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ABSTRACT In the field of cybersecurity, the ability to gather detailed information about target systems
is a critical component of the reconnaissance phase of cyber attacks. This phase, known as cybersecurity
reconnaissance, involves techniques that adversaries use to collect information vital for the success of
subsequent attack stages. Traditionally, reconnaissance activities include network scanning, sniffing, and
social engineering, which allow attackers to map the network, identify vulnerabilities, and plan their
exploits. In this paper, we explore a novel application of side-channel analysis within system-based
reconnaissance. Side-channel attacks, typically used to extract cryptographic keys or sensitive data through
indirect observations such as power consumption or electromagnetic emissions, are here repurposed for a
different kind of system intrusion. Specifically, we demonstrate how side-channel analysis and machine
learning techniques can classify running processes on a target system that are very popular in common IoT
applications. This approach is particularly concerning for IoT environments where devices often control
critical infrastructure or handle sensitive data. The ability to identify active applications can reveal operation
patterns, system behaviors, and potential vulnerabilities that traditional security measures may not protect
against. Moreover, in IoT scenarios, this information can be leveraged to orchestrate sophisticated attacks
targeting specific services or to exploit timing-based vulnerabilities when certain critical applications are
running. By categorizing this approach as a form of local system-based reconnaissance, we highlight its
potential to silently gather critical information about a system’s state. Such capabilities represent a significant
breach of privacy and provide attackers with the intelligence needed to carry out more targeted and effective
attacks. This research also underscores the evolving nature of reconnaissance techniques and the growing
risks of advanced side-channel cybersecurity methods.

INDEX TERMS Cybersecurity, side-channel, machine learning, measurements, vulnerability, application
profiling.
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I. INTRODUCTION
Protecting sensitive data and information has become a
critical priority in today’s cybersecurity landscape. The
feasibility of fraudulently acquiring information poses a
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precise and complex risk to the privacy of data exchanged
within an IT infrastructure. In the CIA triad—Confidentiality,
Integrity, and Availability—the latter two specifically con-
cern a system’s ability to ensure that exchanged data is not
manipulated and that data and services remain consistently
available to authorized users or systems. This is typically
achieved by implementing cryptographic hashing functions
to ensure integrity pillar and redundancy systems to guarantee
the availability of the information against DoS/DDoS attacks.
Confidentiality, on the other hand, ensures that information is
accessible only to those with proper authorization. To achieve
this, robust cryptographic algorithms are employed to secure
data during transfer and storage. Numerous attacks can put
the confidentiality property of an IT infrastructure at risk.
Among these are interception attacks, where a malicious user
intercepts the communication between two parties without
their knowledge, placing itself between the sender and the
receiver. Among the most well-known attacks are Man-in-
the-Middle and DNS spoofing attacks. Not only that, but an
attacker may also intercept and analyze the network traffic to
obtain valuable information.

However, despite ongoing advancements in information
security, side-channel vulnerabilities continue to pose a sig-
nificant threat. These attacks often play a crucial role during
the reconnaissance phase of a cyber attack, where attackers
gather indirect information, such as power consumption,
electromagnetic emissions, or execution times, to infer
confidential data that would otherwise remain protected [1],
[2]. Traditionally, side-channel attacks extract cryptographic
keys or other sensitive information from secure systems, such
as operating profiles of users and devices. The exponential
growth of IoT deployments in critical sectors like healthcare,
industrial automation, and smart cities has significantly
expanded the attack surface for side-channel exploits. IoT
devices are particularly susceptible to these attacks due to
several inherent characteristics: their resource-constrained
nature often prevents the implementation of robust security
measures, their physical deployment in accessible locations
makes them vulnerable to local attacks, and their predictable
behavioral patterns in automated systems can be exploited for
information leakage. Furthermore, the interconnected nature
of IoT ecosystems means that compromising a single device
through side-channel analysis could potentially provide
access to broader network infrastructure.

As an example, it is possible to exploit the information
emitted by a device, such as electromagnetic information,
to trace macro-information about the activity that the device
or the user is carrying out, raising privacy issues. This
type of attack is called a Side-Channel Attack (SCA),
representing the feasibility of exploiting information leaked
by a device whose physical nature depends on the hardware
and software implementation. A first classification divides
the side-channel attack according to the method. The first
one, the active mode, is when the attacker intentionally
induces controlled perturbations or faults into a target system

to extract sensitive information. On the contrary, in the
passive mode, the attacker passively observes the victim
system and exploits unintended information leakage from a
target system. Moreover, the nature of information depends
on the distances from the attacked device, including local,
proximity, and remote attacks. From this last classification,
electromagnetic fields, power consumption, and light and
thermal emissions may be exploited. For instance, in the [3],
the authors exploited the USB charger to analyze the
power consumption to guess which web pages are loaded
while a smartphone is in charging mode. Acquiring the
magnetic field, in [4] an autoencoder was developed for
online application recognition launched on mobile devices.
Similarly, the authors in [5] performed a CPU EMC analysis
to infer user activities on a laptop distinguishing from more
than 30 YouTube videos and 30 applications. In [6], experi-
ments were conducted to develop machine learning models
for classifying various sorting algorithms running on the
Arduino Leonardo device, using randomly generated integer
arrays of 100 elements with varying sizes. The possibility
of associating information, such as electromagnetic fields,
power consumption, vibrations, and more, to the respective
activity poses an obvious problem of privacy and security for
users and devices.

