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Subspace Tracking Algorithms for Millimeter Wave
MIMO Channel Estimation with Hybrid

Beamforming
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Abstract—This paper proposes the use of subspace tracking
algorithms for performing MIMO channel estimation at millime-
ter wave (mmWave) frequencies. Using a subspace approach,
we develop a protocol enabling the estimation of the right
(resp. left) singular vectors at the transmitter (resp. receiver)
side; then, we adapt the projection approximation subspace
tracking with deflation (PASTd) and the orthogonal Oja (OOJA)
algorithms to our framework and obtain two channel estimation
algorithms. The hybrid analog/digital nature of the beamformer
is also explicitly taken into account at the algorithm design stage.
Numerical results show that the proposed estimation algorithms
are effective, and that they perform better than two relevant
competing alternatives available in the open literature.

Index Terms—MIMO Channel Estimation, mmWave, clustered
channel model

I. INTRODUCTION

The use of frequency bands in the range 10−100 GHz,
a.k.a. millimeter waves (mmWaves), for cellular communica-
tions, is among the most striking technological innovations
brought by fifth generation (5G) wireless networks [1]. Indeed,
the scarcity of available frequency bands in the sub-6 GHz
spectrum has been the main thrust for considering the use of
higher frequencies for cellular applications, and indeed recent
research [2] has shown that mmWaves, despite increased path-
loss and atmospheric absorption phenomena, can be actually
used for cellular communications over short-range distances
(up to 100-200 meters), provided that multiple antennas are
used at both sides of the communication link: MIMO process-
ing, thus, is one distinguishing and key feature of mmWave
systems. When considering mmWave links, one challenging
task is that of MIMO channel estimation. This paper tackles
this issue, and in particular the contribution of this paper can
be summarized as follows.

1) Using a subspace approach, we develop a protocol
enabling the estimation of the right (resp. left) singular
vectors at the transmitter (resp. receiver) side; then, we
adapt the PASTd algorithm [3], and the orthogonal Oja
(OOJA) algorithm [4] to our framework and obtain two
subspace-based channel estimation algorithms.

2) We adapt the proposed algorithms in order to take into
account the hybrid analog/digital beamforming struc-
ture usually employed in mmWave wireless links. In
particular, we assume that both at the transmitter and
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at the receiver the front-end RF modules are made by
an analog combining matrix whose columns correspond
to beam-steering array response vectors, and show that
the proposed channel estimation algorithms based on
subspace tracking can be applied in this scenario too.

3) We compare the proposed algorithms with two compet-
ing alternatives available in the open literature, namely
the Approximate Maximum Likelihood (AML) algorithm
in [5], [6], and the Subspace Estimation using Arnoldi
iteration (SE-ARN) in [7]. In this context, we also
generalize the AML algorithm – presented in [5], [6]
for the case in which the mobile station (MS) has just
one antenna – to the case in which the MS is equipped
with multiple antennas.

4) We also show how the proposed channel estimation
schemes can be used to implement a simple pilot-less
differential modulation scheme in the case of multi-
plexing order one, and the corresponding symbol error
probability (SER) is numerically evaluated.

This paper is organized as follows. Next Section contains
the description of the system model, while in Section III the
protocol to enable estimation of the left and right dominant
singular vectors of the channel matrix using the subspace
tracking algorithms is described. Section IV is devoted to
the description of other estimation schemes, including the
extension of the AML algorithm [5] to the case in which
the MS is equipped with multiple antennas, and the SE-ARN.
Section V is devoted to the illustration of the numerical results,
while, finally, concluding remarks are given in Section VI.

Notation: We denote vectors by boldface lowercase letters
(e.g. x), matrices by boldface capital letters (e.g. X), scalar
constant by nonboldface letters (e.g x or X). The superscripts
(·)T and (·)H denote transpose and conjugate-transpose, re-
spectively and the identity matrix of order k is expressed with
Ik.

