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In the past, Eshelby’s method for a single inclusion in an infinite medium has been extended to periodic heterogeneous materials
for the evaluation of global properties. In this work, the extended Eshelby’s method is used for the evaluation of local fields such as
strain and stress in periodic heterogeneous materials characterized by unit cells containing multiple fibres or voids with different
geometric and mechanical properties. The proposed method provides Fourier coefficients that are used to construct partial sums
of three-dimensional trigonometric Fourier series of local fields. These partial sums exhibit unwanted effects such as the Gibbs
phenomenon. In order to attenuate these effects, the behaviour of iterated Fejér partial sums and means of the Riesz summability
method is investigated. Extensive numerical examples on both a multiphase composite and a material with voids are provided: in
the examples, partial sums, iterated Fejér partial sums, and Riesz means for the local stress are compared with FEM solutions. The
numerical comparison shows Riesz means perform better than partial sums and iterated Fejér partial sums and are effective in
approximating elastic local fields in periodic heterogeneous solids.

1. Introduction

The Fourier series are widely used in engineering [1, 2]. In
the mechanics of solids and structures, Fourier series are fre-
quently adopted for finding numerical and analytic solutions
[3–5]. Geometric, mechanical properties, and local fields in
heterogeneous materials with periodic microstructure seem
to be naturally suited to being represented with periodic
functions, but Fourier series and relevant partial sums exhibit
large oscillations, known as Gibbs phenomenon, at the jump
discontinuity of the field they represent. It is noted that
the subdivision of the domain in smaller subdomains, as
adopted in the Finite Element Method (FEM), favours the
representation of jump discontinuity so that one can find
many FEM applications [6, 7] in many scientific disciplines.
Many authors [8, 9] have successfully used partial sums of
Fourier series for determining global (averaged) properties of
periodic composite materials. Specifically, Eshelby’s method
introduced for a single inclusion in an infinite medium has
been extended to the periodic heterogeneous materials for
the evaluation of global properties. Few works [10, 11] have

tried to use Fourier series for determining local fields such
as strain and stress distribution in phases of composite
materials and have observed anomalous large oscillations
due to the Gibbs phenomenon. Recently, Caporale et al. [12]
have applied summability methods in order to reduce the
Gibbs phenomenon in unidirectional composites charac-
terized by a simple geometry. In this work, the extended
Eshelby’s method is used for determining the Fourier coeffi-
cients of the local strain in periodic heterogeneous materials
with more complex microstructure and summability meth-
ods are applied in order to reduce the Gibbs phenomenon.
Section 2 deals with Eshelby’s method extended to periodic
materials for the evaluation of local fields. The means of the
summability methods adopted in this work are briefly de-
scribed in Section 3. Extensive numerical examples on both
a multiphase composite and a material with voids are pro-
vided in Section 4: in these examples, partial sums, iterated
Fejér partial sums, and Riesz means for the local stress are
compared with solutions provided by accurate FEM analy-
ses.
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Figure 1: (a) Boundary of the unit cell and adopted coordinate system; (b) unit cell containing several inclusions.

2. Partial Sums of Fourier Series via Eshelby’s
Method Extended to Periodic Solids

The consideration is focused on an infinite periodic hetero-
geneous material, i.e., an infinitely extended solid that can
be obtained by the infinite repetition of a representative unit
cell along the 𝑥1-, 𝑥2-, and 𝑥3-axes of a Cartesian coordinate
system. Figure 1(a) shows the boundary of the unit cell and
the adopted coordinate system. The centre of the unit cell
coincides with origin of the coordinate system. Figure 1(b)
shows the unit cell with several inclusions, which may be
fibres, particles, voids, defects, and so on. The dimensions of
the unit cell along the 𝑥1-, 𝑥2-, and 𝑥3-axes of the coordinate
system are denoted by 2𝑎1, 2𝑎2, and 2𝑎3, respectively. In
this work, it is assumed that 𝑎1 = 𝑎2 = 𝑎3 = 𝜋, but the
proposed formulation can be easily extended to unit cell with
arbitrary dimensions. Because of periodicity, entities defining
the geometry, the mechanical properties, and the local fields
(such as strain and stress) of the considered material are
defined by periodic functions. Here, Fourier series represen-
tations are adopted for the above-mentioned variables. Next,
Z and N denote the set of integers and nonnegative integers,
respectively, and i = √−1. The geometric and mechanical
properties are defined by the following fourth-order tensor:

C (x) = ∑
𝜁∈Z3

Ĉ (𝜁) 𝑒i𝜁⋅x (1)

where x = (𝑥1, 𝑥2, 𝑥3) ∈ T3 with T fl [−𝜋, 𝜋], 𝜁 = (𝜁1, 𝜁2, 𝜁3)
and 𝜁 ⋅ x = 𝜁1x1 + 𝜁2x2 + 𝜁3x3. Tensor C(x) also represents
the local elasticity of the considered material. The Fourier
coefficient Ĉ(𝜁) is