The integration of machine learning (ML) techniques
into side-channel analysis has revolutionized this field,
offering more powerful and sophisticated tools for both
attack and defense strategies [7]. ML algorithms excel at
identifying patterns and extracting meaningful information
from large, complex datasets, making them particularly well-
suited for analyzing the vast amounts of data generated during
side-channel measurements [8]. In the context of process
classification, ML techniques have significantly enhanced
several aspects:

Profiling: ML enables the creation of detailed profiles of
device behavior under different running processes, allowing
for more precise and efficient classification [9]. Feature
Extraction: Supervised learning techniques have improved
the ability to identify and extract relevant features from
side-channel measurements, often requiring fewer traces than
classical approaches [10]. Analysis of Unknown Processes:
Unsupervised learning techniques help analyze unfamiliar
system behaviors and identify characteristics of different
running processes without prior knowledge [11].

On the other hand, the application of ML to side-channel
data for process classification presents both challenges and
opportunities. While it enables more sophisticated analysis,
it also raises concerns about privacy and the potential for
unintended information leakage. Researchers are exploring
the use of ML not only for classification but also for
detecting and mitigating side-channel leakage, creating a
dynamic landscape where the balance between information
extraction and protection continues to evolve [12]. The
ongoing advancements in ML-based side-channel analysis
for process classification present novel implications for the
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cybersecurity community. The increasing sophistication of
these techniques necessitates the development of more robust
privacy measures, while also pushing the boundaries of
what’s possible in system monitoring and behavior analysis.
This dynamic interplay ensures that the field remains at
the forefront of cybersecurity research, with far-reaching
implications for the security and privacy of our digital
infrastructure.

In this context, starting from the previous experience of
the authors in side-channel experimental analysis [13], [14],
[15] and application of ML techniques [16], [17], [18], this
paper presents and compares several classification techniques
able to identify the applications running on a device
very popular in IoT applications. By leveraging machine
learning techniques as well as proper measurement and data
processing techniques, we show how we could identify,
among several operating scenarios, which application is
currently active based solely on characteristics observable
through side-channels. Such a capability introduces new risks
in cybersecurity, highlighting how even seemingly innocuous
information can be exploited during the reconnaissance phase
to gain sensitive insights into user activities. The remainder
of the paper is structured as follows: in the Related Works
section, a deep analysis of state of the art is made, and
the novelties of the proposed approach are claimed; in the
Methodology section, we detail the data collection process,
feature extraction, and classification techniques employed;
the Results section presents the experimental outcomes and
evaluates the effectiveness of our approach; finally, the
Conclusions section summarizes our findings and discusses
the implications of this work for future research in side-
channel attacks and cybersecurity.

II. RELATED WORKS
As said, Side-channel analysis has traditionally been asso-
ciated with attacks on cryptographic systems [19], [20],
[21]. These techniques exploit the physical implementation
of algorithms, leveraging unintentional information leakage
through various channels such as power consumption,
electromagnetic emissions, or timing variations [9], [22].
While initially focused on extracting cryptographic keys, the
application of side-channel analysis has expanded to include
a broader range of information inference tasks, including
process classification. The concept of side-channel analysis
was formally introduced by Paul Kocher in 1996 with his
seminal work on timing attacks [23]. Since then, various types
of side-channel techniques have been developed, including:

Power Analysis: Analyzing the power consumption of
a device during operations [24]. Electromagnetic Analysis:
Exploiting electromagnetic emissions from the device [25].
Timing Analysis: Exploiting variations in operation execu-
tion time [23]. Acoustic Analysis: Utilizing sound emissions
from devices [26]. Cache-based Analysis: Exploiting the
shared cache in modern processors [27]. The application
of machine learning techniques to side-channel attacks has

