
University of Cassino and Southern

Lazio

Doctoral Course in
Methods, Models and Technologies for

Engineering
Curriculum in Computer Engineering

Cycle XXXV

Robot Planning and Control combined with

Machine Learning Techniques

SSD: ING-INF/04 AUTOMATICA

Supervisors:

Prof. Alessandro Marino

Prof. Gianluca Antonelli

Coordinator:

Prof. Fabrizio Marignetti

Author:

Giacomo Golluccio

http://www.uniclam.it
https://www.unicas.it/didattica/docenti/schedadocente.aspx?nome_cognome=alessandro_marino
https://www.unicas.it/didattica/docenti/schedadocente.aspx?nome_cognome=gianluca_antonelli
https://www.unicas.it/didattica/docenti/schedadocente.aspx?nome_cognome=fabrizio_marignetti
http://webuser.unicas.it/lai/robotica/index.php/people/

ii

“The Three Laws of Robotics:

• A robot may not injure a human being or, through inaction, allow a

human being to come to harm

• A robot must obey orders given it by human beings except where such

orders would conflict with the First Law

• A robot must protect its own existence as long as such protection does

not conflict with the First or Second Law

I. Asimov”

iii

Abstract

Robots and Artificial Intelligence (AI) have been growing in various contexts,

such as automotive, healthcare and manufacturing. In this thesis, the adoption

of Machine Learning (ML) and control techniques is explored to solve relevant

tasks in the robotics field.

The focus is on the task of retrieving an object target from cluttered environ-

ment; as it is well-known, the problem is combinatorial and hard to solve in

reasonable time. Here, it is solved by using a two layers architecture character-

ized from an high level Task Planner (TP) made of a Reinforcement Learning

(RL) agent, combined to a low level based on Motion Planner (MP) and Inverse

Kinematics (IK) Control. The architecture is validated via simulation and us-

ing the KINOVA Jaco2 7-DoFs robot manipulator. During the computation

of the path from the Motion Planner, it could be useful to check the collision

quickly. Thus, the collision detection problem in unstructured environment

by using a learning-based approach is considered. The idea is to present an

architecture that could reduce the computational time spent by the planner.

Going into detail, it is addressed employing depth images and point clouds

for adapted neural networks, i.e. CNN and PointNet. The proposed approach

is validated with an industrial robot at the Technology & Innovation Center

(TIC) of KUKA Deutschland GmbH in Augsburg (Germany).

Furthermore, also an optimization in the control law is considered. When a

robot manipulator is redundant, it is possible to exploit the additional degree of

freedoms for maximizing different functionals into the null space of the Jacobian

matrix, e.g. maximization of manipulability and distance from joint limits.

The idea is to show that, through a Supervised Learning (SL) approach, it is

possible to enlarge the dextrous workspace of the robot.

v

Contents

Contents v

List of Figures ix

List of Tables xvii

1 Introduction 1

1.1 Motivation . 1

1.2 State of the Art . 3

1.2.1 Thesis Outline and Contribution 11

1.2.2 Publications . 14

Other Contributions . 15

2 Background 17

2.1 Robot Modelling and Identification 17

2.1.1 Kinematics . 17

Position and Orientation of a Rigid Body 17

Direct Kinematics . 19

Inverse Kinematics . 19

2.1.2 Dynamics . 23

Lagrange Formulation 24

Kinetic Energy . 24

Potential Energy . 25

Equations of Motion . 26

2.1.3 Dynamic Parameters . 26

2.1.4 Identification of Dynamic Parameters 27

2.1.5 Constraints on the Robot Model 29

vi

Physical Feasibility . 29

Physical Consistency . 30

2.1.6 Methods for Estimating Dynamic Parameters 31

CAD . 32

Unconstrained Least Square (ULS) 32

Constrained Least Square (CLS) - Technique 1 (CLS-1) 33

Constrained Least Square (CLS) - Technique 2 (CLS-2) 34

Constrained Least Square (CLS) - Technique 3 (CLS-3) 35

2.1.7 Identification Methods: A Comparison 36

2.1.8 Validation methodology 37

2.1.9 Trajectories . 39

2.1.10 Results . 39

2.2 Machine Learning . 47

2.2.1 Reinforcement Learning 48

Rooted Trees . 50

2.2.2 Supervised Learning . 51

Neural Networks . 51

Feed-Forward Neural Networks 51

Convolutional Neural Network 53

3 Task-Motion Planning via Reinforcement Learning 57

3.1 Retrieving Objects from Clutter 57

3.1.1 System Architecture . 58

Low-level: Motion Planner 59

High-level: RL-Task Planner 62

3.1.2 Exploration Policies . 63

Tree-search Methods . 65

Q-Tree Learning Algorithm 66

Optimality Analysis . 66

3.2 Simulation and Experiments . 69

Case 1: Identical Objects 69

Case 2: Different Objects 71

4 Learning-based Robot Collision Detection 85

4.1 Data Representation and Camera 85

vii

4.2 Problem Description . 87

4.3 Data Generation . 87

4.3.1 Depth Images . 87

4.3.2 Point Clouds . 89

4.4 Collision Checkers . 90

4.4.1 Geometric-based . 90

4.4.2 CNN-based . 91

FCNN - 1 Depth Image 92

FCNN - 2 Depth Images 93

ResNet18 . 93

4.4.3 PointNet-based . 94

Standard PointNet . 94

Fast-PointNet . 95

4.4.4 Hybrid-based . 96

MixNet . 96

4.5 Simulation & Results . 96

5 Deep Learning for Task Priority Inverse Kinematics 103

5.1 Multi-class Problem . 104

5.1.1 Learning Model . 105

5.2 Validation . 107

5.2.1 Dataset Generation . 107

5.2.2 Results . 108

6 Conclusions and Future Works 113

7 Appendix 117

7.1 Notes on the positive definiteness of dynamic matrix M(q) . . 119

7.2 User Guide . 121

Code Ocean version . 122

IEEE DataPort . 123

7.2.1 Running the code . 124

Bibliography 129

ix

List of Figures

1.1 Overview of different contexts: top-left an healthcare applica-

tion; top-right an assistive one application; at bottom-left an

industrial application in automotive and bottom-right an appli-

cation with cobots. 2

1.2 The proposed architecture for this work is composed of several

blocks. The perception one provides the objects pose estima-

tion and generates the depth image or point cloud of the scene.

The outputs are then used by the task planner and collision

detection systems. The task planner system uses a combina-

tion of reinforcement learning and motion planner to devise an

object relocation procedure. The collision detection system ex-

changes information with the task planner system to generate

a collision-free trajectory. Finally, the control block computes

joint velocities or torques for the robot. 12

2.1 Example of robot manipulator in the space. 20

2.2 Mapping between the velocities in joint and cartesian space. . . 22

2.3 The KINOVA Jaco2 robot is being considered as a test case.

On the left, an orange external ellipsoid is shown, bounding the

4 th link, while a red internal ellipsoid containing the center of

mass is also displayied. On the right, the reference frames of the

KINOVA Jaco2 robot are illustred according to the DH convention. 31

2.4 Joint position, velocity and acceleration zoom representation of

the first 20 seconds of the 3rd trajectory. The full version of

trajectory is used as identification dataset. 40

x

2.5 Low pass filter effect on joint torque, example for the second

joint of 3rd trajectory with a zoom-in plot in the time interval

[4.4, 5] s. 42

2.6 CAD reconstruction errors along the 3rd trajectory. additional

text to have the caption on two lines 43

2.7 ULS reconstruction errors along the 3rd trajectory. 43

2.8 CLS-1 reconstruction errors along the 3rd trajectory. 44

2.9 CLS-2 reconstruction errors along the 3rd trajectory. 44

2.10 CLS-3 reconstruction errors along the 3rd trajectory. 46

2.11 Machine Learning Algorithms: Supervised, Unsupervised and

Reinforcement. 47

2.12 Scheme of Reinforcement Learning approach: An agent in a

state sk applies an action ak interacting with the environements,

which gives a reward rk to the agent that updates its state with

sk+1. 48

2.13 Architecture of Feed-Forward Neural Network. 51

2.14 Architecture of VGGNet16. 55

3.1 Representation of the proposed architecture: the RL-Task Plan-

ner chooses the action ak with an appropriate policy, while the

Motion Planner provides information about the feasibility gk of

the chosen action ak in terms of fulfillment of kinematic con-

straints. In case of a feasible action, the joint velocities vector

q̇(t) is sent to the Robot that actually performs it, relocating

the object. The environment elaborates the information related

to the feasibility gk of the action and generates a reward signal

rk and the new state sk, which are used to update the RL agent. 59

3.2 Motion planner architecture, designed as three blocks: the Action-

Objects Mapping translates the actions in constant desired end-

effector poses; the Sampling Algorithm computes obstacle-free

trajectories for the end-effector; the STPIK (Set-based Task-

Priority Inverse Kinematics) checks the feasibility of the trajec-

tories in terms of joint-level kinematic constraints (joint limits

and self-hits). 60

xi

3.3 Example of complete Q-Tree: The node root sH represents the

initial configuration where all objects are in the initial location.

The last nodes contain the target T 64

3.4 Different exploration method: Breadth prefers to explore at the

same levels, whereas the Depth one prefers to move forward. . 65

3.5 An example of cluttered environment. The target is represented

by the cylinder in green, while obstacles are in red. Starting from

the scenario on the top, the manipulator is required to relocate

some obstacles in order to grasp the target (bottom scenario). . 69

3.6 Comparison of three learning policies defined for each scenario.

The average episodes is calculated on 50 training and represent

the first time that the target T is reached through the optimal

sequence. 71

3.7 Comparison of convergence between learning algorithms defined

above for each scenario. The average episodes number is calcu-

lated on 50 training. 72

3.8 The target is represented by a green cylinder, while the obstacles

are indicated with a different color, based on weights, which

models concepts as fragility or energetic-related metrics. The

robot, a KINOVA Jaco2 in the case study, needs to eventually

relocate objects in order to reach the target. 74

3.9 Plots represent the sum of all tree edge values Qh normalized with

respect to the steady state value Q
∞

for different values of α and γ in

the case of H-LRNDb approach and Scenario 3. 75

3.10 Steady State Parametric Analysis: This bar graph is relative to the

reaching of optimal solution varying α and γ for the Scenario 1. . . . 79

3.11 Steady State Parametric Analysis: This bar graph is relative to

the reaching of optimal solution varying α and γ for the Scenario

2. 79

3.12 Steady State Parametric Analysis: This bar graph is relative to

the reaching of optimal solution varying α and γ for the Scenario

3. 80

xii

3.13 Comparison between Breadth (left) and Depth (right) approaches,

considering the proposed tree exploration strategies for the Sce-

nario 3, with learning rate α = 0.5 and discount factor γ = 0.9. 80

3.14 Three learning policies comparison: Average, minimum and max-

imum episode relative at the first time that the agent reaches

the target T through the optimal sequence considering Breadth

search approach. The statistics are based on 50 training with

α = 0.5 and γ = 0.9. 81

3.15 Three learning policies comparison: Average, minimum and max-

imum episode relative at the first time that the agent reaches

the target T through the optimal sequence considering Depth

search approach. The statistics are based on 50 training with

α = 0.5 and γ = 0.9. 81

3.16 Left. The robotic setup adopted to demonstrate the devised

approach. Right. A top view representation of target (in green)

and obstacles in their initial configuration. 82

3.17 Software-Hardware Architecture: The perception module re-

ceives the scene from the camera and provides information on

the objects pose to the RL-Task Planner (MATLAB). This lat-

ter selects an action according to its policy and sends the action

to the Motion Planner (C++). Finally, if there is a free-obstacle

path that satisfies all the joint constraints, the robot receives the

computed joint velocities to perform the task. 82

3.18 Robot manipulator during the validation phase: the KINOVA

Jaco2 is moving the objects in the real world scenario. 83

4.1 The mesh of the robot end-effector Mg is projected into the a

desired configuration ηee,d for detecting the collision. 86

4.2 Scenario with robot manipulator and a full bin with objects; the

camera is top-mounted in order to have a complete view of the

bin. 88

4.3 Example of real bin from the camera point of view. The bin

contains some different industrial objects. 89

xiii

4.4 Generation dataset Ddepth: a camera acquires the scene and the

gripper is projected into the scene. The output consists of three

depth images: gripper, scene (without gripper) and complete

scene (with gripper). 90

4.5 Application of the crop filter ∆c on the complete depth image

Ic. It reduces the size of the images from (640, 480) to (156, 156). 91

4.6 Generation dataset Dpointcloud: a real camera acquires the scene

providing the depth image of the scene. The PointCloud Gen-

erator GPC block creates the pointclouds of the scene and the

gripper. The concatenation block UPC combines them generat-

ing the complete point cloud. 92

4.7 In the left part the complete (scene and gripper) depth image is

reported, whereas in the right part the complete pointcloud is

reported. 92

4.8 Architecture of Fully Convolutional Neural Network with one

depth image (156, 156, 1) as input. 94

4.9 Architecture of Fully Convolutional Neural Networks for two

depth images (156, 156, 2) as input. 95

4.10 Architecture of ResNet18, which receives two depth images (156, 156, 2)

as input. 96

4.11 Architecture of PointNet receives a complete point cloud, which

contains scene and gripper as input. 98

4.12 Architecture of MixNet, which receives a depth image (156, 156, 1)

and a point cloud as input. 99

4.13 Software Architecture: the main block receives the depth image

by the camera and, building the data (depth image or point

cloud) and sends them to a neural network allowed to detect

collisions with the environment; the collision checker returns a

feedback that compute the control signal for the KUKA Agilus,

moving it in the desired configuration. 100

4.14 Experimental validation of KUKA Agilus. 101

5.1 Architecture of fully connected neural network: u is the input

and P (y|u) are the probabilities of the output. 106

xiv

5.2 3-link planar Robot and its workspace without joint limits. . . 108

5.3 Sampled workspace of the 3-link robot arm for the initial con-

figuration [π/4 π/3 π/3]T with a robot base position in (0, 0). 109

5.4 Confusion Matrix normalized for row. The diagonal represents

the classes correctly classified, whereas the others value repre-

sent the classes wrongly classified. 110

5.5 Top-left: evolution of the first joint position using and their

joint limits (dotted line). Top-right: evolution of the second

joint position and their joint limits (dotted line). Bottom-right

evolution of the third joint position and their joint limits (dotted

line). Bottom-right: evolution of the manipulability functionals

and their thresholds (dotted line). The color of the plots are

related to the algorithms F1,F2 and F3. 111

5.6 Sampled workspace of the 3-link robot arm for the initial con-

figuration [π/4 π/3 − π/3]T with a robot base position in

(0, 0). 112

7.1 Interface of GUI Matlab necessary to reproduce experiments. . 119

7.2 Software architecture. 122

7.3 Code Ocean platform. 123

7.4 CVX download page. 124

7.5 CVX folder extracted in the identification toolbox folder. . . . 125

7.6 MATLAB Environment with initialized working directory. . . . 125

7.7 GUI how it appears after the file main.m has been launched. . 126

7.8 Trajectory selection window after either load ID or load VAL

buttons are push. 126

7.9 Building regressor phase with a progress bar showing the elapsed

and remaining time. 127

7.10 Identification button enabled after the identification and valida-

tion trajectories have been selected and the relative regressors

computed. 127

7.11 Progress bar showing the elapsed and remaining time once the

Identification button is pushed. 128

7.12 Validation button enabled with CLS3 method selected. 128

xv

7.13 Numerical results displayed at the end of the validation process. 128

xvii

List of Tables

2.1 Denavit-Hartenberg table for the KINOVA Jaco2 28

2.2 Identifiability of the parameters (red cells: not identifiable; blue

cells: identifiable in linear combination; white cells: identifiable

alone. 36

2.3 Dynamic parameters in linear combinations. 37

2.4 Numerical values for base dynamic parameters of the algorithms

on the 3rd validation trajectory. 41

2.5 Summary of the results. With red background the largest error

for a specific trajectory, with green the smallest. 45

2.6 Constraints satisfaction of the different identification methods. 46

3.1 Analysis considering α = 0.5, and γ = 0.9 and as evaluation

criteria: the number of episodes Ess necessary to converge, the

number of motion planning queries MPq and the the episode

number E1st in which the optimal solution is reached for the

first time. This case is for the Scenario 1 with obstacles number

No = 5. 70

3.2 Analysis considering α = 0.5, and γ = 0.9 and as evaluation

criteria: the number of episodes Ess necessary to converge, the

number of motion planning queries MPq and the the episode

number E1st in which the optimal solution is reached for the

first time. This case is for the Scenario 2 with obstacles number

No = 10. 73

xviii

3.3 Analysis considering α = 0.5, and γ = 0.9 and as evaluation

criteria: the number of episodes Ess necessary to converge, the

number of motion planning queries MPq and the the episode

number E1st in which the optimal solution is reached for the

first time. This case is for the Scenario 3 with obstacles number

No = 15. 73

3.4 Parametric analysis considering (α, γ) parameters and as evalu-

ation criteria: the number of episodes Ess necessary to converge,

the number of motion planning queries MPq and the the episode

number E1st in which the optimal solution is reached for the first

time. This case is for the Scenario 1 with obstacles number No = 5. 76

3.5 Parametric analysis considering (α, γ) parameters and as evalu-

ation criteria: the number of episodes Ess necessary to converge,

the number of motion planning queries MPq and the the episode

number E1st in which the optimal solution is reached for the

first time. This case is for the Scenario 2 with obstacles number

No = 10. 77

3.6 Parametric analysis considering (α, γ) parameters and as evalu-

ation criteria: the number of episodes Ess necessary to converge,

the number of motion planning queries MPq and the the episode

number E1st in which the optimal solution is reached for the

first time. This case is for the Scenario 3 with obstacles number

No = 15. 78

4.1 Analysis of learning-based methods for collision detection on

training, validation and test set. 98

4.2 Times for feeding a sample into the models using CPU-GPU. . 100

5.1 Mapping for labelling: 0 is related to the violation of constraints,

1 if there is no violation. 105

5.2 Area of the workspaces obtained with the three algorithms and

their union. 110

xix

List of Abbreviations

IFR International Federation of Robotics
DLR German Aerospace Center
TIC Technology & Innovation Center
APC Amazon Picking Challenge
MP Motion Planning
TP Task Planning
TAMP Task-Motion Planning
AI Artificial Intelligence
ML Machine Learning
RL Reinforcement Learning
SL Supervised Learning
CNN Convolutional Neural Network
FCL Flexible Collision Library
BVH Bounding Volume Hierarchies
RRT Rapidly Exploring Random Tree
DH Denavit-Hartenberg
CLIK Closed Loop Inverse Kinematics
ULS Unconstrained Least Square
CLS Constrained Least Square
DOF Degree Of Freedom
GUI Graphical User Interface
SBTPIK Set-Based Task-Priority Inverse Kinematics
MDP Markov Decision Process
DAG Directed Acyclic Graph
BFS Breadth First Search
DFS Depth First Search
YOLO You Only Look Once

xxi

List of Symbols

x pose
p position
ϕ orientation
R rotation matrix
ΣI inertial frame
ΣB base frame
ΣE end-effector reference frame
Q unit quaternion
xee pose end-effector
q joint position
ṗee linear velocity
ωee angular velocity
JP Jacobian of position
JO Jacobian of orientation
J Jacobian
vee end-effector velocities
q̇ joint velocities
g(q̇,λ) Lagrange multipliers
R(J) range of Jacobian matrix J

N (J) null of Jacobian matrix J

(·)† pseudoinverse operator
w(q) functional to maximize in the null space
qim lower joint limit
qiM upper joint limit
σx variable task
L Lagrangian function
T kinetic energy
U potential energy
ξ nonconservative forces
M(q) inertia matrix
C(q, q̇) Coriolis forces
F v viscous friction coefficients

xxii

F ssgn(q̇) Coulomb friction torques
g(q) gravity torques
τ torques
he force and moment exerted by end-effector
Y full full regressor
Li inertia tensor
π vector of dynamic parameters
mi mass of link i
mi

ci
center of mass

li element i of inertia tensor
Y b base regressor
Ci inertia tensor on center of mass for link i
S(·) skew-symmetric matrix operator
Zi matrix for physical feasilibity
λ eigenvalue
γr regularization factor
tr(·) trace operator
mi

ci,LB lower bound on center of mass of link i

mi
ci,UB upper bound on center of mass of link i

Ei ellipsoid
xici

center of ellipsoid
τ̄ stacked torques
πfull full vector of the dynamic parameters
πb base vector of the dynamic parameters
πLB lower bounds on the dynamic parameters
πUB upper bounds on the dynamic parameters
Si ellipsoid in homogeneous form
Qi matrix that define an ellipsoid
ς percentage w.r.t the number of samples
ςt percentage w.r.t the torques
Ns number of samples
χ2 reconstruction error

Ȳ full stacked full regressor

Ȳ b stacked base regressor
π̂b estimate vector of base dynamic parameters
π̂full estimate vector of full dynamic parameters
I3 identity matrix 3× 3
ν statistical degrees of freedom
σπ standard deviation

Ĥ covariance of the parameter estimates
S state space

xxiii

A action space
p transistion probability
r reward
γ discount factor
π policy
α learning rate
δ temporal difference error
Qπ(s, a) action-value function
Q∗(s, a) optimal action-value function
G directed graph
V set of nodes
X set of vertices
uj relationship between input and hidden
wi,j weight between neurons i and j
h(·) activation function
zj output hidden layer
w weights of neural network
E error function
yk ground truth output
ŷk predicted output
pt,0 initial position

pt,f final position

O set of obstacles
No number of obstacles
T target object
Su sequence of objects
ηee,d(t) time-varying trajectory
ηee,0 end-effector initial position

ηee,d end-effector desired position

gk feasibility action signal
Emax maximum number of episode
Eh episode
Ssk

sequence of relocated objects
χk edge between sk and sk+1

ξt number of possible sequences
ε epsilon value
ε0 initial epsilon value
εmin minimum epsilon value
sH root node
Qh sum of all edge values
β threshold on steady state condition

xxiv

G(z) transfer function in Z domain
g static gain
a⋆k optimal action
ΦSu cost function to minimize
Φi weigth of object
Q∞ steady state value
fx focal length x
fy focal length y
cx optical center x
cy optical center y
ds depth scale
Ms mesh scene
Mg mesh gripper
dmin minimum distance
Π minimum function
∆c crop filter
γc feedback on collision
Ddepth dataset made of depth images
Dpointcloud dataset made of point clouds
Is depth image of scene (640, 480)
Ig depth image of gripper (640, 480)
Ic complete depth image (640, 480)
I∗
s cropped depth image of scene (156, 156)

I∗
g cropped depth image of gripper (156, 156)

I∗
c cropped complete depth image (156, 156)
W weight size image
H heigth size image
P Cs point cloud of the scene
P Cg point cloud of the gripper
P Cc complete point cloud
pd desired position
ṗd feed-forward desired linear velocity
ω̇d feed-forward desired angular velocity
ep position error
eo orientation error
F set of algorithms
C set of constraints
ζ labels
q0 initial joint configuration
ci class i
wm manipulability functional

xxv

wjl joint limits functional
u data input
P (y|u) probability output given input
N normal distribution
µ mean value
W set of neural network weights
fsoftmax(·) softmax operator
LNLL Negative-Log Likelihood function

1

Chapter 1

Introduction

1.1 Motivation

According to the report of World Robotics 2022 provided by the International

Federation of Robotics (IFR) a record of 517,385 new industrial robots were

installed in factories around the world in 2021. This represents an increase of

31% with respect to the previous record (reached in pre-covid era, 2018) of

22%. Italy is the second biggest marker in Europe back to Germany, followed

by France. On the other hand, Asia continues to be the largest market in the

world for industrial robots; the 74% of all newly implemented robots in 2021

were installed in Asia.

