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Water temperature is a critical indicator and weathervane of aquatic ecosystems. However, the vast
majority of rivers lack long-term continuous and complete water temperature datasets. In this study,
ensemble models by combining NARX (nonlinear autoregressive network with exogenous inputs) and
air2stream were used to reconstruct daily river water temperatures for 27 hydrological stations in the
Odra River Basin, one of the largest river systems in Europe. For each hydrological station, both the
NARX and air2stream models were calibrated and validated, and the better-performed model was
selected to reconstruct daily river water temperatures from 1985 to 2022. The results showed that hybrid
modeling by combining NARX and air2stream is promising for reconstructing daily river water temper-
atures. Based on the reconstructed dataset, annual and seasonal trends of water temperature and char-
acteristics of river heatwaves were evaluated. The results indicated that annual river water
temperatures showed a consistent warming trend over the past 40 years with an average warming rate
of 0.315 �C/decade. Seasonal river water temperatures indicated that summer warms faster, followed by
autumn and spring, and winter river water temperatures showed an insignificant warming trend. River
heatwaves are increased in frequency, duration, and intensity in the Odra River Basin, and 6 out of 27
hydrological stations have river heatwaves categorized as ‘severe’ and ‘extreme’, suggesting that mitiga-
tion measures are needed to reduce the impact of climate warming on aquatic systems. Moreover, results
showed that air temperature is the major controller of river heatwaves, and river heatwaves tend to
intensify with the warming of air temperatures.
� 2024 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. on

behalf of China University of Geosciences (Beijing). This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Water temperature is a critical factor in aquatic ecosystems,
directly impacting the physical, chemical, and biological processes
of rivers (Caissie, 2006; Johnson et al., 2024). Escalating global cli-
mate change has led to further increases in river water tempera-
tures (RWT), resulting in more frequent and intense river
heatwaves with serious impacts on river ecology (Tassone et al.,
2023; Zhi et al., 2023a; Johnson et al., 2024; Zhu et al., 2024). To
accurately assess river heatwaves, complete and continuous daily
data of river water temperatures are essential (Tassone et al.,
2023; Zhu et al., 2024).

Many rivers worldwide lack continuous and complete water
temperature data, thus using modeling tools to reconstruct daily
RWT is popular (e.g., Zhu et al., 2022; Bal and de Eyto, 2023;
Huang et al., 2023; Shrestha and Pesklevits, 2023; Zhi et al.,
2023b; Shrestha et al., 2024). The choice of an accurate and effi-
cient water temperature prediction model is of paramount impor-
tance in this regard.

Many types of models have been proposed for daily RWT pre-
diction in the past decades (e.g., Benyahya et al., 2007; Dugdale
et al., 2017; Zhu and Piotrowski, 2020; Qiu et al., 2021; Tao et al.,
2021; Almeida and Coelho, 2023; Sun et al., 2024). While simple
statistical models can quickly identify water temperature trends,
g).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gsf.2024.101916&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.gsf.2024.101916
http://creativecommons.org/licenses/by/4.0/
mailto:slzhu@yzu.edu.cn
https://doi.org/10.1016/j.gsf.2024.101916
http://www.sciencedirect.com/science/journal/16749871
https://www.elsevier.com/locate/gsf


J. Sun, F. Di Nunno, M. Sojka et al. Geoscience Frontiers 15 (2024) 101916
they often lack predicting accuracy (e.g., Stefan and Preud’homme,
1993; Mohseni and Stefan, 1999; Benyahya et al., 2007). Process-
based models, favored for their robust physical mechanisms,
demand extensive and complex data for model development, mak-
ing them impractical for many rivers worldwide (e.g., Wright et al.,
2009; Dugdale et al., 2017). In recent years, machine learning (ML)
models have emerged as potent tools for RWT prediction and
reconstruction (e.g., Feigl et al., 2021; Qiu et al., 2021; Tao et al.,
2021; Almeida and Coelho, 2023; Sun et al., 2024; Zhu et al.,
2024). ML-based models can autonomously explore data interrela-
tionships, establishing intricate connections to achieve precise pre-
dictions. Among these ML-based models, NARX-based models
(nonlinear autoregressive network with exogenous inputs) have
demonstrated their efficiency and accuracy in daily RWT modeling
(e.g., Sun et al., 2024; Zhu et al., 2024), especially considering the
accuracy of capturing river heatwaves (Zhu et al., 2024).

Previous studies often used a single model to reconstruct daily
RWT. For example, Zhu et al. (2022), Shrestha and Pesklevits
(2023) and Shrestha et al. (2024) employed the widely used air2-
stream model to reconstruct daily RWT in Polish and Canadian riv-
ers respectively; Bal and de Eyto (2023) used simple Bayesian
reconstruction in two European rivers; Huang et al. (2023) and
Zhi et al. (2023b) used deep learning model for Chinese and US riv-
ers. To improve prediction reliability and avoid the limitations of a
single model, ensemble modeling by combining multiple models is
a good strategy and has become popular in hydrological studies
(e.g., Duan et al., 2007; Velázquez et al., 2010; Dion et al., 2021;
Olsson et al., 2024). However, to the best of our knowledge, ensem-
ble modeling considering hybrid models has rarely been used to
reconstruct daily RWT.

To fill the above gaps, the NARX-based model and air2stream
model were ensembled to reconstruct daily river water tempera-
tures for 27 hydrological stations in the Odra River Basin, one of
the largest river systems in Europe. For each hydrological station,
both the NARX and air2stream models were calibrated and vali-
dated, and the better-performed model was selected to reconstruct
daily river water temperatures from 1985 to 2022. Based on the
reconstructed dataset, annual and seasonal trends of water tem-
perature, and characteristics of river heatwaves, were evaluated.
The objectives of this study are (i): to reconstruct daily water tem-
peratures for 27 hydrological stations in the Odra River Basin from
1985 to 2022; (ii) to analyze annual and seasonal variations of river
water temperatures for each hydrological station; (iii) to analyze
the characteristics of river heatwaves, including the total number,
duration, and intensity for each hydrological station. This study
will deepen our understanding of the trends of river water temper-
atures and heatwaves in Poland over the past four decades and
provide valuable resources for future studies on river thermal
dynamics and environmental management.
2. Materials and methods

2.1. Study area

The Oder River Basin is one of Europe’s largest river systems,
claiming the 15th spot in terms of area. With a discharge density
of 17.3 (km3/year) and a population density of 134 persons/km2,
it harbors a dynamic landscape shaped significantly by human
activities, including urbanization, agriculture, and pastureland,
which collectively occupy 60.8% of the region (Tockner et al.,
2022). Encompassing territories across three countries—Poland,
Germany, and the Czech Republic—it holds the largest expanse
within Poland, occupying over 30% of the nation’s territory (Fig. 1).