II. SYSTEM MODEL

We consider a single-cell and single-user MIMO link that
can be representative of the Base Station (BS) - Mobile
Station (MS) link in a wireless cellular system using an
orthogonal multiple access scheme. The number of parallel
streams, i.e. the multiplexing order, is denoted by M . We
consider a time-division-duplex (TDD) scenario, so that the
BS-to-MS channel is the conjugate transpose of the MS-to-BS
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Figure 1. Block scheme of the considered transceiver architecture.

channel, provided that the transmission time does not exceed
the channel coherence interval. We denote by NBS the number
of antennas at the BS, and by NMS the number of antennas at
the MS, and assume for simplicity a bi-dimensional model, i.e.
both the BS and the MS are equipped with a uniform linear
array (ULA). A schematic representation of the considered
system is reported in Fig. 1. In particular, beamforming at
both sides of the link is of the hybrid type, in the sense
that, in order to lower hardware complexity, analog signals
combining is performed at RF in the transceiver front-end in
order to reduce the dimensionality of the signals, and, then
fully digital baseband combining is performed. We will denote
by NRF

BS < NBS and NRF
MS < NMS the number of RF chains

at the BS and at the MS, respectively.

A. The clustered channel model

We denote by H the (NMS × NBS)-dimensional matrix
representing the BS-to-MS channel. Due to TDD operation
the reverse-link propagation channel is expressed as HH . Ac-
cording to the popular narrowband clustered mmWave channel
model [8]–[10], the channel matrix is expressed as:

H = γ

Ncl∑
i=1

Nray,i∑
l=1

αi,l

√
L(ri,l)aMS(φ

MS
i,l )a

H
BS(φ

BS
i,l ) +HLOS .

(1)
In Eq. (1), we are implicitly assuming that the propagation
environment is made of Ncl scattering clusters, each of which
contributes with Nray,i propagation paths, i = 1, . . . , Ncl,
plus a possibly present LOS component. We denote by φMS

i,l

and φBS
i,l the downlink angle of arrival (that coincides with

the uplink angle of departure) at the MS and the downlink
angle of departure (that coincides with the uplink angle of
departure) at the BS of the lth ray in the ith scattering
cluster, respectively. The quantities αi,l and L(ri,l) are the
complex path gain and the attenuation associated to the (i, l)-th
propagation path. The complex gain αi,l ∼ CN (0, σ2

α,i), with
σ2
α,i = 1 [8]. The factors aMS(φ

MS
i,l ) and aBS(φ

BS
i,l ) represent

the normalized receive and transmit array response vectors
evaluated at the corresponding angles of arrival and departure;
for a ULA with half-wavelength inter-element spacing we have

aBS(φ
BS
i,l ) =

1√
NBS

[1 e−jπ sinφBS
i,l . . . e−jπ(NBS−1) sinφBS

i,l ]T .

A similar expression can be also given for aMS(φ
MS
i,l ). Finally,

γ =

√
NBSNMS∑Ncl

i=1 Nray,i

is a normalization factor ensuring that

the received signal power scales linearly with the product

NBSNMS. Regarding the LOS component, denoting by φMS
LOS,

φBS
LOS, the downlink arrival and departure angles corresponding

to the LOS link, we assume that

HLOS = ILOS(d)
√

NMSNBSL(d)e
jθaMS(φ

MS
LOS)a

H
BS(φ

BS
LOS) .

(2)
In the above equation, θ ∼ U(0, 2π), d is the link length, while
ILOS(d) is a random variate indicating if a LOS link exists
between transmitter and receiver, with p the probability that
ILOS(d) = 1. A detailed description of all the parameters
needed for the generation of sample realizations for the
channel model of Eq. (1) is reported in [11], and we refer
the reader to this reference for further details on the channel
model.