The high demand for robotic systems is due to their extensive use in medicine

and healthcare, aerospace, and industrial fields. In recent years, hospitals

have become increasingly dangerous for nurses because of COVID-19. At the

same time, people infected by the virus need to receive treatments for their

pathologies, causing different risks for hospital specialists. This has lead to a

new and important re-definition of assistants into the hospital areas, increasing

the usage of robots. Hospitals have been using robots for disinfecting internal

rooms, moving autonomously and killing the virus. The Danish company UVD

Robots has made robots capable to disinfect patient rooms in hospitals.

Other cases of interest include the assistive robotics. Nowadays, people with

mobility impairments need to have a costant and helpful caregivers for daily life

operations such as drinking, dressing or feeding; therefore, robots can support

2 Chapter 1. Introduction

users in a wide range of applications. In support of this, there is a neces-

sity to develop assistive robotics architectures aimed to handle these complex

situations, performing basic life tasks [1].

Furthermore, pre-programmed routines such as drilling, fastening, and metal

parts welding, in which precision and rigidity are required and where robots can

outperform humans in terms of time and cost, justify their wide use. In 2004 the

company KUKA Deutschland GmbH introduced the first Cobot, a lightweight

robot born from a collaboration with the German Aerospace Center (DLR).

Cobots are similar to the traditional industrial robots, mechanical arms that

can be programmed to perform various tasks in the factory setting. They are

designed to share the workspace with humans.

Each of the tasks mentioned above focuses on the interaction between robot

and the real world. From an industrial perspective, of particular interest is the

robotic picking and packaging, where it is necessary to increase the accuracy,

repetibility and speed along with lowering production costs. Examples are

reported in Fig. 1.1.

Figure 1.1: Overview of different contexts: top-left an healthcare appli-
cation; top-right an assistive one application; at bottom-left an industrial
application in automotive and bottom-right an application with cobots.

This thesis work focuses on the combination of learning and control algorithms,

1.2. State of the Art 3

respectively. Specially, first of all, an architecture made of a Task Planner

(based on Reinforcement Learning) and a Motion Planner to handle the plan-

ning of trajectories for retrieving an object from clutter is proposed; then, a

tool for detecting collisions between robot and environment during the plan

of a trajectory is addressed. Finally, an intelligent control based on Super-

vised Learning approach for decide the tasks to optimize in the null-space of

redundat robot is proposed.

1.2 State of the Art

In recent years, there have been important changes in production chains in the

industry, requiring robots capable of adapting to dynamic and unstructured

environments. Indeed, the research with focus on hybrid architectures made of

model-based control and machine learning decision making systems has grown

in the latest years. A complete review on the state of the art is reported in [2].

Nowadays, robotics systems are involved always more in different and complex

tasks, solving them in autonomous and/or semi-autonomous way. It means

that, in scenarios with unpredictable changes (e.g. sudden moves of human in

a shared workspace with the robot, objects with a wrong configuration in the

pick and place problem), intelligent and adaptive behaviours are needed.

For years, the aim has been to define a specif robots-behavior, but it is not

achievable directly. One possibility to plan the behavior of a robot was pro-

posed in the 1979 and it is called Motion Planning (MP) problem [3]. Its

goal is to find an optimal path for the robot starting from an initial to a final

configuration avoiding obstacles. Typically, this problem is solved consider-

ing constrained optimization [4] and sampling-based algorithms [5]. As it is

known in literature, a planning algorithm can be divided in classes: complete,

where if there is solution it is capable to find it, otherwise the algorithm fails

reporting the result; semicomplete, where if there is no solution, the algorithm

can continue to search it endlessly; resolution complete, where if there is a so-

lution it finds one, whereas, if there is no one solution, it terminates returning

that there is no solution within a specified resolution exists; finally, probabilis-

tically complete, where if a solution exists, the associated probability that the

algorithm finds it tends to one as the number of iterations tends to infinity.

4 Chapter 1. Introduction

Since isolated motion planning typically assumes a fixed configuration space, an

integrated description that orchestrates an high level representation is proposed

referred to as the Task Planning (TP).

Its aim is to compute sequences of actions to guide the agent in solving a

complex desired task. The actions can either be discrete or continuous: the

first ones contain a finite set of options which the agent can choose, e.g. move

left, right, up or down, whereas the second ones are represented with a value,

such as, move left of 1 cm, and the number of actions can be very large.

To solve various complex tasks, there is a way to combine the two previous

approaches into a final one called Task-Motion Planning (TAMP) [6]. This

architecture is highly useful because it gives the possibility to plan the sequence

of actions for solving the problem. To make it work, it is necessary a middle

layer that maps information between two different worlds.

Particularly interesting is the robotic objects manipulation [7] because of the

high number of application contexts, e.g. in manufacturing industry driven by

Industry 4.0 requirements. Currently, due to the high dexterity and reasoning

necessary to solve the task, it is performed mainly by human workers [8].

The real challenge is based on the unstructured nature of the involved environ-

ments combined to the NP-hard complexity of the task [9, 10], providing the

task intractable [11, 12, 13, 14, 15]. Based on this, Artificial Intelligence (AI)

can provide a great help for handling combinatorial problem in a large state

space, focusing the interests of many researchers [16]. A brach of AI is Machine

Learning which uses structures similar to human brain, capable to select the

best actions to act in particular configurations, reducing the computational

burden for solving the task.

Early exploration in robotic grasping primarily relied on analytical methods

and 3D reasoning to anticipate the ideal locations and configurations for grasp-

ing objects [17, 18, 19]. They assumed complete knowledge of the objects, e.g.,

their 3D models, surface friction properties, and mass distribution.

In the years 2015 and 2016, Amazon Picking Challenge (APC) took place; it

is a competition where the ability of the robots for retrieving objects from

1.2. State of the Art 5

cluttered environments are tested. In this competion, the task consists of

picking 25 objects from a warehouse shelf and placing them into a storage

container with a time constraint set to 20 minutes [20]. Grasping from the top

was forbidden, making the the task more challenging by using higher shelves.

Then, the robots knew the type of objects, but the arrangment was unknown.

Initially, the teams in the challenge proposed solutions that focused on con-

ventional perception and robotics problems. In subsequent years, the challenge

received several modifications, changing the environments and leading to the

task being more adaptable to the robotic systems [21].

Neverthless, grasping objects in a cluttered environment is also extremely chal-

lenging due to the lack of collision free grasp affordances. Hitting and shifting

objects during the motion could change the state of the entire system, making

the desired object unreachable, resulting the task unresolvable. Additionally,

the grasp can sometimes fail if the desired object is obstructed or if it assumes

singular configuration (e.g. extremity of the bin during a pick and place task).

Robotic grasping phase can be divided in three sub-phases: objects pose esti-

mation, grasp pose and planning toward the desired object [22]. The first part

relies on the perception module, which is made of sensors, such as camera that

uses RGB, RGB-D or Point Cloud and it is capable to extract information

about the environment. Despite the high-quality devices, it is still an open

challenge, as the encoding of information is strictly related to light conditions

and occlusion present in real scenarios. For the second aspect of the grasping

phase, the pose estimation is foundamental for a good score of the executed

action. Several techniques have been proposed to estimate the optimal point

for grasping known objects, such as exploiting geometric features extracted

from the CAD model or using fine-tuning approaches in the real world. Lastly,

the planning for object grasping involves computing a collision-free trajectory

for the robot.

In the state of the art, the problem of retrieving an object target from clutter

has been mainly addressed by relying on geometric methods that potentially

make use of specific heuristics to reach effective solutions while reducing the

computation complexity. In [11], the authors propose a geometric method

6 Chapter 1. Introduction

with the aim of minimizing the number of obstacles to be relocated, and con-

sequently the time (or the energy) spent to the scope. Their algorithm is

shown to be complete and efficient, outperforming other methods in terms of

execution time, but the optimality of the solution is not guaranteed. Simi-

larly, the planner in [23] solves the rearrangement problem exploiting dynamic

nonprehensile actions guaranteeing only the feasibility of the plan. In [24] a

probabilistic solution, scalable with respect to the number of objects, is an-

alyzed. In the proposed method, the authors choose constraints to take into

consideration depending on the motion feasibility. In case of an unfeasible mo-

tion, it is necessary to remove some of the constraints or to increase the motion

planning timeouts in order to make the algorithm complete.

In [25], the authors provide a geometric method for multiple objects reorgani-

zation in clutter, minimizing the number of objects to move. Differently from

the works mentioned above, here, the optimal solution is obtained by splitting

a continuous 2D plane into discrete cells, that are then used in a hybrid planner

for generating the motion plan. However, the elementary motions that com-

pose the plan are determined not considering the reachability of the objects and

the robot kinematic constraints; for this reason, the plan might not be feasible

for real robots. Alternatively, in [26] the authors consider a novel approach

based on TAMP for unknown object rearrangements, relying on graphs that

are built online in order to retrieve the target object. Their approach does not

make use of heuristics in the exploration, potentially resulting in a large graph

and not computationally efficient solution.

Recently the TAMP problem, including object manipulation and grasping in

a cluttered environment, have made use of machine and deep learning [16, 27]

techniques. For instance, in [28] a neural approach is proposed, with a partic-

ular focus on considering unknown objects. In detail, they describe the Neural

Rearrangement Planning, an approach for rearranging unknown objects from

perceptual data in the real world. It is capable of rearranging previously unseen

objects, exploiting segmented point clouds coming from a RGB-D sensors.

Among the Machine Learning techniques, Reinforcement Learning (RL) has

been considered by many researchers as a base for solutions of this kind of

problems [29]. It is a technique based on a figure named agent, which interacts

1.2. State of the Art 7

with a space named environment choosing a possible action that provides a

feedback named reward. In particular, the agent objective is to collect the

maximum reward values over time. The aim of this learning technique is to

provide robots abilities like learning, improving over time, adapting and repro-

ducing tasks [30]. The approach proposed in [16] combines the action planning

with a goal-independent reinforcement learning approach considering a sparse

reward. The problem is to find high-level actions to send to a low-level layer as

trajectories for robots to solve random puzzles. The obtained results prove that

the proposed approach is able to solve the task if the considered solution space

is not too large. In [31], the authors propose a data-driven method to be em-

ployed in case of an occluded target. They assign a probability distribution to

the target object pose considering partial observations and an occlusion-aware

heuristic, and then they exploit a receding horizon approach. They present an

architecture that allows learning a generative model used to update the target

pose probability distribution in a continuous action space.

There is a large amount of approaches that exploit a visual input, e.g. RGB or

RGB-D images, mapping it into feasible actions to bring the agent towards the

goal [32, 33]; to the scope, they make use of Convolutional Neural Networks

(CNNs) combined with a policy-based Reinforcement Learning [34, 35, 36].

While in highly-structured environment the robot motion might be offline

planned, this approach is deemed to fail when coping with unstructured and

dynamic scenarios such as assistive, medical or industrial, to name a few. In

these settings, it is of the utmost importance to equip the robot with the ability

to perceive the environment and detect collision in the shortest time in order

to have the robot re-plan its trajectory accordingly.

Unfortunately, as it is known in literature, the time necessary for detecting

a collision is the planners bottleneck [37]. It could be very slow, and it de-

pends from the complexity of the scenario. According to [38], a generic motion

planner could be not capable to adopt a re-plan strategy in short time if the

environment changes during the motion of the robot. Indeed, in [39, 40, 41],

the authors solve an objects relocation in cluttered environment and, according

to the literature, the planner spent different milliseconds to find a free-path (if

it exists), using the classical geometrical approaches for the collision detection.

8 Chapter 1. Introduction

The authors in [42] present a sampling-based motion planner capable to im-

prove the performance of classical optimal motion planning that use RRT∗

algorithm. They show that the proposed planner is able to find a fast initial

path and, then, decreases the cost of this path in an iterative way. Even if they

overcome limitations of the classic motion planning in high-dimensional space,

there are some heuristics to define.

One of the most geometric-based collision detection used in the motion plan-

ning context is the Flexible Collision Library (FCL) [43], which combines

different techniques for a fast and accurate collision checking computation.

Knowledge of the mesh for objects present in a scene ensures fast and accurate

methods for collision checking among objects [44].

The majority and prevalent approaches regard the polyhedral models and a

large part of the commonly used techniques are based on Bounding Volume

Hierarchies (BVH). The complexity of the BVHs approaches is related to the

involved polyhedra. In contrast, other methods based on Nearest-neighbor

technique are used, even if the queries suffer in high-dimensional space, making

it unfeasible in some scenarios [45]. Thus, these kinds of modeling through ap-

proximation is not applicable in situations where high precision is required [46].

In the recent years, Machine Learning has been employed to solve different

complex-problems. It has long been dominated by approaches mainly based

on images employing the well-known Convolutional Neural Networks [47], even

if, several tasks can be solved handling 3D point clouds and 3D voxel data

representation. Indeed, since 2017, a challenge problem for computer vision

using 3D data is solved in [48], where the authors proposed an architecture

based on point cloud capable of classifying and segmenting 40 classes of objects

on the dataset ModelNet40 [49], which requires high computation and memory

resources. In [50], an end-to-end trainable architecture for point cloud for the

3D detection called VoxelNet is proposed; it is capable to operate directly on

sparse points, outperforming the state-of-the-art LiDAR based 3D detection;

whereas the authors in [51] introduced VoxNet, a network that uses volumetric

representation to process the 3D data for a robust object recognition.

1.2. State of the Art 9

Approaches like these could help model-based systems, accelerating the res-

olution of multiple tasks, as well as grasping and collision checking; these

approaches have often proved to outperform the classic ones, partially or to-

tally based on a model description [52]. Promising results are arriving from

data-driven algorithms based on depth images for robotic grasping and state

estimation based on classification. It is very usual to decide a-priori a list

of possible grasps considering the geometric and physical models of the ob-

jects [53, 19]; the authors in [54] demonstrate that, using convolutional neural

networks on RGBD images, it is possible to find the optimal grasp for an object

on the Cornell Grasping Dataset. In [55], given the task of learning robotic

grasping based on depth images and gripper force feedback, the authors im-

plement an algorithm that reduces the quantity of the data for training the

model. In [56] an end-to-end network that generates a distribution of 6-DoF

parallel-jaw grasps from a depth is addressed; they obtained 90% of accuracy

on objects never seen before, using ≈ 17 million of simulated grasp.

Tasks related to the objects in cluttered scenes are a real challenge because of

necessity to consider, simultaneously, the correct grasp-phase and any collision

with the rest of the environment. Computer vision researchers have considered

Deep Learning techniques enabled to work well with 3D object geometries, suf-

fering about efficiency for handling large number of collision queries, whose are

fundamental for optimization and control in robotics [57]. In [58] the authors

demonstrate that tools for collision detection based on robotics motion plan-

ning may be accelerated by performing collision checks considering Machine

Learning model; their model named Fastron is capable to model the config-

uration space of robot manipulators, which can be used as a proxy collision

detector, by replacing the standard geometric collision approaches. The results

show that in a simulated environment, their method outperform FCL, but it

requires a number of samples strictly related to the dimensionality of the space

of interest. Researchers from NVIDIA and Berkley [59], proposed a neural

network named SceneCollisionNet that consider raw point clouds for objects

and scene, adding the pose of the final one as input and returns the likelihood

about the object collision as output, exploiting a voxel representation. They

obtained 93% of accuracy on 2 million of collision queries investing 10µs, thus

10 Chapter 1. Introduction

to be 10x faster than the classic FCL library.

In classical industrial environments, all the tasks are defined a-priori, but lately,

a sort of intelligence is needed, due to the highly dynamic environments in

which these robots are more and more commonly used. If robots have more

Degrees of Freedom (DoFs) than the ones required by a task to perform, they

are defined as redundant and different redundancy resolution strategies can be

found in the literature to compute suitable joint motions [60].

Thus, by exploiting the additional DoFs, it is possible to perform multiple

tasks at the same time, e.g. maximization of manipulability, maximizing the

distance from the joint limits, and maximizing the distance from an obsta-

cle. A possible approach to implement this behavior is seeing it as a cascade

of Quadratic Programming (QP) problems solving them by resorting to the

Hierarchical-Quadratic Programming (HQP) framework [61]. Most often the

tasks are structured on defined priorities [62] and this approach is referred to

as strict task priority [63, 64, 65]. More in detail, the aim of this approach

is to minimize the task errors satisfying a set of constraints. Differently, in

literature soft task priority approaches can also be found, where a weighted

combination of tasks solutions is computed [66].

Unfortunately, finding the best set of tasks for performing a certain high-level

mission, with both strict priorities and soft priorities, pass through a time-

consuming trial-and error tuning procedure [67]. A possible solution might

be changing the tasks or their priorities dynamically during the robot motion,

but, as reported in [64], it might cause a discontinuity in the control signals.

For this reason, many efforts have been devoted to the development of con-

trol algorithms that allow inserting, removing, and swapping tasks without

discontinuity as in [68].

The authors in [69] present a framework that handles a set of tasks through

stochastic parameters optimization using Gaussian kernels for computing weights

avoiding conflicts between tasks, but there is no guarantee that the tasks will

be accomplished. A mixture of controllers for whole-body motion generation

via optimization of a derivative-free stochastic algorithm is proposed in [70],

generalizing w.r.t new tasks through transfer policy learning. Again, in [71] a

1.2. State of the Art 11

dynamically-consistent generalized hierarchical control is presented. For each

pair of tasks, they choose between a soft or hard priority with one task having

a null effect on the other one. Otherwise, in [72] a method for learning task hi-

erarchies is proposed, where the authors show robot potentiality to reproduce

the learned priorities in new scenarios. Similarly, in [73] an iterative algorithm

for identifying a stack of tasks is presented. Starting from observation of the

joint trajectories and predefined possible tasks executed in parallel, the method

gradually removes the non-necessary tasks until a minimum set is identified.

In [74], observing the movement, the kinematic constraints are exploited in

order to learn the null space projection matrix.

Recently, the usage of Deep Learning in robotics is growing up, achieving im-

pressive results, e.g. AlphaGo [75] or other complex and combinatorial prob-

lems [76, 39, 41]. In [67] a Deep Reinforcement Learning (DRL) algorithm

for automatically assigning strict task priorities in a varying environment is

proposed. More precisely, they showed capabilities such as adaptation to new

situations, generalizing w.r.t unseen combinations of tasks, without retraining.

1.2.1 Thesis Outline and Contribution

The contribution of this thesis is manifold. The first one is an overview on kine-

matic and dynamic of robot manipulators, with a particular focus on dynamic

identification. It lays the foundation for the robot control.

Even so, the main one is related to the retrieving of a target object from

cluttered environment, which result to beNP-hard with respect to the number

of the objects. The proposed architecture to solve the problem mentioned above

is made of layers, that are composed by machine learning decision making and

motion planner system, respectively. It is shown that the proposed architecture

is able to find the optimal sequence of objects to relocate and for checking the

collision that could speed up the time spent by the motion planner. Finally, the

control part is addressed, exploiting a learning-based approach to enlarge the

dextrerous workspace in case of redundant robot control. A full architecture

that could consider all the modules proposed in the chapters of this thesis is

reported in Fig.1.2.

12 Chapter 1. Introduction

Perception

objects

detection
Task Planner

(Reinforcement Learning
+

Motion Planner)

desired
pose

collision
occurrence

Collision Detection

(Supervised Learning)

trajectory Control

(Kinematic/Dynamic)

joint velocities/
joint torques

depth image/point cloud

Figure 1.2: The proposed architecture for this work is composed of sev-
eral blocks. The perception one provides the objects pose estimation and
generates the depth image or point cloud of the scene. The outputs are
then used by the task planner and collision detection systems. The task
planner system uses a combination of reinforcement learning and motion
planner to devise an object relocation procedure. The collision detection
system exchanges information with the task planner system to generate a
collision-free trajectory. Finally, the control block computes joint velocities
or torques for the robot.

Particularly, this thesis is divided in the following chapters:

• Chapter 2 - Background

This chapter provides mathematical details on kinematics and dynamics

of robot manipulators, starting from basic concepts. Specially, there is

a focus on the identification of a dynamic model for robot manipulators,

handling a comparison among the main identification procedures, sharing

with the community the first consistent dynamic model for the KINOVA

Jaco2 7-DoFs robot manipulator.

• Chapter 3 - Task-Motion Planning via Reinforcement Learning

The second chapter is focused on a Task-Motion Planning architecture

made of Motion Planner and a Reinforcement Learning agent to solve the

1.2. State of the Art 13

problem of retrieving an object from clutter. In this regard, an algorithm

based on Q-Learning, named Q-Tree is proposed in literature, which

reduces the computational load of the problem.

The architecture is validated experimentally way on a KINOVA Jaco2 7-

DoFs robot manipulator present in the Industrial Automation Laboratory

at University of Cassino and Southern Lazio, Italy.

• Chapter 4 - Deep Learning-based Robot Collision Detection

Another important aspect of this thesis is a proposal of a tool based on

Deep Learning for the robot collision detection.

It is a collision checker based on the main data representation such as

depth images and point clouds is proposed; these approaches are based on

deep neural networks capable to handle depth images and point clouds.

This activity is carried out in collaboration with the Technology & Inno-

vation Center of KUKA Deutschtland GmbH and the entire architecture

is validated on KUKA Agilus, an industrial robot manipulator of their

laboratory in Augsburg, Germany.

• Chapter 5 - Deep Learning for Task Priority

The choice of the function to optimize as secondary control objective

affects the reachable workspace of the robot. In this work a Deep Learn-

ing approach capable of providing in output the function to optimize (if

necessary), starting from an initial configuration in the joint space and as-

signing a desired configuration in the cartesian space for the end-effector

is addressed. The architecture is validated with numerical simulations

on a simple 3-link robot arm.

• Chapter 6 - Conclusion and Future Work

This chapter concludes the thesis work, emphasing once again its con-

tributions. Each chapter is summarized, stressing the main concept and

showing the limitations of the proposed methods to deepen in possible

future works.

14 Chapter 1. Introduction

1.2.2 Publications

a) G. Golluccio, G. Gillini, A. Marino, G. Antonelli, Robot Dynam-

ics Identification: A Reproducible Comparison with Experiments on the

Kinova Jaco2, IEEE Robotics & Automation Magazine, 2020

– Selected for Workshop and Tutorial presentation at the IEEE Inter-

national Conference on Robotics and Automation (ICRA), May 23

- May 27, 2022, Philadelphia, USA

– Selected for Workshop presentation at the IEEE International Con-

ference on Intelligent Robots and Systems (IROS), September 27 -

October 1, 2021, Prague, Czech Republic

– Selected for presentation at the IEEE International Conference on

Robotics and Automation (ICRA), May 30 - June 5, 2021, Xi’an,

China

b) G. Golluccio, D. Di Vito, A. Marino, G. Antonelli, Task-motion

Planning via Tree-based Q-learning Approach for Robotic Object Dis-

placement in Cluttered Spaces, International Conference on Informatics

in Control, Automation and Robotics (ICINCO), 2021

c) G. Golluccio, D. Di Vito, A. Marino, G. Antonelli, Robotic Weight-

based Object Relocation in Clutter via Tree-based Q-learning Approach

using Breadth and Depth Search Techniques, IEEE International Confer-

ence on Advanced Robotics (ICAR), 2021

d) G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, G. Antonelli,

Objects Relocation in Clutter with Robot Manipulators via Tree-based Q-

Learning Algorithm: Analysis and Experiments, Journal of Intelligent &

Robotic Systems, Springer, 2022

e) G. Golluccio, P. Di Lillo, A. Marino, G. Antonelli, When Local

Optimization is Bad: Learning What to (Not) Maximize in the Null-space

for Redundant Robot Control, IEEE International Conference on Control,

Decision and Information Technologies (CODIT), 2023

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9152028
https://www.scitepress.org/Papers/2021/105426
https://ieeexplore.ieee.org/abstract/document/9659471
https://link.springer.com/article/10.1007/s10846-022-01719-9

1.2. State of the Art 15

f) (to be submitted) G. Golluccio, A. Marino, G. Antonelli, Learning-

based Robot Collision Detection in Cluttered Environments

Other Contributions

g) C. Carissimo, G. Cerro, L. Ferrigno, G. Golluccio,A. Marino,

Development and Assessment of a Movement Disorder Simulator Based

on Inertial Data, Sensors, 2022

h) C. Carissimo, L. Ferrigno, G. Golluccio, A. Marino, G. Cerro

Parkinson’s Disease aided Diagnosis: Online Symptoms Detection by a

Low-Cost Wearable Inertial Measurement Unit, IEEE International Sym-

posium on Medical Measurements and Applications (MeMeA), 2022

i) C. Carissimo, G. Cerro, L. Ferrigno, G. Golluccio, A. Marino,

Realization and Validation of Data IMU Simulator for Detection and

Classification of Tremor in Parkinson’s disease, Conference of Italian

Association of Telemedicine and Medical Informatics (AITIM), 2021

https://www.mdpi.com/1424-8220/22/17/6341
https://ieeexplore.ieee.org/abstract/document/9856546

17

Chapter 2

Background

This chapter provides an overview of kinematics and dynamics concepts for

robot manipulators, including the main identification techniques. Additionally,

it explains the concepts of Machine and Deep Learning, covering a range of

approaches from Reinforcement to Supervised Learning.