Situated in the heart of Europe, the Oder River Basin experi-
ences a temperate climate marked by transitional traits. Caught
2

between the influence of maritime air masses from the Atlantic
and drier currents originating from deep within the Eurasian con-
tinent, the region exhibits climatic nuances that shape its ecologi-
cal and environmental dynamics.

Beyond its ecological significance, the Oder River Basin serves as
a vital conduit for inland transportation, boasting numerous water-
ways that facilitate trade and connectivity. Furthermore, the area is
witnessing a surge in tourism development, underscoring its grow-
ing importance as a destination for leisure and recreation.

The Oder River itself is 855 km long, its sources are located in
the Czech Republic at 634 m a.s.l., and it flows into the Szczecin
Lagoon (a bay of the Baltic Sea).

2.2. Data

The dataset utilized in this study comprises measurements con-
ducted as part of the ongoing hydrological monitoring efforts in
Poland by the Institute of Meteorology and Water Management
(IMWM). These measurements, recorded on a daily basis, encom-
pass water temperature readings taken consistently beneath the
water surface at a depth of 0.4 m, precisely at 6 UTC, and at fixed
locations marked by water gauges.

However, it is noteworthy that following the reorganization of
IMWM’s measurement network, the majority of stations ceased
stationary water temperature measurements in 2014 (as delin-
eated in Table 1). Nonetheless, for continuity and comprehensive-
ness, air temperature data sourced from standard meteorological
observations have been drawn from IMWM resources.

Furthermore, to ensure precision and relevance to specific rivers
under investigation, meteorological measurements from the near-
est stations have been incorporated into the analysis (refer to
Table 1 and Fig. 1 for details).

2.3. Models

2.3.1. air2stream
The air2stream model is a lumped, semi-empirical and hybrid

model for the forecasting of daily RWT (Toffolon and Piccolroaz,
2015). In contrast to the traditional process-based models, the
basic physical equation of the model is derived by Talyor expand-
ing the heat budget equation, employing air temperature as the
substitute of the net heat flux term. This process simplifies the
complex water temperature formula into a simple equation based
on air temperature and eight model parameters, resulting in the 8-
parameter version (Eq. (1)) of the air2stream model.

dTw

dt
¼ 1

ha4
a1 þ a2Ta � a3Tw þ hða5 þ a6cosð2pð tty � a7ÞÞ � a8TwÞ

� �

ð1Þ
where Tw is daily river water temperature, t is time step, Ta is daily
air temperature, ty is the duration of one year (365 days), h is the
dimensionless discharge, and a1–a8 are model parameters.

In addition, the 8-parameter version can be further simplified
into the 5-parameter version to reduce computational require-
ments. Previously, Sun et al. (2024) found that the 5-parameter
version had the best modeling performance in Polish rivers. There-
fore, in this study, the 5-parameter version of the airstream model
was selected to model and reconstruct RWT as Eq. (2).

dTw

dt
¼ a1 þ a2Ta � a3Tw þ a6cosð2pð tty � a7ÞÞ

� �
ð2Þ

The advantage of this model version is that it only requires air
temperature data as the sole model input and automatically
searches for the optimal model parameters through the Particle
Swarm Optimization algorithm.



Fig. 1. Locations of the 27 hydrological stations and the corresponding meteorological stations. The numbers and characters are corresponded with that list in Table 1.
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2.3.2. NARX networks
This section offers an in-depth overview of the BO-NARX-BR

model, highlighting the NARX algorithm utilized for forecasting
and the Bayesian Optimization (BO) and Bayesian Regularization
(BR) algorithms applied for model tuning. The structure of the
NARX model is depicted as Eq. (3):

y tð Þ ¼ f y t � 1ð Þ; y t � 2ð Þ; � � � ; y t � f dð Þ; x t � 1ð Þ; x t � 2ð Þ; � � � ; x t � pdð Þð Þ
ð3Þ

with x(t) as the exogenous input layer, represented by air temperature
and day of the year (DOY), and y(t) as the target, represented by the
river water temperature, at a given time t. Moreover, pd and fd indicate
the lagged values of inputs and target, respectively. Choice of the
exogenous variables (air temperature and DOY) in this study followed
the conclusion in a recent study at the Vistula River Basin in Europe,
indicating that this input combination can produce the best perfor-
mance for daily RWT modeling using NARX model (Sun et al., 2024).

The NARX structure comprised three different layers (Fig. 2).
The initial layer acts as the input, taking in the input parameters.
The second layer serves as the hidden layer, handling computa-
tions between input and output. Lastly, the third layer operates
as the output, delivering the predicted values. Moreover, the pre-
3

dicted output feeds back as input for iterative calculations in the
subsequent time step (dot-dash red line in Fig. 2). A sigmoid acti-
vation function (f1) was implemented within the hidden layer, as
it’s particularly effective for training neural networks using back-
propagation methods. This sigmoid function is also differentiable,
aiding in the neural network weight learning process. A linear acti-
vation function (f2) was used for the output layer with a single neu-
ron (n). The linear activation function in the output layer allows the
model to produce unbounded real values, which aligns well with
regression goals. Additionally, the linear activation function is sim-
ple and doesn’t introduce non-linearity. This straightforwardness,
combined with the use of a single neuron, is beneficial for the out-
put layer, particularly when the task requires straightforward pre-
dictions without complex transformations (Zhu et al., 2024).

