accurate direct estimates. This observation has been removed from Fig. 1 (right) 
for aesthetics.

To overcome the lack of precision of the Hájek estimator, we will consider auxiliary 
information, hierarchical structures and model-based predictors, which are the ones that 
drive our research. It must be said that national statistical offices have censuses and/or 
administrative files, so they are able to use auxiliary variables measured without error. 
Nevertheless, the access is often restricted, so the scientific community is forced to fit 
measurement error models or to use estimates for the aggregated auxiliary information 
as population values. As for the former, measurement error models are rather sophis-
ticated because they are not LMMs and their study should be investigated elsewhere. 
For more information, Hariyanto et al. (2018) provides a comprehensive and up-to-date 
account of these models in the context of SAE.

(2.4)
̂
Y
dir

drt𝜅
=

Ŷdir
drt𝜅

N̂dir
drt

=

∑
j∈sdrt

wdrtjydrt𝜅j
∑

j∈sdrt
wdrtj

, 𝜅 = 1, 2.

Fig. 1  Hájek estimates of the proportion of employed men (left–center) by OC category and CVs (right) 
sorted by sample size. Data from the SLFS of 2021.4
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In our research, the selected auxiliary variables are Hájek estimates of the proportion of 
individuals in Udrt that belong to the categories of the following factors:

Age group, with 3 categories: between 16 and 30 years (age3–1), between 30 and 50 
years (age3–2) and over 50 years (age3–3).
Citizenship, with 2 categories: Spanish (cit1) and not Spanish (cit2).
Education, with 4 categories: primary or less (edu1), basic secondary education (edu2), 
advanced secondary education (edu3) and higher education, such as university (edu4).
Working hours, with 2 categories: full-time (work1) and part-time work (work2).
Professional status, with 5 categories: self-employed (st1), cooperative or family busi-
ness (st2), public (st3) and private (st4) sector salaried employee and others (st5).

The set of categories of each factor is exhaustive, so the estimated proportions sum one. 
Based on their socioeconomic meaning, we have limited to 11 auxiliary variables defined 
at the level of the Udrt subsets. Particularly, we have removed age3–2, cit2, edu2, work2 
and st5. First of all, cit1 and work1 are complementary to cit2 and work2, respectively, 
so the choice of the former or the latter is of little interest. As for age3–2, it represents 
the intermediate category, so we consider it more informative to include the age variables 
that account for the two edge groups, which to some extent also applies to edu2. Finally, 
we dropped st5, defined as “others”, for being the most ambiguous variable to account for 
professional status.

For the sake of accuracy, we jointly use data from the last five SLFSs to estimate the 
covariates for each quarter and the population sizes Ndrt used to calculate the DSI values 
in (2.2). Therefore, the effects of the variances of the covariate means and population sizes 
in the properties of the prediction procedure are considered negligible. This allows for an 
approximate 5-fold increase in available data and reduces temporal variability. In simula-
tion experiments in Sect. 4 we empirically verify that this does not lead to underestimating 
the final variability. As an example, the vector of covariates for t = 1 (last quarter of 2020) 
is estimated using the SLFS data from 2019.4 to 2020.4, both surveys included. Table 4 
compares the quartiles of the variances of the Hájek estimates of the selected auxiliary 
variables with those of the response variable.

All area-level variables being proportions, it is safe to say that the variability of the 

covariates is significantly lower than that of ̂Y
dir

drt1
 and close to zero. In addition, the eleva-

tion factors are the inverses of the inclusion probabilities, which are deterministic, after 
a calibration process whose randomness is minimal. Therefore, the population sizes esti-
mated as sums of elevation factors have negligible variability. In order to take advantage 
of these auxiliary data to refine the estimation of the proportion of men and women who 
are employed in each occupation sector, and to obtain the DSI predictions by province and 
time period, Sect. 3 details the FH3 model.

3  FH3 Model‑Based Statistical Methodology

3.1  Model

This section describes a three-fold Fay–Herriot (FH3) model. It is worth recall that the FH3 
model for the SAE of domain linear indicators has recently been introduced by Marcis et al. 
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(2023). Therefore, we have adapted their methodology, being our contribution the prediction 
of DSIs and related inference issues. Here, the response variable is the Hájek estimator of the 
proportion of men in each estimation domain Udrt , defined in (2.1). The FH3 model is defined 

in two steps, with the simplified notation ydrt =
̂
Y
dir

drt1
 and �drt = Ydrt1 . The first step starts from 

the sampling model, indicating that ydrt is an unbiased estimator of �drt , i.e.

where the error variances are assumed to be known.
The selection of �2

drt
 is worthy of comment. In practice, we use the generalized variance 

function (GVF) method to calculate �2
drt

 . For this purpose, a regression model is fitted to the 
direct estimates of the design-based variance of ydrt , �̂�

dir,2

drt
 , obtained in advance from the unit-

level survey data. See e.g. Remark 2.3 in Morales et  al. (2021). Following Section 16.4 in 
Morales et al. (2021), we define the log-linear model

where the �drt ’s are i.i.d. N(0, �2
A
) and 𝜎2

A
> 0 . Intuitively, b1 is expected to be positive and 

b2 negative. The final �2
drt

 equals the variance values predicted by the GVF model (3.2), i.e.

where the factor exp(�̂�2
A
∕2) is the usual bias correction term in a log-linear regression anal-

ysis to prevent underestimation. This allows for the smoothing of the direct estimates �̂�dir,2

drt
.