2.1 Robot Modelling and Identification

2.1.1 Kinematics

Position and Orientation of a Rigid Body

The rigid body is an ideal representation of a body that does not deform or

change its shape. In general, it is defined as particles with fixed distances

among them during a motions of the body. It is completely described in the

space by its pose (position and orientation) with respect to a frame ΣI as

x =
[

p ϕ
]T
∈ R

6 , (2.1)

where p =
[

px py pz
]T
∈ R

3 and ϕ ∈ R
3 represent position and orientation

of the rigid body.

Regarding the orientation, it is possible to use different representations. A

very known and used representation for the orientation are the Euler Angles,

descripted as following

ϕ =
[

φ θ ψ
]T
∈ R

3 , (2.2)

18 Chapter 2. Background

where the φ, θ and ψ are called angles of roll, pitch and yaw. It is a minimal

representation of the orientation, made of three independent parameters.

Starting from this representation, given a base frame ΣB it is possible to obtain

the related rotation matrix using the ZYX -convention in current frame as

RI
B =







cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ cθsφ cθcφ







(2.3)

where c ∗ = cos(∗) and s ∗ = sin(∗).

Althought it is a minimal representation, different problem can be shown. In

particular, this type of representation is affected by an issue known as sin-

gularity representation. More in detail, it means that the conversion from the

rotation matrix to the euler angles representation is not defined when θ assumes

values as ±π
2 rad. For this reason, in some cases this representation cannot be

used and it could be necessary to use a non-minimal one: Unit Quaternion.

The latter is a non-minimal due to the usage of four parameters for the rep-

resentation of a rigid body orientation. Specially, considering the orientation

between two frames with same origin as following

Re(α) = cosαI3×3 + (1− cosα)eeT − sinαS(e) (2.4)

with e unit vector to identify the axis in which has to be rotated of the α angle

to align the two frames, I3×3 is the identity matrix and S is the skew matrix

performing the cross product between two (3× 1) vectors, the unit quaternion

is defined as

Q(η, ε) (2.5)

where

η = cos
α

2
, ε = esin

α

2
(2.6)

are the scalar and vector part, respectively, satisfying the following condition:

η2 + εTε = 1 . (2.7)

2.1. Robot Modelling and Identification 19

Furthermore, since the two quaternions Q(η, ε) and Q(−η,−ε) represent the

same orientation, aimed at guaranteeing the representation uniqueness, in

Eq. (2.6) it is assumed η ≥ 0 that corresponds to α ∈ [−π;π].

Direct Kinematics

A manipulator is made of rigid bodies series (links) connected by mechanical

pairs or joints, which can be of two types: revolute and prismatic. The entire

structure of the robot forms a kinematic chain. On one end of the chain,

there is a constrained base, while on the other side an end-effector (gripper) is

mounted to allow the manipulation of objects in space.

The robots structure is characterized by a number of degrees of freedom (DOFs)

which determine its posture. Each degree of fredoom is related to a joint to

which it is associated a variable.

The direct kinematics determines the relationship between the end-effector

pose xee of the robot manipulator, which is expressed in the operational space,

with the joint variables q in the joint space, as following

xee = k(q) , (2.8)

where xee is a vector m× 1, q is a vector n× 1 and k is a non-linear function

that allows computation of the operational space variables from the knowledge

of the joint space variables.

An example of robot manipulator is reported in Fig. 2.1.

Inverse Kinematics

Computing the joint configuration given xee is not trivial problem. For simple

robot structures, there are several geometric approaches that can be exploited.

However, when there are a large number of DoFs, there can be infinite solution.

For this reason, a numerical method named differential inverse kinematics is

used. Therefore, the aim of differential kinematics is to find the relationship

20 Chapter 2. Background

q1

q2

q3

ΣB

ΣE

xee

Figure 2.1: Example of robot manipulator in the space.

between the joint velocities q̇ and the end-effector linear ṗee and angular ve-

locities ωee as

ṗee = JP (q)q̇ (2.9)

ωee = JO(q)q̇ (2.10)

where JP is the 3×n matrix relative to the contribution in the joint space for

the linear velocity of the end-effector, whereas JO is the 3× n for the angular

velocity. The geometric jacobian matrix J is obtained as

J =

[

JP

JO

]

. (2.11)

Combining the Eq. (2.9), Eq. (2.10) and Eq. (2.11), a compact form is

vee = J(q)q̇ . (2.12)

Equation (2.12) is linear in the velocities and it is necessary to invert it in order

to compute q̇ and q. If the the rank is full the relationship becomes

q̇ = J−1vee , (2.13)

where it is possible to compute the joint configuration as

q(t) =

∫ t

0
q̇(ρ)dρ + q(0) , (2.14)

2.1. Robot Modelling and Identification 21

with the related numerical Euler integration

q(tk+1) = q(tk) + q̇(tk)∆t . (2.15)

Indeed, when a robot manipulator has more DoFs than necessary to perform a

task, it is called redundant and the Eq. (2.12) admits infinite solutions. Thus,

an optimization problem is defined as following

min
q̇

g(q̇) =
1

2
q̇Tq̇ . (2.16)

The optimization problem in Eq. (2.16) can be solved using the Lagrange mul-

tipliers

g(q̇,λ) =
1

2
q̇Tq̇ + λT(vee − Jq̇) , (2.17)

where λ ∈ R
r is the vector of Lagrange multipliers. At this point, by imposing

(
∂g

∂q̇

)T

= 0

(
∂g

∂λ̇

)T

= 0 (2.18)

the optimal solution that locally minimizes the joint velocities is

q̇ = JT(JJT))−1

︸ ︷︷ ︸

J †

vee (2.19)

with J† right pseudo-inverse of the Jacobian J .

The differential kinematics equation in Eq. (2.12) can be characterized in terms

of the range R(J) and null N (J) spaces

dim(R(J)) = r dim(N (J)) = n− r (2.20)

mantaining the following relationship without dependency from the rank of the

Jacobian J

dim(R(J)) + dim(N (J)) = n . (2.21)

A scheme of this relationship is reported in Fig. 2.2

Therefore, in the redundant robots the additional DoFs can be exploited to

22 Chapter 2. Background

q̇ ∈ R
n

N (J)

R(J)

O

J

vee ∈ R
r

Figure 2.2: Mapping between the velocities in joint and cartesian space.

solve parallel tasks due to the existance of N (J). Thus, the Eq. (2.19) can be

rewritten as

q̇ = J †vee + (In − J†J)q̇a , (2.22)

where the first term is the solution as mentioned above whereas the second

term is the homogeneous solution for satisfying additional constraints. More

in detail, the term q̇a assumes the form of

q̇a = k0

(
∂w(q)

∂q

)T

, (2.23)

with w(q) secondary objective function to consider that can be

• Maximization of manipulability

w(q) =
√

det(J(q)J(q)T) , (2.24)

2.1. Robot Modelling and Identification 23

• Maximization of distance from joint limits, mantaining the joint value qi

at the average value qi between limits [qimqiM]

w(q) = −
1

2n

n∑

i=0

(
qi − qi

qiM − qim

)2

. (2.25)

Equation (2.19) can lead to numerical drift during the computation of the

position reported in Eq. (2.15).

Recalling the Closed-Loop Inverse Kinematics (CLIK) algorithm [77], given a

certain desired position pd and desired quaternion Qd for the end-effector, the

joint velocities that make the robot fulfill the end-effector pose task can be

computed as

q̇ = J†

([

ṗd

ωd

]

+ K

[

ep

eo

])

, (2.26)

where ep = pd − p is the end-effector position error, eo = Qd ∗Q−1 is the

orientation error in terms of quaternion error, ṗd is a feed-forward desired

end-effector linear velocity, ωd is a feed-forward end-effector angular velocity.

This is implemented by projecting the velocity contribution of the secondary

task in the null space of the Jacobian matrix of the primary one, achieving the

following solution

q̇ = J†

([

ṗd

ωd

]

+ K

[

ep

eo

])

+ Nq̇a , (2.27)

with N null space of the Jacobian matrix and q̇a the functional to maximize

(see Eq. 2.24 or Eq. 2.25).

2.1.2 Dynamics

The dynamic model of a robot manipulator describes the relationship between

joint torques and motion of the structure. It is foundamental for realistic

simulation of motion, analysis of manipulator structures, and design of control

algorithms, i.e. inverse dynamics control.

24 Chapter 2. Background

There are two ways to compute the model: Lagrange and Newton-Euler for-

mulations. The first method is conceptually simple and systematic, whereas

the second one is possible throught recursive approaches. The latter is more

efficient from a computational perspective. Furthermore, an additional way to

compute the dynamic model throught the identification of dynamic parame-

ters method is presented in this chapter, showing the important contribution

obtained in this thesis on this topic.

Lagrange Formulation

The Lagrangian of n-DOF manipulator system can be defined as

L = T − U , (2.28)

where T is the total kinetic energy and U the potential energy of the system.

The Lagrange equations are expressed by

d

dt

(
∂L

∂q̇

)T

−

(
∂L

∂q

)T

= ξ , (2.29)

where ξ represents the nonconservative forces, i.e., the joint actuator torques

and the joint friction torques.

The relationship between the forces applied to the manipulator and the posi-

tions, velocities and accelerations of the joints is represented by the Eq. (2.29).

Kinetic Energy

The kinetic energy is obtained by the sum of the contributions given from the

motion of each link and from the motion of each joint actuator

T =
n∑

i=1

(T ℓi
+ T mi

) . (2.30)

The kinetic energy associated with link i is expressed in terms of its contribu-

tion as follows:

T ℓi
=

1

2

∫

Vℓi

ṗ∗T
i ṗ∗

i ρdV (2.31)

2.1. Robot Modelling and Identification 25

where ṗ∗T
i denotes the linear velocity vector and ρ is the density of the ele-

mentary particle of volume dV . Vℓi
is the volume of the link i. The kinetic

energy associated with each link is composed of both translational and rota-

tional contributions. The kinetic energy of Rotor i can be written as

Tmi
=

1

2
mmi

ṗTmi
ṗmi

+ ωT
mi

Lmi
ωmi

(2.32)

where mmi
is the mass of the rotor, ṗmi

is the linear velocity of the center of

mass of the rotor, Lmi
is the inertia tensor of the rotor relative to its center of

mass, and ωmi
denotes the angular velocity of the rotor.

The total kinetic energy of the manipulator is determined by summing the

individual contributions from each link and rotor.

T =
1

2
q̇TM (q) q̇ , (2.33)

where M(q) is the inertia matrix, which is symmetric, positive definite, and

(in general) configuration-dependent.

Potential Energy

The potential energy stored in the manipulator can be determined by consid-

ering the contributions from each individual link and rotor as

U =
n∑

i=1

(U ℓi
+ Umi

) . (2.34)

In the case of rigid links, the contribution is solely due to gravitational forces

and it is given by

U ℓi
= −mℓi

gT0 pℓi
, (2.35)

where mℓi
is the mass of the link, g0 is the gravity acceleration vector in the

base frame and pℓi
is the position of the link.

The contribution of each rotor is

Umi
= −mmi

gT0 pmi
. (2.36)

26 Chapter 2. Background

where pmi
is the position of the rotor. Hence, the potential energy is formalized

as

U = −
n∑

i=1

(

mℓi
gT0 pℓi

+mmi
gT0 pmi

)

. (2.37)

Equations of Motion

The Lagrangian from Eq. (2.28) can be rewritten as

L(q, q̇) = T (q, q̇)− U(q) . (2.38)

Using the Eq. (2.29), the following result is achieved

M(q)q̈ + n(q, q̇) = ξ , (2.39)

where

n(q, q̇) = Ṁ(q)q̇ −
1

2

(
∂

∂q
q̇TM(q)q̇

)T

+

(
∂U(q)

∂q

)T

. (2.40)

Finally, it is possible to rewrite the Eq. (2.39) as

M(q)q̈ + (C(q, q̇) + F v) q̇ + F ssgn(q̇) + g(q) = τ − JT(q)he , (2.41)

where M(q) is the inertia matrix, C(q, q̇) denotes the Coriolis forces, F v is

the diagonal matrix of viscous friction coefficients, F ssgn denotes the Coulomb

friction torques, g(q) denotes the gravity torques, τ are the actuation torques

and he is the vector of force and moment exerted by the end-effector on the

environment.

2.1.3 Dynamic Parameters

It is of the utmost importance to derive the dynamic model and, then, to have

an estimate of its parameters [78]. However, physically infeasible estimates

might lead to non-positive inertia matrices at some joint configurations or, in

the worst case, in the overall joint space. Such dynamic models would lead to

unrealistic simulations and would negatively affect model-based control since

the use of a dynamic model with non-positive inertial matrix might lead to an

2.1. Robot Modelling and Identification 27

unstable system [79]. In general, robot dynamic parameters, such as mass and

inertia tensors, exhibit physical restrictions that need to be properly addressed

to obtain meaningful estimates. However, several identification solutions, being

based on regression techniques [80] (with and without considering constraints),

generate nonphysical estimates due, for instance, to unavoidable modeling er-

rors, incorrect setup of the identification experiment and to incorrect choice of

parameter constraints.

2.1.4 Identification of Dynamic Parameters

For open-chain manipulators consisting of n rigid links connected by n rota-

tional or prismatic joints, the equations of motion can be determined using

methods such as the recursive Newton-Euler or Lagrange formulation [81].

In this chapter, the superscript i denotes that the corresponding quantity is ex-

pressed with respect to frame i, while no superscript means that it is expressed

in the world reference frame.

The mathematical model of a robot manipulator can be written in compact

form as

τ = M (q)q̈ + C(q, q̇)q̇ + g(q) = Y full(q, q̇, q̈)πfull (2.42)

where M (q) ∈ R
n×n is the symmetric and positive definite inertia matrix,

C(q, q̇)q̇ ∈ R
n denotes the Coriolis and centrifugal vector, g(q) ∈ R

n is the

gravity vector, and τ ∈ R
n is the vector of collected joint torques.

Moreover, the Eq. (2.42) also highlights that the model can be rewritten in

alternative form by taking into consideration that it is linear with respect to

the dynamic parameters [82] being Y full ∈ R
n×10n an upper triangular matrix

and πfull ∈ R
10n the vector collecting dynamic parameters of each link.

By referring to Table 2.1, considering as case study the KINOVA Jaco2 robot,

the i th link is characterized by 10 parameters [83] which are mass mi ∈ R,

center of mass mci
∈ R

3 and the inertia matrix Li ∈ R
3×3 referred to the link

frame and of which only 6 parameters are considered due to its symmetry, that

is li=
[

li,xx li,xy li,xz li,yy li,yz li,zz
]T
∈ R

6.

28 Chapter 2. Background

These parameters are stacked into the vector πi=
[

mi mi
ci

T lT
i

]T
∈ R

10 which

represents the vector of dynamic parameters relative to link i, while vector

πfull in Eq. (2.42) is such as πfull =
[

πT
1 πT

2 . . . πT
n

]T
.

joint a [m] α [rad] d [m] θ

1 0 π/2 0.2755 θ1

2 0 π/2 0 θ2

3 0 π/2 −0.410 θ3

4 0 π/2 −0.0098 θ4

5 0 π/2 −0.3111 θ5

6 0 π/2 0 θ6

7 0 0 0.2638 θ7

Table 2.1: Denavit-Hartenberg table for the KINOVA Jaco2 .

It is worth noticing that the model above is written at the link side, i.e., by

ignoring the motor inertia and the motor friction. This is rather common for

the latest generation of robots defined as lightweight, which embeds a torque

sensor in each of the joints at the link side [84, 85].

It is well known that, in general, not all the dynamic parameters provide a

dynamic contribution [86]. Indeed, by resorting to, for instance, the numeri-

cal procedure described in [87] they can be clustered in 3 groups, namely (i)

identifiable, (ii) not identifiable and (iii) identifiable in linear combination. By

ignoring the not identifiable parameters since they do not contribute to the

robot dynamics (e.g., the mass of the base link of fixed base manipulators with

a first rotational joint), by removing the corresponding column from Y full and

by properly merging together the columns of the regressor Y full corresponding

to parameters identifiable in linear combination, the regressor-based model can

be rewritten as

τ = Y b(q, q̇, q̈)πb , (2.43)

with Y b ∈ R
n×nb and πb ∈ R

nb , and where the dimension nb (nb ≤ 10n)

depends on the specific robot kinematics and will be specified for the KINOVA

Jaco2 robot in next sections.

The set of all the dynamic parameters, defined as full above, is also defined as

standard by part of the literature; the set of the dynamic parameters providing

2.1. Robot Modelling and Identification 29

a dynamic contribution is defined as base parameters or dynamic coefficients.

2.1.5 Constraints on the Robot Model

Since robots are physical systems, the vector of dynamics parameters πfull (and

πb) is constrained to account for physical properties of the system, e.g. the

well-known inertia matrix M(q) is positive definite. More in detail, the main

physical constraints considered in the literature are here briefly reviewed.

Physical Feasibility

First of all, mass mi and inertia matrix Li are constrained such as







mi > 0

Li ≻ 0
(2.44)

However, these constraints are not sufficient to guarantee that matrix M (q)

is positive definite since Li is the inertia matrix about the i th link frame.

The property M(q) ≻ 0, ∀q, is ensured if the following constraints are jointly

considered 





mi > 0

Ci = Li −
1

mi
S(mi

ci
)TS(mi

ci
) ≻ 0

(2.45)

where S(·) is the skew-symmetric matrix operator and Ci is the inertia matrix

about the center of mass of link i which, based on Huygens-Steiner theorem is

related to the inertia matrix Li; thus, by resorting to the Schur complement

condition for positive definite matrices, it is equivalent to the following Linear

Matrix Inequality [88] as

Zi =

[

miI3 S(mi
ci

)T

S(mi
ci

) Li

]

≻ 0 (2.46)

where I3 is the 3×3 identity matrix. It is worth highlighting that condition in

Eq. (2.46) on matrix Zi is denoted as physical feasibility in [86] and as physical

semi-consistency in [88].

30 Chapter 2. Background

Physical Consistency

Authors in [89] highlighted that an additional condition to Eq. (2.46) needs

to be considered (namely the triangle inequality condition) on the eigenvalues

λj of Ci due to the non-negative mass density in order to achieve the physical

consistency. Such a condition is taken into consideration in [88, 90] and it is

formulated as 





0 < λ3 < λ1 + λ2

0 < λ2 < λ1 + λ3

0 < λ1 < λ2 + λ3

(2.47)

Ei =





tr(Li)

2
I3 −Li mi

ci

mi
ci

T mi



 ≻ 0 (2.48)

where tr(·) is the trace operator of its matrix argument.

Additional constraints might exploit the knowledge of the geometric structure

of the robot by introducing bounded-volume limits [88, 91]. The latter mainly

relate to the position of the center of mass of each link which might lay in a

cuboid expressed in the link frame [84, 86] as

mi
ci,LB

≤mi
ci
≤mi

ci,UB
(2.49)

with mci,LB and mci,UB the lower and the upper bounds, respectively, and

where the inequalities are to be intended component-wise.

Alternatively, by following the approach in [88] it is possible to require the

center of mass of link i to lay inside an ellipsoid Ei with center xci
∈ R

3

described by

Ei = {x ∈ R
3 | (x− xici

)TQsi
(x− xici

) ≤ 1} (2.50)

where Qsi
∈ R

3×3 is a positive definite matrix defining the shape and ori-

entation of the ellipsoid in the link frame. Finally, as additional constraints

considered in [88], the overall mass of a link might be required to lay inside a

region Si (which could be an ellipsoid as well, see Section 2.1.6).

2.1. Robot Modelling and Identification 31

This constraint, together with the physical consistency, is addressed as S-

density realizability in [88]. As an example, Fig. 2.3 (left) reports the ellipsoid

S4 (in orange) containing the 4 th link and the ellipsoid E4 (in red) in which

the center of mass m4
c4

is constraint to lay.

x0
y0

z0

x1

y1

z1 x2 y2

z2

x3

y3

z3 x4y4

z4

x5

y5

z5

x6 y6

z6

x7 y7

z7

d1

d3

d4

d5

d7

Figure 2.3: The KINOVA Jaco2 robot is being considered as a test case.
On the left, an orange external ellipsoid is shown, bounding the 4 th link,
while a red internal ellipsoid containing the center of mass is also displayied.
On the right, the reference frames of the KINOVA Jaco2 robot are illustred
according to the DH convention.

2.1.6 Methods for Estimating Dynamic Parameters

In this Section a review and comparison of the main identification methods is

presented. It is worth considering that, apart from the CAD method, the other

four identification approaches require to either acquire data or to reconstruct

them from the robot on-board sensors consisting in N joint configurations

(q(ti), q̇(ti), q̈(ti)) together with the corresponding torque vector τ (ti) being ti

the generic time instant and i ∈ {1, 2, . . . , N}.

32 Chapter 2. Background

These data, together with Eq. (2.42) or Eq. (2.43) are generally used to build an

over-determined system of linear equations in the unknown vector of dynamic

parameters πb in the case of ULS method and πfull in the case of CLS-1, CLS-2,

CLS-3 methods in the form of

τ̄ =










τ (t1)

τ (t2)
...

τ (tN)










=










Y (·)(t1)

Y (·)(t2)
...

Y (·)(tN)










π(·) = Ȳ (·)π(·) (2.51)

where Y (·) and π(·) are either the base or full regressor computed in the i th

configuration and the base or full vector of dynamic parameters depending on

the identification method adopted.

CAD

The simplest way to obtain the vector of dynamic parameters πfull is to re-

trieve it from CAD data, which many robot manufacturers make available to

the community. The link parameters can be automatically extracted by CAD

software once, for instance, properties like the density of each component are

specified. However, due to the complexity of robot structure, the many com-

ponents involved and the uniform density assumption which is usually made,

the extracted data might be significantly different than the real one. More-

over, parameters related to friction, when relevant, are unavailable with a CAD

approach. On the other hand, the physical constraints are met by construction.