witnessed significant advancements in recent years, with
researchers exploring various approaches to enhance attack
methodologies and defensive strategies. This section provides
an overview of key contributions that have shaped the field,
detailing the data acquisition methods, attack or defense
orientation, and specific objectives of each approach. The
foundation for machine learning in side-channel attacks was
laid by seminal works such as that of Schindler et al. [28],
who introduced the concept of stochastic models for power
analysis attacks. Their attack-oriented approach focused on
analyzing the power consumption data of cryptographic
implementations. The data acquisition involved measuring
the power consumption of a device during cryptographic
operations. The objective was to develop a more efficient
attack methodology by modeling the statistical properties of
power consumption, paving the way for more sophisticated
statistical approaches in side-channel analysis. Building
on this foundation, Chari et al. [9] proposed template
attacks, which can be considered precursors to modern
machine learning-based approaches in side-channel analysis.
This attack-oriented approach involved creating probabilistic
models (templates) of the device’s power consumption for
different operations or data values. The data acquisition
method included collecting power traces under controlled
conditions. The objective was to perform key recovery attacks
by matching observed power traces to the pre-built templates,
demonstrating high efficiency even with a limited number of
traces. As machine learning techniques gained prominence,
researchers began to explore their potential in enhancing
side-channel attacks. Hospodar et al. [29] demonstrated the
effectiveness of using least squares support vector machines
(LS-SVM) for power analysis attacks on an 8-bit microcon-
troller implementing AES. Their attack-oriented approach
involved acquiring power consumption traces during AES
operations. The objective was to perform key recovery
by classifying power traces corresponding to different key
hypotheses. Their work showed that machine learning
could outperform traditional techniques in certain scenarios,
sparking interest in further exploration of ML applications
in this domain. The advent of deep learning brought about a
paradigm shift in side-channel analysis. Maghrebi et al. [8]
conducted a comprehensive study comparing various deep
learning algorithms, including multilayer perceptron (MLP),
convolutional neural networks (CNN), and long short-term
memory (LSTM) networks, with template attacks. Their
attack-oriented approach involved collecting electromagnetic
emission traces from a cryptographic implementation. The
objective was to evaluate the performance of different deep
learning architectures in key recovery attacks. Their findings
revealed that deep learning techniques could significantly
outperform classical approaches, particularly in scenarios
with complex leakage models or noisy measurements.
Benadjila et al. [30] further advanced the field by exploring
the use of convolutional neural networks for side-channel
key recovery attacks. Their attack-oriented approach involved
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acquiring raw electromagnetic traces from a cryptographic
device. The objective was to demonstrate the ability of CNNs
to automatically extract relevant features from raw traces,
reducing the need for pre-processing and expert knowledge in
feature engineering. This development marked a significant
step towards more automated and generalizable side-channel
attack methodologies, showing improved performance in key
recovery tasks compared to traditional approaches. While
supervised learning approaches dominated early research,
the challenge of attacking unknown or uncharacterized
devices led to increased interest in unsupervised and semi-
supervised learning techniques. Picek et al. [31] investigated
these approaches for side-channel analysis on unknown
targets. Their attack-oriented method involved collecting
power traces from devices without prior knowledge of
their implementation. The objective was to demonstrate the
effectiveness of unsupervised and semi-supervised learning
in scenarios where labeled training data is scarce or
unavailable, opening up new possibilities for attacking a
wider range of devices and implementations. As machine
learning-based attacks grew more sophisticated, so did the
need for effective countermeasures. Standaert et al. [21]
addressed this challenge by proposing a framework for eval-
uating the effectiveness of countermeasures against machine
learning-based side-channel attacks. Their defense-oriented
approach involved analyzing various countermeasures using
information-theoretic and security metrics. The objective was
to provide valuable insights into designing robust defenses
in the face of advanced ML techniques, contributing to the
ongoing arms race between attackers and defenders. The
issue of limited training data in practical attack scenarios was
tackled by Cagli et al. [32]. They introduced a novel approach
combining deep learning with data augmentation techniques.
Their attack-oriented method involved artificially expanding
the training dataset by applying realistic transformations
to the collected side-channel traces. The objective was to
improve the efficiency and applicability of side-channel
attacks in real-world situations where extensive training
data may not be available. More recent work has focused
on enhancing the interpretability and efficiency of ML
models in side-channel analysis. Kim et al. [33] proposed
an attention-based approach for visualizing and interpreting
the decision-making process of deep learning models in
side-channel attacks. Their attack-oriented method involved
applying attention mechanisms to CNN models used for
analyzing power traces. The objective was to provide insights
into which parts of the input traces are most relevant
for key recovery, enhancing the interpretability of deep
learning models in the context of side-channel attacks. As the
field continues to evolve, new challenges and opportunities
emerge. The integration of advanced ML techniques such as
reinforcement learning and generative adversarial networks
(GANs) is being explored for both attack and defense
scenarios. Additionally, the rise of quantum computing has
sparked interest in quantummachine learning applications for
side-channel analysis, opening up new frontiers in the field.

This paper presents an approach that applies machine
learning techniques to side-channel data for the purpose
of classifying running processes on a device. In contrast
to previous works that focused on extracting specific
sensitive information, our method aims to provide a broader
understanding of system activity. This different perspective
potentially opens up new possibilities for system monitoring,
performance optimization, and anomaly detection. At the
same time, it prompts consideration of the balance between
system observability and user privacy. By exploring this
application of side-channel analysis, we contribute to the
ongoing discussion about the capabilities and implications
of these techniques in the field of computer science and
cybersecurity.

III. METHODOLOGY
In this section, the case study is detailed together with a
description of how signals are collected and prepared for the
following steps.

A. DATASET
A suitable setup has been realized to create the dataset of real
experimental samples. The measurement system consists of
three main components. The first is the Device Under Test
(DUT), a standard Raspberry Pi 4 Model B 2018. It features
a Broadcom BCM2711 SoC with a quad-core Cortex-A72
(ARM v8) processor running at 1.5 GHz and 4 GB of
LPDDR4 RAM. A Linux-based operating system, Ubuntu
22.04 LTS (Jammy Jellyfish), was chosen for the software.
The choice of this device is justified by its popularity in the
field of IoT applications and cost-effectiveness, making it
representative of a very common experimental framework.
In fact, it provides high computational performance andwired
and wireless communication interfaces suitable for many
smart solutions, from home and building automation to sensor
networks and multimedia application environments. The
second component is the TiePie HS6 oscilloscope, equipped
with a TS-Lindgren 7405-901 magnetic field probe. This
oscilloscope is adopted to acquire the signals coming from
the DUT, and the probe is placed at 2 cm from the DUT.
The final component was a common desktop PC connected
to the oscilloscope. This PC was used to store the acquired
time series data, as depicted in figure 1.

As for the operating scenarios, two popular web browsers
and two client emails have been considered in the following.
The selection of such scenarios is made on one side for
replicating very common users’ applications and from the
other side to analyze the capability of the following methods
in correctly discriminating between very similar applications
(i.e. two web browsers and two client emails, respectively) as
following:

• S1: web browser 1 opening (Chromium 122.0.6261.94
snap);

• S2: web browser 2 opening (Mozilla Firefox 124.0.2);
• S3: email client 1 opening (Thunderbird 115.8.1);
• S4: email client 2 opening (Evolution 3.44.4-0ubuntu2).
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FIGURE 1. Picture of laboratory setup.