Ĉ (𝜁) = 1(2𝜋)3 ∫T 3 C (x) 𝑒−i𝜁⋅x𝑑x (2)

Closed-form expressions of the Fourier coefficients (2) for
different types of heterogeneous materials can be found in
[11]. The first aim of this work is to determine local fields,
such as strain and stress, in heterogeneous materials subject
to given loads in the framework of linear elasticity. Therefore,
the considered strain 𝜀 is the infinitesimal strain tensor, which
is equal to the symmetric part of the displacement gradient;

and the considered stress 𝜎 is the Cauchy stress tensor. Both 𝜀
and 𝜎 are second-order symmetric tensors and are functions
of the spacial variable x, which represents a point of the unit
cell. Under these assumptions, 𝜀 and𝜎 appear as local fields in
contrast with global entities (such as the overall properties of
the material) which are averages over the volume of the unit
cell. The local strain is given by

𝜀 (x) = ∑
𝜁∈Z3

𝜀̂ (𝜁) 𝑒i𝜁⋅x (3)

where the Fourier coefficient 𝜀̂(𝜁) is
𝜀̂ (𝜁) = 1(2𝜋)3 ∫T 3 𝜀 (x) 𝑒−i𝜁⋅x𝑑x (4)

The average of the strain (3) over the unit cell is

𝜀0 = 𝜀̂ (0) = 1(2𝜋)3 ∫T 3 𝜀 (x) 𝑑x (5)

Therefore, the local strain is represented as the addition of the
average strain 𝜀0 and the periodic part 𝜀𝑝 of the local strain:

𝜀 (x) = 𝜀0 + 𝜀𝑝 (x) (6)
with

𝜀𝑝 (x) = ∑
𝜁∈Z3, 𝜁 ̸=0
𝜀̂𝑝 (𝜁) 𝑒i𝜁⋅x (7)

and
𝜀𝑝 (𝜁) = 𝜀 (𝜁) ∀𝜁 ̸= 0 (8)

Next, local strain and stress are evaluated in a periodic hetero-
geneous material subject to a given average strain 𝜀0. Accord-
ing to Eshelby’s method, a homogeneous material equivalent
to the considered periodic heterogeneous material is taken
into account. The equivalence is made possible by imposing
on the homogeneous material an eigenstrain 𝜀∗(x), which
is the unknown of the problem. The relation imposing this
equivalence is the following consistency condition:

C (x) : (𝜀0 + 𝜀𝑝 (x)) = C(𝑅) : (𝜀0 + 𝜀𝑝 (x) − 𝜀∗ (x))∀x ∈ T
3

(9)

where C(𝑅) is the constant elasticity of the above-mentioned
homogeneous material. The eigenstrain admits the Fourier
series representation
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𝜀∗ (x) = ∑
𝜁∈Z3

𝜀∗ (𝜁) 𝑒i𝜁⋅x (10)

In order to solve (9), coefficients 𝜀̂𝑝(𝜁) for 𝜁 ̸= 0 are expressed
in terms of 𝜀̂∗(𝜁) through the following relation obtained by
solving the equilibrium equation of the homogeneous mate-
rial with elasticity C(𝑅) subject to a periodic eigenstrain 𝜀∗(x)
[8]:

𝜀̂𝑝 (𝜁) = Ŝ𝑝 (𝜁) : 𝜀̂∗ (𝜁) (11)

Taking into account (11), the consistency condition (9) be-
comes

∑
𝜁∈Z3

Ĉ (𝜁) 𝑒i𝜁⋅x : (𝜀0 + ∑
𝜂∈Z3,𝜂 ̸=0

Ŝ𝑝 (𝜂) : 𝜀∗ (𝜂) 𝑒i𝜂⋅x)
= C(𝑅) :
(𝜀0 + ∑

𝜁∈Z3,𝜁 ̸=0
Ŝ𝑝 (𝜁) : 𝜀∗ (𝜁) 𝑒i𝜁⋅x − ∑

𝜁∈Z3

𝜀̂∗ (𝜁) 𝑒i𝜁⋅x)
∀x ∈ T

3

(12)