Nonetheless, a key challenge in crafting any forecasting model
lies in the thoughtful selection of input variables. In this study,
determining the optimal number of lagged values for variables
and fine-tuning the hyperparameters for the NARX model were
achieved using the BO algorithm (Zhu et al., 2023; Sun et al.,
2024). The BO algorithm was specifically used to identify the opti-
mal values for the number of hidden nodes and the lagged values
of inputs and target variables. The BO process sets up an objective



Table 1
Detailed information on the studied rivers and analyzed hydrological and meteorological stations. The numbers of the hydrological stations and the characters of the
meteorological stations are shown in Fig. 1.

Station No. Station name River Longitude (�E) Latitude (�N) Altitude
(m a.s.l.)

RWT period Corresponding
meteorological
station

1 _ZELAZNO BIAŁA LĄDECKA 16.403 50.222 316.766 1985–2014 f

2 TŁUMACZÓW ŚCINAWKA 16.261 50.331 340.151 1985–2014 f
3 KRASKÓW BYSTRZYCA 16.350 50.546 176.281 1985–2014 c
4 OŁAWA OŁAWA 17.173 50.565 124.826 1985–2014 c
5 BOBRY WARTA 19.242 51.013 205.499 1985–2022 m
6 ŚWIERZAWA KACZAWA 15.532 51.010 256.347 1985–2014 e
7 DĄBROWA BOLESŁAWIECKA BÓBR 15.341 51.193 157.637 1985–2014 a
8 ŚCINAWA ODRA 16.264 51.243 86.725 1985–2014 a
9 ŁOZY KWISA 15.221 51.293 117.336 1985–2014 d
10 SIERADZ WARTA 18.443 51.356 125.102 1985–2014 l
11 _ZAGAŃ BÓBR 15.186 51.371 91.914 1985–2014 d

12 BOGUSŁAW PROSNA 17.571 51.535 87.904 1985–2014 l
13 LUBIATÓW OBRZYCA 15.581 51.552 52.854 1985–2009 b
14 GUBIN NYSA ŁU _ZYCKA 14.423 51.582 37.607 1985–2014 k

15 DĄBIE NER 18.493 52.051 93.39 1985–2014 g
16 ŚREM WARTA 17.010 52.054 57.835 1985–2014 b
17 POŁĘCKO ODRA 14.533 52.031 32.621 1985–2014 d
18 ZBĄSZYŃ OBRA 15.552 52.150 50.352 1985–2009 d
19 POZNAŃ-MOST ROCHA WARTA 16.564 52.241 49.458 1985–2009 j
20 SŁUBICE ODRA 14.332 52.205 17.446 1985–2014 k
21 SKWIERZYNA WARTA 15.300 52.361 21.817 1985–2010 i
22 GORZÓW WIELKOPOLSKI WARTA 15.151 52.435 15.514 1985–2009 i
23 PAKOŚĆ NOTEĆ 18.054 52.480 72.763 1985–2014 n
24 GOZDOWICE ODRA 14.190 52.455 3.02 1985–2014 i
25 NOWE DREZDENKO NOTEĆ 15.502 52.510 24.208 1985–2014 i
26 DRAWINY DRAWA 15.584 52.531 29.79 1985–2014 i
27 PIŁA GWDA 16.443 53.091 54.426 1985–2014 h

Fig. 2. Sketch of the BO-NARX-BR model.
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function for Bayesian optimization and outlines the hyperparame-
ter search space, which includes the number of hidden nodes, lags,
and delays. Following this, the NARX model undergoes iterative
training and evaluation, yielding a loss value expressed as Mean
Square Error (MSE) for each hyperparameter combination. Hence,
the values for the number of hidden nodes, pd, and fd that minimize
MSE were deemed optimal for the modeling.

Additionally, other NARX parameters require calibration.
Among them, the weight (w) and bias (b) parameters are influ-
enced by the selected training algorithm. In this study, the BR
4

back-propagation training algorithm (MacKay, 1992; Foresee and
Hagan, 1997) was chosen. This algorithm outperformed both
Levenberg-Marquardt (LM) and Scaled Conjugate Gradient (SCG)
algorithms, which were preliminarily tested. The superiority of
the BR algorithm is consistent with prior research in the field, indi-
cating that BR may have slower convergence but offers superior
performance compared to LM and SCG (Di Nunno et al., 2022;
Zhu et al., 2023, 2024).

Finally, the BO-NARX-BR process was stopped when any of the
following conditions were met:
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(i) reaching the maximum number of epochs (set to 1000);
(ii) achieving the LM adjustment parameter (set at 1 � 1010);
(iii) reaching an error gradient below a set threshold (set at

1 � 10–7).
The BO-NARX-BR model was implemented using the MATLAB

environment (refer to the Data and Code Availability section for
further details).

2.3.3. Model setup and evaluation
In this study, as for most hydrological stations, the available

RWT datasets span from 1985 to 2014 (Table 1), they were divided
into training (1985–2005) and testing (2006–2014) sets. For the
other hydrological stations only having data from 1985 to 2009,
data from 1985 to 2002 were used for model training, and the
remaining data were used for model testing. Note that for one
hydrological station-Bobry, on the Warta River, the RWT time ser-
ies is from 1985 to 2022, and data from 1985 to 2010 were used for
training and the remaining data were used for testing. For model
input, air temperature and DOY were used as exogenous variables
as mentioned above, and for all the meteorological stations, daily
air temperatures span from 1985 to 2022.

To assess the model performance, three widely used evaluated
metrics were employed: Nash-Sutcliffe efficiency coefficient
(NSE), root mean squared error (RMSE), and mean absolute error
(MAE) as Eqs. (4)–(6).

NSE ¼ 1�
Pn

i¼1 Ti
M � Ti

O

� �2

Pn
i¼1 Ti

O � T
�� �2 ð4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Ti

M � Ti
O

� �2

n

vuut
ð5Þ

MAE ¼ 1
n

Xn

i¼1
Ti
M � Ti

O

��� ��� ð6Þ

where Ti
M and Ti

O are modelled and observed river water tempera-

tures for the ith data, T
�
is the average value of Ti

O, and n is the num-
ber of samples.