TABLE 1. Acquisition parameters.

For each of them, the magnetic field emitted by the
device is acquired by adopting a sampling frequency equal
to 1 MS/s (Fs) and for a time interval equal to 40 seconds
(ACQtime). To analyse the statistical significance and the
repeatability of the experimental results, 30 repetitions were
performed.(NACQ), giving output a time series of 40 MS of
points (Npot). This procedure allowed to build a dataset where
each time series value represents the records, as the starting
feature is the voltage [V], and the labels are the four scenarios.
table 1 reported the specifics of acquisitions chosen for the
tests.

B. FEATURES EXTRACTIONS AND PREPROCESSING
In the context of side-channel analysis, the preprocessing
of raw data and the subsequent extraction of meaningful

features play crucial roles in the effectiveness of machine
learning techniques. Our study implemented an approach to
reduce the dimensionality of the dataset and extract salient
features, drawing inspiration from established practices in
the literature. More in detail, given the sampling rate
of 1 MS/s, each measurement file contains 40 million
data points per each acquisition record. To keep low the
computational complexity and focus on the most relevant
data, we implemented a series of preprocessing steps.

Following the methodology suggested by Cagli et al.
[32], we truncated the initial portion of each measurement
to mitigate the impact of transient effects, enhancing the
focus on steady-state system behavior. This step is essential
as initial transients, typically occurring in the first few
milliseconds of signal acquisition, contain startup noise and
initialization artifacts that could mask the subtle patterns
characteristic of different processes. By removing these
transients, we ensure that our analysis focuses on the stable
operational phase of the system where information leakage
is more pronounced and consistent. We applied the Root
Mean Square (RMS) technique to the remaining dataset and
subsequently downsampled to 10 kHz. The RMS technique
was chosen for its ability to capture the signal’s energy
content while providing natural noise suppression through
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FIGURE 2. Example of down-sampling with 50% overlaps.

averaging. This is particularly effective in side-channel
analysis, where the signal-to-noise ratio can be critical. The
specific downsampling rate of 10 kHz was selected based
on experimental validation, which shows that it represents
an optimal trade-off between computational efficiency and
information preservation, as higher frequencies did not
contribute significantly to process discrimination while lower
rates resulted in loss of distinctive features. This approach,
supported by the research of Maghrebi et al. [8], effectively
reduces noise while preserving essential information in
side-channel signals. The combination of RMS and down-
sampling allowed us to keep the main information integrity
while significantly reducing the data volume. To further
refine our dataset, we employed the Robust Scaler technique.
This scaling method was selected over standard techniques
like Min-Max or Standard scaling because it uses statistics
that are robust to outliers (specifically the interquartile range
and median). In our context, this is crucial as extreme values
in side-channel measurements often represent legitimate
information leakage rather than noise - for instance, sudden
power spikes during specific operations. The Robust Scaler
preserves these potentially important outliers while ensuring
that the overall distribution of the data is properly normalized
for machine learning analysis. This choice was particularly
apt for our type of signal, as it emphasizes outliers, which
often carry crucial information in side-channel analysis.
The effectiveness of this approach is corroborated by Picek
et al. [31], who highlighted the importance of appropriate
scaling techniques, especially when dealing with datasets
that may contain significant outliers. We adopted a sliding
window approach for the critical feature extraction phase,
using a moving window of 100 samples with a 50%
overlap. The window size of 100 samples was selected
after extensive experimentation with different configurations
ranging from 50 to 200. This size proved optimal, capturing
enough temporal information to distinguish between different
processes while maintaining computational efficiency. The
50%overlapwas chosen to ensure continuous signal coverage
while avoiding excessive redundancy in the feature extraction
process. Our experiments showed that larger overlaps (e.g.,
75%) increased computational overheadwithout significantly

improving classification accuracy, while smaller overlaps
(e.g., 25%) resulted in the loss of important transitional
information between windows.

This technique, widely used in time series analysis, has
shown great efficacy in side-channel attack studies, as noted
by Wegener et al. [34]. As the window slid over our prepro-
cessed dataset, we extracted features in both the time and
frequency domains. In the time domain, we focused on six
key statistical features: mean, standard deviation, maximum,
minimum, skewness, and kurtosis. These features have been
shown to effectively capture the temporal characteristics of
side-channel signals, as demonstrated in the comprehensive
study by Oswald and Rohatgi [35]. The Time Domain
Features are:

• Mean: The average value of the signal.

µ =
1
N

N∑
i=1

xi

• StandardDeviation: Ameasure of the signal’s dispersion
from its mean.

σ =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2

• Max: The highest value in the signal.

Max = max(x1, x2, . . . , xN )

• Min: The lowest value in the signal.

Min = min(x1, x2, . . . , xN )

• Skewness: A measure of the asymmetry of the signal’s
distribution.

Skewness =

1
N

∑N
i=1(xi − x̄)3

( 1N
∑N

i=1(xi − x̄)2)3/2

• Kurtosis: A measure of the ‘‘tailedness’’ of the signal’s
distribution.

Kurtosis =

1
N

∑N
i=1(xi − x̄)4

( 1N
∑N

i=1(xi − x̄)2)2
− 3

By including these diverse statistical measures, we aimed
to capture a broad spectrum of signal behaviors that could be
indicative of different running applications. This comprehen-
sive approach to feature extraction was designed to maximize
the potential for distinguishing between various types of
processes executing on the device, leveraging the subtle
differences in their side-channel signatures. Complementing
our time domain analysis, we also extracted features in the
frequency domain. Here, we considered the real part of the
power spectrum calculated from the Fast Fourier Transform
(FFT).