Relation (12) provides a square system of equations in the
unknowns 𝜀∗(𝜁) if the infinite Fourier series in (12) are
truncated. After solving this system imposing the truncation|𝜁𝑖|, |𝜂𝑖| ≤ 𝑛 (𝑖 = 1, 2, 3) with 𝑛 ∈ N, 𝑛 < ∞, and 𝜂 ̸= 0,
all the coefficients 𝜀̂∗(𝜁) such that |𝜁𝑖| ≤ 𝑛 (𝑖 = 1, 2, 3) with𝑛 ∈ N and 𝑛 < ∞ are known [11]. From (8) and (11),
the Fourier coefficients 𝜀̂𝑝(𝜁) and 𝜀̂(𝜁) are also known for
𝜁 ̸= 0 and |𝜁𝑖| ≤ 𝑛 (𝑖 = 1, 2, 3) with 𝑛 ∈ N and 𝑛 < ∞.
Finally, it is possible to build the following nth rectangular
partial sum (𝑛 ∈ N) for the strain (given an integrable func-
tion𝑓(𝑥)with 𝑥 ∈ R, the 𝑛th partial sum of the Fourier series
of 𝑓(𝑥) is denoted by 𝑠𝑛𝑓(𝑥) in mathematical literature. This
convention is also used in this work, where the nth rectangu-
lar partial sum of the Fourier series of the strain tensor 𝜀(x)
is denoted by 𝑠𝑛𝜀(x). Both 𝜀(x) and 𝑠𝑛𝜀(x) are second-order
tensors and the 𝑖𝑗-component of 𝑠𝑛𝜀(x) is denoted by 𝑠𝑛𝜀𝑖𝑗(x).
Similar notations can be found in scientific literature for
other operators: for example, in [8], 𝐹𝜀(𝜁) denotes a Fourier
coefficient of 𝜀(x) and its 𝑖𝑗-component is denoted by𝐹𝜀𝑖𝑗(𝜁)):

𝑠𝑛𝜀 (x) = ∑
|𝜁1|≤𝑛

∑
|𝜁2|≤𝑛

∑
|𝜁3|≤𝑛

𝜀̂ (𝜁) 𝑒i𝜁⋅x (13)

Formula (13) represents the following definition:

𝑠𝑛𝜀𝑖𝑗 (x) = ∑
|𝜁1|≤𝑛

∑
|𝜁2|≤𝑛

∑
|𝜁3|≤𝑛

𝜀𝑖𝑗 (𝜁) 𝑒i𝜁⋅x (14)

where the scalar 𝑠𝑛𝜀𝑖𝑗(x) is the nth rectangular partial sum
of the 𝑖𝑗-component of the local strain tensor 𝜀(x). Next, the
expressions of the local stress 𝜎(x) in periodic heterogeneous
material subject to a given average strain 𝜀0 are provided. In
Eshelby’smethod, the local stress𝜎(x) can be evaluated on the
heterogeneous material or on the equivalent homogeneous
material. The following relation provides the local stress on
the equivalent homogeneous material:

𝜎 (x) = C(𝑅) : (𝜀0 + 𝜀𝑝 (x) − 𝜀∗ (x)) ∀x ∈ T
3 (15)

A first approximation of the local stress 𝜎(x) is obtained by
replacing the periodic strain and eigenstrain in (15) with the
corresponding partial sums. The resulting stress is

𝑠𝑛𝜎 (x) = C(𝑅) : (𝑠𝑛𝜀 (x) − 𝑠𝑛𝜀∗ (x)) ∀x ∈ T
3 (16)

where

𝑠𝑛𝜀∗ (x) = ∑
|𝜁1|≤𝑛

∑
|𝜁2|≤𝑛

∑
|𝜁3|≤𝑛

𝜀∗ (𝜁) 𝑒i𝜁⋅x (17)

Rewriting formula (16) in index notation, one obtains

𝑠𝑛𝜎𝑖𝑗 (x) = 𝐶(𝑅)𝑖𝑗𝑘𝑙 : (𝑠𝑛𝜀𝑘𝑙 (x) − 𝑠𝑛𝜀∗𝑘𝑙 (x)) ∀x ∈ T
3 (18)

where the scalar 𝑠𝑛𝜎𝑖𝑗(x) is the nth rectangular partial sum of
the 𝑖𝑗-component of the local stress tensor 𝜎(x). In Section 4,
the partial sum stress (16) is plotted for two different types of
periodic solids and is comparedwith the solution provided by
the Finite Element Method (FEM).This comparison between
partial sum stress and FEM solution shows that the partial
sum stress is not adequate to describe accurately the local
stress in heterogeneous solids: in fact, theGibbs phenomenon
occurs at the jump discontinuity of the local field and does
not vanish by increasing 𝑛 in the rectangular partial sums.
In order to overcome this difficulty, means of summability
methods are introduced in Section 3.