Table 2 summarizes the model parameters for the NARX-based
model (number of hidden nodes and delays computed based on the
BO process) and the air2stream model (a1, a2, a3, a6, and a7 deter-
mined by the particle swarm optimization algorithm).

2.4. Computation of river heatwaves

River heatwaves are identified to occur when daily river water
temperatures are above a local and seasonally varying 90th per-
centile threshold, which was produced by computing the daily
90th percentile of daily river water temperatures using an 11-
day window centered on the day of year over a baseline (30 years,
1985–2014) as suggested by Hobday et al. (2016). As defined, as a
river heatwave event, the 90th percentile threshold has to be
exceeded for at least five consecutive days, and two events with
a break of less than three days are considered as a single heatwave
event. Characteristics of heatwaves are computed based the
Python program in Hobday et al. (2016), which was initially used
for marine heatwaves, and was used in the computation of lake
and river heatwaves in subsequent studies (e.g., Woolway et al.,
2021; Di Nunno et al., 2023; Tassone et al., 2023; Wang et al.,
2023; Zhu et al., 2023; 2024). The characteristics of river heat-
waves include total number (times), duration (days), intensity
(�C), and category. The category of river heatwaves includes four
groups based on the maximum intensity in multiples of threshold
5

exceedances as defined in Hobday et al. (2016): moderate (M),
strong (S), severe (SE), and extreme (E).
3. Results

3.1. Model performance

The performance metrics of the two models across all the
hydrological stations are presented in Supplementary Data Tables
S1 and S2, and results of the better-performed model are presented
in Table 3 in detail. As seen, the NARX-based model outperformed
the air2stream model for 18 out of the 27 hydrological stations,
and for the remaining 9 hydrological stations, the air2stream
model performed better.

Fig. 3 displays the time series of RWT and AT, encompassing the
training, testing, and reconstructed time periods, for both the
Oława (Fig. 3) and Poznań (Fig. 3) stations. In particular, for the
Oława station, RWT data were available until 2014, and the best
performance was achieved with the NARX-based model. Con-
versely, for the Poznań station, RWT data were available until
2009, and the best performance was attained with the
air2stream-based model. However, in both cases, during the recon-
struction period up to 2022, peaks of RWT equal to or higher than
those during the training and testing periods can be observed. This
is attributed to the utilization of air temperature as an exogenous
input variable. As will be discussed further in the next sections, the
air temperature has shown increasing trends from 1985 to the pre-
sent, involving a reconstruction of RWT consistent with these
trends.

Moreover, the performance of the two models in six hydrologi-
cal stations during the testing period was represented as measured
vs. predicted values in Fig. 4. As observed, both BO-NARX-BR and
air2stream yielded accurate predictions, with the points dis-
tributed quite symmetrically around the 1:1 line, not significantly
deviating from it. This indicates a balanced performance with sim-
ilar occurrences of overestimations and underestimations of RWT
by both models across the dataset.

Concerning the detailed model performance, as shown in
Table 3, during the calibration period, RMSE ranged between
0.615 �C and 2.168 �C with an average value of 1.165 �C, NSE ran-
ged between 0.856 and 0.991 (average: 0.961), and MAE varied
between 0.463 �C and 1.619 �C (average: 0.878 �C). In the valida-
tion period, RMSE ranged between 0.492 �C and 1.892 �C (average:
1.129 �C), NSE ranged from 0.870 to 0.995 (average: 0.965), and
MAE varied from 0.385 �C to 1.371 �C (average: 0.859 �C). The
results suggest the excellent predictive performance of the ensem-
ble modeling, demonstrating its suitability for reconstructing river
water temperatures. Therefore, the better-performed model
selected for each hydrological station was used to reconstruct daily
water temperatures from 1985 to 2022.
3.2. Annual and seasonal trends of river water temperatures

Annual and seasonal warming rates (�C/decade) of river water
temperatures and air temperatures are summarized in Table 4.
Fig. 5 shows the warming rates of river water temperatures (blue
arrows) and air temperatures (red arrows). Four seasons are
defined as spring (April–June), summer (July–September), autumn
(October–December), and winter (January–March). As winter RWT
showed an insignificant trend for all hydrological stations, only the
results of the other three seasons are included in Table 4.

As seen, the annual averaged RWT in 25 out of 27 hydrological
stations showed a clear warming trend (p < 0.05) following the
warming of air temperature, with the warming rate ranging from
0.054 �C/decade (No. 2) to 0.544 �C/decade (No. 4) (average:



Table 2
Summary of model parameters of the better performed model for each hydrological station. The station No. corresponds with that list in Table 1. Note that for each hydrological
station, only the parameters of the better performed model are provided.

Station No. NARX air2stream

Hidden nodes Delays a1 a2 a3 a6 a7

1 10 13
2 23 14
3 47 13
4 77 14
5 40 12
6 99 9
7 98 7
8 10 11
9 4.191 0.156 0.633 2.943 0.587
10 12 14
11 93 14
12 10 14
13 2.029 0.141 0.303 1.765 0.569
14 2.160 0.113 0.307 1.770 0.551
15 64 8
16 50 9
17 2.029 0.141 0.303 1.765 0.569
18 1.596 0.194 0.323 1.371 0.544
19 0.502 0.140 0.170 0.441 0.506
20 78 14
21 0.959 0.206 0.273 0.800 0.524
22 1.193 0.230 0.316 1.003 0.530
23 40 12
24 100 14
25 98 14
26 2.053 0.145 0.352 1.666 0.549
27 11 14

Table 3
The performance metrics of the better performed model for each hydrological station. The station No. corresponds with that list in Table 1. A2S refers to the air2stream model.