Unconstrained Least Square (ULS)

The ULS method [82] is a popular method for systems identification, that in

the case considered and in virtue of Eq. (2.51) consists in solving the following

minimisation problem in the unknown vector πb

min
πb

(τ̄ − Ȳ bπb)T(τ̄ − Ȳ bπb) . (2.52)

In particular, identification requires to properly design the experiments and it is

important to design exciting trajectories to provide accurate and fast parameter

2.1. Robot Modelling and Identification 33

estimation even in presence of measurement noise, unmodeled dynamics and

external disturbances. Most of the works in the field of robot identification

relate the condition number of regressor Ȳ b to the reliability of the data [82]

and design the identification trajectory minimizing this condition number [80].

However, despite its simplicity the ULS approach leads to an estimate of πb for

which the physical properties mentioned in Section 2.1.5 are not guaranteed

and that might suffer of over-fitting [88, 90]. For these reasons, in the last

decades many researchers put effort in the constrained identification of robot

manipulators which basically differ on the number and type of constraints con-

sidered (see Section 2.1.5) and in the methods adopted to solve these problems.

Constrained Least Square (CLS) - Technique 1 (CLS-1)

The goal of constrained identification is to extract a dynamic model maintain-

ing as much as possible the physically meaning of the parameters. As seen

in [92, 84], constraints on the numerical value of dynamic parameters in terms

of bounds on the CAD values could be added. Inspired by the approach pre-

sented in [84], the method consists in estimating the vector of full parameters

πfull is formalized as

min
πfull

(πb(πfull)− π̂b)T (πb(πfull)− π̂b)

s.t. πLB ≤ πfull ≤ πUB

(2.53)

More in detail, it exhibits the following characteristics:

• The dependency of πb on the full vector πfull is required, that is πb =

πb(πfull). This relationship can be either linear or non-linear depending

on the parametrization assumed;

• This dependency is necessary since constraints are set on the vector of full

parameters and are in the form πLB ≤ πfull ≤ πUB where πLB and πUB

are the lower and upper bounds on the full vector of dynamic parameters,

respectively, mainly obtained by CAD and heuristic considerations (e.g.,

masses are positive);

34 Chapter 2. Background

• The solution sought is the one that, taken into account the acquired data,

is closest to a vector π̂b, which may be exactly the unconstrained solution

in Section 2.1.6 and that meets the bounds on πfull.

Moreover, it is important to highlight here that the problem formulation is

slightly changed with respect to [84] but the overall approach is kept. Finally,

it is worth noticing that this approach does not guarantee that neither the

physical feasibility nor the physical consistency are guaranteed. Indeed, this

property can only be verified a-posteriori and the bounds may be eventually

modified according to a trial and error approach.

Constrained Least Square (CLS) - Technique 2 (CLS-2)

Differently from the previously mentioned techniques, the approach in [86]

properly takes into account the constraints in Eq. (2.45).

In particular, the considered constrained identification aims to estimate the

full vector of parameters πfull by minimizing the reconstruction error like in

Eq. (2.52) and where the base quantities are substituted by their full counter-

parts; the constrained identification is formulated as

min
πfull

(τ̄ − Ȳ fullπfull)
T(τ̄ − Ȳ fullπfull)

s.t. Zi ≻ 0 for i ∈ {1, . . . , n}

mi,LB ≤ mi ≤ mi,UB

mi
ci,LB

≤ mir
i
i,ci

︸ ︷︷ ︸

mi
ci

≤mi
ci,UB

(2.54)

Explaining, the considered constraints for each link are:

• Physical feasibility described in Section 2.1.5;

• Lower and upper bounds are considered for link mass mi which are mi,LB

and mi,UB, respectively;

• Lower and upper bounds are considered for first moment of mass mi
ci

which are mi
ci,LB

and mi
ci,UB

, respectively.

2.1. Robot Modelling and Identification 35

The overall constrained problem is globally solved in the framework of Linear-

Matrix-Inequality and Semi-Definite-Programming (LMI-SDP). Since the full

vector of parameters is identified, the full regressor is used that in general is

intrinsically numerically bad conditioned, i.e., the matrix Ȳ full is never full

rank no matter the data collected. Therefore, it is necessary to provide the

algorithm a regularization coefficient.

Constrained Least Square (CLS) - Technique 3 (CLS-3)

The last method we consider is presented in the version [88] (a similar approach

is presented in [90]) and is the most complete one considering all the constraints

presented above. Similarly to the CLS-2, the CLS-3 technique aims to estimate

the full vector of parameters πfull by minimizing the reconstruction error while

considering the following constraints as

min
πfull

(τ̄ − Ȳ fullπfull)
T(τ̄ − Ȳ fullπfull)

+ γr(πCAD − πfull)
T(πCAD − πfull)

s.t. Ei ≻ 0 for i ∈ {1, . . . , n}

V i ≻ 0 for i ∈ {1, . . . , n}

tr(EiQi) ≥ 0 for i ∈ {1, . . . , n}

(2.55)

with 0 < γr ≪ 1 a regularization factor; as reported in [88], the second condi-

tion is equivalent to require that a matrix V i ≻ 0 where

V i =

[

mci
mi

ci

T −mci
xici

T

mi
ci
−mix

i
ci

mci
Qsi

]

. (2.56)

The latter constraint does not address the case the entire mass of link i is

contained within a given region Si (this condition is addressed in [88] as S-

density). In the case Si is an ellipsoid expressed in homogeneous form

Si =






x ∈ R

3 |

[

x

1

]T

Qi

[

x

1

]

≥ 0






(2.57)

36 Chapter 2. Background

with Qi ∈ R
4×4 a positive definite matrix defining the center and the principal

axis of the ellipsoid. In [88], it is shown that S-density condition holds if and

only if

Ei ≻ 0 ∧ tr(EiQi) ≥ 0 . (2.58)

In summary, the constraints for this method are:

• Physical consistency described in Section 2.1.5;

• The position of the first moment of mass mci
is forced to reside in an

ellipsoid Ei described by matrix Qsi
and its center xci

as in Eq. (2.50).

• The mass of link i is contained within a given region Si represented as

an ellipsoid as well.

From the mathematical perspective, solution of CLS-3 is identical to the CLS-

2 and thus it lays in the framework of Linear-Matrix-Inequality and Semi-

Definite-Programming (LMI-SDP). A regularization factor is needed as well [88].

2.1.7 Identification Methods: A Comparison

By applying the numerical procedure described in [87], it is possible to cluster

the KINOVA Jaco2 dynamic parameters as shown in Table 2.2 with the linear

combination reported in Table 2.3.

1 2 3 4 5 6 7

m

mc,x

mc,y

mc,z

lxx
lyy
lzz
lyz
lxy
lxz

Table 2.2: Identifiability of the parameters (red cells: not identifiable;
blue cells: identifiable in linear combination; white cells: identifiable alone.

2.1. Robot Modelling and Identification 37

Parameters

β1 = l1,yy + l2,zz
β2 = mc3,y − d3(m4 +m5 +m6 +m7) +mc2,z

β3 = l2,xx − l2,zz + l3,zz + d2
3(m4 +m5 +m6 +m7)

β4 = l2,yy + l3,zz + d2
3(m4 +m5 +m6 +m7)

β5 = mc4,y + d4(m6 +m7 +m5) +mc3,z

β6 = l3,xx − l3,zz + l4,zz + d2
4(m5 +m6 +m7)

β7 = l3,yy + l4,zz + d2
4(m5 +m6 +m7)

β8 = l3,yz − d3d4(m5 +m6 +m7)− d3mc4,y

β9 = mc5,y + d5(m6 +m7) +mc4,z

β10 = l4,xx − l4,zz + l5,zz + d2
5(m6 +m7)

β11 = l4,yy + l5,zz + d2
5(m6 +m7)

β12 = l4,yz − d4d5(m6 +m7)− d4mc5,y

β13 = mc6,y +mc5,z

β14 = l5,xx − l5,zz + l6,zz
β15 = l5,yy + l6,zz
β16 = l5,yz − d5mc6,y

β17 = mc6,z +mc7,z

β18 = l6,xx + l7,yy − l6,zz
β19 = l6,yy + l7,yy
β20 = l7,xx − l7,yy

Table 2.3: Dynamic parameters in linear combinations.

The robot is equipped with joint torques mounted after the gear, as common

to several lightweight arms such as, for example, the hardware described in [84,

85]. In addition to the joint torques, only the joint positions can be measured

at a sampling frequency fs = 100 Hz with an Ethernet connection resorting

to the library developed by the manufacturer under ROS (Robot Operating

System)1.

2.1.8 Validation methodology

There are two main requirements concerning validation that need to be sat-

isfied. On one hand the identification nature asks for a minimization of the

reconstruction error along a set of data (the identification set) different from

the one used for the identification itself (the validation set). On the other

1https://github.com/Kinovarobotics/kinova-ros

https://github.com/Kinovarobotics/kinova-ros

38 Chapter 2. Background

hand, it is required that constraints introduced above are met which have,

as main consequence, that the joint-space inertia matrix is strictly positive

definite (M(q) ≻ 0).

The first requirement is usually verified by resorting to a proper metric, typi-

cally the reconstruction error and eventually relative information such as the

percentage error. In this work, the following errors are considered

ς =

√

χ2

Ns
, ςr =

√

χ2

‖τ̄‖
(2.59)

where Ns is the number of samples of the dataset at hand and χ2 is defined as

χ2 =







(τ̄ − Ȳ bπ̂b)T(τ̄ − Ȳ bπ̂b) for ULS

(τ̄ − Ȳ fullπ̂full)
T(τ̄ − Ȳ fullπ̂full) for CAD,CLS-1, 2, 3

By defining σ2
π = χ2

ν
with ν the difference between number of samples and the

number of dynamic parameters identified, an estimate of the covariance matrix

Ĥ of the estimated parameters is [82]

Ĥ = σ2
π(Ȳ

T
b Ȳ b)−1 , (2.60)

for all the techniques. For CLS-1, CLS-2 and CLS-3, which identifies the full

vector of dynamic parameters, the covariance is actually computed on the base

representation of the obtained estimation.

The requirement on the positive definiteness of M(q) is actually a binary

constraint and is met by construction by the CAD estimates and algorithms

CLS-2 and CLS-3; however, the ULS and CLS-1 methods may or may not meet

it. Since the method CLS-1 outputs the full vector of dynamic parameters, it

is possible to check on their value the fulfillment of the constraints, while this

is not possible in the ULS case; in addition, since symbolic computation of

the positive definiteness of M(q) is computationally intractable, numerical

methods need to be implemented to check this property. In this case, the

numerical validation of the condition M (q) ≻ 0 is valid for a specific joint

configuration q, a sample-based approach is needed to check it against the

2.1. Robot Modelling and Identification 39

joint space. Obviously, one single counterexample is sufficient to invalidate

the property while the opposite is true only in a probabilistic fashion for large

number of samples.

2.1.9 Trajectories

Numerical conditioning on the various optimization problems to be solved

needs to be properly guaranteed [82, 93, 94]. Considering the stacked regressor

matrices Ȳ b in Eq. (2.51), it is required to keep its condition number as small

as possible while increasing the minimum singular value. In the case of Ȳ full

in Eq. (2.51), it is instead required that the smallest nonzero singular value

is as large as possible. In practice, this means to properly span the collected

data within the allowed range of joint positions, velocities and accelerations

characterizing the robot under study. In these cases, 5 different trajectories

have been considered and generated as in [80], and each of them plays the role

of identification trajectory and the remaining ones of validation trajectories.

As an example, one exciting trajectory is shown in Fig. 2.4. The corresponding

base regressor is characterized by a condition number of approximately 50 with

a minimal singular value of 34.

Since the data are spoiled from noise, it is necessary to carry out low pass

filtering on the data. A Butterworth 2nd order low pass filter with a cut-off

frequency equal to 5 Hz has been implemented. In the literature, a similar

choice of cut-off frequency is adopted; for example in [84] the value of 1 Hz has

been used in the identification of the KUKA LWR IV.

In Fig. 2.5, an example of the effect of filtering on torque data of joint 2 in one

of trajectories is reported.

2.1.10 Results

The CAD parameter values have been derived from the official repository of the

manufacturer [95] properly referred to the adopted DH-compliant frames by

resorting to the Huygens-Steiner theorem. Moreover, the identification algo-

rithms described above have been run. The identified parameters are reported

40 Chapter 2. Background

0 2 4 6 8 10 12 14 16 18 20

-5

0

5

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

0 2 4 6 8 10 12 14 16 18 20

t [s]

-5

0

5

q
[r

ad
]

q̇
[r

ad
/s

]
q̈

[r
ad

/s
2
]

Position

Velocity

Acceleration

joint1
joint2

joint3
joint4

joint5
joint6

joint7

Figure 2.4: Joint position, velocity and acceleration zoom representation
of the first 20 seconds of the 3rd trajectory. The full version of trajectory
is used as identification dataset.

in Table 2.4 together with the corresponding variance of the estimate (for in-

stance, the 4th trajectory is adopted to the scope of identification and the 3rd

one for the validation). As already mentioned above, since ULS only identifies

the base vector πb, while the other algorithms identify the full vector πfull,

the linear combinations of the latter have been considered in order to compare

them with the former.

Since a graphical visualization of the errors is always meaningful, Figs. 2.6-2.10

report the reconstruction errors as time history of measured versus estimated

torques for the different algorithms and by using trajectory 3 for validation.

Tables 2.5-2.6 report an overall comparison of the various techniques among

different identification and validation trajectories.

The ULS exhibits the smallest error along the identification trajectory. This su-

perior performance, however, is not confirmed along the validation trajectories.

This confirms the observation made by [90], i.e., that the ULS somehow over-

fits the identification trajectory, while other techniques, taking into account

2.1. Robot Modelling and Identification 41

Params CAD
ULS CLS-1 CLS-2 CLS-3

Value σ Value σ Value σ Value σ

β1 0.003715 -0.027334 3.9e-03 0.000001 1.7e-02 0.003664 8.3e-03 0.000824 3.9e-03

β2 -0.956111 -1.391333 6.9e-04 -1.076000 2.9e-03 -1.383625 1.5e-03 -1.390848 6.9e-04

β3 0.413706 0.535243 9.5e-03 0.477060 4.0e-02 0.579379 2.0e-02 0.594658 9.5e-03

β4 0.414086 0.585506 4.5e-03 0.457060 1.9e-02 0.605004 9.6e-03 0.596306 4.5e-03

β5 -0.016199 -0.035576 4.7e-04 -0.017640 2.0e-03 -0.033551 1.0e-03 -0.035730 4.7e-04

β6 0.000463 0.031621 6.5e-03 -0.016427 2.8e-02 0.054993 1.4e-02 0.004703 6.6e-03

β7 0.000843 0.024736 2.8e-03 0.000573 1.2e-02 0.004193 6.0e-03 0.006755 2.8e-03

β8 -0.006642 -0.017786 2.3e-03 -0.007232 9.8e-03 -0.013756 4.9e-03 -0.008831 2.3e-03

β9 -0.370088 -0.572468 5.0e-04 -0.373640 2.1e-03 -0.678596 1.1e-03 -0.572292 5.1e-04

β10 0.116272 0.165417 4.1e-03 0.118846 1.8e-02 0.210676 8.8e-03 0.173466 4.2e-03

β11 0.116576 0.188398 2.7e-03 0.115246 1.2e-02 0.210918 5.7e-03 0.177551 2.7e-03

β12 -0.003570 -0.015456 1.6e-03 -0.003603 6.6e-03 -0.006591 3.3e-03 -0.004862 1.6e-03

β13 0 -0.002278 3.4e-04 0 1.5e-03 -0.000001 7.2e-04 -0.002054 3.4e-04

β14 0.002554 -0.002358 3.4e-03 0.001000 1.4e-02 0.013544 7.2e-03 0.000973 3.4e-03

β15 0.002647 -0.006334 2.0e-03 0.001000 8.4e-03 0.003730 4.2e-03 0.001497 2.0e-03

β16 0 0.000519 1.3e-03 0 5.5e-03 0 2.7e-03 -0.001571 1.3e-03

β17 -0.042324 0.142087 3.5e-04 -0.043600 1.5e-03 -0.043599 7.5e-04 0.142759 3.5e-04

β18 0.003917 0.036578 2.4e-03 -0.001000 1.0e-02 0.114899 5.0e-03 0.017273 2.4e-03

β19 0.004010 0.021991 1.5e-03 0 6.5e-03 0.105452 3.3e-03 0.017606 1.5e-03

β20 0 -0.018514 1.6e-03 0 6.7e-03 -0.008520 3.3e-03 0.000107 1.6e-03

mc2,x 0 0.006347 4.0e-04 0 1.7e-03 0 8.4e-04 0.006854 4.0e-04

l2,xy 0 0.000908 4.1e-03 0 1.7e-02 0 8.7e-03 0 4.1e-03

l2,xz 0 0.041782 4.1e-03 0 1.8e-02 0 8.8e-03 0 4.2e-03

l2yz 0 -0.006675 2.4e-03 0 1.0e-02 0 5.0e-03 0 2.4e-03

mc3,x 0 0.013107 5.3e-04 0 2.3e-03 -0.000001 1.1e-03 0.012370 5.3e-04

l3,xy 0 -0.003376 2.1e-03 0 9.0e-03 0 4.5e-03 0 2.1e-03

l3,xz 0 -0.022552 3.1e-03 0 1.3e-02 0 6.5e-03 0 3.1e-03

mc4,x 0 0.028568 3.8e-04 0 1.6e-03 0 8.1e-04 0.028330 3.8e-04

l4,xy 0 0.016842 1.6e-03 0 6.9e-03 0 3.4e-03 0 1.6e-03

l4,xz 0 0.008521 1.8e-03 0 7.8e-03 0 3.9e-03 0 1.8e-03

mc5,x 0 0.002895 4.2e-04 0 1.8e-03 0.000001 9.0e-04 0.003247 4.3e-04

l5,xy 0 0.003167 1.1e-03 0 4.7e-03 0 2.3e-03 0 1.1e-03

l5,xz 0 -0.017816 1.5e-03 0 6.3e-03 0 3.1e-03 0 1.5e-03

mcx,6 0 0.005368 3.6e-04 0 1.5e-03 0.000001 7.7e-04 0.004566 3.6e-04

l6,xy 0 0.006955 9.9e-04 0 4.2e-03 0 2.1e-03 0 9.9e-04

l6,xz 0 0.003348 9.6e-04 0 4.1e-03 0 2.0e-03 0 9.6e-04

l6,yz 0 0.010184 1.0e-03 0 4.4e-03 0 2.2e-03 0 1.0e-03

mcx,7 0 0.000949 2.9e-04 0 1.2e-03 0 6.2e-04 0 2.9e-04

mcy,7 0 -0.001331 2.8e-04 0 1.2e-03 0 6.0e-04 -0.000298 2.9e-04

l7,xy 0 0.004124 7.6e-04 0 3.3e-03 0 1.6e-03 0 7.7e-04

l7,xz 0 0.002020 7.2e-04 0 3.1e-03 0 1.5e-03 0 7.3e-04

l7,yz 0 0.003968 7.4e-04 0 3.2e-03 0 1.6e-03 0 7.4e-04

l7,zz 0.000582 0.000470 1.1e-03 0.000470 4.6e-03 0.000004 2.3e-03 0.000107 1.1e-03

Table 2.4: Numerical values for base dynamic parameters of the algo-
rithms on the 3rd validation trajectory.

42 Chapter 2. Background

0 5 10 15 20

t [s]

-20

-10

0

10

20

4.4 5

2

4

τ 2
[N

m
]

t [s]

τ 2
[N

m
] zoom

real torque

filtered torque

Figure 2.5: Low pass filter effect on joint torque, example for the second
joint of 3rd trajectory with a zoom-in plot in the time interval [4.4, 5] s.

the physical constraints, finally better perform on the validation trajectories.

The reconstruction made by resorting to the CAD values is consistently found

to have the worst performance among the various techniques, confirming the

importance of the identification process.

The CLS-3 method consistently exhibits the smallest error, although it is out-

performed by ULS in a few samples and by CLS-1 in one case. It is worth

noticing that the displacement of the first moment of inertia is numerically

small and that the errors are numerically very close one to each other.

The last two lines of the table show the binary conditions resulting in the

requirement to satisfy the physical constraints: the sole CAD and CLS-3 satisfy

all of them. However, if the reconstruction error is considered, the performance

of CLS-3 among the 5 methods is clearly superior.

2.1. Robot Modelling and Identification 43

0 20 40 60 80

-10

0

10

0 20 40 60 80

-20

0

20

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80
-5

0

5

τ 1
[N

m
]

τ 2
[N

m
]

τ 3
[N

m
]

τ 4
[N

m
]

τ 5
[N

m
]

τ 6
[N

m
]

τ 7
[N

m
]

t [s]

t [s]

τ Torques
τCAD Estimated Torques

Figure 2.6: CAD reconstruction errors along the 3rd trajectory. addi-
tional text to have the caption on two lines

0 20 40 60 80

-10

0

10

0 20 40 60 80

-20

0

20

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80
-5

0

5

τ 1
[N

m
]

τ 2
[N

m
]

τ 3
[N

m
]

τ 4
[N

m
]

τ 5
[N

m
]

τ 6
[N

m
]

τ 7
[N

m
]

t [s]

t [s]

τ Torques
τULS Estimated Torques

Figure 2.7: ULS reconstruction errors along the 3rd trajectory.

44 Chapter 2. Background

0 20 40 60 80

-10

0

10

0 20 40 60 80

-20

0

20

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80
-5

0

5

τ 1
[N

m
]

τ 2
[N

m
]

τ 3
[N

m
]

τ 4
[N

m
]

τ 5
[N

m
]

τ 6
[N

m
]

τ 7
[N

m
]

t [s]

t [s]

τ Torques
τCLS1 Estimated Torques

Figure 2.8: CLS-1 reconstruction errors along the 3rd trajectory.

0 20 40 60 80

-10

0

10

0 20 40 60 80

-20

0

20

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80
-5

0

5

τ 1
[N

m
]

τ 2
[N

m
]

τ 3
[N

m
]

τ 4
[N

m
]

τ 5
[N

m
]

τ 6
[N

m
]

τ 7
[N

m
]

t [s]

t [s]

τ Torques
τCLS2 Estimated Torques

Figure 2.9: CLS-2 reconstruction errors along the 3rd trajectory.