In a second step, a linking model is constructed assuming a hierarchical linear relationship 
between �drt and a row vector xdrt of p auxiliary variables, i.e.

where � is a p × 1 row vector of regression parameters, u1,d ∼ N(0, �2
1
) , u2,dr ∼ N(0, �2

2
) , 

u3,drt ∼ N(0, �2
3
) and 𝜎2

1
, 𝜎2

2
, 𝜎2

3
> 0 are variance parameters. We further assume independ-

ence between errors and random effects.
The FH3 model is a linear mixed model that can be expressed in the single form

For � = (�1, �2, �3) = (�2
1
, �2

2
, �2

3
) , the REML log-likelihood function is

where the column and diagonal operators define the vectors and matrices

(3.1)
ydrt = 𝜇drt + edrt, edrt ∼ N(0, 𝜎2

drt
), 𝜎2

drt
> 0, d = 1,… , r = 1,… ,R, t = 1,… , T,

(3.2)log(�̂�dir,2

drt
) = b0 + b1ydrt + b2ndrt + 𝜀drt,

(3.3)𝜎2
drt

= exp(�̂�2
A
∕2) ⋅ exp

(
b̂0 + b̂1ydrt + b̂2ndrt

)
,

(3.4)�drt = xdrt� + u1,d + u2,dr + u3,drt, d = 1,… , r = 1,… ,R, t = 1,… , T ,

(3.5)
ydrt = xdrt� + u1,d + u2,dr + u3,drt + edrt, d = 1,… ,D, r = 1,… ,R, t = 1,… , T .

lreml(�) = −
DRT − p

2
log 2� +

1

2
log |X�X| − 1

2
log |V| − 1

2
log |X�V−1X| − 1

2
y�Py,

X = col
1≤d≤D

(
col

1≤r≤R
(
col

1≤t≤T(xdrt)
))
, Ve = diag

1≤d≤D
(
diag
1≤r≤R

(
diag
1≤r≤R

(�2
drt
)
))
,

V =�2
1
diag
1≤d≤D

(1RT1
�
RT
) + �2

2
diag
1≤d≤D

(
diag
1≤r≤R

(1T1
�
T
)
)
+ �2

3
IDRT + Ve,

y = col
1≤d≤D

(
col

1≤r≤R
(
col

1≤t≤T(ydrt)
))
, P = V−1 − V−1X(X�V−1X)−1X�V−1,
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and 1m and Im denote the m × 1 vector of ones and the m × m identity matrix, respectively. 
The REML estimators of the variance components, �̂�1 , �̂�2 and �̂�3 , are obtained by maximiz-
ing lreml(�) . We apply the Fisher-scoring algorithm with updating equation

where S = S(�) = (S1, S2, S3)
� is the score vector and F = F(�) =

(
Fab

)
a,b=1,2,3

 is the Fisher 
information matrix. For a, b = 1, 2, 3 , the components of S and F are

where

To estimate � and to predict u = (u�
1
, u�

2
, u�

3
)� , where

we use the REML estimator of � and the REML-EBLUP of u , i.e.

where V̂ is obtained by plugging, V̂u = diag (�̂�2
1
ID, �̂�

2
2
IDR, �̂�

2
3
IDRT ) , Z = (Z1,Z2,Z3) , and

The EBLUP of �drt is �̂�drt = xdrt�̂ + û1,d + û2,dr + û3,drt , where �̂ and û are given in (3.7). 
Consequently, each �̂�drt contains area-level auxiliary information that will reduce the vari-

ance of the Hájek estimates ̂Y
dir

drt1
 without needing to increase the sample sizes.

3.2  Prediction of the Duncan Segregation Index

Let us assume that ydrt follows the FH3 model (3.5) and define udrt = (u1,d, u2,dr, u3,drt)
� , so 

that udrt ∼ NK(0,Vu,drt) , Vu,drt = diag (�2
1
, �2

2
, �2

3
) , � = (�2

1
, �2

2
, �2

3
, ) and K = 1 + R + RT  . 

Let us consider the domain target parameters

For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , the plug-in predictors of Sdrt and Sd.t are

For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , the marginal predictor (MP) of Sdrt is

(3.6)�(k+1) = �(k) + F−1(�(k))S(�(k)),

Sa =
�lreml

��a
= −

1

2
tr(PVa) +

1

2
y�PVaPy, Fab =

1

2
tr(PVaPVb),

V1 =
�V

��1
= diag

1≤d≤D
(1RT1

�
RT
), V2 =

�V

��2
= diag

1≤d≤D
(
diag
1≤r≤R

(1T1
�
T
)
)
, V3 =

�V

��3
= IDRT .

u1 = col
1≤d≤D(u1,d), u2 = col

1≤d≤D
(
col

1≤r≤R(u2,dr)
)
, u3 = col

1≤d≤D
(
col

1≤r≤R
(
col

1≤t≤T(u3,drt)
))
,

(3.7)�̂ = (X�V̂
−1
X)−1X�V̂

−1
y, û = V̂uZ

�V̂
−1(

y − X�̂
)
,

Z1 = diag
1≤d≤D

(
1RT

)
, Z2 = diag

1≤d≤D
(
diag
1≤r≤R

(1T )
)
, Z3 = IDRT .

(3.8)Sdrt =

������

Ndrt�drt
∑R

i=1
Ndit�dit

−
Ndrt(1 − �drt)

∑R

i=1
Ndit(1 − �dit)

������
.

(3.9)Ŝin
d.t

=
1

2

R�

r=1

Ŝin
drt
, Ŝin

drt
=

������

Ndrt�̂�drt
∑R

i=1
Ndit�̂�dit

−
Ndrt(1 − �̂�drt)

∑R

i=1
Ndit(1 − �̂�dit)

������
.
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where

and edrt = ydrt − �drt = ydrt − xdrt� − u1,d − u2,dr − u3,drt.
The empirical marginal predictor (EMP) of Sdrt is

The following algorithm gives a Monte Carlo approximation of Ŝemp
drt

 . 

1. Fit the model to the data (ydrt, xdrt) and obtain the REML estimates of �̂ and �̂.
2. For � = 1,… , L , do 

(a) Draw u(�)
1,d

∼ N(0, �̂�2
1
) , u(�)

2,dr
∼ N(0, �̂�2

2
) , u(�)

3,drt
∼ N(0, �̂�2

3
) , u(�)

drt
= (u

(�)

1,d
, u

(�)�

2,dr
, u

(�)�

3,drt
)� 

and set u(L+�)
drt

= −u
(�)

drt
 , d = 1,… ,D , r = 1,… ,R , t = 1,… , T .

(b) For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , calculate Ŝemp
drt

= Âdrt∕B̂d , where 

 and e(�)
drt

= ydrt − xdrt�̂ − u
(�)

1,d
− u

(�)

2,dr
− u

(�)

3,drt
.

The EMP of Sd.t is

The best predictor of Sdrt , Ŝ
bp

drt
= E[Sdrt|y] , is also a potentially attractive alternative: theo-

retically it has a minimum MSE within the class of unbiased predictors. However, its com-
putation requires to approximate an integral in ℝK , with K = 43 in the application to real 
data. This is computationally intensive and the main reason why we consider that the EBP 
approach, under the proposed FH3 model, is not an useful alternative for predicting DSIs 
in academia or in the production of public statistics.