Station No. Calibration Validation Selected model

NSE RMSE (�C) MAE (�C) NSE RMSE (�C) MAE (�C)

1 0.944 1.175 0.932 0.934 1.263 0.946 NARX
2 0.856 2.168 1.619 0.938 1.284 1.008 NARX
3 0.968 1.069 0.832 0.966 1.107 0.830 NARX
4 0.990 0.667 0.496 0.982 0.884 0.704 NARX
5 0.974 0.975 0.746 0.982 0.817 0.637 NARX
6 0.955 1.055 0.822 0.955 0.980 0.726 NARX
7 0.937 1.391 1.008 0.928 1.626 1.223 NARX
8 0.966 1.371 1.032 0.973 1.230 0.965 NARX
9 0.877 1.879 1.358 0.870 1.892 1.371 A2S
10 0.960 1.376 1.020 0.971 1.137 0.849 NARX
11 0.963 1.049 0.773 0.964 1.079 0.806 NARX
12 0.987 0.783 0.591 0.985 0.865 0.663 NARX
13 0.970 1.263 0.952 0.963 1.369 1.034 A2S
14 0.939 1.655 1.303 0.937 1.721 1.354 A2S
15 0.928 1.714 1.286 0.971 1.154 0.873 NARX
16 0.955 1.055 0.822 0.955 0.980 0.726 NARX
17 0.970 1.224 0.889 0.980 1.063 0.834 A2S
18 0.972 1.181 0.873 0.968 1.289 1.027 A2S
19 0.983 0.956 0.723 0.982 1.052 0.823 A2S
20 0.985 0.899 0.686 0.988 0.848 0.664 NARX
21 0.987 0.832 0.638 0.969 1.294 0.907 A2S
22 0.987 0.829 0.637 0.960 1.467 1.048 A2S
23 0.965 1.383 1.038 0.985 0.928 0.725 NARX
24 0.991 0.698 0.517 0.993 0.663 0.516 NARX
25 0.986 0.786 0.591 0.986 0.817 0.631 NARX
26 0.951 1.407 1.057 0.968 1.180 0.913 A2S
27 0.991 0.615 0.463 0.995 0.492 0.385 NARX
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0.315 �C/decade). Moreover, for each hydrological station, river
water temperature warms slower than air temperature with the
ratio varying between 0.11 and 0.93 (average: 0.58), which is
clearly shown in Fig. 5 as well.

For seasonal trends, as shown in Table 4, spring RWT in 16 out
of 27 hydrological stations showed a warming trend (p < 0.05) fol-
lowing the warming of air temperature, with the warming rate
6

ranging from 0.267 �C/decade to 0.538 �C/decade (average:
0.379 �C/decade). For summer, RWT in 21 out of 27 hydrological
stations showed a warming trend (p < 0.05), with the warming rate
varying between 0.144 �C/decade and 0.712 �C/decade (average:
0.480 �C/decade). As for autumn, RWT in 22 out of 27 hydrological
stations showed a warming trend (p < 0.05), with the warming rate
varying between 0.229 �C/decade and 0.720 �C/decade (average:



Fig. 3. RWT and AT time series for: Oława (No. 4): (a) RWT and (b) AT; Poznań (No. 19): (c) RWT and (d) AT. The station No. corresponds with that list in Table 1.
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0.393 �C/decade). Overall, summer RWT warms faster, followed by
autumn and spring. For most of the hydrological stations, seasonal
7

RWT warms slower than air temperature, however, there are still
some exceptions, especially for summer. For example, for three sta-



Fig. 4. Measured vs predicted RWT – Testing stage: (a) Tłumaczów (No. 2); (b) Połęcko (No. 17). (c) Oława (No. 4); (d) Poznań (No. 19); (e) Słubice (No. 20); (f) Gorzów
Wielkopolski (No. 22).

J. Sun, F. Di Nunno, M. Sojka et al. Geoscience Frontiers 15 (2024) 101916

8



Table 4
Annual and seasonal warming rates (�C/decade) of river water temperatures and air temperatures. The station No. corresponds with that list in Table 1. RWT is river water
temperature, AT is air temperature, and ‘/’ means the varying trend is insignificant (p > 0.05).

Station No. Annual Spring Summer Autunm

RWT AT RWT AT RWT AT RWT AT

1 0.319 0.498 / 0.371 0.391 0.467 0.396 0.623
2 0.054 0.498 / 0.371 / 0.467 0.345 0.623
3 0.363 0.675 0.445 0.600 0.476 0.694 0.366 0.715
4 0.544 0.675 0.538 0.600 0.679 0.694 0.579 0.715
5 0.232 0.544 0.267 0.427 / 0.598 0.298 0.617
6 0.182 0.416 / 0.367 0.144 0.400 0.229 0.476
7 / 0.531 / 0.430 0.571 0.564 0.427 0.591
8 0.363 0.531 / 0.430 0.584 0.564 0.367 0.591
9 0.093 0.549 / 0.529 / 0.577 0.386 0.562
10 0.462 0.538 / 0.459 0.499 0.587 0.720 0.601
11 0.233 0.549 0.406 0.529 / 0.577 / 0.562
12 0.353 0.538 0.327 0.459 0.501 0.587 0.341 0.601
13 0.262 0.518 0.295 0.408 0.375 0.573 0.273 0.580
14 0.191 0.530 0.275 0.495 / 0.585 / 0.545
15 / 0.479 / 0.342 / 0.484 / 0.600
16 0.481 0.518 0.395 0.408 0.637 0.573 0.468 0.580
17 0.290 0.549 0.347 0.529 0.383 0.577 / 0.562
18 0.420 0.549 0.339 0.529 0.538 0.577 0.533 0.562
19 0.439 0.616 0.383 0.555 0.712 0.757 0.417 0.614
20 0.370 0.530 0.450 0.495 0.487 0.585 0.358 0.545
21 0.338 0.530 / 0.503 0.498 0.557 0.356 0.540
22 0.359 0.530 0.308 0.557 0.485 0.503 0.329 0.540
23 0.136 0.505 / 0.418 0.270 0.535 / 0.556
24 0.445 0.530 0.527 0.503 0.529 0.557 0.441 0.540
25 0.355 0.530 0.379 0.503 0.475 0.557 0.378 0.540
26 0.286 0.530 / 0.503 0.353 0.557 0.358 0.540
27 0.311 0.520 0.376 0.446 0.492 0.583 0.285 0.527
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tions (Nos. 7, 8, and 16), summer RWT warms faster than air
temperature.