For the frequency domain features, we first calculate the
power spectrum:

P(f ) = |X (f )|2
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where X (f ) is the Fourier transform of the signal. Then,
we extract the following features from the power spectrum:

• Mean of Power Spectrum:

µP =
1

N/2

∑
i = 1N/2P(fi)

• Standard Deviation of Power Spectrum:

σP =

√
1

N/2 − 1

∑
i = 1N/2(P(fi) − P̄)2

• Max of Power Spectrum:

MaxP = max(P(f1),P(f2), . . . ,P(f N/2))

• Min of Power Spectrum:

MinP = min(P(f1),P(f2), . . . ,P(f N/2))

where N is the number of samples in the original signal,
and fi are the frequency bins. Our frequency domain features
included the mean power, standard deviation of power,
maximum power, and minimum power. Several studies in the
literature support the inclusion of frequency domain features.
Notably, Maghrebi et al. [8] demonstrated the effectiveness
of spectral analysis in enhancing the performance of deep
learning models for side-channel attacks. Furthermore, the
combination of time and frequency domain features has been
shown to be particularly effective in side-channel analysis.
Lerman et al. [11] conducted a comprehensive study on
feature selection for side-channel attacks and demonstrated
that combining features from both domains can significantly
improve the performance of classification models. Their
work highlighted the complementary nature of time and
frequency domain features in capturing different aspects of
side-channel leakage. Our choice of these specific features
was motivated by their collective ability to characterize
the signal comprehensively. While time-domain features
capture the statistical properties of the signal amplitude,
frequency-domain features provide insight into the signal’s
spectral composition. This multi-domain approach allows for
a more robust representation of the side-channel leakage,
potentially capturing a wider range of information about
the running applications. By integrating these preprocessing
steps and feature extraction techniques, we aimed to create
a dataset that optimizes the trade-off between data volume
reduction and information preservation. This approach aligns
with the methodology proposed by Cagli et al. [32], who
demonstrated the importance of balancing data compression
and information retention in side-channel analysis. Our focus
on extracting relevant features whilemaintaining the essential
characteristics of the side-channel signals is supported by
the work of Picek et al. [31], who emphasized the critical
role of feature selection in machine learning-based side-
channel attacks. This method provides a solid foundation
for our subsequent machine-learning analyses, enabling us to
explore the effectiveness of various algorithms in classifying
running applications with greater accuracy and efficiency.
The careful selection and engineering of features, rather than

relying solely on dimensionality reduction techniques, allows
us to retain interpretability and domain-specific insights
throughout our analysis process, an approach advocated by
Lerman et al. [36] in their comparative study of template
attacks and machine learning techniques.

C. CLASSIFIERS
In our study, we selected a diverse range of classifiers
to comprehensively evaluate and compare the performance
of traditional machine learning (ML) and advanced deep
learning (DL) techniques in the context of side-channel
process classification. The current state-of-the-art side-
channel analysis and the need for a robust comparison
between ML and DL approaches guided our selection. For
the deep learning approach, we implemented an architecture
combining Convolutional Neural Networks (CNN), Long
Short-Term Memory (LSTM) networks, and an attention
mechanism. Recent advancements in the field support this
choice. For instance, Maghrebi et al. [8] demonstrated the
effectiveness of CNNs in breaking cryptographic implemen-
tations, while Cagli et al. [32] showed the power of CNNs in
counteracting jitter-based countermeasures. The addition of
LSTM layers is justified by their ability to capture temporal
dependencies in the side-channel traces, as Hospodar et al.
[29] highlighted in their study on machine learning for side-
channel analysis. The attention mechanism, a key component
of our DL model, is inspired by Kim et al. [33], who showed
that attention can significantly enhance the performance of
CNNs in profiled side-channel analysis by highlighting the
most relevant components for classification. Following, the
ML and DL algorithms developed:

1) Random Forest: Chosen for its robustness and ability
to handle high-dimensional data, as Picek et al. [31]
demonstrated in their study on side-channel analysis
and machine learning.

2) Support Vector Machines (SVM): Selected due to
their effectiveness in high-dimensional spaces and
versatility in capturing complex decision boundaries,
as shown by Lerman et al. [7] in their early work on
ML-based power analysis attacks.

3) Decision Trees: These are included for their inter-
pretability and ability to capture non-linear relation-
ships. Lerman et al. [36] demonstrated the effectiveness
of decision trees in side-channel analysis, particularly
for their ability to provide insights into the most
informative features.

4) XGBoost: A powerful boosting algorithm known for
its performance in various machine learning tasks,
including side-channel analysis, as Rijsdijk et al. [37]
demonstrated in their study on reinforcement learning
for hyperparameter tuning in deep learning-based side-
channel analysis.

5) K-Nearest Neighbors (KNN): Chosen for its simplicity
and effectiveness in capturing local patterns in the
feature space. Heuser and Zohner [12] demonstrated
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the efficacy of KNN in profiled side-channel attacks,
particularly in scenarios with limited training data.

6) Naive Bayes: Selected as a baseline probabilistic
classifier. Despite its simplicity, Picek et al. [31]
showed that Naive Bayes can be surprisingly effective
in certain side-channel attack scenarios, providing a
useful comparison point for more complex models.