III. SUBSPACE-BASED CHANNEL EIGENDIRECTIONS
ESTIMATION

Given the structured (parametric) channel model in (1),
differently from what usually happens for MIMO channels
at conventional sub-6 GHz frequencies where all the entries
of the channel matrix are to be estimated, here we are actually
interested only to the dominant left and right singular vectors
of the channel matrix itself; it is also quite easy to realize
that these singular vectors tend to coincide, in the limit of
large number of antennas, with the ULA array responses at
the angles corresponding to the rays with the complex gain
with the largest norm.

A. Subspace-based channel estimation with fully-digital (FD)
beamforming architecture

We start by considering the case of FD beamforming, i.e.
no analog beamforming is performed and the number of
RF chains coincides with the number of antennas, both at
the BS and at the MS. The proposed protocol for channel
estimation consists of two successive phases. In phase (a), the
BS transmits a suitable probing signal and the MS estimates
the dominant left eigenvectors of the channel matrix; then,
in phase (b), the MS transmits a suitable signal and the
BS estimates the dominant right eigenvectors of the channel
matrix.

With regard to phase (a), let sBS(n), with n = 1, . . . , PBS,
be a sequence of NBS-dimensional random column vectors
with identity covariance matrix1. These vectors are transmitted
by the BS at (discrete) time n = 1, . . . , PBS; the signal

1As an example, a sequence of random uniform binary-valued antipodal
symbols can be used.
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received at the MS at time n is expressed as the following
(NMS × 1)-dimensional vector:

rMS(n) = HsBS(n) +wMS(n) , (3)

where wMS(n) is the NMS-dimensional AWGN vector, mod-
eled as CN (0, σ2

n) independent RVs. Letting H = UΛVH

denote the singular value decomposition of the channel matrix,
the covariance matrix of the received signal is expressed as

RMS = E
[
rMS(n)r

H
MS(n)

]
= UΛ2UH + σ2

nINMS
. (4)

Given (4), it is thus easily seen that we can estimate the
M dominant left singular vectors of the channel matrix
by estimating the M dominant directions of the subspace
spanned by the received vectors rMS(n), with n = 1, . . . , PBS.
The signal processing literature is rich of adaptive subspace
tracking algorithms that can be straightforwardly applied at
the MS to obtain an estimate of the principal left singular
vectors of the channel matrix. Deferring later the specification
of the adopted subspace tracking algorithms, let DMS be the
(NMS×M)-dimensional matrix containing the estimate of the
M dominant singular vectors of RMS; the matrix DMS will be
used at the MS as a precoder during data transmission and as a
combiner when receiving data from the BS. After PBS symbol
intervals, phase (a) is over and phase (b) starts. The MS now
transmits random independent vectors with identity covariance
matrix in order to enable estimation at the BS of the dominant
right eigenvectors of the channel matrix H. More precisely, let
sMS(n), with n = PBS + 1, . . . , PBS + PMS, be a sequence
of M -dimensional random vectors with identity covariance
matrix and assume that the MS transmits the following NMS-
dimensional data vectors

xMS(n) = DMSsMS(n), (5)

where sMS(n) is the (M×1)-dimensional vector whose entries
take value in {±1}. The received discrete-time signal at the
BS is represented by the following NBS-dimensional vector:

rBS(n) = HHxMS(n) +wBS(n) , (6)

where wBS(n) is the NBS-dimensional AWGN vector, mod-
eled as CN (0, σ2

n) independent RVs2. Similarly to phase (a),
under the assumption of negligible errors in the estimation of
the left singular vectors of the channel matrix, the covariance
matrix of the received signal at the BS is expressed as

RBS = E
[
rBS(n)r

H
BS(n)

] ≈ VΛ2VH + σ2
nINBS

, (7)

thus implying that the the M dominant right singular vectors
of the channel matrix can be estimated by running adaptive
subspace tracking algorithms at the BS. We will denote by
DBS is the (NBS × M)-dimensional matrix containing the
estimates of the M dominant singular vectors of RMS.