Sect. 4 includes results from several simulation experiments that have been carried out 
to investigate and compare the behaviour of the plug-in predictor and the EMP in real data 
based scenarios. Section A of Supplementary Material describes the steps of the simula-
tions and presents additional results based on artificial data.

Ŝ
mp

drt
= E[Sdrt|ydrt] =

∫
ℝ3 Sdrt(udrt, �)f (ydrt|udrt)f (udrt) dudrt

∫
ℝ3 f (ydrt|udrt)f (udrt) dudrt

=
Adrt(ydrt, �,�)

Bd(ydrt, �,�)
,

Adrt(ydrt, �,�) =∫
ℝ3

Sdrt(udrt, �) exp
{
−

1

2�2
drt

e2
drt

}
f (udrt)dudrt,

Bd(ydrt, �,�) =∫
ℝ3

exp
{
−

1

2�2
drt

e2
drt

}
f (udrt)dudrt

(3.10)Ŝ
emp

drt
=

Adrt(ydrt, �̂, �̂)

Bd(ydrt, �̂, �̂)
, d = 1,… ,D, r = 1,… ,R, t = 1,… , T.

Âdrt =
1

2L

2L∑

�=1

Sdrt(u
(�)

drt
, �̂) exp

{
−

e2
drt

2𝜎2
drt

}
, B̂d =

1

2L

2L∑

�=1

exp
{
−

e2
drt

2𝜎2
drt

}

(3.11)Ŝ
emp

d.t
=

1

2

R∑

r=1

Ŝ
emp

drt
, d = 1,… ,D, r = 1,… ,R, t = 1,… , T.
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3.3  Parametric Bootstrap Estimation of the MSE of the Small Area Estimates

Under the FH3 model, we have adapted the parametric bootstrap procedure proposed by 
Marcis et al. (2023) to estimate the MSE of �̂�drt and Ŝd.t ∈ {Ŝin

d.t
, Ŝ

emp

d.t
} . The steps of our 

algorithm are described below. 

1. Fit the FH3 model to the data (ydrt, xdrt) and obtain the REML estimates of �̂ and �̂.
2. Repeat B times ( b = 1,… ,B ): 

(a) For d = 1,… ,D ,  generate  u
∗(b)

1,d
∼ N(0, �̂�2

1
) .  Construct  the vector 

u
∗(b)

1
= col

1≤d≤D(u
∗(b)

1,d
).

(b) For d = 1,… ,D , r = 1,… ,R , generate u∗(b)
2,dr

∼ N(0, �̂�2
2
) . Construct the vector 

u
∗(b)

2
= col

1≤d≤D( col1≤r≤R(u
∗(b)

2,dr
)).

(c) For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , generate u∗(b)
3,drt

∼ N(0, �̂�2
3
) . Construct 

the vector u∗(b)
3

= col
1≤d≤D( col1≤r≤R( col1≤t≤T(u

∗(b)

3,drt
))).

(d) For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , generate e∗(b)
drt

∼ N(0, �2
drt
) . Construct 

the vector e∗(b) = col
1≤d≤D( col1≤r≤R( col1≤t≤T(e

∗(b)

drt
))).

(e) Calculate the bootstrap vectors 

(f) For d = 1,… ,D , calculate the bootstrap quantities 

(g) Fit the FH3 model to the bootstrap vector y∗(b) . Calculate �̂
∗(b) , �̂

∗(b) , the EBLUP 
�̂∗(b) , with components �̂�∗(b)

drt
 , and the predictors Ŝ∗(b)

d.t
 , d = 1,… ,D , t = 1,… , T .

3. Output: For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , calculate 

Remark 3.1 The auxiliary variables of the FH3 model must be known at domain level, from 
censuses or administrative records, as they must be free of sampling errors to reduce the 
variability of the small area estimates. In practice, however, this is not the norm, leading 
researchers to resort to strategies that allow estimating such area-level variables with low 
variability. A common technique is to use data from many consecutive surveys to increase 
sample sizes in the direct estimation of the auxiliary information.

If the explanatory variables have non-negligible sampling errors, the algorithm described 
above could lead to underestimates of the actual MSE of �̂�drt and Ŝd.t ∈ {Ŝin

d.t
, Ŝ

emp

d.t
} . As a 

solution to this potential problem, we propose to modify Step 2 (e) so as to include the 
potencial non-negligible variability of xdrt . Having said that, it should be clarified that the 
proposed modification does assume the uncorrelation between the columns of xdrt and 

y∗(b) = �∗(b) + e∗(b), �∗(b) = X�̂ + Z1u
∗(b)

1
+ Z2u

∗(b)

2
+ Z3u

∗(b)

3
.

S
∗(b)

d.t
=

1

2

R�

r=1

S
∗(b)

drt
, S

∗(b)

drt
=

������

Ndrt�
∗(b)

drt
∑R

i=1
Ndit�

∗(b)

dit

−
Ndrt(1 − �

∗(b)

drt
)

∑R

i=1
Ndit(1 − �

∗(b)

dit
)

������
.

(3.12)mse∗(�̂�drt) =
1

B

B∑

b=1

(
�̂�
∗(b)

drt
− 𝜇

∗(b)

drt

)2

, mse∗(Ŝd.t) =
1

B

B∑

b=1

(
Ŝ
∗(b)

d.t
− S

∗(b)

d.t

)2

.
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between xdrt and ydrt . Nonetheless, correlation relationships are expected to be even lower. 
In addition, if the first column of xdrt represents the intercept, the modification does not 
apply.

Let us rewrite Step 2 (e) as follows: 

2. (e) For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , k = 1,… , p , generate v∗(b)
drtk

∽ N(0, �2
drtk

) , 
where �2

drtk
 is the design-based variance of the k-th component of xdrt = (xdrt1,… , xdrtp) 

and p is the dimension of xdrt . This must be skipped for the intercept. If we use Hájek 
estimates, �2

drtk
 can be replaced by the direct estimate of the design-based variance of 

xdrtk , d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , k = 1,… , p . Now, we calculate the modi-
fied bootstrap vectors 

 where v∗(b) = col
1≤d≤D( col1≤r≤R( col1≤t≤T(v

∗(b)

drt
))) and v∗(b)

drt
= (v

∗(b)

drt1
,… , v

∗(b)

drtp
) ∈ ℝ

p.