2.1. Robot Modelling and Identification 45

Traj
CAD ULS CLS-1 CLS-2 CLS-3
ς

[Nm]
ςr

ς
[Nm]

ςr
ς

[Nm]
ςr

ς
[Nm]

ςr
ς

[Nm]
ςr

Id: Traj 1 0.01694 0.39842 0.00302 0.07097 0.01465 0.34454 0.00724 0.17023 0.00310 0.07297

Val: Traj 2 0.01947 0.39431 0.00537 0.10872 0.01690 0.34224 0.00665 0.13477 0.00526 0.10647

Val: Traj 3 0.00700 0.43991 0.00213 0.13407 0.00648 0.40725 0.00298 0.18740 0.00203 0.12791

Val: Traj 4 0.00556 0.42289 0.00166 0.12647 0.00505 0.38421 0.00265 0.20172 0.00159 0.12060

Val: Traj 5 0.00348 0.41734 0.00090 0.10735 0.00310 0.37147 0.00133 0.15957 0.00089 0.10710

Id: Traj 2 0.01947 0.39431 0.00292 0.05909 0.01689 0.34222 0.00585 0.11841 0.00307 0.06210

Val: Traj 1 0.01694 0.39842 0.00468 0.11017 0.01464 0.34430 0.00797 0.18741 0.00408 0.09599

Val: Traj 3 0.00700 0.43991 0.00166 0.10448 0.00648 0.40728 0.00287 0.18031 0.00154 0.09691

Val: Traj 4 0.00556 0.42289 0.00150 0.11404 0.00505 0.38420 0.00256 0.19432 0.00129 0.09794

Val: Traj 5 0.00348 0.41734 0.00078 0.09305 0.00310 0.37148 0.00134 0.16051 0.00071 0.08475

Id: Traj 3 0.00700 0.43991 0.00143 0.08963 0.00647 0.40677 0.00277 0.17403 0.00144 0.09030

Val: Traj 1 0.01694 0.39842 0.00378 0.08884 0.01462 0.34390 0.00781 0.18363 0.00380 0.08928

Val: Traj 2 0.01947 0.39431 0.00328 0.06651 0.01688 0.34183 0.00620 0.12555 0.00326 0.06609

Val: Traj 4 0.00556 0.42289 0.00123 0.09381 0.00505 0.38369 0.00254 0.19269 0.00121 0.09225

Val: Traj 5 0.00348 0.41734 0.00065 0.07827 0.00065 0.07827 0.00133 0.15934 0.00066 0.07852

Id: Traj 4 0.00556 0.42289 0.00118 0.08982 0.00505 0.38382 0.00251 0.19105 0.00119 0.09044

Val: Traj 1 0.01694 0.39842 0.00476 0.08842 0.01464 0.34425 0.00783 0.18409 0.00373 0.08766

Val: Traj 2 0.01947 0.39431 0.00329 0.06663 0.01688 0.34195 0.00607 0.12303 0.00330 0.06678

Val: Traj 3 0.00700 0.43991 0.00148 0.09291 0.00647 0.40691 0.00281 0.17648 0.00146 0.09193

Val: Traj 5 0.00348 0.41734 0.00066 0.07911 0.00310 0.37138 0.00134 0.16069 0.00066 0.07902

Id: Traj 5 0.00480 0.41734 0.00062 0.07412 0.00310 0.37152 0.00132 0.15820 0.00064 0.07676

Val: Traj 1 0.01694 0.39842 0.00530 0.12469 0.01465 0.34457 0.00744 0.17503 0.00372 0.08743

Val: Traj 2 0.01947 0.39431 0.00429 0.08688 0.01690 0.34238 0.00636 0.12886 0.00323 0.06550

Val: Traj 3 0.00700 0.43991 0.00198 0.12472 0.00648 0.40740 0.00286 0.18003 0.00148 0.09326

Val: Traj 4 0.00556 0.42289 0.00180 0.13693 0.00506 0.38436 0.00259 0.19691 0.00123 0.09333

Table 2.5: Summary of the results. With red background the largest error
for a specific trajectory, with green the smallest.

46 Chapter 2. Background

0 20 40 60 80

-10

0

10

0 20 40 60 80

-20

0

20

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80

-10

0

10

0 20 40 60 80
-5

0

5

τ 1
[N

m
]

τ 2
[N

m
]

τ 3
[N

m
]

τ 4
[N

m
]

τ 5
[N

m
]

τ 6
[N

m
]

τ 7
[N

m
]

t [s]

t [s]

τ Torques
τCLS3 Estimated Torques

Figure 2.10: CLS-3 reconstruction errors along the 3rd trajectory.

Constraints CAD ULS CLS-1 CLS-2 CLS-3

Eq. (2.45) yes no no yes yes

Eq. (2.47) yes no no no yes

Eq. (2.49) or Eq. (2.50) yes no yes yes yes

Table 2.6: Constraints satisfaction of the different identification methods.

As a final consideration, since the robot at hand is equipped with sensors at

the link side, motor inertia and joint friction parameters at motor side are

not taken into considerations being the torque measures insensitive to these

parameters. The identifications discussed have been run as well including the

friction terms at the link side and, consistently with the literature, the result

was that the errors were almost invariant while the variance corresponding to

those parameters, computed as in Eq. (2.60), were much higher than the rest

of the parameters.

2.2. Machine Learning 47

2.2 Machine Learning

Machine Learning is commonly divided in three subgroups reported in Fig. 2.11.

However, in the following, a short explaination for each of them is done.

• Supervised Learning: algorithm that learns w.r.t a training set that

includes the correct output for each entry in the set. In general, this

approach would learn to approximate a function that best represents the

training data, with the aim of to give accurate output on unseen examples

(useful in the classification problems);

• Unsupervised Learning: the goal of this approach is to learn some-

thing about given datasets based on the data alone, without labels or

training examples. More in detail, it uses algorithms to analyze and

cluster unlabeled datasets, discovering hidden patterns or data group-

ings without the need for human intervention;

• Reinforcement Learning: these algorithms aim to teach an agent the

behavior to assume in an environment through rewards. More in detail,

they allow agents to learn a policy with the goal of maximizing the reward

that receives each time that interacts with the environment.

Supervised Unsupervised Reinforcement

Data
Data

Labels
State

Actions

Learning Learning Learning

Mapping Classes Actions

R
ew

ar
d

E
rr

or

Figure 2.11: Machine Learning Algorithms: Supervised, Unsupervised
and Reinforcement.

48 Chapter 2. Background

In this thesis a focus on reinforcement and supervised learning is put. Regard-

ing the first one, specially, it is a trial-and-error method based on an agent that

takes actions based on the observations and collected feedbacks from the envi-

ronment. In particular, at each time step k the agent in a state sk selects an

action ak receiving a scalar value named reward rk as feedback (see Fig.2.12).

The aim is to maximise the expected reward over time.

Agent Environment
sk, ak

rk, sk+1

Figure 2.12: Scheme of Reinforcement Learning approach: An agent in
a state sk applies an action ak interacting with the environements, which
gives a reward rk to the agent that updates its state with sk+1.

2.2.1 Reinforcement Learning

The decision-making problem is usually modelled as a Markov Decision Process

(MDP), that is defined as a tuple (S,A, p, r, γ), where

• S denotes the state space;

• A denotes the action space;

• p = P (sk+1 = s′|sk = s, ak = a) is the transition probability;

• r is the reward function;

• γ ∈ [0, 1] is the discount factor.

2.2. Machine Learning 49

The mapping between states and actions is called policy π(a|s). The agent

estimates the goodness of a state in order to decide which action to perform

at a particular time-step. To the scope, a possible method is to consider the

action-value function, also known as the Q-function, defined as the expected

sum of rewards after performing action ak in the state sk following a policy π

Qπ(s, a) = Eπ(
∞∑

l=0

γlrk+l+1|sk = s, ak = a) . (2.61)

The optimal action-value function is given by

Q∗(s, a) = max
π

Qπ(s, a),∀s ∈ S, a ∈ A , (2.62)

which, combined with Eq. (2.61), leads to the Bellman optimality equation

Q∗(s, a) =
∑

s′

p(s′|s, a)[rk+1 + γmax
a′

Q∗(s′, a′)] , (2.63)

where sk = s, sk+1 = s′, ak = a, ak+1 = a′.

Equation (2.63) assumes the knowledge of the state transition probability

p(s′|s, a), i.e., it is a model-based problem.

The same equation can be applied in a model-free problem ignoring the state

transition probability. This is achieved by setting p(s′|s, a) = 1 and, therefore,

obtaining

Q∗(s, a) = rk+1 + γmax
a′

Q∗(s′, a′) . (2.64)

Equation (2.64) is a recursive nonlinear function without a closed-form solution.

The following iterative update law can be adopted

Qk+1(sk, ak) = Qk(sk, ak)− αδk , (2.65)

where α ∈ [0, 1] is known as learning rate and δk is the temporal difference

error, defined as

δk = Qk(sk, ak)− rk+1 − γmax
a∈A

Qk(sk+1, a) . (2.66)

50 Chapter 2. Background

Finally, by combining Eq. (2.66) and Eq. (2.65), one obtains

Qk+1(sk, ak) =Qk(sk, ak) + α(rk+1 + γmax
a∈A

Qk(sk+1, a)−Qk(sk, ak)) ,

(2.67)

which is an iterative approach named Q-Learning [96].

Rooted Trees

A directed graph is an ordered pair G = {V,X}, where V = {ν1, . . . , νl} is the

set of nodes, or vertices, and X = {χ1, . . . , χm} is the set of oriented pairwise

edges from node νi to νj. A scalar value might be assigned to edges; in this case

the edge value is assumed to be 1 unless specified otherwise. A path between

two nodes νi and νj is the set of directed edges through which a node νj can

be reached from node νi. A graph G is defined cyclic if it contains a cycle, i.e.,

there is a subset of the edge set that forms a path such that the first node of

the path corresponds to the last. On the opposite, if no cycle exists a graph is

defined acyclic.

A tree is an undirected acyclic graph such that there is a unique path between

every pairs of vertices; this implies that in a tree of l nodes, m = l − 1 edges

exist. A directed tree is a Directed Acyclic Graph (DAG) whose underlying

undirected graph is a tree. In particular, in a directed rooted tree, given a

node νi, there is exactly one edge from another node νj , called parent, to νi

that is, then, a child of νj ; then, every node has a unique parent except the

root which has no parent and from which exactly one path exists to any other

node of the tree; furthermore, a node with no child is a terminal node.

Moreover, the depth or level of a node νi is its distance from the root, i.e.,

the length of the unique path from the root to νi computed by summing the

weights associated to the path. Thus, the root has depth 0.

2.2. Machine Learning 51

2.2.2 Supervised Learning

Neural Networks

The origin of the name comes from biological studies for modelling the math-

ematical structure of the nervous system. Even if the first official mention

was in the 1943, only almost 20 years later, Frank Rosenblatt proposed the

perceptron (or feed forward neural network) [97, 98].

Feed-Forward Neural Networks

This kind of network is the most commonly used and it is made of many

connected units called neurons, where each of them produces a real value as

result of applying a non linear activation function to a linear combination of

weights multiplying the values of other neurons.

x1

...
...

xI

wi,j
wj,k

z1

zH

y1

yK

Figure 2.13: Architecture of Feed-Forward Neural Network.

In Fig. 5.1 an example of feed-forward neural network is reported. It consists

of three layer named input, hidden and output, respectively.

52 Chapter 2. Background

The arrows represent connections, and the term feed-forward means that each

connection is associated with a value that multiplies a neuron of the input

layer. The result is considered in the value of a neuron of the output layer.

Usually, this is called full connection, because each unit receives connections

from the neuros present in the previous layer with an additional bias term.

Here it is possible to consider the mathematical model. Suppose that the input

layer is made of I values with H dimension of the intermediate layer (hidden).

The relationship between input and hidden is the following

uj =
H∑

i=1

wi,jxi + bj,0 , (2.68)

where j = 1, . . . ,H, wi,j are the weights and bj,0 is the bias.

At this point, it is possible to apply on these values a non-linear activation

function h as

zj = h(uj) . (2.69)

According to the Eq. (2.68) and Eq. (2.69), the value of the k-th neuron present

in the output layer is h(uk) and it is known as forward pass.

Differently, there is another operation called backward pass and it is based on

the gradient descent approach for minimizing an error function between real

and estimate values E(w). Thus, the weights wi,j of the network need to be

updated and it is done through the back propagation rule as

wnew
j,i = wold

j,i − α
∂E(w)

wj,i
, (2.70)

with α learning rate and w vector that contains all the weights of the network.

As reference is considered supervised learning mentioned above for a multi-

class problem, where values of the ground truth are availables for each class,

the error function is defined as

E =
1

2

K∑

k=1

(yk − ŷk) , (2.71)

2.2. Machine Learning 53

where ŷk is the prediction of the model. By setting yk = uk it is possible to

compute the derivative w.r.t the weights of the network

∂E

∂wi,j
=
∂E

∂uj

∂uj
∂wi,j

= (yj − ŷj)zi . (2.72)

Going to compact the form, and particularizing at the output neurons, it is

possible to obtain

δk =
∂En
∂uk

= yk − ŷk , (2.73)

whereas for hidden layers

δj =
∂En
∂uj

=
K∑

k=1

∂E

∂uk

∂uk
∂uj

. (2.74)

Thus, it is possible to obtain the backpropagation rule as

δj = h
′

(uj)
K∑

k=1

wl,jδk . (2.75)

A generalization of neural network is the deep neural network, where the word

deep means that there are more than one hidden layer. Specifically, this struc-

ture is capable of extracting more information than the previous one.

Convolutional Neural Network

A widely used architecture is the Convolutional Neural Network (CNN), that

can receive images in input and it is allowed to encode some properties into

the model. The most important component is the convolutional layer, which

consists of a collection of different convolutional filters, also known as kernels.

The input data, in this case the images, are expressed as matrices and they

are convolved with the filters for generating the output named feature map.

More in detail, the kernel is made of discrete numbers that are adjusted during

the training phase. There is also a pooling layer that aims to sample the feature

maps while mantaining the dominant information, an activation function that

maps inputs to outputs in a non-linear way, and a fully connected layer where

54 Chapter 2. Background

each neuron of a layer is connected to all the other neurons of the previous

layer.

An example of CNN called VGGNet16 is reported in Fig. 2.14.

• Kernel: it is represented by a grid of discrete numbers, where each value

is called kernel weight. These values are initialized at the beginning of

the training phase, and then, they are adjusted during the remaining part

of the training, where the kernel learns to extract important features;

• Pooling Layer: the aim is to sample the feature maps, maintaining a

large part of the dominant information in every step of the pooling stage.

A significant limitation of the feature map provided by the convolutional

layers is related to the recording of the precise position of features in the

input. As a result, small variations in the feature position of the input

image can result in a different feature map. To overcome this problem

a common approach is to apply a sampling, considering a low-resolution

version, without loss of the most important information;

• Activation Function: it is a function that maps inputs to outputs in

a non-linear way. In particular, it decides whether to fire a neuron with

reference to a specific input by creating the corresponding output;

• Fully connected layer: the fully connected layer is present at the end

of the CNN architecture. Each neuron of a layer is connected to all the

other neurons of the previous layer. The input of this layer is the output

of the last pooling/convolutional layer and it is a vector, which is created

from the feature maps after the flattening operation. Finally, the output

of the fully connected layer represents the final output of the CNN;

• Loss Function: it is used into the output layer in order to calculate

the predicted error on the training samples in the CNN model, which

represents the error between the real and predicted value. Furthermore,

it is optimized throughout the learning process.

In the neural network functioning there are two kinds of propagation for the

data: forward and backward. For the first one, if there is the assumption that

being to have n×n neuron layers followed by a convolutional layer, considering

2.2. Machine Learning 55

Figure 2.14: Architecture of VGGNet16.

m×m filters w, the output has dimensionality as (n−m+ 1)× (n−m+ 1).

More in detail, considering the input xli,j with l number of the considered layer,

it is expressed as

xli,j =
m−1∑

a=0

m−1∑

b=0

wa,by
l−1
i+a,j+b , (2.76)

and the relative output is

yi,j = h(xli,j) , (2.77)

where h is the activation function.

Usually, the most common activation function in this context is the ReLU, and

it is mathematically defined as following

h(x) = max(0, x) =







0 if x < 0

x if x ≥ 0 .
(2.78)

Instead, taking into account the Eq. (2.76) and Eq. (2.77) and regarding the

backward part, if E is the error at a certain layer, the gradient is computed at

the previous layer such as

∂E

∂wa,b
=

N−m∑

i=0

N−m∑

j=0

∂E

∂xli,j

∂xli,j
∂wa,b

=
N−m∑

i=0

N−m∑

j=0

∂E

∂xli,j
yl−1
i+a,j+b , (2.79)

56 Chapter 2. Background

where for the compute of the gradient it is necessary to calculate ∂E
∂xl

i,j

as

∂E

∂xli,j
=

∂E

∂yli,j

∂yli,j

∂xli,j
=

∂E

∂yli,j

∂

∂xli,j
(σ(xli,j)) =

∂E

∂yli,j
σ′(xli,j) . (2.80)

Furthermore, exploiting the previous relationships in Eq. (2.79) and Eq. (2.80),

it is possible to compute the weights of the model, exploiting another time the

chain-rule such as

∂E

∂yl−1
i,j

=
m−1∑

a=0

m−1∑

b=0

∂E

∂xl(i−a)(j−b)

∂xl(i−a)(j−b)

∂yl−1
i,j

=
m−1∑

a=0

m−1∑

b=0

∂E

∂x(i−a)(j−b)
wa,b ,

(2.81)

where it is possible to noting that

∂xl(i−a)(j−b)

∂yl−1
i,j

= wa,b . (2.82)

57

Chapter 3

Task-Motion Planning via

Reinforcement Learning

This chapter addresses the problem of retrieving a target object from clut-

tered environment using a robot manipulator. In the proposed solution relies

on a Task and Motion Planning approach based on a two-level architecture:

the high-level is a Task Planner aimed at finding the optimal objects sequence

to relocate, according to a metric based on the objects weight; the low-level

is a Motion Planner in charge of planning the end-effector path for reaching

the specific objects taking into account the robot physical constraints. The

high-level task planner is a Reinforcement Learning agent, trained using the

information coming from the low-level Motion Planner. The Q-Tree algorithm,

which is based on a dynamic tree structure inspired by the Q-Learning tech-

nique. Three different RL-policies with two kinds of tree exploration techniques

(Breadth and Depth) are compared in simulation scenarios with different com-

plexity. Moreover, the proposed learning methods are experimentally validated

in a real scenario by adopting a KINOVA Jaco2 7-DoFs robot manipulator.

3.1 Retrieving Objects from Clutter

The aim of this work is to design a learning agent for solving the task of

retrieving a target object T in clutter and moving it from an initial position

pt,0 ∈ R
3 to a final position pt,f ∈ R

3, relying on a Reinforcement Learning

approach. Given the presence of No obstacles O = {O1, . . . , ONo} in the scene

58 Chapter 3. Task-Motion Planning via Reinforcement Learning

with assigned position po,i ∈ R
3 (i = 1, 2, · · · , No), the Reinforcement Learning

agent should relocate the obstacles that make T unreachable, in order to free

up a path to reach it. An object is considered unreachable if it is not possible to

find a trajectory that allows the robot to grasp and relocate it without hitting

any obstacle. In the initial state sH , the robot starts in a predefined joints

configuration, all the obstacles Oi are in initial positions po,i and the target T

is in the initial position pt,0.

The sequence Su represents any sequence of objects with cardinality |Su| = u,

and STu is the sequence obtained from Su adding as last element the target

T , i.e. STu = {Su, T}. An object Oi ∈ Su is considered relocatable if all the

previous objects in the sequence Su can be relocated. If all the objects into the

sequence Su are relocatable, the sequence is defined feasible.

The following assumptions are made.

Assumption 1 The scene configuration in terms of target location and obsta-

cles positions is known beforehand

Assumption 2 Objects are relocated without affecting the remaining ones

Assumption 3 For both obstacles and target, only side grasp is allowed

3.1.1 System Architecture

A two-layered architecture is designed as shown in Fig. 3.1. In detail, the high-

level is represented by the RL-Task Planner, which is in charge of learning the

optimal sequence of actions, i.e. obstacles to relocate, in order to free up a path

toward the target; the low-level layer is the Motion Planner, which provides a

feedback about the feasibility, gk, of a specific action, ak, aimed at relocating

an object in terms of fulfillment of robot kinematic constraints.

An action ak represents a given object to relocate, which is considered un-

feasible if the Motion Planner cannot find in a predefined amount of time an

obstacle-free path that connects the end-effector initial configuration and the

object. In case of a feasible action, the Motion Planner outputs the joint veloc-

ities q̇(t) that make the robot actually perform the object relocation, obtaining

3.1. Retrieving Objects from Clutter 59

a new state sk. In both cases, a reward rk, depending on the feasibility gk of

the action ak is generated.

ak

ak

(

q̇(t)

rk, sk
gk

HIGH-LEVEL LOW-LEVEL

ENVIRONMENT

RL-TASK MOTION
PLANNERPLANNER ROBOT

Figure 3.1: Representation of the proposed architecture: the RL-Task
Planner chooses the action ak with an appropriate policy, while the Motion
Planner provides information about the feasibility gk of the chosen action ak

in terms of fulfillment of kinematic constraints. In case of a feasible action,
the joint velocities vector q̇(t) is sent to the Robot that actually performs it,
relocating the object. The environment elaborates the information related
to the feasibility gk of the action and generates a reward signal rk and the
new state sk, which are used to update the RL agent.

In the following subsections, algorithmic details about the two layers of the

architecture are shown. It is worth noticing that the word task is used in both

layers, but with different meanings.

Within the low-level layer, it represents the generic elementary control objec-

tives used in the inverse kinematics framework, whereas for the high-level one,

it represents a discrete planning for the RL agent.

Low-level: Motion Planner

As previously mentioned, the low-level Motion Planner provides information

about the feasibility of the actions ak requested by the high-level RL-Task

Planner and computes the joints velocity vector q̇(t) that allow the robot to

reach and relocate the selected object. More in detail, it is composed by three

processes (see Fig. 3.2): the actions-objects mapping, the sampling-based algo-

rithm and the Set-based Task-Priority Inverse Kinematics (STPIK)-check [38].

First of all, the action ak is translated in a desired end-effector pose ηee,d,

in which the desired position is set as the constant position of the object to

60 Chapter 3. Task-Motion Planning via Reinforcement Learning

ak Actions-Objects
Mapping

ηee,d Sampling

Algorithm

ηee(t) STPIK

check

FAIL

gk

q̇(t)

MOTION PLANNER

Figure 3.2: Motion planner architecture, designed as three blocks: the
Action-Objects Mapping translates the actions in constant desired end-
effector poses; the Sampling Algorithm computes obstacle-free trajectories
for the end-effector; the STPIK (Set-based Task-Priority Inverse Kinemat-
ics) checks the feasibility of the trajectories in terms of joint-level kinematic
constraints (joint limits and self-hits).

relocate and the desired orientation is chosen in order to be suitable for the

grasping phase. This information feeds the sampling algorithm, which is in

charge of finding an obstacle-free, time-varying trajectory ηee,d(t) between the

end-effector initial position ηee,0 and ηee,d.

The considered sampling algorithm is the Rapidly-exploring Random Tree

(RRT) Connect [99] which is a bidirectional method based on growing two

graphs rooted in ηee,0 and ηee,d, respectively. Therefore, the algorithm is able

to find a global path connecting the start and final points more efficiently

than single tree search approaches. In this step the sampling is performed in

Cartesian-space, and the constraints taken into account are defined only in

Cartesian-space as well, i.e. the output of the sampling-based algorithm is an

obstacle-free path, obtained without considering all the joint-space safety tasks

(e.g., joint limits and self-hits). They are handled by the STPIK-check block,

which simulates the candidate trajectory ηee,d(t) and checks their fulfillment.

Considering a robot manipulator with n DoFs and being q = [q1 . . . qn]T its

joint position vector, the STPIK algorithm allows to perform several tasks

simultaneously. In detail, for a generic task σ ∈ R
v, where v ∈ N

+ is the task

dimension, the Closed Loop Inverse Kinematics (CLIK) [77] algorithm can be

applied in order to compute the needed joint velocities for achieving a specific

3.1. Retrieving Objects from Clutter 61

desired value σd(t)

q̇ = J †(σ̇d + Kσ̃) , (3.1)

where J† is the Moore-Penrose pseudoinverse of the task Jacobian matrix

J(q) ∈ R
6×n, σ̇d ∈ R

v is the time derivative of σd, K ∈ R
v×v is a positive-

definite gain matrix and σ̃ = σd(t)− σ(t) is the task error.