2Note that in phase (b) the MS is already using the estimated precoder
DMS; the illustrated procedure also works if the MS does not use the precoder
and sends NMS-dimensional random vectors.

B. Subspace-based channel estimation with hybrid (HY)
beamforming architecture

In the previous section a FD beamforming structure has
been assumed. We now examine the case in which, for com-
plexity reasons, a HY beamforming architecture is adopted.
The front-end processing consists of an analog RF combining
matrix aimed at reducing the number of RF chains needed
to implement the base-band processing. From a mathematical
point of view, the beamforming matrices at the MS and at the
BS can be expressed as

DMS =DMS,RFDMS,BB , and
DBS =DBS,RFDBS,BB ,

(8)

respectively. In (8), DMS,RF is an (NMS×NRF
MS)-dimensional

matrix with unit-norm entries, while DMS,BB is an (NRF
MS ×

M)-dimensional matrix with no constraint on its entries. Sim-
ilarly, DBS,RF is an (NBS × NRF

BS )-dimensional matrix with
unit-norm entries, and DBS,BB is an (NRF

BS ×M)-dimensional
baseband combining matrix. The design of HY analog/digital
combiners is a vastly explored research topic; most papers try
to find the hybrid combiner that best approximates, according
to some criterion, the optimal FD combiner. In this paper, we
use a simpler and different approach. We assume that DMS,RF

and DBS,RF have a fixed structure and in particular contain
on their column the ULA array responses corresponding to
a grid of discrete angles spanning the range [−π/2, π/2]. In
particular, letting

θMS(i) =
(
−π

2 + π(i−1)

NRF
MS

)
, i = 1, . . . , NRF

MS ,

θBS(i) =
(
−π

2 + π(i−1)

NRF
BS

)
, i = 1, . . . , NRF

BS ,
(9)

the RF combiners have the following structure:

DBS,RF =
[
aBS (θBS(1)) , . . .aBS

(
θBS(N

RF
BS

)]
,

DMS,RF =
[
aMS (θMS(1)) , . . .aMS

(
θMS(N

RF
MS

)]
.

(10)

Now, focus on the scheme in Fig. 1 and consider the cascade of
the BS analog beamformer, the channel H and the MS analog
beamformer; it is straightforward to show that this cascade
can be modeled through the matrix H̃ = DH

MS,RFHDBS,RF,
of dimension NRF

MS × NRF
BS . As a consequence, the channel

estimation scheme outlined in the previous section under the
assumption of FD beamforming can be now re-applied on the
(reduced-dimension) composite channel H̃.

C. PASTd algorithm

The PASTd algorithm was introduced in [3]; one of its most
popular applications is reported in the highly-cited paper [12].
In order to illustrate this algorithm, let r be an (N × 1)-
dimensional random vector with autocorrelation matrix C =
E
[
rrH

]
. Consider the scalar function

J (W) = E
[‖r−WWT r‖2]

= tr(C)− 2tr(WTCW) + tr(WTCWWTW),
(11)

with a (N ×M)-dimensional matrix argument W, with M <
N . It is shown in [3] that

- the matrix W is a stationary point of J (W) if and only
if W = TMQ, where TM is a (N ×M)-dimensional
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Algorithm 1 The PASTd Algorithm
1: x1(n) = r(n)
2: for m = 1 : M do

3: ym(n) = uH
m(n− 1)xm(n)

4: λm(n) = βλm(n− 1) + |ym(n)|2
5: um(n)=um(n−1)+[xm(n)−um(n− 1)ym(n)] ym(n)∗

λm(n)

6: xm+1(n) = xm(n)− um(n)ym(n)
7: end for

matrix contains any M distinct eigenvectors of C and Q
is any (M ×M)-dimensional unitary matrix.

- All stationary points of J (W) are saddle points except
when TM contains the M dominant eigenvectors of C.
In that case, J (W) attains the global minimum.