4  Real Data Simulation Experiments

Based on the application to real data, two simulation experiments have been performed. 
The real set of area-level auxiliary variables, the variance of the direct estimator and 
the fitted model, described around Table 9, have been used to simulate the target vari-
able, ydrt , d = 1,… ,D , r = 1,… ,R , t = 1,… , T  . At this regard, ydrt represents the direct 
estimator of the proportion of employed men in province d, occupation sector r and time 
period t. The main reason to present the simulation results first is to learn for the appli-
cation to real data.

Simulation 1 investigates the performance of the Fisher-Scoring algorithm (3.6) and 
studies the behaviour of the DSI predictors. Simulation 2 deals with the MSE boot-
strap estimation and provides a recommendation on the number of replicates to be used. 
Thus, the behaviour of the estimators and predictors is studied under the assumption 
that the fitted model is the true one. In this context, it is important to bear in mind that 
there are D = 52 provinces, R = 7 occupation sectors and T = 5 time periods. So there 
are 1820 estimation domains defined by the crosses of province, occupation sector and 
time period. The purpose is to predict sex segregation in provinces and time periods, 
which is equivalent to 260 DSI-domains. To complete the empirical analysis, Section A 
of Supplementary Material describes the steps of the simulation processes and presents 
additional results based on artificial data.

4.1  Simulation 1

The goal of Simulation 1 is to investigate the behaviour of the fitting algorithm and the 
performance of the predictors of Sdrt and Sd.t , d = 1,… ,D , r = 1,… ,R , t = 1,… , T  . We 
run Simulation 1 with I = 103 iterations and assume the same scenario as in the appli-
cation to the real data. The bias and error measures that we will calculate are defined 
below. For a model parameter 𝜏 = 𝛽k , k = 0, 1,… , 7 or 𝜏 = 𝜎2

l
 , l = 1, 2, 3 , we calculate

y∗(b) = �∗(b) + e∗(b), �∗(b) = (X + v∗(b))�̂ + Z1u
∗(b)

1
+ Z2u

∗(b)

2
+ Z3u

∗(b)

3
,



Model‑Based Estimation of Small Area Dissimilarity Indexes:…

1 3

and for a predictor Ŝd.t ∈ {Ŝin
d.t
, Ŝ

emp

d.t
} , d = 1,… ,D , t = 1,… , T  , we calculate

The corresponding relative performance measures (in %) are

Table  5 (top) and Table  6 (left) present the results for the model parameter estimators. 
As can be noticed, for the � coefficients the biases are small but the root-MSEs (RMSE) 
are not, implying that the variance is the main component of the MSE. Such variability is 
probably attributable to the relationship between the number of estimation domains and the 

BIAS(𝜏) =
1

I

I∑

i=1

(𝜏(i) − 𝜏), RMSE(𝜏) =

(
1

I

I∑

i=1

(𝜏(i) − 𝜏)2
)1∕2

,

ABIAS =
1

DT

D∑

d=1

T∑

t=1

|||
1

I

I∑

i=1

(Ŝ
(i)

d.t
− S

(i)

d.t
)
|||, RMSE =

1

DT

D∑

d=1

T∑

t=1

(
1

I

I∑

i=1

(Ŝ
(i)

d.t
− S

(i)

d.t
)2
)1∕2

.

RBIAS(𝜏) = 100
BIAS(𝜏)

𝜏
, RRMSE(𝜏) = 100

RMSE(𝜏)

𝜏
,

RBIASdt = 100
BIASdt

Sd.t
, RRMSEdt = 100

RMSEdt

Sd.t
, Sd.t =

1

I

I∑

i=1

S
(i)

d.t
,

ARBIAS =
1

DT

D∑

d=1

T∑

t=1

|RBIASdt|, RRMSE =
1

DT

D∑

d=1

T∑

t=1

RRMSEdt.

Table 5  Performance of REML estimators of � assuming that the explanatory variables are deterministic 
(top) and taking into account their sampling errors (bottom)

�
0

�
1

�
2

�
3

�
4

�
5

�
6

�
7

True −0.3272 0.1424 0.0894 −0.3043 0.8887 0.2054 0.6203 0.1346
BIAS −0.0013 −0.0004 0.0013 −0.0006 0.0014 −0.0003 0.0138 −0.0002
RMSE 0.0437 0.0181 0.0384 0.0189 0.0341 0.0292 0.1860 0.0208
RBIAS −0.3868 −0.3052 1.5000 −0.2087 0.1572 −0.1289 2.2300 −0.1662
RRMSE 13.3463 12.6809 42.9240 6.2156 3.8364 14.2279 29.9924 15.4232

�0 �1 �2 �3 �4 �5 �6 �7

BIAS −0.0015 0.0008 0.0041 0.0016 −0.0002 0.0008 0.0009 0.0006
RMSE 0.0423 0.0190 0.0385 0.0181 0.0345 0.0279 0.1938 0.0204
RBIAS −0.4502 0.5937 4.6093 0.5370 −0.0188 0.3713 0.1466 0.4299
RRMSE 12.9333 13.3777 43.1294 5.9561 3.8827 13.5834 31.2484 15.1388

Table 6  Performance of REML 
estimators of the variances 
assuming that the explanatory 
variables are deterministic (left) 
and taking into account their 
sampling errors (right)

�2

1
�2

2
�2

3
�2

1
�2

2
�2

3

True 0.0116 0.0022 0.0011 0.0116 0.0022 0.0011
BIAS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RMSE 0.0024 0.0002 0.0001 0.0024 0.0002 0.0001
RBIAS −0.0076 0.1650 −0.0237 −0.0657 −0.2959 0.0196
RRMSE 20.792 10.701 11.360 20.3584 10.6609 11.5938
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number of parameters estimated by the model, DRT∕(8 + 3) = 165.45 , which is not large 
enough to activate the asymptotic properties of the ML estimators. For the estimators of 
the variances, the RBIAS is small and the RRMSE does not present notably large values 
either, with the worst result being the one corresponding to �̂�2

1
.

Table 7 (left) provides the absolute and relative performance measures for the EMPs 
and the plug-in predictors of the DSI values. We use L = 500 iterations in the integral 
approximation.