For a redundant robot the number of joints n is greater than the task dimension

v, and such redundancy can be exploited to perform multiple tasks simulta-

neously. In particular, the elementary tasks can be arranged in a hierarchy H

and the solution can be computed by projecting the velocity components of

the lower priority tasks onto the null space of the higher priority ones, in order

to filter out the components that will affect them. In this way, the accomplish-

ment of the primary task is always guaranteed, while the lower-priority ones

are executed at best. Therefore, considering a hierarchy composed by K tasks,

the joint velocities q̇ can be computed recursively as [100]

q̇K =
K∑

i=1

(J iN
A
i−1)†(σ̇i,d + Kiσ̃i − J iq̇i−1) , (3.2)

where NA
i is the null space of the augmented Jacobian matrix JA

i , obtained

by stacking the task Jacobian matrices from task 1 to i. This task priority-

framework has been extended to handle also tasks in which the control objective

is to keep the task value σ within a certain set, i.e. above a lower threshold

and below an upper one. This is the case of tasks such as joint limits, where

the control objective is to keep the joints position within their physical limits,

or obstacle avoidance, where the control objective is to keep the end-effector

of the manipulator at a minimum distance from potential obstacles. This kind

of tasks has been defined as set-based, and their handling within classical task-

priority framework is managed through a proper insertion/removal of tasks in

the hierarchy. For more details about the specific employed algorithm, the

reader is referred to [101, 102].

In case of a constraint violation, a fail signal is sent to the sampling algorithm

block that generates a new ηee,d(t), starting a new iteration. The process

62 Chapter 3. Task-Motion Planning via Reinforcement Learning

terminates when the sampling algorithm finds a path that overcomes the IK-

check, or when it cannot find any feasible path in a predefined amount of time.

After the execution of the algorithm, the label gk is set according to the result

of the planning as following

gk =







gU if ak is unfeasible

gO if ak is feasible and it is related to the relocation of obstacle Oi

gT if ak is feasible and it is related to the relocation of the target T

(3.3)

High-level: RL-Task Planner

The high-level RL-Task Planner is in charge of learning the optimal sequence

of obstacles Oi to relocate in order to reach the target T .

Defining as S the manifold of all the possible sequences composed by j ≤ No

obstacles and the target T , its cardinality is

ξt =
No∑

j=1

j!

(

No

j

)

. (3.4)

Let us define as ak ∈ Ak = {a1, · · · , aNo , aT } the action chosen at a specific

timestep k. Within the set Ak, the terms ai (i = 1, · · · , No) are related to the

relocation of the objects Oi, whereas aT represents the action to relocate the

target T .

When the RL-Task Planner selects the action ak in a given state sk, it receives

a reward rk that depends on its feasibility gk. A new approach is presented

and it is called Q-Tree. More in detail, it is a technique that replaces the well-

known static Q-Matrix of the Q-learning algorithm with a dynamic rooted

tree structure that is built over Emax episodes of the algorithm. The advan-

tage of this approach regards the computational burden. Indeed, for this state

representation sk (e.g. sequences of relocated objects until timestep k), consid-

ering the classical Q-Learning, all the possible combination must be allocated

a-priori. Due the combinatorial nature of the problem, it is very hard, while

3.1. Retrieving Objects from Clutter 63

considering the Q-Tree, the pre-allocation is not necessary because the struc-

ture is built dynamically. Each node of the tree represents a state sk, with

an associated sequence defined as Ssk
= {Oi1 , Oi2 , · · · , OiU }, that contains

information about the objects Oix relocated until timestep k.

Here, the value associated to edge χk between sk and sk+1 is set as the Q-value

Qχk
, and updated at each time-step as in Eq. (2.67).

At the beginning of the first episode, the tree is initialized with a root node

sH , that represents the initial state in which the robot is in a predefined joints

configuration and all the objects are in their initial positions. Within each

episode Eh(h = 1, . . . , Emax), the tree gets updated at each time-step k after

the choice of an action ak as follows:

• if Oix /∈ Ssk
, meaning that the action ak related to the object Oi has not

been chosen in any previous episode, a new node sk+1 with associated

sequence Ssk+1
= {Ssk

, ak} is allocated, updating the edge value between

sk and sk+1;

• if Oix ∈ Ssk
, meaning that the action ak related to the object Oi has

already been chosen in a previous episode, the edge that connects the

nodes sk and sk+1 is updated without allocating a new node.

Then, at the beginning of each one of the following episodes, the algorithm

starts again from the node sH keeping the tree structure built until that

episode. It is worth noticing that given a specific sk, ak is selected from a

set that does not contain actions already considered unfeasible in previous

episodes in order to speed up the process.

An example of the Q-Tree algorithm is reported in Fig. 3.3.

3.1.2 Exploration Policies

Given a node sk with an associated Ssk
, the RL-Task Planner chooses ak with

the following possible policies:

• Learning Random Exploration (LRND): it chooses ak ∈ Ak in a

completely random manner.

64 Chapter 3. Task-Motion Planning via Reinforcement Learning

Q-Tree

sH

s1,1

sN0,1

sN0+1,T

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

s1,N0+1

· · ·

· · ·

sN0,m

sN0+1,T

QH,1 QH,No+1

QNo,fQNo,1

· · ·

· · ·· · ·

· · ·· · ·

Figure 3.3: Example of complete Q-Tree: The node root sH represents
the initial configuration where all objects are in the initial location. The
last nodes contain the target T .

• Random Exploration with Heuristics (H-LRND): it first tries to

reach the target (choosing akT
). If it is unfeasible, ak is chosen randomly

among the other actions in Ak.

• ε-Greedy Exploration with Heuristics (H-εG): it chooses ak ex-

ploiting the ε-Greedy technique. In detail, it chooses a random action

ak with probability ε and the action associated with the maximum edge

value with probability 1 − ε (this corresponds to the maxa′ Q∗(s′, a′) in

Eq. (2.63)).

Regarding the ε-Greedy Exploration with Heuristics policy, in order to ease

the exploitation, ε is updated at the beginning of each episode Eh as

ε(h) = ε0

(
εmin

ε0

) h−1
Emax−1

, (3.5)

where ε0 and εmin are the initial and the minimum ε value respectively.

3.1. Retrieving Objects from Clutter 65

Breadth

Depth

Figure 3.4: Different exploration method: Breadth prefers to explore at
the same levels, whereas the Depth one prefers to move forward.

Tree-search Methods

For each one of Q-Tree exploration policies, a comparison between two differ-

ent search methods for investigating their effect on the learning dynamics is

considered. The search methods are shown in Fig. 3.4:

• Breadth: the RL-Task Planner explores an entire tree level before moving

on the following levels;

• Depth: the RL-Task Planner prefers moving towards nodes at following

levels rather than the ones at the same level.

In other words, the employed search method affects the behavior of the RL-

Task Planner in case of an unfeasible action is chosen. Considering the breadth

method the current episode is terminated, whereas considering the depth method

it continues choosing another action among the possible ones.

66 Chapter 3. Task-Motion Planning via Reinforcement Learning

Q-Tree Learning Algorithm

This subsection provides details on Q-Tree learning algorithm. The inputs of

the algorithm are:

• Number of obstacles;

• Robot end-effector pose;

• Search method;

• Exploration policy.

At the beginning of the first episode, the Q-Tree is initialized allocating the

root node sH . At each timestep k, the RL-Task Planner chooses an action

ak following the selected policy and search method and it queries the low-

level Motion Planner, which tries to plan a trajectory for reaching the object

associated to ak. It returns the information about the action feasibility gk that

is then used to compute the reward rk. At this point the tree is updated adding

a new node and updating the corresponding edge value. The procedure gets

iterated until one of the termination conditions of the episode is met.

The training phase terminates when the maximum number of episodes Emax

is reached, or when the Q-Tree is not significantly updated anymore over con-

secutive episodes, both in terms of new nodes allocation and edge values. In

detail, defining as

Qh =
l−1∑

j=1

|Qχj
| , (3.6)

the sum of all the edge values at the end of the episode h, the termination

condition is

|Qh −Qh−1| ≤ β , (3.7)

where β > 0 is a predefined threshold.

Optimality Analysis

After the training phase, a decision tree is available from which the (sub)-

optimal sequence can be extracted. In detail, starting from the root node sH ,

the agent selects the action a in the set A corresponding to the tree branch

3.1. Retrieving Objects from Clutter 67

Data:
ObstaclesNumber
RobotPose // End-Effector position

SearchMethods // Breadth, Depth

ExplorationPolicy // LRND,H-LRND,H-εG

Result: ActionsSequence
// Allocation of the Tree root node

CreateRootNode();
Q0 = 0 // Starting training for the RL-Task Planner

while h← 1 < Emax and |Qh −Qh−1| > β do
// Reset scene to initial condition

CurrentState = sH ;
for j ← 1 to Imax do

// Selection next action

NextAction = TaskPlanner(Policy);
// Feedback Motion Planner

MotionPlanner(CurrentState,NextAction);
r = getReward();
// Update

if IsInTree(CurrentState) == false then
AddNode(CurrentState);

end
UpdateTreeEdgesValue();

end

end
ActionsSequence = SelectSequenceWithMaximumEdgeValues();

Algorithm 3.1: Q-Tree

with the highest weight, i.e., the maximum Q value. Indeed, the latter repre-

sents the optimal choice leading to the target through the shortest tree nodes

sequence. Within the aim to prove its effectiveness, let us take into considera-

tion Eq. (2.67). It can be rewritten as

Qk+1(sk, ak) =(1− α)Qk(sk, ak)+

αrk+1 + αγmax
a∈A

Qk(sk+1, ak+1) .
(3.8)

68 Chapter 3. Task-Motion Planning via Reinforcement Learning

From the above equation, it can be possible to notice that it owns the following

structure

y(k + 1) = (1− α)y(k) + αγu(k) , (3.9)

where (1 − α) is the eigenvalue responsible of the convergence time and y(k),

u(k) are the output, input of discrete system, respectively. The corresponding

system transfer function G(z) is defined in the Z domain as

G(z) =
Y (z)

U(z)
=

αγ

z − (1− α)
, (3.10)

from which it is possible to obtain the static gain g

g = lim
z→1

G(z) = γ . (3.11)

When the tree reaches the steady state, the edge local value is given by

y(k) = γu(k) , (3.12)

with y(k), u(k) the output and input of the discrete system represented by the

single tree edge, respectively. Equation (3.12) is repeated for each edge inside

any feasible tree nodes sequence, i.e., linking the root node sH to the target

node T . Then, this affects the reward propagation from T to sH meaning

that a longer sequence implies a larger damping of the tree weights, i.e., in

proximity of the root node the edges belonging to longest sequences present

smaller weight values. Considering an optimal solution, e.g., at tree level m,

it is possible to compute (at steady state) the value of edge weights starting

from node sH , Qk(sH , ak) as

Qk(sH , ak) = γmrT , (3.13)

where rT is the reward on the target T object. Therefore, in presence of an

optimal solution at level m and a sub-optimal solution at level b, with m < b,

it is straightforward that

Qm(sH , am) > Qb(sH , ab) , (3.14)

3.2. Simulation and Experiments 69

with actions am, ab corresponding to the optimal and sub-optimal branches,

respectively. In virtue of the above consideration, at the end of the training, the

optimal sequence of actions can be iteratively retrieved from the tree starting

from the root node, sH , as

a⋆k = max
a∈A

Qk(sk, a) , (3.15)

and with sk+1 = Qk(sk, a
⋆
k).

3.2 Simulation and Experiments

Two different case study are considered, where the objects are identical or with

different weights, e.g. fragility or physical weights.

Case 1: Identical Objects

Figure 3.5: An example of cluttered environment. The target is repre-
sented by the cylinder in green, while obstacles are in red. Starting from
the scenario on the top, the manipulator is required to relocate some ob-
stacles in order to grasp the target (bottom scenario).

70 Chapter 3. Task-Motion Planning via Reinforcement Learning

In this case, all the objects have the same properties and the reward rk1
function

is defined as

rk1
(sk, ak) =







0, if gk = gO

−1, if gk = gU

100, if gk = gT

, (3.16)

meaning that, given a state s ∈ S and an action a ∈ A, the reward is:

• 0 if the obstacle i can be relocated according to the feedback provided

by the motion planner;

• −1 if either an obstacle or the target cannot be relocated because of

occlusions and robot constraints;

• 100 if a = aT and the target can be grasped and relocated.

According to how mentioned above, for this case only the BFS method ex-

ploration is considered, and for all the learning algorithms is set α = 0.5 and

γ = 0.9 and the training is repeated 50 times from scratch. In the case of

H-εG algorithm, it is ε0 = 1 and εmin = 10−4 in Eq. (3.5). The training ends

whenever condition Eq. (3.7) is satisfied or the maximum number of episodes

Emax = 5000 is reached. As reported in Fig. 3.6, H-εG is the best algorithm

when it comes to reach for the first time the optimal solution and the inter-

rogation at motion planner system. In addition, in Fig. 3.7 is possible to see

that the algorithm H-εGb reach the steady state condition faster than other

algorithms in every scenario for the ε value chosen. This latter depends on

whether that the ε introduces variation on the learning dynamic.

Algorithm Ess MPq E1st

LRNDb 144 42 20
H-LRNDb 119 37 18
H-εGb 115 34 16

Table 3.1: Analysis considering α = 0.5, and γ = 0.9 and as evaluation
criteria: the number of episodes Ess necessary to converge, the number of
motion planning queries MPq and the the episode number E1st

in which the
optimal solution is reached for the first time. This case is for the Scenario
1 with obstacles number No = 5.

3.2. Simulation and Experiments 71

0

20

40

60

80

100

120

140

160

180

200
First Time Optimal Solution

E
ss

No = 5 No = 10 No = 15

LRNDb

H-LRNDb

H-εGb

Figure 3.6: Comparison of three learning policies defined for each sce-
nario. The average episodes is calculated on 50 training and represent the
first time that the target T is reached through the optimal sequence.

An additional comparison with the no learning technique (RNDb) is here con-

sidered. The implemented algorithm simply explores the graph resorting to

a BFS policy by randomly choosing actions until the target is reached. This

is clearly a fast method for a very small number of objects, but that becomes

quickly intractable. In fact, scenarios 2−3 described above could not be solved

in a reasonable amount of time. Concerning the scenario 1 introduced above,

50 trials were executed and an optimal solution is found in ≈ 60% of cases

(100% in the case of learning techniques). In the remaining 40% of trials, all

obstacles are relocated leading to a sub-optimal solutions.

These simulations are related to the Breadth exploration described above and

the considered scenarios is reported in Fig. 3.5.

Case 2: Different Objects

Given that, in general, it is possible to find multiple feasible sequences, an

optimization procedure can be designed in order to minimize a metric related

to the energy spent during the relocation procedure. At this time, without

72 Chapter 3. Task-Motion Planning via Reinforcement Learning

0

500

1000

1500

2000

2500

3000

3500
Steady State

E
ss

No = 5 No = 10 No = 15

LRNDb

H-LRNDb

H-εGb

Figure 3.7: Comparison of convergence between learning algorithms de-
fined above for each scenario. The average episodes number is calculated
on 50 training.

loss of generality, obstacles with different weights φi in the range (0, 1] Kg,

that is the standard object weight normalized with respect to the KINOVA

Jaco2 7-DoFs maximum payload. It is worth noticing that the weight can be

associated to any other physical characteristics of the objects, e.g. fragility or

volume. In this perspective, the aim of the optimization problem is to find a

feasible sequence STu that minimizes the cost function:

ΦSu =
∑

i∈Su

φi. (3.17)

Differently from previous, in this case, all the objects have different properties,

with an associated weight and the reward rks
function is defined as

rk2
(sk, ak) =







−φi, if gk = gO

−10, if gk = gU

100, if gk = gT

, (3.18)

where φi is the weight of the object related to the action ak.

3.2. Simulation and Experiments 73

Algorithm Ess MPq E1st

LRNDb 1079 236 96
H-LRNDb 1007 218 77
H-εGb 717 188 74

Table 3.2: Analysis considering α = 0.5, and γ = 0.9 and as evaluation
criteria: the number of episodes Ess necessary to converge, the number of
motion planning queries MPq and the the episode number E1st

in which the
optimal solution is reached for the first time. This case is for the Scenario
2 with obstacles number No = 10.

Algorithm Ess MPq E1st

LRNDb 3496 665 181
H-LRNDb 2868 588 160
H-εGb 1189 331 156

Table 3.3: Analysis considering α = 0.5, and γ = 0.9 and as evaluation
criteria: the number of episodes Ess necessary to converge, the number of
motion planning queries MPq and the the episode number E1st

in which the
optimal solution is reached for the first time. This case is for the Scenario
3 with obstacles number No = 15.

In order to assess the performance of the proposed relocation strategy, a para-

metric analysis has been conducted considering the following parameters:

• Learning rate α, variable in the interval [0.3 − 1];

• Discount factor γ, variable in the interval [0.1 − 0.9].

The indicators are the same used in the Case 1, but the maximum number of

episodes Emax for each training in Algorithm 3.1 is set to Emax = 10000 for the

LRND and H-LRND techniques (both breadth and depth search methods) and,

for the ε-greedy techniques, Emax is set to the maximum number of episodes

required by the LRND to converge.

Figure 3.9 reports, as an example, the evolution of Qh in Eq. (3.6) normalized

with respect to its steady state value, Q∞, in the case of H-LRNDb and Scenario

1 for different values of α and γ. The figure shows how the tree reaches a steady

value after a certain number of episodes and how α and γ affect the converge

in this specific training instance.

74 Chapter 3. Task-Motion Planning via Reinforcement Learning

Figure 3.8: The target is represented by a green cylinder, while the ob-
stacles are indicated with a different color, based on weights, which models
concepts as fragility or energetic-related metrics. The robot, a KINOVA
Jaco2 in the case study, needs to eventually relocate objects in order to
reach the target.

The simulation results are reported both numerically in Tables 3.4-3.6 and

graphically in Figs. 3.10-3.12; they are computed by running each case study

50 times and averaging the obtained results.

In the following, the subscripts b and d represent the Breadth and Depth explo-

ration, respectively. As a general consideration, the H-εGd algorithm exhibits

optimal or slightly sub-optimal performance for each of the three considered

metrics and scenarios. More in detail, H-εGd significantly outperforms the

other methods concerning Ess especially in case of complex scenarios (see Ta-

ble 3.6). With regards to motion planning queries MPq, which equals the num-

ber of explored tree branches, H-εGb outperforms the other ones and slightly

H-εGd. Furthermore, regarding the number of episodes E1st necessary for the

learning agent to find the first optimal path, it is worth noticing that depth

approaches exhibits significantly better performance with respect to breadth

3.2. Simulation and Experiments 75

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2
Q-Tree values

Q
h
/Q

∞

Episodes

Q[α,γ]
Q[0.3,0.9]

Q[0.3,0.5]

Q[1,0.5]

Q[1,0.9]

Q[0.5,0.5]

Q[0.5,0.9]

Q[1,0.1]

Q[0.5,0.1]

Q[0.3,0.1]

Figure 3.9: Plots represent the sum of all tree edge values Qh normalized
with respect to the steady state value Q

∞
for different values of α and γ

in the case of H-LRNDb approach and Scenario 3.

ones, with very similar results for the three policies LNRD, H-LNRD, H-εG.

In support of Fig. 3.13, the three exploration policies are compared with respect

to the performance indexes described above. As it is possible to notice, the

magnitude of each indicator is reduced significantly with respect to the Breadth

approach by using the Depth approach.

In Figs. 3.14- 3.15, the minimum and maximum average values related to the

first time in which the agent reaches the target (through the optimal sequence)

for each scenario are reported. In terms of reaching for the first time the

optimal solution, the Depth drastically outperforms the Breadth approach.

In the experimental case study, No = 10 obstacles (bottles) are considered.

Furthermore, the perception module is enabled to detect and recognize obsta-

cles and target, providing their positions and orientations accurately.

The scenario is shown in Fig. 3.16 and two shelves are present: the top shelf is

76 Chapter 3. Task-Motion Planning via Reinforcement Learning

[α, γ] Algorithm Ess MPq E1st [α, γ] Algorithm Ess MPq E1st [α, γ] Algorithm Ess MPq E1st

[0.3,0.9]

LRNDb 511 84 50

[0.3,0.5]

LRNDb 441 84 51

[0.3,0.1]

LRNDb 283 84 43
H-LRNDb 487 74 32 H-LRNDb 422 74 32 H-LRNDb 267 74 28
H-εGb 365 69 32 H-εGb 289 67 39 H-εGb 235 73 28
LRNDd 449 84 30 LRNDd 388 84 26 LRNDd 233 84 28
H-LRNDd 414 74 14 H-LRNDd 372 74 7 H-LRNDd 203 74 8
H-εGd 364 72 12 H-εGd 315 71 15 H-εGd 165 73 12

[0.5,0.9]

LRNDb 355 84 52

[0.5,0.5]

LRNDb 296 84 48

[0.5,0.1]

LRNDb 246 84 48
H-LRNDb 344 74 31 H-LRNDb 282 74 32 H-LRNDb 212 74 29
H-εGb 229 64 34 H-εGb 245 67 34 H-εGb 176 71 32
LRNDd 291 84 22 LRNDd 245 84 18 LRNDd 176 84 18
H-LRNDd 272 70 12 H-LRNDd 226 74 11 H-LRNDd 149 74 12
H-εGd 271 70 14 H-εGd 214 70 9 H-εGd 141 73 12

[1,0.9]

LRNDb 170 84 50

[1,0.5]

LRNDb 173 84 51

[1,0.1]

LRNDb 177 84 45
H-LRNDb 151 74 29 H-LRNDb 152 74 34 H-LRNDb 142 74 33
H-εGb 146 65 39 H-εGb 148 64 29 H-εGb 131 69 30
LRNDd 122 84 26 LRNDd 104 84 23 LRNDd 114 84 20
H-LRNDd 94 74 13 H-LRNDd 95 74 11 H-LRNDd 87 74 10
H-εGd 82 70 12 H-εGd 86 70 13 H-εGd 79 72 13

Table 3.4: Parametric analysis considering (α, γ) parameters and as eval-
uation criteria: the number of episodes Ess necessary to converge, the num-
ber of motion planning queries MPq and the the episode number E1st

in
which the optimal solution is reached for the first time. This case is for the
Scenario 1 with obstacles number No = 5.

the starting location for both objects and target, which needs to be relocated

to the bottom shelf. Objects are initially positioned on the top shelf as in

Fig. 3.16. Additionally, the objects have different colors, indicating that they

have different weights φi. The green bottle is the target, while the weights of

the other objects are as follows: φ1 = 0.15, φ2 = 0.13, φ3 = 0.23, φ4 = 0.44,

φ5 = 0.65, φ6 = 0.78, φ7 = 0.13, φ8 = 0.34, φ9 = 0.56, φ10 = 0.89 Kg.

Objects are relocated by the KINOVA Jaco2 robot equipped by a three finger

gripper, manufactured by KINOVA company and available in the LAI-Robotics

laboratory of the University of Cassino and Southern Lazio, Italy.