Correlation coefficient (r) between seasonal air temperatures
and river water temperatures across all hydrological stations is
summarized in Supplementary Data Table S3. Specifically, r varies
from 0.42 to 0.96 (average: 0.78, Standard Deviation (SD): 0.17) for
spring; for summer, r ranges from 0.28 to 0.96 (average: 0.78, SD:
0.18); r has an average value of 0.80 (0.58–0.93, SD: 0.10) for
autumn; and for winter, r varies from 0.78 to 0.97 (average: 0.88,
SD: 0.06). As shown, air temperature is the main impact factor con-
trolling seasonal RWT for majority of hydrological stations. With
the warming of seasonal air temperatures in spring, summer, and
autumn, RWT generally tends to increase, as shown above. For
winter, as air temperatures showed insignificant warming trends,
winter RWT showed an insignificant trend for all hydrological sta-
tions. Moreover, as shown from the SD values, spring and summer
have relatively larger SD values, as in some hydrological stations
(e.g., Tłumaczów), r values are small in these two seasons (Supple-
mentary Data Table S3), indicating that other local conditions (e.g.,
basin properties) may impact the relationship between seasonal
RWT and air temperature (e.g., Tokarczyk, 2013; Laizé et al., 2017).

3.3. River heatwaves

In this study, the number, duration, maximum intensity, and
cumulative intensity of river heatwaves were computed for each
hydrological station. The trends are presented in Table 5. As seen,
for the majority of hydrological stations, river heatwaves are
increased in number, duration, and intensity: (i) total number
increased at an average rate of 0.814 times/decade, with a range
of 0.594–1.516 times/decade; (ii) total duration increased at an
average rate of 9.258 d/decade, from 5.608 d/decade to 17.555 d/
decade; (iii) maximum intensity increased from 0.201 �C/decade
to 0.469 �C/decade, with an average rate of 0.330 �C/decade; and
(iv) cumulative intensity increased from 14.329 �C/decade to
46.03 �C/decade, with an average rate of 26.504 �C/decade.
9

Concerning the category of each heatwave event, which is sum-
marized in Table 6, for each hydrological station, the majority of
heatwave events belong to the category ‘M’ (moderate) with a per-
centage of around 84.4%, followed by ‘S’ (strong) with a percentage
of around 15.4%, and only a few hydrological stations showed cat-
egories of ‘SE’ (severe) and ‘E’ (extreme). The category shown in
Table 6 indicated that river heatwaves are at moderate to strong
levels for the Odra River Basin.

For basin average condition (averaged values of the 27 hydro-
logical stations), the four variables all show clear increasing rate
(p < 0.05), which is shown in Fig. 6. As seen, total number increased
at a rate of 0.706 times/decade, total duration increased at a rate of
7.710 d/decade, maximum intensity increased with a rate of
0.227 �C/decade, and cumulative intensity increased with a rate
of 21.190 �C/decade. The results indicated that the overall river
heatwaves in the Odra River Basin tend to increase in frequency
and intensity.

4. Discussion

4.1. Ensemble modeling

Many studies used a single model for the reconstruction of daily
RWT, and the majority of them used the air2stream model due to
its simplicity and accuracy (e.g., Zhu et al., 2022; Shrestha and
Pesklevits, 2023; Shrestha et al., 2024). However, recent studies
showed that the performance of the air2stream model is site-
dependent, and the NARX-based model can produce better results
in the Vistula River Basin, Europe (Sun et al., 2024; Zhu et al.,
2024). For the Odra River Basin investigated in this study (located
in the same region as the Vistula River Basin), the modeling results
showed that the NARX-based model outperformed the air2stream
model in 18 out of the 27 hydrological stations, indicating the
overall better performance of the NARX-based model. As shown
by Zhu et al. (2024), NARX-based models can accelerate conver-
gence towards optimal weights for connections between neurons



Fig. 5. Warming rates of river water temperatures (blue arrows) and air temperatures (red arrows): (a) annual, (b) spring, (c) summer, and (d) autumn. The station No.
corresponds with that list in Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and input parameters, and there is a notable reduction in the num-
ber of parameters requiring calibration to enhance the model’s
effectiveness, making them prominent for RWT modeling. For the
9 hydrological stations where the air2streammodel performed rel-
10
atively better, observed RWT data are not complete, which might
impact the determination of the delays of the NARX-based model
(Table 2), thus affecting the performance of the NARX-based
model.



Table 5
Trends of river heatwaves. The station No. corresponds with that list in Table 1. ‘/’ means the varying trend is insignificant (p > 0.05).

Station No. Number (times/decade) Duration (days/decade) Maximum intensity (�C/decade) Cumulative intensity (�C/decade)

1 / / / /
2 / / / /
3 1.088 9.164 0.469 32.830
4 1.516 13.782 0.377 46.030
5 / / / /
6 / / / /
7 / / / /
8 0.710 17.555 / 32.681
9 / / / /
10 / / / /
11 0.867 7.460 0.263 17.602
12 0.727 5.608 / 18.877
13 / / / /
14 0.710 9.282 / 15.508
15 / / / /
16 0.594 8.765 / 30.036
17 0.725 7.295 / 20.716
18 0.687 7.317 / 23.135
19 / 9.134 / 32.475
20 0.854 11.605 0.411 35.139
21 0.631 8.283 / 27.656
22 0.762 7.988 / 27.155
23 0.661 7.800 / 22.319
24 0.701 7.353 0.275 23.584
25 1.017 12.776 0.201 32.849
26 0.688 7.344 / 14.329
27 0.892 8.125 0.311 24.152

Table 6
Summary of the number of each category for each hydrological station. The station No. corresponds with that list in Table 1. ‘M’ (moderate), ‘S’ (strong), ‘SE’ (severe), and
‘E’ (extreme).