For the plug-in predictor, the average across DSI-domains of the absolute relative bias 
(ARBIAS) is close to 11% and the RRMSE average (RRMSE) does not exceed 28%, 
which is quite satisfactory. We therefore use the plug-in predictor in the application to real 
data. In the case of the EMP, the ARBIAS is greater than 56% and the RRMSE is close to 
80%. At this regard, it should be noted that the EMP is not obtained exactly, only approxi-
mately, because the integrals that appear in its expression cannot be calculated analytically. 
Approximations are generated by the antithetic Monte Carlo method and calculations are 
subject to the number of iterations, partly justifying its poor results. Moreover, good theo-
retical properties are attributed to the best predictor, not to marginal or empirical versions.

Up to this point, we have assumed that the area-level auxiliary variables are determinis-
tic. This assumption leads to the results in Table 5 (top) and Tables 6-7 (left). However, it 
has already been mentioned in Remark 3.1 that if the auxiliary information does not come 
from censuses or administrative registers, but from estimates, it is potentially likely to add 
more variability to the small domain estimates. For this reason, we have also considered in 
the real data simulations the scenario in which the area-level auxiliary variables have non-
negligible sampling errors. For each iteration i = 1,… , I , the new area-level explanatory 
variables are generated as follows:

v
∗(i)

drtk
∽ N(0, �2

drtk
) , d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , k = 1,… , p , and �2

drtk
 is the 

design-based variance of the k-th component of xdrt = (xdrt1,… , xdrtp).
Table 5 (bottom) and Table 6 (right) present the results for the model parameter esti-

mators under scenario (4.1). At this point, to compare differences between both scenar-
ios (the deterministic scenario and scenario (4.1)), the error measures must be interpreted 
in absolute terms to avoid small variations caused by changes in the denominators when 
relativizing. Having said that, it is concluded that there are practically no changes in the 
performance of the Fisher-Scoring algorithm when adding the random terms v∗(i)

drtk
 . This 

is further evidence for the validity of our methodology. In addition, and as can be seen in 
Table 7 (right), generate the area-level explanatory variables according to scenario (4.1) 
leads to virtually no changes in the performance measures of the predictors Sd.t . This is 
another argument in favour of the fact that the variability they add by estimating them with 

(4.1)

X + v∗(i), where v∗(i) = col
1≤d≤D( col1≤r≤R( col1≤t≤T(v

∗(i)

drt
))), v

∗(i)

drt
= (v

∗(i)

drt1
,… , v

∗(b)

drtp
) ∈ ℝ

p,

Table 7  Performance of 
predictors of S

d.t assuming that 
the explanatory variables are 
deterministic (left) and taking 
into account their sampling 
errors (right)

Plug-in EMP Plug-in EMP

ABIAS 0.0509 0.3242 0.0504 0.3423
RMSE 0.0997 0.3491 0.1004 0.3503
ARBIAS 11.1862 56.4842 11.7298 57.284
RRMSE 27.6593 79.3712 27.9553 78.6337
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5 consecutive periods of the SLFS is minimal. Taking all of the above into consideration, 
we deduce that it is not necessary to propose a measurement error model for the problem at 
hand, i.e., the estimation of DSIs in small areas based on explanatory variables estimated 
with five consecutive SLFSs.

4.2  Simulation 2

Simulation 2 studies the behavior of the parametric bootstrap estimator of the MSE of the 
plug-in predictor of Ŝin

d.t
 , denoted by msedt , d = 1,… ,D , t = 1,… , T . The real MSE of Ŝin

d.t
 is 

taken from Simulation 1 and denoted by MSEdt , d = 1,… ,D , t = 1,… , T . It is assumed that 
the area-level auxiliary variables are deterministic. Since it is computationally more demand-
ing, we run Simulation 2 with I = 500 iterations. Moreover, as absolute measures are more 
difficult to interpret, we focus our study on relative measures. To do so, we first calculate

d = 1,… ,D , t = 1,… , T  . Then we define the relative performance measures (in %)

Figure 2 plots five boxplots of the relative biases, RBdt , and the relative root-MSEs, RREdt , 
d = 1,… ,D , t = 1,… , T  , for B = 50, 100, 150, 200, 300, 400 . The left boxplots show that 

Bdt =
1

I

I∑

i=1

(
mse

∗(i)

dt
−MSEdt

)
, REdt =

(
1

I

I∑

i=1

(
mse

∗(i)

dt
−MSEdt

)2
)1∕2

,

RBdt = 100
Bdt

MSEdt

, RREdt = 100
REd

MSEdt

, d = 1,… ,D, t = 1,… , T;

ARB =
1

DT

D∑

d=1

T∑

t=1

|RBdt|, RRE =
1

DT

D∑

d=1

T∑

t=1

RREdt.
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Fig. 2  Boxplots of RB
dt

 ’s (left) and RRE
dt

 ’s (right) for B = 50, 100, 150, 200, 300, 400

Table 8  Performance 
measures for 
B = 50, 100, 150, 200, 300, 400

B 50 100 150 200 300 400

ARB 1.2294 0.9633 1.1634 1.1067 1.1799 1.1213
RRE 9.5056 6.9331 7.1849 6.5066 5.6235 4.8295
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the relative biases do not decrease as the size of B increases, showing a slight positive 
bias around 1.2%. The right boxplots show that the relative root-MSEs are lower than 20% 
and decrease as B increases, achieving good results for values greater than or equal to 300 
resamples. Table  8 confirms it, with the averages of the absolute relative biases (ARB) 
stabilized around 1.2% and the averages of the relative root-MSEs (RRE) decreasing as B 
increases, but suggesting some stabilization around B = 300 iterations.

5  Prediction of Sex Occupational Segregation by Spanish Province

This section applies the developed SAE methodology to the SLFS data from 2020.4 to 
2021.4, both surveys included. We fit the FH3 model to all data, but we mainly focus on 
the statistical results for the latest available period to offer conclusions. The main reason is 
the proximity in time, which allows us to analyze the results closer to the present day, but 
also to value brevity. We recall that the response variable, ydrt , is the Hájek estimator of 
the proportion of men in the subset of employed people of province d, occupation sector r 
and time period t. The error variances �2

drt
 have previously been predicted according to the 

GVF method (3.3), after fitting model (3.2). The precision of the estimates of the auxiliary 
information has been improved by using a time window of five quarters, which includes the 
current quarter and the previous four quarters. By virtue of Table 4 and the results of the 
model-based simulations in Sect. 4, the sampling error of their estimation is assumed to be 
negligible. Even so, Remark 3.1 has been taken into account to provide bootstrap estimates 
of the MSE of the DSI plug-in predictions.