In order to acquire the objects position, an INTEL RealSense D455 RGB-

D camera is adopted together with an ArUco marker [103] which provides a

common reference frame and You Only Look Once (YOLO) software [104] for

the objects segmentation. A desktop PC with CPU Intel(R) Core(TM) i9-

9900KF 3.60GHz and GPU GeForce RTX 2070 Super equipped with Ubuntu

3.2. Simulation and Experiments 77

[α, γ] Algorithm Ess MPq E1st [α, γ] Algorithm Ess MPq E1st [α, γ] Algorithm Ess MPq E1st

[0.3,0.9]

LRNDb 1606 623 449

[0.3,0.5]

LRNDb 1383 622 437

[0.3,0.1]

LRNDb 1043 622 470
H-LRNDb 1596 598 410 H-LRNDb 1279 598 426 H-LRNDb 952 598 414
H-εGb 1026 518 427 H-εGb 868 572 407 H-εGb 930 593 421
LRNDd 1035 622 19 LRNDd 813 622 16 LRNDd 485 622 16
H-LRNDd 974 598 16 H-LRNDd 688 598 15 H-LRNDd 382 598 16
H-εGd 673 594 15 H-εGd 553 595 13 H-εGd 299 596 15

[0.5,0.9]

LRNDb 1275 622 451

[0.5,0.5]

LRNDb 1118 622 451

[0.5,0.1]

LRNDb 939 622 444
H-LRNDb 1211 598 414 H-LRNDb 1061 598 420 H-LRNDb 887 598 430
H-εGb 853 491 411 H-εGb 718 548 398 H-εGb 861 593 412
LRNDd 647 622 15 LRNDd 564 622 14 LRNDd 396 622 13
H-LRNDd 594 598 19 H-LRNDd 458 598 13 H-LRNDd 293 598 13
H-εGd 468 585 15 H-εGd 388 592 13 H-εGd 285 597 16

[1,0.9]

LRNDb 910 622 432

[1,0.5]

LRNDb 894 622 433

[1,0.1]

LRNDb 823 621 451
H-LRNDb 855 597 419 H-LRNDb 867 598 400 H-LRNDb 800 597 423
H-εGb 690 456 375 H-εGb 630 519 414 H-εGb 771 590 416
LRNDd 268 622 16 LRNDd 255 622 21 LRNDd 217 621 10
H-LRNDd 227 597 15 H-LRNDd 226 598 12 H-LRNDd 190 598 19
H-εGd 219 572 21 H-εGd 222 581 13 H-εGd 181 592 14

Table 3.5: Parametric analysis considering (α, γ) parameters and as eval-
uation criteria: the number of episodes Ess necessary to converge, the num-
ber of motion planning queries MPq and the the episode number E1st

in
which the optimal solution is reached for the first time. This case is for the
Scenario 2 with obstacles number No = 10.

18.04 and MATLAB 2020b is adopted in order to find the optimal sequence by

running the RL-Task Planner in Fig. 3.1. The same PC is equipped with the

Robot Operating System (ROS) framework which is in charge to execute the

Motion Planner and control the real robot. The software-hardware architecture

is reported in Fig. 3.17.

The perception module receives the real scene from the camera and provides

information on the objects pose to the RL-Task Planner implemented in MAT-

LAB. This latter selects an action according with its policy and sends it to the

Motion Planner implemented in C++. Finally, if there is a free-obstacle path

that satisfies all the joint constraints, the robot receives the computed joint

velocities to perform the task.

Each one of the actions selected by the RL-Task Planner is related to the

relocation of one of the objects in the scene. Regarding the motion planner,

the following task hierarchy is considered:

78 Chapter 3. Task-Motion Planning via Reinforcement Learning

[α, γ] Algorithm Ess MPq E1st [α, γ] Algorithm Ess MPq E1st [α, γ] Algorithm Ess MPq E1st

[0.3,0.9]

LRNDb 5035 1674 1049

[0.3,0.5]

LRNDb 4519 1672 1021

[0.3,0.1]

LRNDb 3542 1658 1045
H-LRNDb 4802 1605 958 H-LRNDb 3965 1600 1018 H-LRNDb 3213 1585 968
H-εGb 2829 1353 987 H-εGb 2809 1520 993 H-εGb 3051 1572 978
LRNDd 2511 1675 11 LRNDd 1712 1675 13 LRNDd 708 1673 11
H-LRNDd 2454 1606 12 H-LRNDd 1694 1606 11 H-LRNDd 684 1605 13
H-εGd 1342 1587 10 H-εGd 777 1597 11 H-εGd 658 1600 10

[0.5,0.9]

LRNDb 4050 1670 1040

[0.5,0.5]

LRNDb 3730 1664 1069

[0.5,0.1]

LRNDb 3293 1653 1054
H-LRNDb 3985 1599 963 H-LRNDb 3579 1593 971 H-LRNDb 3047 1581 995
H-εGb 2397 1299 984 H-εGb 2593 1506 992 H-εGb 2981 1571 955
LRNDd 1590 1675 14 LRNDd 1712 1674 13 LRNDd 565 1672 13
H-LRNDd 1562 1606 10 H-LRNDd 1694 1606 11 H-LRNDd 530 1603 8
H-εGd 906 1572 13 H-εGd 553 1588 11 H-εGd 499 1596 9

[1,0.9]

LRNDb 3278 1655 1027

[1,0.5]

LRNDb 3245 1653 1025

[1,0.1]

LRNDb 3154 1649 1067
H-LRNDb 3027 1580 987 H-LRNDb 3038 1581 980 H-LRNDb 2931 1578 956
H-εGb 2380 1268 1022 H-εGb 2452 1500 995 H-εGb 2832 1566 982
LRNDd 618 1672 12 LRNDd 564 1670 10 LRNDd 451 1669 13
H-LRNDd 594 1604 15 H-LRNDd 634 1605 11 H-LRNDd 430 1602 12
H-εGd 414 1530 12 H-εGd 382 1556 11 H-εGd 383 1591 11

Table 3.6: Parametric analysis considering (α, γ) parameters and as eval-
uation criteria: the number of episodes Ess necessary to converge, the num-
ber of motion planning queries MPq and the the episode number E1st

in
which the optimal solution is reached for the first time. This case is for the
Scenario 3 with obstacles number No = 15.

• Mechanical joint limits avoidance;

• Self-collision avoidance;

• Obstacle avoidance between the end-effector and the other objects;

• Position and orientation of the arm’s end-effector.

Once the agent is trained, the robot starts relocating objects according to the

found sequence, namely ST4 = {O9, O3, O1, O6, T}; a sequence of snapshots

relative to object relocation is reported in Fig. 3.18, while a video of the ex-

periment can be found here1.

1http://www.youtube.com/watch?v=2aTqmWzmiJ8

http://www.youtube.com/watch?v=2aTqmWzmiJ8

3.2. Simulation and Experiments 79

0

100

200

300

400

500

600
Steady State - Scenario 1

[α
0.

3
, γ

0.
9
]

[α
0.

5
, γ

0.
9
]

[α
1
, γ

0.
9
]

[α
0.

3
, γ

0.
5
]

[α
0.

5
, γ

0.
5
]

[α
1
, γ

0.
5
]

[α
0.

3
, γ

0.
1
]

[α
0.

5
, γ

0.
1
]

[α
1
, γ

0.
1
]

E
ss

LRNDb

H-LRNDb

H-εGb

LRNDd

H-LRNDd

H-εGd

Figure 3.10: Steady State Parametric Analysis: This bar graph is relative
to the reaching of optimal solution varying α and γ for the Scenario 1.

0

500

1000

1500

2000
Steady State - Scenario 2

[α
0.

3
, γ

0.
9
]

[α
0.

5
, γ

0.
9
]

[α
1
, γ

0.
9
]

[α
0.

3
, γ

0.
5
]

[α
0.

5
, γ

0.
5
]

[α
1
, γ

0.
5
]

[α
0.

3
, γ

0.
1
]

[α
0.

5
, γ

0.
1
]

[α
1
, γ

0.
1
]

E
ss

LRNDb

H-LRNDb

H-εGb

LRNDd

H-LRNDd

H-εGd

Figure 3.11: Steady State Parametric Analysis: This bar graph is relative
to the reaching of optimal solution varying α and γ for the Scenario 2.

80 Chapter 3. Task-Motion Planning via Reinforcement Learning

0

1000

2000

3000

4000

5000

6000
Steady State - Scenario 3

[α
0.

3
, γ

0.
9
]

[α
0.

5
, γ

0.
9
]

[α
1
, γ

0.
9
]

[α
0.

3
, γ

0.
5
]

[α
0.

5
, γ

0.
5
]

[α
1
, γ

0.
5
]

[α
0.

3
, γ

0.
1
]

[α
0.

5
, γ

0.
1
]

[α
1
, γ

0.
1
]

E
ss

LRNDb

H-LRNDb

H-εGb

LRNDd

H-LRNDd

H-εGd

Figure 3.12: Steady State Parametric Analysis: This bar graph is relative
to the reaching of optimal solution varying α and γ for the Scenario 3.

EssEss

E1stE1st
MPqMPq

4050

3985

2397

1589

1362

906

LRNDb

H-LRNDb

H-εGb

LRNDd

H-LRNDd

H-εGd

Figure 3.13: Comparison between Breadth (left) and Depth (right) ap-
proaches, considering the proposed tree exploration strategies for the Sce-
nario 3, with learning rate α = 0.5 and discount factor γ = 0.9.

3.2. Simulation and Experiments 81

0

200

400

600

800

1000

1200

1400
First Time Optimal Solution - Breadth

E
1

s
t

No = 5 No = 10 No = 15

LRNDb H-LRNDb H-εGb

Figure 3.14: Three learning policies comparison: Average, minimum and
maximum episode relative at the first time that the agent reaches the target
T through the optimal sequence considering Breadth search approach. The
statistics are based on 50 training with α = 0.5 and γ = 0.9.

0

20

40

60

80

100

120
First Time Optimal Solution - Depth

E
1

s
t

No = 5 No = 10 No = 15

LRNDd H-LRNDd H-εGd

Figure 3.15: Three learning policies comparison: Average, minimum and
maximum episode relative at the first time that the agent reaches the target
T through the optimal sequence considering Depth search approach. The
statistics are based on 50 training with α = 0.5 and γ = 0.9.

82 Chapter 3. Task-Motion Planning via Reinforcement Learning

Marker

Objects

Robot

Intel

RealSense

Figure 3.16: Left. The robotic setup adopted to demonstrate the devised
approach. Right. A top view representation of target (in green) and ob-
stacles in their initial configuration.

PERCEPTION MOTION PLANNER

RL-TASK
PLANNER

Figure 3.17: Software-Hardware Architecture: The perception module
receives the scene from the camera and provides information on the objects
pose to the RL-Task Planner (MATLAB). This latter selects an action
according to its policy and sends the action to the Motion Planner (C++).
Finally, if there is a free-obstacle path that satisfies all the joint constraints,
the robot receives the computed joint velocities to perform the task.

3.2. Simulation and Experiments 83

Figure 3.18: Robot manipulator during the validation phase: the KI-
NOVA Jaco2 is moving the objects in the real world scenario.

85

Chapter 4

Learning-based Robot

Collision Detection

This chapter focuses on the problem of collision detection in an industrial

dynamic context.

The time necessary to detect collisions between robot end-effector and envi-

ronment could be quite long, especially in complex operational scenarios, such

as a cluttered environment during a pick-and-place task. For instance, mesh-

based approaches may not perform well in certain situations due to the need to

reconstruct a mesh from a high volume of information provided by the camera.

A fast tool for collision detection based on deep learning is proposed. The aim

is to exploit the knowledge of the robot end-effector mesh, generating depth

images and point clouds from it and combine these data with the real ones

provided by the camera. Then, these data are sent to different neural networks

architectures for detecting the collisions.

Finally, it is validated in a real scenario on KUKA Agilus, an industrial robot

manipulator present in the Technology & Innovation Center (TIC) of KUKA

Deutschland GmbH, Germany.

4.1 Data Representation and Camera

The method to be adopted required that starting from a mesh, the correspond-

ing depth data is generated. It is an image that contains information on the

86 Chapter 4. Learning-based Robot Collision Detection

ηee,d

Mg

Figure 4.1: The mesh of the robot end-effector Mg is projected into the
a desired configuration ηee,d for detecting the collision.

distance of pixel in the image from a camera. Its generation from a mesh is

possible using a virtual camera. One of simplest camera model that can be

used is called Pinhole. Specially, it describes the relationship between 3D pro-

jection of the points into an image plane, where the light rays, passing through

an aperture, project an inverted image on the opposite side of the camera [105].

The latter is represented by two kinds of parameters: Extrinsic and Intrinsic.

The first ones represent camera rotation and translation in space, while the

second ones represent the physical properties of the camera, such as the focal

lengths (fx, fy), the optical center in pixel (cx, cy) and a skew coefficient.

Knowing the depth map it is also possible to obtain the corresponding point

cloud, where each pixel represents one point in a 3D scene through the following

relationship 





z = d/ds

x = (u− cx)z/fx

y = (v − cy)z/fy

, (4.1)

where d is the depth value, ds is the depth scale of the camera, and (u, v) are

the image coordinates.

4.2. Problem Description 87

4.2 Problem Description

The time necessary for detecting a collisions between robot end-effector and

the environment could be really long, according to the complexity of the oper-

ational scenario, e.g. cluttered environment during a pick and place task. For

example, in several situations, mesh-based approaches may not perform well

the collision checking, due to the reconstruction of mesh from an high number

of information provided by the camera sensor.

In this work a fast tool for collision detection based on deep learning is pro-

posed. The aim is to exploit the knowledge of the robot end-effector mesh,

generating depth images and point clouds from it and combine them with the

real ones provided by the camera. Then, this data are sent to different neural

networks architectures for detecting the collisions. Finally, it is validated in a

real scenario on robot manipulator in a bin picking scenario.

4.3 Data Generation

Two different datasets are built: Ddepth for the depth images and Dpointcloud

for the point clouds. It is possible to load the mesh of the gripper Mg and

assign it a desired pose ηee,d. Further details on the generation are explained.

4.3.1 Depth Images

An example of real scene is reported in Fig. 4.3.

The procedure for generating Ddepth is reported in Fig. 4.4 and it works as

following: the real camera acquires the scene with bin and provides as output

the depth image Is; in parallel, a virtual camera (created using parameters

and pose of the real camera) generates the depth images Ig for the gripper,

to which a desired pose ηee,d is assigned. Once completed, the depth images

Is and Ig are combined, projecting the gripper into the scene through the σ

block, generating a complete depth image Ic as following

Ic = Π(Is, Ig) . (4.2)

88 Chapter 4. Learning-based Robot Collision Detection

Figure 4.2: Scenario with robot manipulator and a full bin with objects;
the camera is top-mounted in order to have a complete view of the bin.

This function Π considers the minimum depth value for each pair of pixels

between the scene Is and the gripper Ig. Thus, the objects pixels more close

to the camera have a minor depth value, which result predominant compared

to the depth value for the pixels belonging to the far away objects. Finally, the

block ∆c generates cropped images I∗
s , I∗

g and I∗
c of a new desired resolution

(W,H), where in this case are 156× 156. The importance of the crop filter lies

in reducing the computational load by neglecting parts of the images, while

still ensuring that the entire gripper is contained without loss of information

(e.g. cut some parts of it). The algorithms only consider the local collision

between the gripper and rest of the scene (in this first work the rest of the

robot is not considered). As an example, the effect of the crop filter is reported

in Fig. 4.5. Thus, the dataset Ddepth is

4.3. Data Generation 89

Figure 4.3: Example of real bin from the camera point of view. The bin
contains some different industrial objects.

Ddepth = {[I∗
c I∗

s I∗
g]1, [I

∗
c I∗

s I∗
g]2, . . . , [I

∗
c I∗

s I∗
g]Ns} , (4.3)

where Ns is the number of samples.

4.3.2 Point Clouds

Differently, the dataset Dpointcloud is generated in a different way: the real

camera acquires the scene of the cluttered environment (bin with objects) as

before, providing the depth image Is. Then, the point cloud generator block

GPC extracts two point clouds N × 3 with N number of points, for the scene

P Cs and gripper P Cg, respectively using the Eq. (4.1); the block UPC com-

bines them, generating the complete point cloud P Cc. Due to the varying

nature of the point clouds (the first one comes from the camera, whereas the

second one from the mesh model), a downsampling and padding are applied.

The complete point cloud is N × 4 because it contains an additional fourth

column, which can assume 0 or 1 for the scene or gripper, respectively.

The architecture for generating this dataset is reported in Fig. 4.6 and examples

of a complete depth image with the relative point cloud are represented in

Fig. 4.7.

90 Chapter 4. Learning-based Robot Collision Detection

Real Camera

Virtual Camera

Image

(640, 480)

(640, 480)

(156, 156)(156, 156)(156, 156)

Ig

I∗g

Is

Mg

I∗s

Ic

I∗c

Π

∆c

Figure 4.4: Generation dataset Ddepth: a camera acquires the scene and
the gripper is projected into the scene. The output consists of three depth
images: gripper, scene (without gripper) and complete scene (with gripper).

Thus, the dataset Dpointcloud is

Dpointcloud = {P Cc1
,P Cc2

, . . . ,P CcNs
} . (4.4)

The labels are generated using Open3D [106], an open-source library that sup-

ports the rapid development of software for handling 3D data, providing a wide

selection of data structures and algorithms in C++ and Python.

4.4 Collision Checkers

4.4.1 Geometric-based

As baseline on the computation is taken into consideration an algorithm based

on mesh through the libraries Open3D 1 and Trimesh 2. The latter is a mesh-

based library enabled to handle triangular meshes for collision detection based

on the very known general purpose FCL [43].

1http://www.open3d.org/
2http://trimsh.org/

4.4. Collision Checkers 91

640

480
156

156

Figure 4.5: Application of the crop filter ∆c on the complete depth image
Ic. It reduces the size of the images from (640, 480) to (156, 156).

More in detail, in this work the procedure consists of building an accurate

mesh Ms from the point cloud of the scene P Cs through the library Open3D

using the ball pivoting algorithm proposed in [107]. Then, the mesh of the

gripper Mg is projected into the scene with a desired pose ηee,d and finally the

collision checker available from the library Trimesh is called on the objects to

compute the collision γc and the minimum distance dmin between the nearest

two points of meshes. The flow of the algorithm is reported in Alg. 4.1. Even

if the collision checker is faster, there could be a problem to use it into the real

world for the time related to the mesh reconstruction.

4.4.2 CNN-based

The first type of architecture being considered is the well-known fully con-

volutional neural network (which is made only of convolutional layers). The

main differences w.r.t. CNNs include independence from the size of the im-

ages (in the last layer of the CNN, the fully connected layer depends from

the input size), no information loss as opposed to the fully connected layer

(generally, it causes loss of spatial information) and advantages in terms of

computational cost. In this work considers three different architectures based

on CNNs: two fully convolutional neural networks (FCNNs) with one and two

depth images, respectively, and the well-known ResNet18 network customized

92 Chapter 4. Learning-based Robot Collision Detection

Real CameraImage (640,480)

Is

GPC

GPC

N × 3

N × 4

P Cs

P Cg

P Cc

UPC

Mg

Figure 4.6: Generation dataset Dpointcloud: a real camera acquires the
scene providing the depth image of the scene. The PointCloud Generator
GPC block creates the pointclouds of the scene and the gripper. The con-
catenation block UPC combines them generating the complete point cloud.

Figure 4.7: In the left part the complete (scene and gripper) depth image
is reported, whereas in the right part the complete pointcloud is reported.

for this application. Both the FCNN models consist of four block, each made

of three convolutional layers, followed by max pooling and dropout layers. The

last layer is a convolutional layer with a kernel of size 1, for compressing the

output as a binary classifier.

The architectures are reported in Fig. 4.8 and Fig. 4.9.

FCNN - 1 Depth Image

The input is I∗
c , an image 156 × 156 with 1 channel that contains the gripper

projected into the scene.

4.4. Collision Checkers 93

Data:
Is: // Depth scene

Mg: // Mesh gripper

ηee,d: // Desired pose

Result:
γc: // Collision 0/1

dmin: // Minimum objects distance

// Assigning a desired pose

ApplyTransformation(Mg, ηee,d);
// Building point cloud from depth image

P Cs ← PointCloudGenerator(Is);
// Reconstructing the mesh of the scene

Ms ← CreateMesh(P Cs);
γc, points ← CollisionChecker(Ms, Mg);
// Computation minimum distance between meshes

dmin ← ComputeDistance(points);

Algorithm 4.1: Mesh-based Collision Checker

FCNN - 2 Depth Images

Differently from the previous, the inputs are two depth images I∗
s and I∗

g, that

are scene and gripper with input size 156× 156 and 2 channels.

ResNet18

It is a convolutional neural network made of 18 layers deep, capable to classify

more than 1000 different objects. In the transfer learning context, there is a

possibility to use a pretrained version of the network, which is trained on more

than 1 million of images present in the ImageNet database [108]. The original

version of the network considers images 224 × 224, but in this work an edited

version is implemented. In the details, only the deep architecture is used (not

pretrained), adapting it to work with the images of the dataset Ddepth. The

architecture is shown in Fig. 4.10. A well-known problem with very deep neural

networks is the vanishing gradient when it is back-propagated to earlier layers,

because the repeated multiplication may make the gradient very small. On

the basis of this, ResNet uses the concept of residual blocks, which consider

shortcut skip connections in order to jump over some layers.

94 Chapter 4. Learning-based Robot Collision Detection

depth (156,156,1)

64

128

256

512

Activation function output

Conv layer

Conv layer with K=(1, 1)

MP + BN + D + ReLU

Figure 4.8: Architecture of Fully Convolutional Neural Network with one
depth image (156, 156, 1) as input.

4.4.3 PointNet-based

Standard PointNet

When it is necessary handle point clouds, due to the irregularity of structure, it

is common to pass through a 3D voxel grids trasformation [50]. Unfortunately,

this procedure is really hard and expensive from the computational point of

view. The authors in [48] present a Deep Learning Framework, called Point-

Net that receives in input unordered points. As is well-known, a point cloud

is represented by 3D points {Pi|i = 1, . . . , N}, where each one Pi is a vector

of coordinates [x y z] and it is possible to add some extra feature channels

(e.g. color and other details). In the original paper, the proposed architecture

is capable to classify and segment 40 different classes of objects, through re-

organizations of the points received as input. In this work, the segmentation

from the network is not considered, because the point cloud P Cc is built con-

sidering the information about the belonging of the points. On these points a

transformation through the T-Net block is applied (e.g. rotation about z-axis),

which not affect them in terms of shape or changing in the features. The re-

sult is the input of a multilayer perceptron MLP, that transform the extracted

4.4. Collision Checkers 95

depth (156,156,2)

64

128

256

512

Activation function output

Conv layer

Conv layer with K=(1, 1)

MP + BN + D + ReLU

Figure 4.9: Architecture of Fully Convolutional Neural Networks for two
depth images (156, 156, 2) as input.

features in another features space with dimensionality 64. Then, there is a fea-

ture transform, which aligns each of the points in a canonical space. Another

transformation in a different space with dimensionality 1024 is applied in the

second MLP. The crucial part of this network is here, in which there is a max

pool function. More in detail, each point has 1024 features and the network

can learn the shape of the elements present in the data. It means that, even if

the order of the input changes, the result is the same thanks to the max pool

function. Finally, there is fully connected layer to map the features in one of

the k categories to classify. In this particular case, the classes are only two:

collision and no-collision, respectively. A representation is reported in Fig. 4.11

Fast-PointNet

In this work, also a short version of PointNet named Fast-PointNet is proposed.

The camera used to acquire the data is fixed in the space, thus the T-Net block

can be neglected. From the computational point of view, if the point cloud is

composed of a large number of points, the multiplication with these matrices

could require different times. Due to this consideration, this version is faster

than the previous architecture.

96 Chapter 4. Learning-based Robot Collision Detection

depth (156,156,2)

Conv1 layer

MP

Conv2 layer

Conv3 layer

Conv4 layer

Conv5 layer

Fully Connected
output

64

64

128

256

512

Figure 4.10: Architecture of ResNet18, which receives two depth images
(156, 156, 2) as input.

4.4.4 Hybrid-based

MixNet

Finally, a combined architecture of FCNNs and Fast-PointNet entitled MixNet

is proposed. It takes into consideration the depth image I∗
s of the entire scene

and the point cloud of the gripper P Cg. These two architectures are combined,

mixing the features extracted from the depth image of the scene and the point

cloud of the gripper. The architecture is reported in Fig. 4.12.

The flow for the learning-based collision checkers is reported in Alg. 4.2.