7) Multilayer Perceptron (MLP): Included as a represen-
tative of shallow neural networks, bridging the gap
between traditional ML and deep learning approaches.
Prouff et al. [30] illustrated the potential of MLPs in
side-channel analysis, particularly when dealing with
high-dimensional feature spaces.

8) Logistic Regression: Chosen as a fundamental linear
classifier.While simple, Lerman et al. [7] demonstrated
that logistic regression can serve as an effective base-
line in side-channel attacks, especially when combined
with appropriate feature selection techniques.

This diverse selection of classifiers allowed us to compre-
hensively compare ML and DL techniques, addressing a gap
in the literature noted by Masure et al. [38], who emphasized
the need for thorough comparative studies in side-channel
analysis. By including both traditional ML algorithms and
DL architectures, our study aims to provide valuable insights
into these approaches’ relative strengths and weaknesses
in classifying different side-channel attack scenarios. The
choice of these specific classifiers is further motivated by
their prevalence in recent side-channel analysis literature
and their ability to capture different aspects of the side-
channel leakage. This comprehensive approach enables us to
evaluate the overall performance ofML versus DL techniques
and understand which algorithms are most effective for our
particular side-channel attack classification task.

IV. EXPERIMENTAL RESULTS
Our experimental setup consisted of a comprehensive
dataset comprising 120 acquisition files evenly distributed
across four distinct scenarios, with 30 files per scenario.
We implemented a training, validation, and testing protocol
to ensure a reliable performance evaluation and comparison
of the considered classifiers, following best practices in
machine learning for side-channel analysis [31].We allocated
approximately 80% of the acquisition files for the training
phase, ensuring our models had sufficient data to learn the
underlying patterns and features of the side-channel signals.
This approach is consistent with the recommendations of
Cagli et al. [32], who emphasized the importance of large
training sets in deep learning-based side-channel analysis.
The remaining 20% was further divided, with 10% reserved
for validation and the final 10% set aside for testing. This
division allowed us to assess our models’ generalization
capability on data not used during training, a crucial step
in preventing overfitting as highlighted by Prouff et al.
[30]. To enhance the statistical significance of our results
and mitigate potential biases from any particular data split,
we employed a 10-fold cross-validation strategy. As shown

in Figure 3, this methodology involved dividing our dataset
into ten subsets, or ‘folds’, each serving as the test set
once, while the remaining nine folds were used for training
and validation. Each fold’s validation and test sets were
randomly selected, ensuring diverse combinations throughout
the evaluation process.

This approach, as emphasized by Picek et al. [31],
is crucial in side-channel analysis to ensure the robustness and
generalization of the results. For each classifier, we evaluated
performance metrics across all ten folds. We then calculated
these metrics’ mean and standard deviation, providing a
comprehensive view of each model’s performance and con-
sistency across different data splits. This statistical approach
aligns with the recommendations of Lerman et al. [36] for
rigorous evaluation in side-channel analysis. We generated
confusion matrices to represent each model’s classification
quality visually. These matrices illustrate the classifier’s
performance, showing the number of correct and incorrect
predictions for each scenario. Maghrebi et al. [8] demon-
strated that confusion matrices are particularly valuable in
multi-class classification problems, providing insights into
which scenarios are most easily distinguished and which are
more frequently confused. Using aggregate statistical mea-
sures (mean and standard deviation) and detailed confusion
matrices allows a nuanced understanding of each classifier’s
strengths and weaknesses. Combining quantitative metrics
with visual representations, this comprehensive evaluation
approach provides a solid foundation for comparing the
effectiveness of different machine learning and deep learning
techniques in side-channel analysis. Our results showcase
the performance of individual classifiers and allow for a
comparative analysis between traditional machine learning
approaches and more advanced deep learning techniques.
This comparison, similar to the work of Rijsdijk et al.
[37], offers valuable insights into the relative strengths of
different algorithmic approaches in the context of side-
channel analysis. The following sections present detailed
results for each classifier, including their mean performance
metrics, standard deviations, and confusion matrices. These
results provide a comprehensive view of the efficacy of
various machine learning and deep learning techniques in
classifying side-channel data, contributing to the ongoing
discourse on the most effective methodologies for enhancing
cryptographic system security.

A. DISCUSSION
In this analysis of classifier performance, we observed
varying levels of accuracy across different models. Logistic
Regression demonstrated the highest mean accuracy at
99.17% with a standard deviation of 0.0250, indicating high
performance and consistency. This aligns with findings by
Lerman et al. [36], who noted the effectiveness of simple
linear models in certain side-channel analysis scenarios.
As can be seen from the confusion matrix in Figure 4, the
accuracy of scenario 2 is not 100%, which slightly lowers the
overall performance of the 10-fold evaluation.
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FIGURE 3. 10-fold cross-validation.

TABLE 2. Table reporting mean and standard deviation of test accuracy at
the end of the k-fold evaluation.

Support Vector Machine (SVM) also performed well,
achieving 97.50% accuracy. This result is consistent with
the work of Heuser and Zohner [12], who demonstrated
the efficacy of SVMs in profiled side-channel attacks.
Interestingly, in this particular scenario, these traditional
machine learning algorithms outperformed the more complex
CNN+LSTM model, as shown in Figure 5, which achieved
96.67% accuracy. This finding echoes the observations of
Picek et al. [31], who highlighted that the performance of
machine learning models in side-channel analysis can vary
significantly depending on the specific characteristics of
the data and the nature of the side-channel leakage being
analyzed.