Station No. Total number M S SE E

1 93 65 27 1 0
2 118 102 16 0 0
3 104 77 27 0 0
4 115 86 28 1 0
5 98 78 20 0 0
6 97 79 18 0 0
7 96 82 12 1 1
8 94 84 10 0 0
9 104 89 15 0 0
10 106 87 19 0 0
11 100 84 16 0 0
12 116 100 16 0 0
13 94 77 17 0 0
14 119 103 15 1 0
15 79 65 14 0 0
16 132 110 22 0 0
17 128 111 16 1 0
18 129 111 17 1 0
19 120 106 14 0 0
20 119 102 17 0 0
21 127 112 15 0 0
22 113 101 12 0 0
23 118 95 23 0 0
24 119 109 10 0 0
25 123 115 8 0 0
26 121 108 13 0 0
27 127 110 17 0 0
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Ensemble modeling by combining the two models can improve
the reliability of the results. For example, compared with Zhu et al.
(2022), which employed only the air2stream model to reconstruct
daily RWT in Polish rivers, the results in this study are better, e.g.,
average RMSE values for the training and testing periods are
1.165 �C and 1.129 �C respectively in this study, and are 1.21 �C
and 1.32 �C in Zhu et al. (2022). The results suggest that ensemble
modeling by combining multiple models is a better choice for the
11
reconstruction of daily RWT. Previously, Sojka and Ptak (2022)
attempted to reconstruct monthly mean river water temperatures
using multiple linear regression, multilayer perceptron network
and random forest regression, and the results showed that the
multilayer perceptron network was best suited for this purpose,
obtaining an average RMSE of 0.5 �C. However, it is not possible
to analyze river heatwaves as with the reconstruction of daily
RWT like in this study.



Fig. 6. Trends of river heatwaves for basin averaged values: (a) number, (b) duration, (c) maximum intensity, and (d) cumulative intensity.
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4.2. Warming trends of river water temperatures

Rivers are extremely susceptible to any changes that take place
in the environment which is reflected both in the amount of water
but also in the course of physical and chemical parameters. In an
era of global warming, increasing attention is being focused on
the scale and rate of change in water temperature, which is crucial
to these ecosystems. Numerous studies conducted in different
regions of the world prove that there is a change in the thermal
regime of rivers (Kaushal et al., 2010; Chen et al., 2016;
Zabolotnia, 2018; Itsukushima et al., 2024). Webb (1996) indicated
that there was a warming of the average temperature of rivers in
Europe during the 20th Century of about 1 �C. This trend was not
continuous which is due to extreme hydrological events. On the
other hand, analyzing previous studies in the area of the present
research, thus relating to Central Europe, it can be said that the
results obtained are in line with them.

For example, Ptak et al. (2022) showed that the Vistula River is
warming at an average rate of 0.31 �C/decade; Niedrist (2023)
showed that Central European mountain rivers are warming at a
rate between 0.24 �C/decade and 0.44 �C/decade. Upward trends
in water temperatures ranging from 0.10 �C/decade to 0.54 �C/dec-
ade have been shown in rivers located in the catchment area of the
Warta River (Gizińska and Sojka, 2023). For the five coastal rivers
in the southern Baltic Sea zone, water temperature increased in
the range of 0.26 �C/decade to 0.31 �C/decade (Ptak et al., 2016).
The warming rate computed from the reconstructed data showed
that the Odra River is warming at an average rate of 0.315 �C/dec-
ade, comparable with previous studies. The increase in water tem-
perature is important for hydrobiological conditions and also
affects issues relating to pollution or eutrophication (Johnson
et al., 2024). The Odra River and the Vistula River, are the main
suppliers of pollution to the Baltic Sea (Schernewski and
12
Neumann, 2002). Against this background, knowing the scale of
changes in water temperature is key information for undertaking
remedial work relevant not only to the river network located in
this basin but of international importance.

4.3. Characteristics of river heatwaves

Analyzing the possible drivers behind the increasing frequency,
duration, and intensity of river heatwaves in the Odra River Basin,
it was found that air temperature is the major controller. Table 7
summarizes the correlation coefficient (r) between annual air tem-
peratures and the number, duration, and total cumulative intensity
of river heatwaves. As seen, for all hydrological stations, the num-
ber, duration, and total cumulative intensity of river heatwaves
correlated with air temperatures (p < 0.05). Specifically, r varied
from 0.31 to 0.74 with an average value of 0.61 for the number, r
ranged from 0.34 to 0.76 with an average value of 0.62 for the
duration, and r varied from 0.26 to 0.76 with an average value of
0.60 for the total cumulative intensity. The results suggest that
with the warming of air temperatures, there will be more intensi-
fied river heatwaves. Other factors, e.g., land use and land cover,
and hydrological regime may impact river heatwaves, however,
due to the limitation of these data, their impacts are not analyzed
in this study. This issue can be solved once the data about land use
and land cover are collected.

4.4. Potential ecological impacts of water temperature changes and
heatwave intensification

With global climate change and the increase of extreme cli-
matic events, inland waters are warming, and heatwaves are
increasing in frequency and intensity for many water bodies
worldwide. For example, Woolway et al. (2021) showed that lake



Table 7
Correlation coefficient (r) between annual air temperatures and number, duration,
and total cumulative intensity of river heatwaves.