3. Means of the Summability Methods for
Local Fields in Periodic Solids

Summability methods are known to provide means with con-
vergence properties better than those of the original partial
sums, such as (13). In the last decade, many authors [13–17]
have demonstrated the convergence properties of the means
of the partial sums of the multidimensional trigonometric
Fourier series. An aim of this work is to show the behaviour
of the summability means in an area of the mechanics of
solids. Next, Fejér and Riesz means together with the iterated
Fejér partial sums [18] for the local strain are described and
then used for the evaluation of local stress in periodic hetero-
geneous materials. In-depth details on convergence proper-
ties of the summability means adopted in this work can be
found in [17].Thenth ℓ𝑞-Fejérmean (𝑛 ∈ N) of the local strain
𝜀(x) is defined by

𝜎𝑞𝑛𝜀 (x) = ∑
𝜁∈Z3 ,‖𝜁‖𝑞≤𝑛

(1 − ‖𝜁‖𝑞𝑛 ) 𝜀̂ (𝜁) 𝑒i𝜁⋅x (19)

Analogously to Section 2, the left-hand side of (19) is a
second-order tensor, whose 𝑖𝑗-component is 𝜎𝑞𝑛𝜀𝑖𝑗(x) and
represents the nth ℓ𝑞-Fejér mean of ij-component of the local
strain tensor 𝜀(x). A generalization of the mean (19) is the
following nth ℓ𝑞-Riesz mean (𝑛 ∈ N) of the local strain 𝜀(x):

𝜎𝑞,𝛼𝑛 𝜀 (x) = ∑
𝜁∈Z3,‖𝜁‖𝑞≤𝑛

(1 − (‖𝜁‖𝑞𝑛 )𝛾)𝛼 𝜀̂ (𝜁) 𝑒i𝜁⋅x (20)

where (in thiswork, the conceptual difference betweenpartial
sums and summability means is highlighted by the adoption
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Table 1: Geometrical and mechanical properties of the fibres of the multiphase composite.

𝑖 𝑥(𝑖)2 / (2𝜋) 𝑥(𝑖)3 / (2𝜋) 𝜌𝑖/ (2𝜋) 𝐸𝑖 (GPa) ]𝑖
1 0.12 0.12 0.09 5.0 0.2
2 0.35 0.16 0.10 4.5 0.2
3 0.20 0.35 0.08 4.0 0.2
4 −0.12 0.12 0.09 5.0 0.2
5 −0.35 0.16 0.10 4.5 0.2
6 −0.20 0.35 0.08 4.0 0.2
7 −0.12 −0.12 0.09 5.0 0.2
8 −0.35 −0.16 0.10 4.5 0.2
9 −0.20 −0.35 0.08 4.0 0.2
10 0.12 −0.12 0.09 5.0 0.2
11 0.35 −0.16 0.10 4.5 0.2
12 0.20 −0.35 0.08 4.0 0.2

of appropriate symbols. For example, 𝑠𝑛 is used to denote
partial sums (see formula (13)) and 𝜎𝑞,𝛼𝑛 is used for Riesz sum-
mability means (see formula (20)), as also done inmathemat-
ical literature [17]) 0 ≤ 𝛼 < ∞ and 1 ≤ 𝛾 < ∞. Finally, the
iterated Fejér partial sum of the Fourier series (3) is

𝜎𝑛𝜀 (x) = ∑
|𝜁1|≤𝑛

∑
|𝜁2|≤𝑛

∑
|𝜁3|≤𝑛

(1 − 󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨𝑛 + 1)(1 −
󵄨󵄨󵄨󵄨𝜁2󵄨󵄨󵄨󵄨𝑛 + 1)

⋅ (1 − 󵄨󵄨󵄨󵄨𝜁3󵄨󵄨󵄨󵄨𝑛 + 1) 𝜀 (𝜁) 𝑒i𝜁⋅x
(21)

As done at the end of Section 2, approximations of local stress
are obtained by replacing periodic strain and eigenstrain in
(15) with the relevant Riesz means or iterated Fejér partial
sums. Therefore, the Riesz approximation of the local stress
is

𝜎𝑞,𝛼𝑛 𝜎 (x) = C(𝑅) : (𝜎𝑞,𝛼𝑛 𝜀 (x) − 𝜎𝑞,𝛼𝑛 𝜀∗ (x)) ∀x ∈ T
3 (22)

and the iterated Fejér partial sum stress is

𝜎𝑛𝜎 (x) = C(𝑅) : (𝜎𝑛𝜀 (x) − 𝜎𝑛𝜀∗ (x)) ∀x ∈ T
3 (23)

In Section 4, the approximations (22) and (23) are plotted for
two different types of periodic solids and are compared with
the solution provided by FEM.

4. Results and Discussion

The methods proposed in the previous sections are applied
here to calculate the local stress in two different types of
heterogeneousmaterials: the first type is a compositematerial
containing long fibres with various geometrical and mechan-
ical properties; the second type is a material containing
circular voids with various sizes. In both applications, the
behaviour of the partial sums (of the Fourier series) is
first investigated, observing that these are not adequate to
represent the local fields especially at the jump discontinuities
of the local fields. The improvement provided by the iterated
Fejér partial sums is also shown. Finally, the Riesz means are
used, showing that they exhibit better convergence properties
than those of the original partial sums of Fourier series.