Therefore, for M = 1 the solution of minimizing J (W) is
given by the most dominant eigenvector of C. In practical
applications, only sample vectors r(i) are available and so
the statistical average in (11) is replaced by an exponentially-
windowed time-average, i.e.:

J [W(n)] =
n∑

i=1

βn−i‖r(i)−W(n)W(n)T r(i)‖2, (12)

where β is the forgetting factor. The key trick of the PASTd
approach is to approximate W(n)T r(i) in (12), the unknown
projection of r(i) onto the columns of W(n), by y(i) =
W(i − 1)T r(i), which can be calculated for i = 1, . . . n at
sampling time n. This results in a modified cost function

J̃ [W(n)] =
n∑

i=1

βn−i‖r(i)−W(n)y(n)‖2, (13)

The recursive least squares (RLS) algorithm can then be
used to solve for W(n) that minimizes the exponentially
weighted least square criterion (13). The PASTd algorithm
for tracking the eigenvalues and eigenvectors of the signal
subspace is based on deflaction technique and its basic idea
is as follows. For M = 1, by minimizing J̃ [W(n)] in (13)
the most dominant eigenvector is updated; then, the contrib-
uton from this estimated eigenvector is removed from r(n)
itself, and the second most dominant eigenvector can be now
extracted from the data. This procedure is applied repeatedly
until the M dominant eigenvectors are sequentially estimated.
The complete PASTd procedure is reported in Algorithm
1. Computational Complexity: The PASTd algorithm costs
4NM +O(N) flops per iteration.

D. OOJA algorithm

The OOJA algorithm was introduced in [4]; it builds upon
the minor subspace extraction algorithm of Oja in [13]. Ac-
cording to Oja’s algorithm the iteration is:

W(n+ 1) = W(n)− δ
[
r(n)vT (n)−W(n)v(n)vT (n)

]
= W(n)− δp(n)vT (n),

(14)
where W is a (N ×M)-dimensional matrix, with M < N ,
v(n) = WT (n)r(n), p(n) = r(n) −W(n)v(n) and δ is a
learning parameter. The OOJA algorithm consists of iteration

Algorithm 2 The OOJA Algorithm
1: v(n) = WT (n)r(n)
2: z(n) = W(n)v(n)
3: p(n) = r(n)− z(n)
4: ϕ(n) = 1√

1+δ2‖p(n)‖2‖v(n)‖2
5: τ(n) = φ(n)−1

‖v(n)‖2
6: p̄(n) = − τ(n)z(n)

δ + φ(n)p(n)
7: W(n+ 1) = W(n)− δp̄(n)vT (n)

Figure 2. ηU versus the received SNR for a system with NMS×NBS = 30×
100. For the HY implementations we have used NRF

MS = 10 and NRF
BS = 20.

(14), proposed in [13], plus the following orthogonalization
step of the weight matrix:

W(n+ 1) = W(n+ 1)
(
WT (n+ 1)W(n+ 1)

)−1/2
, (15)

where
(
WT (n+ 1)W(n+ 1)

)−1/2
denotes the inverse

square root of WT (n+1)W(n+1). In [4] the authors write
(14) as:

W(n+ 1)=
[
W(n)− δp(n)vT (n)

] (
IM + τ(n)v(n)yT (n)

]
= W(n)− δp̄(n)vT (n),

(16)
where

τ(n) =
1

‖v(n)‖2
[

1√
1 + δ2‖p(n)‖2‖v(n)‖2 − 1

]
(17)

and

p̄(n) = −τ(n)W(n)v(n)

δ
+

[
1 + τ(n)‖v‖2]p(n). (18)

The complete OOJA procedure is reported in Algorithm
2. Computational Complexity: The OOJA algorithm costs
3NM +O(N) flops per iteration.