As shown in the confusion matrix in Figure 3, for the deep
architecture, there are classification errors for scenarios 2 and
3 that have led to a decrease in performance, resulting in an
overall performance lower than that of logistic regression and
SVM. This outcome aligns with the findings of Masure et al.

FIGURE 4. Confusion matrix - logistic regression: µ and σ represent the
mean calculated on the 10-fold cross-validation and the standard
deviation referring to the mean calculated on the 10-fold evaluation,
respectively.

[38], who noted that deep learning models do not always
outperform traditional methods in side-channel analysis
tasks. A key finding is the superiority of classical methods
like Logistic Regression and SVM over the deep learning
approach (CNN+LSTM) in this specific context. This result
aligns with recent literature questioning the universal superi-
ority of deep learning in all domains [33], and emphasizes
the importance of method selection based on problem-
specific characteristics. Most classifiers exhibit relatively low
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FIGURE 5. Confusion matrix - CNN + LSTM: µ and σ represent the mean
calculated on the 10-fold cross-validation and the standard deviation
referring to the mean calculated on the 10-fold evaluation, respectively.

standard deviations, indicating robust performance across
different data folds. XGBoost, with its moderate accuracy
(92.50%) and low standard deviation (0.0250), exemplifies
a highly consistent performer, which could be valuable
in scenarios prioritizing stability over maximum accuracy.
Lower-Performing Models: MLP and Decision Tree show
the lowest accuracies, suggesting limitations in their ability
to capture the complex patterns inherent in side-channel
attack data. This is consistent with the observations of
Prouff et al. [30], who noted that certain neural network
architectures might struggle with specific types of side-
channel data. Practical Implications: The high accuracy
achieved by several classifiers (>95%) demonstrates that
side-channel attack classification can be performed precisely
using various machine learning techniques. The superior
performance of simpler methods like Logistic Regression
is particularly significant for IoT implementations. These
devices typically operate under severe resource constraints,
including limited processing power, memory, and energy
availability. In this context, Logistic Regression offers several
practical advantages: it requires minimal computational
resources for both training and inference, has a small
memory footprint for model storage, and can perform real-
time classifications with low latency. These characteristics
make it ideal for edge computing scenarios where security
monitoring must be performed locally on IoT devices without
significantly impacting their primary functions or battery
life. Furthermore, the model’s simplicity facilitates easier
deployment and updates across large IoT networks, where
managing complex models would be challenging. This aligns
with the growing need for efficient security solutions in IoT

and edge computing contexts, as discussed by Rijsdijk et al.
[37]. BalancingAccuracy andModel Complexity: The results
highlight that more complex models (e.g., CNN+LSTM,
MLP) do not necessarily offer the best results in this
context. This finding underscores the importance of the bias-
variance trade-off in model selection. It suggests that for
this case study, the simpler structure of models like Logistic
Regression might better capture the underlying patterns
without overfitting. Bias refers to the error introduced by
approximating a real-world problem, which may be complex,
by a simplified model. High-bias models (like Logistic
Regression) make strong assumptions about the data structure
but may underfit if the problem is more complex than the
model can represent. Variance refers to themodel’s sensitivity
to small fluctuations in the training data. High-variance
models (like complex neural networks) can capture intricate
patterns but risk overfitting to noise in the training data.

In our case, the superior performance of Logistic Regres-
sion suggests that the underlying patterns in our side-channel
data might be more linear or simple than initially assumed.
The simpler model’s success indicates that it strikes a better
balance between bias and variance for this specific problem.
It captures the essential patterns (low bias) without being
overly sensitive to noise or peculiarities in the training data
(low variance). This observation aligns with the principle of
Occam’s Razor in machine learning, as discussed by Lerman
et al. [36], which suggests that simpler models should be
preferred when they offer comparable performance to more
complex ones. It also highlights the importance of thorough
model evaluation and selection in side-channel analysis,
as emphasized by Picek et al. [31], to ensure that the chosen
model appropriately balances complexity with the specific
characteristics of the side-channel data being analyzed.

V. CONCLUSION
Our study has explored the effectiveness of various machine
learning techniques, including traditional methods and
deep learning approaches, for the classification of running
applications on a very popular IoT device, by using
a side-channel approach. The preprocessing phase was
highly effective, extracting information-rich features and
significantly enhancing the classifiers’ ability to distinguish
between the four considered application scenarios. This
underscores the critical role of careful feature selection in
side-channel analysis, aligning with recent advancements in
the field, as shown by Picek et al. [31]. Our approach’s
hybrid architecture, which combines CNN, LSTM, and an
attention mechanism, proved effective, although not superior
to simpler models in this specific context. CNNs excel
at capturing spatial characteristics in traces, similar to the
methods used by Maghrebi et al. [8]. LSTMs are adept
at modeling temporal dependencies, crucial in side-channel
analysis, as demonstrated by Cagli et al. [32]. The attention
mechanism aims to enhance accuracy by focusing on the
most relevant signal components, aligning with the work
of Kim et al. [33]. Statistical robustness was ensured by
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implementing k-fold cross-validation (k = 10) with random
validation selection and test sets. This approach provided
strong statistical consistency, boosting confidence in the
model’s generalizability, a crucial aspect highlighted by
Standaert et al. [21]. Interestingly, our results showed that
traditional machine learning methods, particularly Logistic
Regression and SVM, outperformed the more complex deep
learning models in this specific application classification
task. This finding aligns with observations by Lerman et al.
[36], emphasizing the importance of considering a range of
algorithms and not assuming the superiority of more complex
models in all scenarios. The implications of this research
for IoT security are significant and multifaceted. First,
our findings demonstrate that relatively simple side-channel
attacks can effectively compromise application privacy in
IoT devices, highlighting a critical vulnerability that needs
to be addressed in future security designs. Second, the
superior performance of lightweight classifiers suggests that
attackers could potentially deploy these attacks even with
limited computational resources, making them particularly
concerning for IoT environments. This underscores the
urgent need to implement appropriate countermeasures in
IoT systems, such as side-channel resistant designs and
runtime application obfuscation techniques. Furthermore,
our results emphasize the importance of considering side-
channel vulnerabilities during the initial design phase of IoT
devices rather than treating them as an afterthought in security
implementations.