4.1. Multiphase Composite. In the first numerical example, a
unidirectional composite with unit cell containing multiple
fibres with various sizes and various mechanical properties is
considered. The origin of the Cartesian coordinate system is
located at the centre of the unit cell.The lengths of the unit cell
are given by 2𝑎1 = 2𝑎2 = 2𝑎3 = 2𝜋; the unit of the lengths is
not specified as the next results do not depend on it.The fibres
are infinitely long right circular cylinders whose axes are
parallel to the 𝑥1-axis of the coordinate system. The unit cell
contains 𝑁𝑓 = 12 fibres. The generic fibre and its volume are
denoted byΩ𝑖 for 𝑖 = 1, . . . , 𝑁𝑓. The intersection of a generic
volume Ω𝑖 with plane 𝑥1 = 0 is a circle with radius 𝜌𝑖 and
position vector of centre denoted by x(𝑖), as shown in Figure 2
representing the intersection of a unit cell with the plane𝑥1 = 0. Centres x(𝑖) = (0, 𝑥(𝑖)2 , 𝑥(𝑖)3 ) and radii 𝜌𝑖 of fibres Ω𝑖 for𝑖 = 1, . . . , 12 are reported in Table 1. It is assumed that the unit
cell is symmetric with respect to the coordinate planes: thus,|𝑥(𝑖+𝑗)𝑘 | = |𝑥(𝑖)𝑘 | for 𝑖 = 1, 2, 3, 𝑗 = 3, 6, 9, and 𝑘 = 1, 2, 3. x(𝑖+𝑗)
for 𝑖 = 1, 2, 3 is the position vector of the centres of the fibres
in the volume characterized by −𝜋 ≤ 𝑥2 ≤ 0 and 0 ≤ 𝑥3 ≤ 𝜋
for 𝑗 = 3 and the volume characterized by −𝜋 ≤ 𝑥2 ≤ 0 and−𝜋 ≤ 𝑥3 ≤ 0 for 𝑗 = 6. Matrix and fibres are linear elastic and
isotropic; the interface between matrix and fibres is perfect.
Young’s modulus of the matrix is denoted by 𝐸0 and is equal
to one GPa; Young’s modulus of the generic fibre Ω𝑖 for 𝑖 =1, . . . , 12 is denoted by 𝐸𝑖. Poisson’s ratio of the matrix is ]0
and is equal to 0.35. Poisson’s ratio of the generic fibre Ω𝑖 for𝑖 = 1, . . . , 12 is denoted by ]𝑖.The geometrical andmechanical
properties adopted for the fibres of the multiphase composite
considered in this first example are reported in Table 1. It is
noted that the considered composite is unidirectional and
now the previous three-dimensional series (such as (13), (20),
and (21)) applied to unidirectional composites reduce to two-
dimensional series by imposing 𝜁1 = 0.

In the following, the multiphase composite is subject to
an average strain 𝜀0𝑖𝑗 = (𝛿𝑖1𝛿𝑗3 + 𝛿𝑖3𝛿𝑗1)/2, where 𝜀0𝑖𝑗 is the𝑖𝑗-component of the tensor 𝜀0 and 𝛿𝑖𝑗 is the Kronecker delta.
Figure 3 shows a three-dimensional surface, whose points are(𝑥2, 𝑥3, 𝑠110𝜎13(0, 𝑥2, 𝑥3)) for |𝑥2| ≤ 𝜋 and |𝑥3| ≤ 𝜋. The func-
tion 𝑠110𝜎13(0, 𝑥2, 𝑥3) is the approximation (16) of the local
stress 𝜎13 evaluated at the plane 𝑥1 = 0 for 𝑛 = 110. In the
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figures of this work, the stress is in GPa and “pi” in the axes
stands for 𝜋. Gibbs phenomenon is evident and large oscilla-
tions of the surface occur not only at the jump discontinuity
along the fibre-matrix interface but also in the interior of
the generic fibre and in some portion of the matrix. This
behaviour is confirmed in Figure 4, where approximations
(16) and (23) of the local stress 𝜎13 and 𝜎12 are plotted in dif-
ferent view sections for 𝑛 = 110. Specifically, Figures 4(a) and
4(b) show the plots of stress approximations 𝑠110𝜎13(0, 𝑥2, 𝑥3)