5.1  Model Selection and Model Parameter Estimation

In order to fit the FH3 model to each ydrt , those auxiliary variables that were not signifi-
cant at 5% were recursively removed. At this regard, our results and conclusions are sub-
ject to the available information and therefore, with other territorial divisions, occupational 
sectors or time periods, the final set of explanatory variables may vary. Nevertheless, the 
main objective here is to illustrate how to fit a simple but informative model to reduce the 
variability of the DSI estimates. As a result, age3–1, age3–3, edu3 and st3 were eliminated 
because its REML estimate was not significantly different from zero at 5%. The failure to 
consider age groups suggests that sex segregation is persistent over time, despite the age of 
the worker.

Table 9  Regression parameters of the final FH3 model

�
0 �cit1

1
�edu1
2

�edu4
3

�work1
4

�st1
5

�st2
6

�st4
7

Estimate −0.3272 0.1424 0.0894 −0.3043 0.8887 0.2054 0.6203 0.1346
SE 0.0441 0.0191 0.0384 0.0181 0.0350 0.0280 0.1925 0.0205
p-value 0.0000 0.0000 0.0201 0.0000 0.0000 0.0000 0.0013 0.0000
LB 95% −0.4136 0.1050 0.0140 −0.3398 0.8201 0.1505 0.2430 0.0945
UB 95% −0.2408 0.1798 0.1647 −0.2689 0.9574 0.2603 0.9976 0.1747
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Table 9 presents the REML estimate of � , together with the asymptotic standard errors 
(SE) and p-values to test H0 ∶ �k = 0 , k = 0, 1,… , 7 . It also contains the lower (LB) and 
upper (UB) bounds of the 95% asymptotic confidence intervals (CI).

The effect of the explanatory variables derived from Table 9 is consistent with a socio-
economic interpretation. Once the rest of the variables are fixed, their sign indicates their 
contribution (positive or negative) to estimate the proportion of employed men by estima-
tion domain.

Regarding the model variances, we obtain �̂�2
1
= 0.0117 , �̂�2

2
= 0.0022 and �̂�2

3
= 0.0011 . 

At a 95% confidence level, the asymptotic CIs for the variances are

As they do not contain zero, it is justified to make further inferences based on the FH3 
model.

5.2  Model Validation

For the diagnosis analysis of the FH3 model, we consider the raw residuals, defined as

and the standardized residuals, defined by dividing by their own standard deviation. To 
analyse outliers, even though all standardized residuals move in a suitably short range close 
to 0, three boxplots are included in Fig. 3. From left to right, they are grouped according to 
time period, province and occupation sector. The last two boxplots use only data from the 
SLFS of 2021.4. We observe that: (1) the standardized residuals present an homogeneous 
pattern in terms of time period, (2) provinces have more notable influence, although none 
of them has a particularly anomalous behaviour, and (3) the Hájek estimates tend to over-
estimate occupational categories OC1, OC2, OC3 and OC7 because their boxes fall mostly 
in the positive half-plane. Another important result that can be inferred is the adequacy of 
the standardized residuals in terms of rank: they take values from − 3 to 2, with a single 
outlier, located in Melilla.

CI�2
1
= (0.0070, 0.0164), CI�2

2
= (0.0017, 0.0026), CI�2

3
= (0.0008, 0.0013).

(5.1)êdrt = ydrt − �̂�drt, d = 1,… ,D, r = 1,… ,R, t = 1,… , T ,
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Fig. 3  Boxplot of the standardized residuals
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5.3  Prediction of the Proportions of Employed Men

This section provides some results and maps to show the predicted proportions of men who 
are employed in each occupation sector by province and time period. To interpret them, let 
us recall that the aim of the area-level model-based predictors is not to reproduce the trend 
of the direct estimators, but to smooth them and provide more accurate results, relying on 
auxiliary information, complex correlation structures and data from other domains.

Figure 4 (left) plots the EBLUPs and the Hájek direct estimates of the proportion of 
employed men in the last quarter of 2021. The dotted line y = 0.5 is included to compare 
the distance between both approaches and the balanced distribution of the population. As 
desired, it can be seen that model-based predictions smooth the behaviour of the Hájek 
estimates, with atypically high and low proportions, and show a better predictive perfor-
mance. It is observed that the EBLUPs and the direct estimates follow the same trend, 
although the first ones are closer to y = 0.5 . Figure 4 (right) includes some boxplots of the 
EBLUPs and the Hájek direct estimates of the proportion of employed men, for each occu-
pation sector and the lastest time period SLFS2021.4. The boxes of the EBLUPs and the 
direct estimates follow the same pattern, although they are not completely identical.

To make a fair comparison of the relative error measures, we estimate the RRMSE of 
�̂�drt by dividing the squared root of the bootstrap estimate mse∗(�̂�drt) , defined in (3.12), by 
the Hájek estimate ydrt . Next, we run the bootstrap algorithm with B = 2000 resamples, 
taking into account Remark 3.1. More concretely, we estimate the RRMSEs of the EBLUP 
as follows:

Figure 5 (left) shows that, in a large percentage of estimation domains, the EBLUP has 
lower RRMSE than the design-based CV of the Hájek estimator.

Table  10 contains the deciles of the model-based estimates of the RRMSEs of the 
EBLUP proportions of employed men and CVs of the Hájek estimator for the 2021.4 SLFS 

(5.2)RRMSE(�̂�drt) =

√
mse∗(�̂�drt)

ydrt
, d = 1,… ,D, r = 1,… ,R, t = 1,… , T.
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Fig. 4  On the left, EBLUPs and direct estimates of the proportion of employed men. On the right, boxplots 
of the same quantities. Data from the SLFS of 2021.4
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data. It is obtained that the percentiles of the CVs prior to the median are lower, as they 
correspond to estimation domains with higher sample sizes, where direct estimates report 
reliable results. However, after the median, the CVs have higher percentiles than those of 
the RRMSEs of the EBLUP. The reason, again, is the sample size.