A. LIMITATIONS AND CHALLENGES
There was some variability in performance across different
classifiers, with certain file combinations in the k-fold
evaluation leading to a slight loss of accuracy. This highlights
the sensitivity of machine learning approaches to dataset
composition and the importance of a representative selection
of training and test data, a challenge also noted by Picek
et al. [31]. A significant limitation of our approach lies
in its hardware dependency. The electromagnetic signatures
we analyzed are inherently tied to the specific hardware
architecture, clock frequencies, and physical characteristics
of the tested devices. Different IoT platforms may exhibit
varying electromagnetic patterns for identical processes due
to differences in microarchitecture, component layout, and
shielding implementations. This hardware specificity poses
challenges for model transferability - a classifier trained
on one device type may require substantial retraining or
adaptation to maintain effectiveness on different hardware
configurations, even within the same device family. While
yielding promising results, the computational complexity
of the CNN+LSTM+Attention architecture might limit its
applicability in scenarios with limited resources or real-
time requirements. This trade-off between model complexity
and computational efficiency is a common consideration in
side-channel analysis, as discussed by Maghrebi et al. [8].
Although the classifiers showed high accuracy for the consid-
ered application scenarios, their ability to generalize to new

applications or side-channel data remains an area for further
exploration. This challenge aligns with ongoing research
in adaptive side-channel analysis techniques, as highlighted
by Standaert et al. [21]. Furthermore, environmental factors
such as electromagnetic interference, temperature variations,
and physical proximity to other devices can significantly
impact the quality and consistency of the captured signals.
These hardware-environmental interactions may require the
development of more robust feature extraction methods or
adaptive preprocessing techniques to ensure reliable classifi-
cation across different operational conditions and deployment
scenarios. Interestingly, our results showed that simpler
models like Logistic Regression and SVM outperformed
more complex architectures in this context. This finding
echoes the observations of Lerman et al. [36], emphasizing
the importance of carefully considering the trade-off between
model complexity and performance in side-channel analysis
tasks.

B. FUTURE WORKS
Based on our findings and identified limitations, several
promising research directions emerge that could advance the
field of side-channel analysis in IoT environments. A primary
avenue for future research lies in developing transfer learning
approaches to address the challenge of model generalization.
Given the dynamic nature of IoT environments, where new
applications are frequently deployed, and device configura-
tions often change, investigating how pre-trained models can
be effectively adapted to new devices with minimal retraining
becomes crucial. This could significantly reduce the over-
head of deploying side-channel analysis across diverse IoT
platforms while maintaining classification accuracy. Devel-
oping more robust and hardware-agnostic feature extraction
methods represents another critical research direction. Future
work should investigate automated feature selection mech-
anisms that can adapt to specific device characteristics
while maintaining effectiveness across different hardware
architectures. This includes exploring novel signal processing
techniques for IoT electromagnetic emissions and integrating
domain knowledge to identify more discriminative features
for specific IoT applications. Given the resource constraints
inherent to IoT devices, future research must also address
scalability and real-time detection capabilities. This involves
exploring lightweight model architectures optimized for
edge deployment and developing efficient online learning
algorithms for continuous model updates. The challenge lies
in maintaining high classification accuracy while minimizing
computational overhead, making the approach practical for
resource-limited IoT devices. Advanced attack scenarios
present another important area for investigation. Future stud-
ies should examine multi-task classification for simultaneous
detection of different types of activities and explore methods
for detecting previously unseen applications through anomaly
detection. Additionally, analyzing more complex application
states and transitions could provide deeper insights into
the capabilities and limitations of side-channel analysis
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in IoT contexts. Equally important is the development of
effective countermeasures. Future research should investigate
application-level obfuscation techniques to mask electro-
magnetic signatures and explore hardware-level shielding
optimized for IoT form factors. The challenge here lies
in developing protective measures that are both effective
and resource-efficient, suitable for the constrained nature of
IoT devices. The field would benefit from efforts toward
standardization and benchmarking. Developing standardized
datasets for IoT side-channel analysis and establishing
common evaluation metrics would facilitate meaningful
comparisons between different approaches and accelerate
progress in the field. This includes defining security levels for
IoT devices based on their resistance to side-channel attacks
and establishing best practices for feature extraction and
model selection. Finally, to verify the general applicability of
the proposed approach and adopted techniques towider appli-
cation contexts, the experimental analysis will be extended to
further both operating scenarios (e.g. data exchange sessions
based on several communication protocols), and DUTs.
Through these research directions, we aim to address the
technical limitations identified in our study and the broader
challenges of securing IoT devices against side-channel
attacks. Success in these areas would significantly advance
state-of-the-art IoT security and privacy, leading to more
robust and secure IoT deployments.
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