and 𝑠110𝜎12(0, 𝑥2, 𝑥3), respectively, for |𝑥2| ≤ 𝜋 and |𝑥3| ≤ 𝜋.
Figures 4(c) and 4(d) show the plots of 𝑠110𝜎13(0, 𝑥2, 𝜋/4)
and 𝑠110𝜎12(0, 𝑥2, 𝜋/4), respectively, against 𝑥2-axis for |𝑥2| ≤𝜋: in other words, the approximations are plotted along the
straight line segment with end points given by (0, −𝜋, 𝜋/4)
and (0, 𝜋, 𝜋/4). Figures 4(e) and 4(f) show the plots of stress
approximations 𝑠110𝜎13(0, 3𝜋/4, 𝑥3) and 𝑠110𝜎12(0, 3𝜋/4, 𝑥3),
respectively, against 𝑥3-axis for |𝑥3| ≤ 𝜋: these approxima-
tions are plotted along the straight line segment with end
points given by (0, 3𝜋/4, −𝜋) and (0, 3𝜋/4, 𝜋). The iterated
Fejér partial sum stress 𝜎110𝜎13(x) is also plotted in Figures
4(c) and 4(e): 𝜎110𝜎13(x) represents the approximation (23)
of the local stress 𝜎13 for 𝑛 = 110. A similar description
applies to𝜎110𝜎12(x), which is plotted in Figures 4(d) and 4(f).
In the figure legends of this work, the iterated Fejér partial
sum stress is denoted by “Iter. Fejér.” In Figures 4(c)–4(f), the
solutions provided by accurate FEM analyses are also plotted
for comparison purpose and are denoted by the acronym
“FEM” in the figure legends (FEM solution is plotted only for0 ≤ 𝑥2 ≤ 𝜋 in Figures 4(c) and 4(d)).

Figures 4(c)–4(f) show the iterated Fejér partial sum
stress behaves better than the partial sum stress given by
approximation (16). However, accuracy of the iterated Fejér
partial sum stress is not satisfactory in some portions of
the solids; see, e.g., the behaviour of the green curve in the
matrix phase of Figure 4(c). In order to obtain better approx-
imations of the local stress, means of summability meth-
ods have been introduced in Section 3 and are applied to the
considered multiphase composite in Section 4.1. Relevant re-
sults are shown in Figure 5, where Riesz approximations (22)
of the local stress 𝜎13 and 𝜎12 are plotted in different view
sections for 𝑛 = 110. The values 𝛼 = 𝛾 = 1.8 are adopted in
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Figure 4: Gibbs phenomenon in partial sums and iterated Fejér partial sums for the local stress of the multiphase composite: (a) partial sum
stress 𝑠110𝜎13(x); (b) partial sum stress 𝑠110𝜎12(x); (c) partial sum stress 𝑠110𝜎13(0, 𝑥2, 𝜋/4) and iterated Fejér partial sum 𝜎110𝜎13(0, 𝑥2, 𝜋/4)
along the 𝑥2-axis; (d) partial sum stress 𝑠110𝜎12(0, 𝑥2, 𝜋/4) and iterated Fejér partial sum 𝜎110𝜎12(0, 𝑥2, 𝜋/4) along the 𝑥2-axis; (e) partial sum
stress 𝑠110𝜎13(0, 3𝜋/4, 𝑥3) and iterated Fejér partial sum 𝜎110𝜎13(0, 3𝜋/4, 𝑥3) along the 𝑥3-axis; (f) partial sum stress 𝑠110𝜎12(0, 3𝜋/4, 𝑥3) and
iterated Fejér partial sum 𝜎110𝜎12(0, 3𝜋/4, 𝑥3) along the 𝑥3-axis.
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Figure 5: Riesz approximations of the local stress for the multiphase composite: (a) 𝜎∞,𝛼110 𝜎13(x); (b) 𝜎∞,𝛼110 𝜎12(x); (c) 𝜎∞,𝛼110 𝜎13(0, 𝑥2, 𝜋/4) along
the 𝑥2-axis; (d) 𝜎∞,𝛼110 𝜎12(0, 𝑥2, 𝜋/4) along the 𝑥2-axis; (e) 𝜎∞,𝛼110 𝜎13(0, 3𝜋/4, 𝑥3) along the 𝑥3-axis; (f) 𝜎∞,𝛼110 𝜎12(0, 3𝜋/4, 𝑥3) along the 𝑥3-axis.

the results of Section 4. Figures 5(a) and 5(b) show the plots
of 𝜎∞,𝛼110 𝜎13(0, 𝑥2, 𝑥3) and 𝜎∞,𝛼110 𝜎12(0, 𝑥2, 𝑥3), respectively, for|𝑥2| ≤ 𝜋 and |𝑥3| ≤ 𝜋. Figures 5(c) and 5(d) show
the plots of stress approximations 𝜎∞,𝛼110 𝜎13(0, 𝑥2, 𝜋/4) and