Similarly, the consistency of the EBLUP proportions of employed men is empirically 
checked in Fig.  5 (right) by plotting the estimated RMSE of the EBLUPs against the 
domain sample sizes. The design-based standard deviations of the Hájek estimator are also 
included to confirm what happens with the magnitude of the sample sizes. Since the sam-
ple sizes are highly variable in our estimation domains for the SLFS data, it is advisable to 
use model-based predictors instead of direct estimators. Under the model-based approach, 
the EBLUP also has some theoretical good properties, such as asymptotic unbiasedness. 
Overall, the proposed model performs satisfactorily, both in terms of the significance level 
of the estimated parameters and in the reduction of the CVs of the Hájek estimator when 
the sample sizes are small.

5.4  Prediction of Duncan Segregation Indexes

This section calculates the DSI plug-in predictions by province from 2020.4 to 2021.4. 
With a view to get an idea of the distribution of segregation by main occupation, Fig. 6 
plots the disaggregated DSI predictions for the SLFS of 2021.4. Based on these results, 
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Fig. 5  On the left, RRMSEs and design-based CVs. On the right, RMSEs and design-based standard devia-
tions (SD) sorted by sample size. Data from the SLFS of 2021.4

Table 10  Percentiles of sample sizes, RRMSEs of the EBLUP proportions of employed men and CVs of 
the Hájek estimator. Data from the SLFS of 2021.4

q
0

q
0.1

q
0.2

q
0.3

q
0.4

q
0.5

q
0.6

q
0.7

q
0.8

q
0.9

q
1

ndrt 6 30 57 81 101 118 142 172 211 294 956
RRMSE 0.0269 0.0466 0.0662 0.0779 0.0876 0.0974 0.1077 0.1285 0.1496 0.1868 0.3153
CV 0.0000 0.0291 0.0629 0.0773 0.0876 0.0985 0.1128 0.1267 0.1530 0.1872 0.3727
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categories OC2, OC6 and OC7 are the main contributors to the DSI. Thus, segregation is 
concentrated in two main groups: high-skilled scientific and intellectual jobs and tradition-
ally manual or low-skilled jobs. On the opposite direction are categories OC1 and OC4. 
For instance, directors and managers of public and private institutions and, in general, 
accountants, administrative and other office employees work in less sex-segregated jobs.

Given a province d and a time period t, if all main occupations contribute equally to the 
DSI values, there is a common average value sdt such that Sdrt = sdt , r = 1,… ,R , and

By comparing sdt with each Sdrt , r = 1,… ,R , we can illustrate the contribution of each 
main occupation to the provincial indicators. Since we have focused on 2021.4, it follows 
that t = 5 and the graphical analysis is restricted to this last quarter. In Fig. 6, the values 
ŝin
d5

 , calculated by replacing Sd.5 by Ŝin
d.5

 , are added in dashed blue. In terms of interpretation, 
an employment sector r with Ŝin

dr5
 far from the average contribution ŝin

d5
 adds up a lot when 

calculating the plug-in predictor Ŝin
d.t

 of province d. The latter is true for sectors OC2, OC6 
and OC7 and the opposite applies to OC1 and OC4. Results are, therefore, consistent with 
the previous findings.

Table 11 presents the provincial averages of the DSI plug-in predictions for t = 5 , i.e.

(5.3)Sd.t =
1

2

R∑

r=1

Sdrt =
1

2
Rsdt, sdt =

2Sd.t

R
.

(5.4)Ŝin
.r5

=
1

D

D∑

d=1

Ŝin
dr5

, r = 1,… ,R.
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Fig. 6  DSI estimates and average contributions. Data from the SLFS2S021.4

Table 11  Provincial average DSI 
values by main occupation

OC1 OC2 OC3 OC4 OC5 OC6 OC7

Ŝin
.r5

0.0110 0.1311 0.0194 0.0362 0.0396 0.0396 0.1596



Model‑Based Estimation of Small Area Dissimilarity Indexes:…

1 3

Among the main occupations with highest DSIs, OC2 and OC7 stand out. On the opposite 
side, we have found OC1. However, the average measures presented therein overshadow 
the provincial variability of segregation. This can also be seen in Fig. 6.

Figure  7 (left) colours Spain according to the DSI predictions for the fourth quarter of 
2021. So, it allows us to analyse how sex segregation differs across provinces. We observe 
that the largest discrepancies are found in Teruel, Albacete and Álava, among others. Indeed, 
between 30 and 35% of the employed population of Teruel would have to change their occu-
pational sector to achieve a uniform distribution by province. The cause of the high sex segre-
gation in Álava is due to the mining industry. Historically, male labour has always been more 
predominant in this sector, including plant and machinery operators and assemblers, as well 
as the construction and mining industries. In the other highlighted provinces, sex segregation 
mainly occurs in the category OC2, which covers highly skilled scientific and intellectual jobs.

There is no clear spatial pattern in the sense that it is not possible to say that certain 
larger regions of the Iberian Peninsula are more prone to sex segregation than others. Fur-
thermore, the distribution among provinces with similar demographic and socioeconomic 
conditions is, in general, homogeneous. In terms of labour equality, the high predicted val-
ues for many provinces reveal the magnitude of the problem: the labour market disadvan-
tages women and the occupational distribution is clearly non-homogeneous. According to 
our research, public and private institutions should implement measures of work equality 
and promote the inclusion of men and women in those sectors in which their presence is 
minority.

As for the error measures, we calculate the parametric bootstrap estimator of Ŝin
d.t

 , 
mse∗(Ŝin

d.t
) , given by (3.12). We generate B = 2000 bootstrap resamples, taking into account 

Remark 3.1. The estimated RRMSE of Ŝin
d.t

 is obtained by dividing the RMSE by the DSI 
estimates, i.e.

Fig. 7 (right) shows the bootstrap estimates of the RRMSE for the DSI predictions, which 
enables us to visually quantify the precision of our results. It can be concluded that most 

(5.5)RRMSE(Ŝin
d.t
) =

√
mse∗(Ŝin

d.t
)

Ŝin
d.t

, d = 1,… ,D, t = 1,… , T.
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Fig. 7  DSI estimates (left) and RRMSE (right). Data from the SLFS of 2021.4
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provinces are accompanied by RRMSEs below 25%, which is quite acceptable in the SAE 
setup. Most RRMSEs are lower than 20% and even 10% in several domains. For more 
information, the DSI preditions and corresponding RRMSE estimates for all DSI-domains, 
i.e., by province and time period, are included in Section B of Supplementary Material.