Station No. Total cumulative intensity Duration Number

1 0.63 0.66 0.67
2 0.55 0.56 0.57
3 0.71 0.73 0.73
4 0.66 0.68 0.74
5 0.60 0.61 0.57
6 0.52 0.54 0.53
7 0.51 0.56 0.60
8 0.67 0.69 0.66
9 0.52 0.53 0.49
10 0.60 0.61 0.65
11 0.60 0.61 0.64
12 0.67 0.67 0.66
13 0.26 0.34 0.40
14 0.64 0.66 0.61
15 0.31 0.34 0.31
16 0.62 0.62 0.50
17 0.63 0.64 0.62
18 0.64 0.65 0.62
19 0.67 0.69 0.62
20 0.76 0.76 0.73
21 0.62 0.63 0.54
22 0.60 0.61 0.65
23 0.57 0.59 0.61
24 0.67 0.67 0.66
25 0.68 0.69 0.69
26 0.67 0.69 0.65
27 0.69 0.68 0.68
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heatwaves will become hotter and longer due to the impact of cli-
mate change on global lakes. Wang et al. (2023) demonstrated that
climate change drives rapid warming and increasing heatwaves of
lakes in China. For rivers, Tassone et al. (2023) found increasing
heatwave frequency in streams and rivers in the United States.
Zhu et al. (2024) found that river heatwaves have increased in fre-
quency and intensity for the Vistula River Basin, Europe. Using the
reconstructed RWT dataset for the computation of river heatwaves,
the results in this study showed that river heatwaves increased in
number, duration, and intensity for the Odra River Basin with the
increase in air temperatures. Notably, most of the heatwave events
are moderate to strong, with only a few exceptions (severe and
extreme). In the case of rivers, commonly considered extreme sit-
uations refer to floods and droughts (Vicente-Serrano et al., 2017;
Sánchez-García and Francos, 2022; Gao et al., 2024). However,
given the elemental importance of water temperature, it can be
concluded that heatwaves will be crucial to the properties of river
ecosystems. Adapting to extreme hydrological events and subse-
quently responding appropriately to mitigate their effects requires
accurate and reliable risk assessment and understanding (Nguma
and Kiluva, 2022). The results obtained in this study enrich the
knowledge in this area while indicating the need for similar anal-
yses for other catchments.

Studies have shown that warming of RWT can cause deoxygena-
tion in rivers (e.g., Zhi et al., 2023b), pose adverse impacts on aquatic
life, and aggravate pervasive issues such as eutrophication, pollu-
tion, and the spread of disease, as summarized in Thompson et al.
(2021) and Johnson et al. (2024). In this regard, the observed water
temperature changes and heatwave intensification might induce
potential ecological impacts on the Odra River Basin (e.g., deoxy-
genation), though there are no specific studies on this topic. This,
on the other hand, suggests that more in-depth studies combining
field observation and modeling are needed to investigate the
impacts of water temperature changes and heatwave intensification
on the Odra River Basin, which can be enhanced once more water
quality data are available. Detailed knowledge of water temperature
as an elemental characteristic of water is important for many rea-
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sons, including considering at least the events of 2022. That sum-
mer, a mass die-off of organisms occurred on the Oder River,
which was attributed to toxins released by Prymnesium parvum
(Szlauer-Łukaszewska et al., 2024). According to Sobieraj and
Metelski (2023), the disaster occurred as a result of significant
changes in water parameters (indicating, among other things,
increased water temperature) and a significant degree of hydro-
morphological changes in the river.

4.5. Mitigation strategies and their documented effectiveness

The results in this study indicated that mitigation measures are
needed to reduce the impact of climate change on the studied
basin. Previous studies showed that the presence of trees near
the river (riparian shading) is important for reducing water tem-
perature (Pedreros et al., 2016; Trimmel et al., 2018;
Cunningham et al., 2023), and flow management by optimal dam
operations can act as thermal protection to warming and heatwave
effects (e.g., Renöfält et al., 2010; Feng et al., 2018; Tassone et al.,
2023). In the case of the Odra River Basin, there was a positive
effect of forested areas. Analysis of the thermal conditions in two
smaller catchments (Czerna Wielka and Szprotawa) revealed dif-
ferences of 1.2 �C in average annual temperatures. During the
growing season, this difference increased to 2.6 �C (Ptak, 2017).
Therefore, it is worth considering future appropriate management
of riparian zones, especially for small rivers, where shaded areas
can significantly impact river temperatures.

4.6. Potential applications of the models in quantifying trends in river
water temperatures and heatwaves under different climate change
scenarios

The impact of future climate on river thermal dynamics and
heatwaves can be investigated by combining the models used in
this study and scenarios of climate models. Models like NARX
and air2stream can be effectively used by leveraging their ability
to incorporate complex, nonlinear relationships and external cli-
mate variables. NARX models are particularly suited for this task
due to their structure, which integrates past values of the time ser-
ies (e.g., historical river temperatures) along with exogenous
inputs (e.g., air temperatures) to predict future values. This allows
them to capture the intricate dynamics between river water tem-
peratures and climate variables. The air2stream model, which is
specifically designed to relate air temperatures to water tempera-
tures, can complement this by providing a focused mechanism to
project how changes in air temperature, a key aspect of climate
change, directly influence river water temperatures. Firstly, daily
air temperature data under different climate change scenarios
can be obtained from climate models. For Poland, the EURO-
CORDEX project is a good choice. These data need to be calibrated
to historical periods, to make sure that they have enough accuracy
for the study region. Then, the calibrated models can be used to
project future river water temperatures for each hydrological sta-
tion by using these air temperature data as model input. Finally,
trends in river water temperatures and the frequency and intensity
of heatwaves under various climate change scenarios can be
deduced by analyzing the projected time series data generated
by these models.
5. Conclusions

In this study, ensemble models by combining NARX and air2-
stream, were used to reconstruct daily river water temperatures
in the Odra River Basin, one of the largest river systems in Europe.
The results lead to the following conclusions:
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(i) Ensemble modeling by combining NARX and air2stream is a
valuable tool for reconstructing daily river water temperatures.

(ii) Annual RWT showed a significant warming trend over the
past 40 years with an average warming rate of 0.315 �C/decade.
Seasonal RWT indicated that summer warms faster, followed by
autumn and spring, and winter RWT showed an insignificant
warming trend.

(iii) River heatwaves are increased in frequency, duration, and
intensity in the Odra River Basin. The majority of river heatwave
events are categorized as ‘moderate’ and ‘strong’, suggesting that
mitigation measures are needed to reduce the impact of climate
warming on aquatic systems. With the warming of air tempera-
tures, river heatwaves tend to intensify.
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