𝜎∞,𝛼110 𝜎12(0, 𝑥2, 𝜋/4), respectively, against 𝑥2-axis for |𝑥2| ≤ 𝜋.
Figures 5(e) and 5(f) show the plots of stress approximations𝜎∞,𝛼110 𝜎13(0, 3𝜋/4, 𝑥3) and 𝜎∞,𝛼110 𝜎12(0, 3𝜋/4, 𝑥3), respectively,
against 𝑥3-axis for |𝑥3| ≤ 𝜋. In Figures 5(c)–5(f), the
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Figure 6: Riesz longitudinal shear stress 𝜎∞,𝛼110 𝜎13(x) of the multiphase composite.
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Figure 7: Comparison between Riesz mean and FEM solutions: (a) 𝜎∞,𝛼110 𝜎13(x); (b) FEM approximation of 𝜎13.

solutions provided by accurate FEM analyses are also plotted
for comparison purpose (FEM solution is plotted only for0 ≤ 𝑥2 ≤ 𝜋 in Figures 5(c) and 5(d)). Figure 5 shows Riesz
means 𝜎∞,𝛼110 𝜎(x) greatly reduce the Gibbs phenomenon and
this also appears in Figure 6, which represents a three-
dimensional surface, whose points are (𝑥2, 𝑥3, 𝜎∞,𝛼110 𝜎13(0,𝑥2, 𝑥3)) for |𝑥2| ≤ 𝜋 and |𝑥3| ≤ 𝜋. Finally, Figure 7
illustrates a comparison between Riesz mean and FEM
approximations: Figure 7(a) shows the plot of the Riesz mean𝜎∞,𝛼110 𝜎13(0, 𝑥2, 𝑥3) for |𝑥2| ≤ 𝜋 and |𝑥3| ≤ 𝜋; Figure 7(b)
shows the FEM approximation of the local stress 𝜎13 for0 ≤ 𝑥2 ≤ 𝜋 and |𝑥3| ≤ 𝜋.

Figure 5 shows a good agreement between Riesz means
and FEM solution. Some critical points appear at the fibre-
matrix interface mainly where the maximum shear stress
occurs. In order to quantify a disagreement, the following
percentage error is evaluated:

𝑒 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜏𝐹𝐸𝑀,𝑚𝑎𝑥 − 𝜏𝑆,𝑚𝑎𝑥𝜏𝐹𝐸𝑀,𝑚𝑎𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 × 100 (24)

where 𝜏𝐹𝐸𝑀,𝑚𝑎𝑥 is the maximum shear stress provided by
FEM solution in a given previous figure and 𝜏𝑆,𝑚𝑎𝑥 is the
maximum value of the iterated Fejér partial sum stress or
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Figure 8: Partial sum stress 𝑠110𝜎13(x) for the longitudinal shear stress of the material with voids.

Table 2: Percentage error 𝑒 in critical points of the multiphase com-
posite.

Figure 4(c) Figure 5(c) Figure 4(d) Figure 5(d)𝜏𝑆,𝑚𝑎𝑥max (𝑠110𝜎13) max (𝜎∞,𝛼110 𝜎13) max (𝑠110𝜎12) max (𝜎∞,𝛼110 𝜎12)𝑒 0.40 0.85 12.64 3.93

the Riesz mean in the same figure where 𝜏𝐹𝐸𝑀,𝑚𝑎𝑥 has been
evaluated. For each of Figures 4(c), 4(d), 5(c), and 5(d), the
percentage error 𝑒 is reported in Table 2, where the value
adopted for 𝜏𝑆,𝑚𝑎𝑥 is also specified. For the shear stress 𝜎13,
the percentage error is below 1% and the error provided by
the iterated Fejér partial sum stress is less than the error
provided by the Riesz mean, whose overall behaviour is
better than iterated Fejér partial sum stress. For the shear
stress 𝜎12, the Riesz mean provides a percentage error equal
to 3.93%. This relatively high value of 𝑒 occurs at some
portions of the fibre-matrix interface, where the stress field
has a jump discontinuity; elsewhere the Riesz mean performs
better as shown in Figure 5. It is noted that the proposed Riesz
means reduce not only the Gibbs phenomenon but also the
percentage error: a greater value of 𝑛 in 𝜎𝑞,𝛼𝑛 𝜎(x) involves
smaller values of the percentage error 𝑒.Therefore, a relatively
high value of 𝑒 can be reduced by adopting larger values of 𝑛.
On the other hand, the partial sum stress (16) does not exhibit
this convergent behaviour at jump discontinuity.