Recalling the findings in Figs. 6, 8 (left) shows the DSI estimates for the OC2 category. 
Looking further into this main occupation, the province with the highest contribution to the 
DSI is Cáceres. As expected, the left-hand plots in Figs. 7 and 8 follow a similar pattern 
and the OC2 category is crucial for the Spanish sex segregation.

Figure 8 (right) maps the bootstrap estimates of the RRMSE for the OC2 category, using 
data from the SLFS2021.4. At first glance, we conclude that our predictions are sufficiently 
accurate in terms of an SAE problem, with RRMSE below 30% in most provinces, exceed-
ing it in isolated cases. Comparing the right-hand plots in Figs. 7 and 8, higher RRMSEs 
are achieved if the target is to predict segregation in the OC2 category. This is in line with 
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10-15 %
15-20 %
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25-30 %
>30 %
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Fig. 8  DSI estimates (left) and RRMSE (right) for OC2. Data from the SLFS of 2021.4

Fig. 9  Average contributions. 
Data from the SLFS of 2021.4 4-5 %

5-7 %
7-10 %

Average contribution



Model‑Based Estimation of Small Area Dissimilarity Indexes:…

1 3

the theoretical findings, as the variability involved in predicting an average is expected to 
be smaller than the one involved in predicting each of its summands, potentially increasing 
the prediction error of a particular category. For more details, Section B of Supplementary 
Material contains the results of all DSI preditions for the OC2 category, together with the 
RRMSE estimates.

Figure 9 plots the average contributions ŝin
d5

 , d = 1, ...,D . Consequently, it is possible to 
identify the provincial average trend, highlighting those provinces whose performance is 
positive. Specifically, 29 provinces have an average contribution of between 5 and 7% and 
13 contribute between 7 and 10%. The remaining ones report values below 5%. This leads 
to the conclusion that, on average, its contribution to the Spanish sex segregation is lower 
than that of the other provinces and, therefore, inequality is lower.

Taking advantage of the available temporal information, Fig. 10 (left) shows the map 
of the DSI differences between the last quarter 2021.4 and the first quarter 2020.4, i.e. 
Ŝin
d.5

− Ŝin
d.1

 , d = 1,… ,D . We have observed that segregation shows appreciable changes 
over the observation period, with a maximum decrease close to 7% units and a maximum 
increase bordering on 10%. However, several provinces in the center of Spain do not seem 
to be affected by any change. In absolute terms, the situation has worsened in 17 provinces, 
improved in 7 and remained stable in 26 (between −0.01 and 0.01). In Madrid and Barce-
lona, which are the most populated regions, no significant changes have been observed.

Figure  10 (right) shows the differences Ŝin
d25

− Ŝin
d21

 , d = 1,… ,D . As far as OC2 cat-
egory is concerned, the evolution of segregation moves in the range mentioned above for 
the average case, but the situation varies slightly for many provinces. Even so, the changes 
observed over 2021 do not refer to a sufficiently long period of time to capture the results 
of potentially applicable policy decisions, and therefore they are not statistically significant. 
Nevertheless, our model provides relevant advances in the study of the temporal evolution 
of sex segregation in SAE situations. Consequently, the proposed methodology could be 
applied in other studies with data from longer time periods, such as years or decades.

DSI evolution
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Fig. 10  Evolution of the DSI values over the horizon 2020.4–2021.4
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6  Conclusions

The DSI is a relevant statistical indicator used in many sociological studies to measure 
segregation. It can be calculated based on data from administrative records or surveys. In 
the latter case, we can estimate it directly, which perform adequately if the sample size 
in the target population is large enough. Nevertheless, in a more comprehensive study, it 
should be calculated at a more disaggregated demographic and territorial level. In such 
cases, direct estimators are no longer reliable and we have to resort to indirect model-based 
approaches. In this way, we can take advantage of the auxiliary information embedded in 
the models and, as a consequence, obtain more accurate predictions.

At this point, multilevel linear mixed models are quite flexible. Namely, the advantages 
of the FH3 model over the existing literature are, on the one hand, being an area model, 
which facilitates the availability of auxiliary information. On the other hand, its level of 
hierarchy is adapted to the nature of our data. Nested error regression models may also be 
appropriate, but the lack of census data and administrative registers would limit their pre-
dictive capability to that of ANOVA-type models. We very much doubt that such models 
would perform better. In addition, the current model has smoothed the results of the direct 
estimator and provided estimates of the proportions in the interval [0, 1]. Having said that, 
there is room for improvement and it would be interesting to develop fitting algorithms 
for new FH models, nested at three hierarchical levels and adapted to the modelling of 
proportions.

The FH3 model is adapted to a population hierarchically structured in provinces, occu-
pation sectors and time periods. Thus, we can model the direct estimator of the proportion 
of men (or women) in each labour sector and subsequently incorporate auxiliary informa-
tion to obtain more efficient predictors. We have considered the plug-in predictor and the 
EMP. We have not implemented the EBP because it requires to approximate integrals in 
ℝ

43 , which is computationally unfeasible. The plug-in predictor is easily calculable, but the 
EMP requires to approximate integrals on ℝ3 , so it is less efficient. We have investigated 
the behaviour of these predictors in simulation studies based on real and artificial data. As 
a result, the plug-in predictor seems more interesting, as it also has a small RMSE. In addi-
tion, we have considered scenarios in which the auxiliary variables have small sampling 
errors and found that the changes in the final results are minimal. Therefore, we do not rec-
ommend fitting measurement error models in our case study. To estimate MSEs, we apply 
a parametric bootstrap method and advise to use B = 300 iterations as a good compromise 
between accuracy and computational time.

In the application to the SLFS of 2020.4−2021.4, we have only used the plug-in predic-
tor. We also present results for the DSI components and, in particular, for the OC2 cate-
gory, related to scientific and intellectual technicians and professionals. The plug-in predic-
tors have lower MSE than the direct Hájek estimators. We have mapped the Spanish DSIs 
and most of the predictions have estimated RRMSE below 25%, which is a fairly good 
accuracy for an SAE problem. Finally, we have found which provinces and sectors are most 
affected by sex segregation and exemplified how it can be monitored over time.

To sum up, we believe that this work can be a valuable starting point for promoting 
SAE in sociological studies of current interest. As of today, this is particularly useful for 
addressing points 4, 5, 8, 9 and 10 of the Sustainable Development Goals (SDGs) set by 
the United Nations General Assembly (UNGA), designed in 2015 and to be achieved until 
2030.
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