IV. NUMERICAL SIMULATIONS

We now provide some numerical results. The first perfor-
mance measure that we are considering is the normalized
correlation between the true channel eigenvectors and the
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Figure 3. ηU versus the received SNR for a system with NMS×NBS = 30×
100. For the HY implementations we have used NRF

MS = 10 and NRF
BS = 20.

estimated ones. In particular, we denote by u and v the left
and the right eigenvector of the channel matrix corresponding
to the dominant eigenvalue respectively, and by û and v̂ the
estimates of left and right dominant eigenvector of the channel
matrix, respectively. The normalized correlations are defined
as

ηU =

∣∣uH û
∣∣

‖u‖‖û‖ , (19)

and as

ηV =

∣∣vH v̂
∣∣

‖v‖‖v̂‖ . (20)

We will also report the achievable rate and the error probability
assuming differential phase shift keying signaling and differen-
tial non-coherent detection - notice indeed that the proposed
channel estimation methods do not rely on known training
symbols, and the dominant eigenvector is estimated with no
information on the signal phase.

In our simulation setup, we consider a communication band-
width of W = 500 MHz centered over the carrier frequency
f0 = 73 GHz. The distance between the transmitter and the
receiver is 50 m; the additive thermal noise is assumed to have
a power spectral density of −174 dBm/Hz, while the front-end
receiver at the BS and at the MS is assumed to have a noise
figure of 3 dB. The shown results come from an average over
500 random scenario realizations with independent channels.

The length of the training phase for all the algorithms is
PBS = PMS = 30; of these training samples, the first ten
are used to perform an SVD of the sample covariance matrix
of the data, and the corresponding dominant eigenvector is
used to initialize the PASTd and OOJA algorithms. In Figs.
2 and 3 we report ηU and ηV versus the received SNR for
the considered algorithms and also for the SE-ARN and AML
algorithms. In Figs. 4 and 5 we report instead the cumulative
distribution function (CDF) of ηU and ηV at an SNR of 10
dB, respectively – the remaining parameters are the same as
the ones taken in Figs. 2-3. First of all, it is seen that the

Figure 4. CDF of ηU for a system with NMS ×NBS = 30× 100. For the
HY implementations we have used NRF

MS = 10 and NRF
BS = 20.

proposed subspace tracking algorithms achieve good perfor-
mance and outperform competing alternatives. As expected,
FD implementations achieves better performance than their
HY suboptimal implementations. Further investigations are
actually needed here to test the system performance with
different types of analog front-end beamformers. Fig. 6 reports
the achievable spectral efficiency for the BS-to-MS link versus
SNR, for multiplexing order M = 1 (in subplot (a)) and
M = 3 (in subplot (b)). In particular, the plotted performance
measure is the following

RMS = log2 det
[
IM + PT,BS

(
σ2
nD

H
MSDMS

)−1 ×

DH
MSHDBSD

H
BSH

HDMS

]
.

(21)

with PT,BS the transmitted power at the BS. Results again
show that the proposed algorithms have good performance
levels. Finally, Fig. 7 we report the symbol error probability
versus SNR for the BS-to-MS link and assuming multiplexing
order M = 1. Subplot (a) refers to the case in which the
training phase length is 10 (with two symbols used to perform
the SVD to initialize the PASTd and OOJA algorithms), while
subplot (b) refers to the case in which the training phase
length is 50 (with 10 symbols used for initialization). A
differential 16-PSK modulation has been assumed. Overall,
results confirm again the good performance of the proposed
estimation techniques, even for the case of short training
length.

V. CONCLUSION

This paper has been focused on the problem of channel es-
timation for wireless single-user MIMO links at mmWave fre-
quencies. Exploiting the clustered propagation channel model,
it is shown that subspace tracking algorithms can be used in
order to track the principal eigenvectors of the channel matrix.
Results have shown that the proposed estimation algorithms
are effective and capable of attaining good performance levels
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Figure 5. CDF of ηV for a system with NMS ×NBS = 30× 100. For the
HY implementations we have used NRF

MS = 10 and NRF
BS = 20.