Finally, an observation on the CPU memory usage is
provided. In order to evaluate the partial sum stress 𝑠𝑛𝜎(x) or
the Riesz mean 𝜎𝑞,𝛼𝑛 𝜎(x), one has to solve a system of 𝑛𝑆 scalar
equations in 𝑛𝑆 scalar unknowns, where 𝑛𝑆 = 2(𝑛+1)2 thanks
to polar symmetry and the symmetry of the unit cell with
respect to the 𝑥1−𝑥2 and 𝑥1−𝑥3 coordinate planes.Therefore,
the number of scalar equations is 𝑛𝑆 = 24642 for 𝑛 = 110.The
number of equations in each of the accurate FEM analyses
(which have been executed on half of the unit cell) is more

than 1.5 × 105: this value should not be compared with 𝑛𝑠 and
is provided with the sole intent to highlight the refinement
of the adopted FEM mesh and the accuracy of the relevant
results.

4.2. Material with Voids. In this section, the approximations
provided by partial sums, iterated Fejér partial sums, and
Riesz means are compared with FEM solutions for a material
containing voids. To this end, one should realizemethods and
models appropriate for a material with voids. In contrast with
this rigorous approach, one can assume that inclusions with
sufficiently small stiffness represent the voids. Following this
approach, this section considers a heterogeneous material
identical to that described in Section 4.1 except for 𝐸𝑖 = 10−6
GPa for 𝑖 = 1, . . . , 12. Fibres with such Young’s moduli
are practically voids embedded in the matrix. Figure 8 illus-
trates the Gibbs phenomenon in partial sum stress 𝑠110𝜎13(x).
Approximations provided by partial sums, iterated Fejér par-
tial sums, and FEMsimulations are comparedwith each other
in Figure 9. Finally, the improvements of Riesz means are
shown in Figures 10 and 11. For brevity, detailed descriptions
of results presented in this section are omitted: symbols
reported in captions and legends of Figures 8, 9, 10, and 11
have already been commented in Section 4.1.

5. Conclusions

In literature, methods based on Fourier series have been used
to determine the global (averaged) properties of composite
materials [8, 9, 19, 20]. On the other hand, few works based
on Fourier series have tried to evaluate the local fields,
such as the strain and stress distribution in the material
microstructure, and have found difficulties due to the Gibbs
phenomenon. In this work, summability methods of three-
dimensional trigonometric Fourier series are applied in order
to attenuate the Gibbs phenomenon occurring in local stress
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Figure 9: Gibbs phenomenon in partial sums and iterated Fejér partial sums for the local stress of the material with voids: (a) partial sum
stress 𝑠110𝜎13(x); (b) partial sum stress 𝑠110𝜎12(x); (c) partial sum stress 𝑠110𝜎13(0, 𝑥2, 𝜋/4) and iterated Fejér partial sum 𝜎110𝜎13(0, 𝑥2, 𝜋/4)
along the 𝑥2-axis; (d) partial sum stress 𝑠110𝜎12(0, 𝑥2, 𝜋/4) and iterated Fejér partial sum 𝜎110𝜎12(0, 𝑥2, 𝜋/4) along the 𝑥2-axis; (e) partial sum
stress 𝑠110𝜎13(0, 3𝜋/4, 𝑥3) and iterated Fejér partial sum 𝜎110𝜎13(0, 3𝜋/4, 𝑥3) along the 𝑥3-axis; (f) partial sum stress 𝑠110𝜎12(0, 3𝜋/4, 𝑥3) and
iterated Fejér partial sum 𝜎110𝜎12(0, 3𝜋/4, 𝑥3) along the 𝑥3-axis.
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Figure 10: Riesz approximations of the local stress for the material with voids: (a) 𝜎∞,𝛼110 𝜎13(x); (b) 𝜎∞,𝛼110 𝜎12(x); (c) 𝜎∞,𝛼110 𝜎13(0, 𝑥2, 𝜋/4) along
the 𝑥2-axis; (d) 𝜎∞,𝛼110 𝜎12(0, 𝑥2, 𝜋/4) along the 𝑥2-axis; (e) 𝜎∞,𝛼110 𝜎13(0, 3𝜋/4, 𝑥3) along the 𝑥3-axis; (f) 𝜎∞,𝛼110 𝜎12(0, 3𝜋/4, 𝑥3) along the 𝑥3-axis.
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Figure 11: Riesz longitudinal shear stress 𝜎∞,𝛼110 𝜎13(x) of the material
with voids.

field in periodic heterogeneous materials characterized by
unit cells containing multiple fibres or voids with different
geometric and mechanical properties. An advantage of the
proposed method is the easiness of modelling of the mate-
rial microstructure through the functions (2), which admit
closed-form expressions in many practical cases. Extensive
numerical results are provided: partial sums, iterated Fejér
partial sums, and Riesz means are compared with the solu-
tions provided by accurate FEM analyses. The results show
the effectiveness of the Riesz means, which have better con-
vergence properties than those exhibited by partial sums and
iterated Fejér partial sums.
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