Figure 6. Spectral efficiency for the BS-to-MS link versus received SNR.
Parameters: NMS×NBS = 30×100, NRF

MS = 10, NRF
BS = 20, multiplexing

order M = 1 in subplot (a) and M = 3 in subplot (b).

also for very short training phases. This research can be ex-
tended in several directions. First of all, for the HY solutions,
we have used a fixed analog beamformer. Further research
is needed in order to properly design more effective analog
beamformers, possibly to be tuned via an adaptive algorithm.
Additionally, note that we have been proposing here a single-
user estimation technique; multiuser joint channel learning
schemes are thus to be investigated. Finally, it would be of
great interest to investigate the performance of the proposed
adaptive algorithms in a dynamic environment, wherein chan-
nel impulse response changes due to, e.g., MS mobility.

REFERENCES

[1] J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. Soong,
and J. C. Zhang, “What will 5G be?” IEEE J. Select. Areas Commun.,
vol. 32, no. 6, Jun. 2014.

Figure 7. Error probability for the BS-to-MS link versus received SNR.
Parameters: 16-PSK differential modulation, NMS × NBS = 30 × 100,
NRF

MS = 10, NRF
BS = 20, 10 training symbols in subplot (a), and 50 training

symbols in subplot (b).

[2] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5G cellular: It will work!” IEEE Access,
vol. 1, pp. 335–349, May 2013.

[3] B. Yang, “Projection approximation subspace tracking,” IEEE Transac-
tions on Signal processing, vol. 43, no. 1, pp. 95–107, Jan. 1995.

[4] K. Abed-Meraim, S. Attallah, A. Chkeif, and Y. Hua, “Orthogonal OJA
algorithm,” IEEE Signal processing letters, vol. 7, no. 5, pp. 116–119,
May 2000.

[5] S. Haghighatshoar and G. Caire, “Low-complexity massive MIMO
subspace estimation and tracking from low-dimensional projections,”
arXiv preprint arXiv:1608.02477, Aug. 2016.

[6] ——, “Massive MIMO channel subspace estimation from low-
dimensional projections,” IEEE Transactions on Signal Processing, Oct.
2016.

[7] H. Ghauch, T. Kim, M. Bengtsson, and M. Skoglund, “Subspace esti-
mation and decomposition for large millimeter-wave MIMO systems,”
IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3,
pp. 528–542, Apr. 2016.

[8] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. Heath, “Spatially
sparse precoding in millimeter wave MIMO systems,” IEEE Trans. on
Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

[9] S. Haghighatshoar and G. Caire, “Enhancing the estimation of mm-
Wave large array channels by exploiting spatio-temporal correlation and
sparse scattering,” in Proc. of 20th International ITG Workshop on Smart
Antennas (WSA 2016), 2016.

[10] J. Lee, G.-T. Gil, and Y. H. Lee, “Exploiting spatial sparsity for
estimating channels of hybrid MIMO systems in millimeter wave
communications,” in 2014 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2014, pp. 3326–3331.

[11] S. Buzzi and C. D’Andrea, “On clustered statistical MIMO millimeter
wave channel simulation,” arXiv preprint arXiv:1604.00648, May 2016.

[12] X. Wang and H. V. Poor, “Blind multiuser detection: A subspace
approach,” IEEE Transactions on Information Theory, vol. 44, no. 2,
pp. 677–690, Mar. 1998.

[13] E. Oja, “Principal components, minor components, and linear neural
networks,” Neural networks, vol. 5, no. 6, pp. 927–935, Dec. 1992.

WSA 2017 · March 15-17, 2017, Berlin, Germany

ISBN  978-3-8007-4394-0 © 2017 VDE VERLAG GMBH  Berlin  Offenbach376
Authorized licensed use limited to: Universita degli Studi di Cassino. Downloaded on September 05,2022 at 13:02:32 UTC from IEEE Xplore.  Restrictions apply. 