4.5 Simulation & Results

The framework is developed in Python using a combination of PyTorch and

ROS (Robot Operating System). The considered robot is the industrial KUKA

Agilus located in the Technology & Innovation Center Laboratory of KUKA

Deutschland GmbH in Augsburg, Germany (see Fig. 4.2). The Deep Learning

4.5. Simulation & Results 97

Data:
Is: // Depth scene

Mg: // Mesh gripper

ηee,d: // Desired pose

Type: // Architecture: FCNN1D, FCNN2D, ResNet18, Fast-PointNet,

PointNet, MixNet

Result:
γc: // Collision 0/1

// Assigning desired pose to the gripper

ApplyTransformation(Mg, ηee,d);
// Building gripper depth image and point cloud from mesh

Ig ← DepthGenerator(Mg);
P Cg ← PointCloudGenerator(Mg);
// Building point cloud of scene

P Cs ← PointCloudGenerator(Is);
// Combining the depth images

Ic ← Minimum(Is, Ig);
// Applying a crop filter on complete depth image

I∗

c , I
∗

s, I
∗

g ← Filter(Ic);
// Combining the point clouds

P Cc ← Union(P Cs,P Cg);
// Selecting learning architectures and data

// Query for the collision check

if Type == FCNN1D then
γ ← FCNN1D(I∗

c)
end
else if Type == FCNN2D then

γ ← FCNN2D(I∗

s, I∗

g)

end
else if Type == ResNet18 then

γ ← ResNet18(I∗

c)
end
else if Type == Fast-PointNet then

γ ← Fast-PointNet(P Cc)
end
else if Type == PointNet then

γ ← PointNet(P Cc)
end
else

γ ← MixNet(Is, P Cg)
end

Algorithm 4.2: Learning-based Collision Checkergi

98 Chapter 4. Learning-based Robot Collision Detection

point cloud

N
×

3

N
×

3

N
×

64

N
×

64

N
×

10
24

TT

3× 3 64× 64

T-NetT-Net
features

features

MLPMLP

MLP

max
pool

(64, 64) (64, 128, 1024)

(512, 256, k)

input

global

mult.mult.
output

Figure 4.11: Architecture of PointNet receives a complete point cloud,
which contains scene and gripper as input.

Model Train[%] Val[%] Test[%] Prec. Rec. F1-Sc.

Fast-PointNet 98.0502 93.1321 93.1989 0.9487 0.9133 0.9307
PointNet 98.1214 92.0320 91.3652 0.9212 0.9046 0.9129
FCNN1D 92.1215 91.3485 90.9818 0.9276 0.8889 0.9078
FCNN2D 90.9500 92.4487 90.9484 0.9915 0.8259 0.9012
ResNet18 91.0578 90.2483 90.6984 0.9485 0.8606 0.9024
MixNet 98.5964 93.1988 92.6321 0.9607 0.8890 0.9234

Table 4.1: Analysis of learning-based methods for collision detection on
training, validation and test set.

models are trained on a desktop DELL Alienware equipped with CPU Intel

I9.9980XE 3.0 Ghz x 36 and GPU NVIDIA RTX 2080 Ti 12 Gb.

A scheme is reported in Fig. 4.13

They are evaluated in the real world considering scenes with objects never seen

before, showing the capability to generalize in different conditions.

Regarding the mesh-based checker it spends an average time approximately

1.90 [s] for reconstructing the mesh from the related point cloud, even if the

collision checker is faster. According with the Tab. 4.1, the methods based on

the point clouds outperform the others in terms of accuracies. Indeed, from

Table 4.2 it is possible to notice a sensible advantage in terms of times to

detect collision in favour of Fast-PointNet with respect to the classic PointNet

version, which leads it comparable with the others based on depth images.

4.5. Simulation & Results 99

depth (156,156,1)

64

(64,64)

(64,128,1024)

MLP

global

128

256

512

1024

1024

Point Cloud

Activation function

output

Conv layer features fusion

MP + BN + D + ReLU

Figure 4.12: Architecture of MixNet, which receives a depth image
(156, 156, 1) and a point cloud as input.

The experiments consist of 10 different cases as reported in Fig. 4.14. Case 1

is a simple scenario made of two sub-cases: no-collision and collision. In the

first one an empty bin is considered and for the algorithms is easy to detect the

no-collision for the desired assigned configuration; then, a stack of objects is

added in the same desired position to generate a collision with the gripper; case

2, where the bin is filled with typical industrial objects, providing a detection

more complex than previous because of the large amount of information into

data; cases 3-4 are based on different bin and objects in the scene, i.e. plastic

fishes. The first four cases are performed for easy of using the same pose.

Cases 5-6 put emphasis on the no-collision, moving the gripper very close to

the objects, whereas cases 7-10 consider different poses where there are collision

with small parts of the gripper (e.g. fingers). As explained above, this method

is based only on the collision detection with the gripper and no with the rest

of the robot. The video is available here3.

3https://webuser.unicas.it/lai/robotica/video/collision_detection.mp4

https://webuser.unicas.it/lai/robotica/video/collision_detection.mp4

100 Chapter 4. Learning-based Robot Collision Detection

c

camera

Is
data

γc

motion

main

collision checker

KUKA Agilus

Figure 4.13: Software Architecture: the main block receives the depth
image by the camera and, building the data (depth image or point cloud)
and sends them to a neural network allowed to detect collisions with the
environment; the collision checker returns a feedback that compute the
control signal for the KUKA Agilus, moving it in the desired configuration.

Model CPU [s] GPU [s]

Fast-PointNet 0.0240 0.0009
PointNet 0.0543 0.0025
FCNN1D 0.0699 0.0006
FCNN2D 0.0268 0.0008
ResNet18 0.0231 0.0014
MixNet 0.0088 0.0010

Table 4.2: Times for feeding a sample into the models using CPU-GPU.

4.5. Simulation & Results 101

Figure 4.14: Experimental validation of KUKA Agilus.

103

Chapter 5

Deep Learning for Task

Priority Inverse Kinematics

This chapter is dedicated to a possible solution of robot motion generation

without violation of constraints in case of redundant robots.

Typical metrics to maximize in Eq. (2.23) are manipulability in Eq. (2.24) and

the distance from the joint limits of the arm in Eq. (2.25). Indeed, on the

one hand, it is desirable to minimize the occurrence of joint limit violations,

in order to guarantee the feasibility of the motion; on the other hand, it is

desirable to maximize the manipulability of the arm to reduce the occurrence

of singular configurations and the well-known undesirable effect that it has on

the inverse kinematics solution [109]. It is worth noticing that optimizing these

metrics employing Eq. (2.23) does not guarantee that the manipulator would

not hit a joint limit or reach singular configurations. In order to do that, the

control objectives should be considered at a higher priority with respect to the

end-effector pose task, or, in other terms, as constraints in HQP formulations.

The final goal of adding a secondary task is to increase the workspace of

the robot, but depending on the chosen function to maximize, the resulting

workspace might be different. Currently, the choice of the specific function

to optimize is completely left to the designer, who usually employs some kind

of heuristics to select a function to maximize that guarantees the best per-

formance. Additionally, in traditional approaches, the function to optimize

does not change during the execution, as it is chosen as a design parameter

104 Chapter 5. Deep Learning for Task Priority Inverse Kinematics

that remains static during the robot operations. This approach represents a

huge limitation that decreases the performance of the robot: given a certain

initial joint configuration and a certain desired end-effector pose, the function

to optimize plays a key role in discriminating whether the robot will be able

to eventually reach it or not. Indeed, if the end-effector trajectory would make

some of the joints reach the proximity of a limit, it might be convenient to

maximize the distance from the joint limits; on the other hand, if it would

make the robot reach a close-to-singular joint configuration, the best choice

would be to maximize the manipulability of the arm.

Interestingly, there can be also situations in which maximizing the distance

from the joint limits might make the robot reach a singular configuration during

the trajectory, while maximizing the manipulability might make the robot hit

a joint limit. In such a case, the best choice might be to not optimize any

function at all, employing Eq. (3.1) instead of Eq. (2.27).

For these reasons, the problem that is addressed here is to develop a method

that allows to automatically choose the function to optimize depending on the

initial joint configuration of the manipulator and the desired end-effector pose,

among three different possibilities: i) do not optimize anything, ii) maximize

the manipulability or iii) maximize the distance from the joint limits. The aim

is to show that using the proposed method, an enlargement of the workspace

of the robot can be appreciated. The proposed solution is validated on a three-

link planar robot in simulation.

5.1 Multi-class Problem

Considering p possible control algorithms to employ F1,F2 . . . ,Fp ∈ F , and a

set of constraints C expressed in terms of minimum and/or maximum values

that functions w1(q), w2(q) . . . , wh(q) should have, label ζ is defined as

ζ =
[

ζ1 ζ2 . . . ζp
]T

i = 1, 2, . . . , p , (5.1)

where ζ1, ζ2 . . . ζp ∈ {0, 1} are values that represent the violation of at least

one of the constraints in C employing the algorithms in F : the components of

5.1. Multi-class Problem 105

the label assume the value 0 if there is a constraint violation in any instant

during the trajectory execution and 1 if there is not. Given the definition of

the labels, there are 2p possible values that the labels can assume. From a

learning perspective, it could be handled as a classification problem that maps

these labels in 2p classes ci (i = 1, 2, . . . , 2p).

For the case study taken into account in the validation section, three possible

algorithms are considered: F1 is represented by Eq. (3.1), without optimizing

any function; F2 is Eq. (2.27) optimizing wm as in Eq. (2.24); F3 is Eq. (2.27)

optimizing wjl as in Eq. (2.25). Regarding the constraints, there is a minimum

value for the manipulability to consider, as well as minimum and maximum

values for the joint positions. Taking into account the label ζ, if ζ1 = 1, it

means that employing F1 none of the constraints would be violated; if ζ1 = 0,

it means that at least one of the two constraints would be violated during the

trajectory. The same meaning has to be considered with the components ζ2,

associated with the employment of F2, and ζ3, associated with F3. The labels

associated with the classes to identify are listed in Table 5.1.

Class: c No Opt.: ζ1 Manip: ζ2 J. Limits: ζ3 Color

c1 0 0 0
c2 0 0 1
c3 0 1 0
c4 0 1 1
c5 1 0 0
c6 1 0 1
c7 1 1 0
c8 1 1 1

Table 5.1: Mapping for labelling: 0 is related to the violation of con-
straints, 1 if there is no violation.

5.1.1 Learning Model

The designed neural network for classifying what function to optimize in the

null space is a fully connected network, as shown in Fig. 5.1. The input is

represented by the vector

u =

[

q0

ηee,d

]

, (5.2)

106 Chapter 5. Deep Learning for Task Priority Inverse Kinematics

u

P (y1|u)

P (y2|u)

...

P (ym|u)

Figure 5.1: Architecture of fully connected neural network: u is the input
and P (y|u) are the probabilities of the output.

where q0 ∈ R
n is the vector of initial joint configuration and ηee,d ∈ R

3 is

the desired position of its end-effector. It is worth noticing that, in general,

also the desired orientation Qd can be seamlessly included in the input vector.

The neural network is composed of j = 4 layers with Xavier initialization that

works on the tanh activation function. This latter is an important choice in the

design phase of the models to use. More in detail, the neurons of a network are

composed of parameters named weights used to calculate a weighted sum of the

inputs. The learning process of a neural network consists of the minimization

of an error function through an optimization algorithm called Stochastic Gra-

dient Descent (SGD), which modifies the network weights incrementally. The

optimization starts from an initial point in the space of possible weight values.

The above-mentioned Xavier approach computes the initial configuration W

of random number as follows

W j ∼ N (µ, σ2 =
1

nj−1
) , (5.3)

where nl−1 is the number of neurons at layer l−1. In the last layer, an activation

function called softmax is often applied in multi-class learning problems where

a set of features can be related to one-of-K class. The output of the softmax

5.2. Validation 107

describes the probability P (y = ci|u) of the neural network that a particular

sample belongs to a certain class. From a mathematical perspective, it is

defined as follows

fsoftmax(yi) =
eyi

∑

k=1 e
yk
. (5.4)

In combination with the fsoftmax activation function, the Negative-Log Likeli-

hood (NLL) is used. It uses a negative connotation since the probabilities (or

likelihoods) vary between zero and one, and the logarithms of values in this

range are negative. Finally, the loss function is expressed as

LNLL = −log(yk) . (5.5)

5.2 Validation

The proposed approach has been validated through numerical simulations tak-

ing into account a simple 3-link planar manipulator, with the length of the

three links equal to 1m each. Upper and lower limits of ±120◦ have been con-

sidered on all three joints, while a lower threshold for the manipulability of 0.1

has been set. The constraints are considered violated if the values of the joint

limits and manipulability exceed the imposed thresholds during the motion of

the robot. The input vector u of the DNN in Eq. (5.2) is composed of the

vector containing the initial position of the three joints and the desired 2D

end-effector position. The robot and its workspace are represented in Fig. 5.2.

The entire architecture is validated in MATLAB environment for the dataset

generation and Python, using the PyTorch framework for training the model

using CUDA on a GPU. More in detail, all the software has been run on a desk-

top PC with CPU Intel(R) Core(TM) i9-9900KF 3.60GHz and GPU GeForce

RTX 2070 Super equipped with Ubuntu 20.04 and MATLAB 2020b.

5.2.1 Dataset Generation

The dataset consists of a set of instances for each class obtained sampling on the

entire workspace of the robot, starting from random initial configurations q0

selected respecting the imposed joint limits and desired end-effector positions

ηee,d in a range [−3.0, 3.0] m of the cartesian space. Regarding the less frequent

108 Chapter 5. Deep Learning for Task Priority Inverse Kinematics

classes, e.g. c5, a denser local sampling around the region of interest is applied

in order to increase the probability to found other instances of the same class.

xm

ym

xM

yM

Figure 5.2: 3-link planar Robot and its workspace without joint limits.

Furthermore, the dataset is split into three parts: training, validation and test.

The first ones are used to train the model, whereas the last one is a portion of

data used for testing the performance.

5.2.2 Results

Looking at the results, it is possible to notice that the model is capable to

detect and correctly classify which tasks to optimize in the Null-space of the

Jacobian, reaching the 94% on the test set. Figure 5.3 shows the entire robot

workspace divided into regions with different colors, starting with a constant

initial joint configuration q0 = [π/4 π/3 π/3]T rad. Each point of the fig-

ure is associated with a label (see Table 5.1) that represents the functions to

optimize to reach that point.

Looking at the figure, it is possible to notice that the distance among some

of the regions is very small. This means that there might be a classification

error. Explaining in detail, in the range x ≈ [−0.05, 0.05]T and y ≈ [0.0, 0.2]T

or x ≈ [−2.0,−1.55]T and y ≈ [−0.8,−0.3]T the class c1 might be wrongly

classified as c2; in x ≈ [−0.05, 0.2]T and y ≈ [0.05, 0.3]T or x ≈ [−0.9,−0.3]T

5.2. Validation 109

-4 -2 0 2 4
-4

-2

0

2

4

x

y

c1
c2
c3

c4
c5
c6

c7
c8

Figure 5.3: Sampled workspace of the 3-link robot arm for the initial
configuration [π/4 π/3 π/3]T with a robot base position in (0, 0).

and y ≈ [−0.5,−0.1]T the class c3 might be classified as c6 or c7; in x ≈

[−1.4,−1.2]T and y ≈ [−0.85,−0.75]T the class c5 might be classified as c2; in

x ≈ [−0.3, 0.1]T and y ≈ [−0.3,−0.3]T the class c6 might be classified as c3 or

c4. Finally, classes c7 and c8 might be wrongly classified in the range where

x ≈ [−1.2,−0.3]T and y ≈ [−0.5, 0.1]T . These considerations are consistent

with the confusion matrix, shown in Fig. 5.4.

As an illustrative example of c4, Fig. 5.5 shows the evolution of joint positions

and the manipulability with their thresholds employing the three abovemen-

tioned algorithms. It is worth noticing the violation of the upper limit of the

second joint using F1, whereas F2 and F3 do not cause any constraint violation.

It is worth highlighting that the union of the three workspaces is actually

larger than the three taken separately, proving that changing dynamically the

function to optimize depending on the initial joint configuration and the desired

and-effector pose increases the workspace dimension. This is quantified in

110 Chapter 5. Deep Learning for Task Priority Inverse Kinematics

3.1%

7.4%

3.0% 6.1%

7.4% 3.7%

14.3%

4.0%

96.9%

100.0%

88.9%

100.0%

92.6%

90.9%

96.0%

85.7%

c1

c1

c2

c2

c3

c3

c4

c4

c5

c5

c6

c6

c7

c7

c8

c8

T
ru

e
C

la
ss

Predicted Class

Figure 5.4: Confusion Matrix normalized for row. The diagonal repre-
sents the classes correctly classified, whereas the others value represent the
classes wrongly classified.

Table 5.2, which reports the areas of the workspaces normalized with respect to

the union. Analyzing the results, it is possible to notice that not optimizing any

function there is a loss of ≈ 20% in terms of workspace, whereas by maximizing

only the manipulability there is a loss of 7% and maximizing only the distance

from the joint limits the workspace is reduced by 18%.

Region Color Classes Area

No optimization c5, c6, c7, c8 0.80
Manipulability c3, c4, c7, c8 0.93
Joints limits c2, c4, c6, c8 0.82
Union + + c1, c2 . . . c8 1.00

Table 5.2: Area of the workspaces obtained with the three algorithms and
their union.

It is important to observe that the difference in terms of workspace is strictly

related to the initial joint configuration of the robot. As evidence, changing

the sign of the last joint at the beginning of the simulation, i.e. by setting

5.2. Validation 111

0 0.5 1

-2

0

2

0 0.5 1

-2

0

2

0 0.5 1

-2

0

2

0 0.5 1
0

1

2

3

4

wm

t[s] t[s]

t[s] t[s]

q 1
[r

ad
]

q 2
[r

ad
]

q 3
[r

ad
]

w
m

No Opt.

Manipulability

Joint Limits

Figure 5.5: Top-left: evolution of the first joint position using and their
joint limits (dotted line). Top-right: evolution of the second joint position
and their joint limits (dotted line). Bottom-right evolution of the third
joint position and their joint limits (dotted line). Bottom-right: evolution
of the manipulability functionals and their thresholds (dotted line). The
color of the plots are related to the algorithms F1,F2 and F3.

[π/4 π/3 − π/3]T rad, the obtained workspaces are significantly different,

and it causes a shift upwards of regions c3, c4, as it is shown in Fig. 5.6.

112 Chapter 5. Deep Learning for Task Priority Inverse Kinematics

-4 -2 0 2 4
-4

-2

0

2

4

x

y

c1
c2
c3

c4
c5
c6

c7
c8

Figure 5.6: Sampled workspace of the 3-link robot arm for the initial
configuration [π/4 π/3 − π/3]T with a robot base position in (0, 0).

113

Chapter 6

Conclusions and Future

Works

This thesis work is focused on the design of architectures based on Machine

Learning and model-based control for robot manipulators to solve different

tasks. In particular, the following topic are addressed:

• Task Motion Planning (TAMP): an architecture was proposed to solve

the problem of retrieving an object from clutter based on application of

reinforcement learning on dynamic tree structure;

• Learning-based Robot Collision Detection: tool for detecting collisions

between robot end-effector and environment, through neural networks

capable to handle depth images and point clouds;

• Deep Learning application in Task-Priority Inverse Kinematics: appli-

cation of neural network for deciding if and what task optimize in the

null-space for redundant robot.

Regarding the TAMP architecture, the main advantage is the reduction of com-

putational load during the training of the agent, due to the not-pre-allocation

of the entire space necessary to the convergence. This architecture combines

a low level model-based system made of motion planner, with an high level

system made of reinforcement learning task planner for solving the problem of

retrieving an object target from clutter. The objective is to find the optimal

sequence of obstacles to relocate taking into account kinematic constraints and

114 Chapter 6. Conclusions and Future Works

minimizing the energy spent by the robot. Different techniques guided and

not-guided by heuristics during the exploration phase based on the well-known

Breadth or Depth strategies were proposed and compared. The method that

consider heuristics combined with the Depth exploration outperforms the other

ones. Recalling that this work is related to the use of Markov Decision Process

(MDP) with the assumption that the scene is visible a-priori, a possible future

work can refer to an extension towards the Partially Observable Markov Deci-

sion Process (POMDP) to consider the case of partially visible objects. Then,

another possible extension is related to the comparison with a DQN in order

to evaluate the performances w.r.t. the proposed Q-Tree.

Concerning the collision detection research topic, an architecture based on

deep learning to detect collisions is proposed. Even if well-known collision

checkers based on mesh can detect collisions with high precision and faster

speed, in some cases they require a significant amount of time. This leads to be

unaddressable in the several real world application, becoming the bottleneck for

other systems, e.g. motion planner. This is the reason why, machine learning

approaches could be very useful. The proposed approaches are based on depth

images and point clouds. In particular, starting from the CAD model of the

robot end-effector, a depth images and point cloud are generated. These latter

are projected with the desired pose into the scene acquired by the camera to

detect collisions. From the results, a proposed method named Fast-PointNet,

which uses point clouds, outperforms the others on depth images, in terms of

accuracy, reaching an accuracy of approximately 93% using only 60k samples.

The required efficiency in this case is very high, but as it is known, the threshold

used for the binary classification is adaptable to the safe of problem increasing

the recall value for more conservative applications. A possible future work

could be to consider the rest of the robot and to consider other different data

representation, e.g. 3D voxels.

Finally, concerning the application of machine learning on task priority inverse

kinematics, a supervised learning process to properly handle optimization tasks

has been investigated in this thesis work. A simple case study consisting in

a 3-link planar robot manipulator already exhibits interesting properties and

improvements under the proposed approach. Since the simulation is performed

Chapter 6. Conclusions and Future Works 115

only from a kinematics perspective, the behavior and result on a real system

would be the same.

Future research directions include: investigation of the role of the optimization

gains in the regions formation; introduction of a metric instead of the binary

classification 0/1 indicating (un)reachability and extension to full dimensional

robotic structures; a comparison using RGB image and 3D voxel data repre-

sentation for the robot workspace and test on a more complex robot.

117

Chapter 7

Appendix

One of the contributions of this work is that our research can be reproduced

by a third party. The community is becoming more and more aware of the

importance of making obtained results reproducible and, to the aim, tools like

Code Ocean are becoming popular among researchers. Concerning the results

presented in this thesis, the reproduction of experimental tests can be done by

adopting the MATLAB software together with the CVX toolbox [110] where

the code has been created by adopting Matlab R2018b on Ubuntu 16.10, even

though it has been tested also on Windows and OS X operative systems and

Matlab R2016b and later version. A Matlab basic installation is enough and

no particular package other than CVX is required.

In the details, CVX toolbox is a modeling system for constructing and solving

convex optimization problems by also considering LMI constraints [88] and

was used for CLS-1, CLS-2 and CLS-3 algorithms. The code is shared with

the community as supplementary material and it is available on

• Code Ocean at [111]. However, this tool lacks of advanced functionalities;

for instance, it only allows headless execution without plots and other

graphics which make less intuitive the adoption of the developed tool. On

the other side, no software installation is required on the local computer;

• IEEE DataPort at [112] as open-access. This version presents the overall

code with a Graphical User Interface (GUI) and interactive plots. In this

case, it is required to locally download the code and execute it by using

its own Matlab installation.

118 Chapter 7. Appendix

The Graphical User Interface was designed to ease the use of software and is

shown in Fig. 7.1.

Instructions to use both version of the code can be found at Sect .7.2.

In the details, the main steps to be followed are

• load ID to load one of the 5 predefined trajectories for the purpose of

identification;

• load VAL to load one of the 5 predefined trajectories for the purpose of

validation;

• Identification to compute the dynamic parameters according to algo-

rithms explained in Section 2.1.6;

• Validation to compute the identification error and to show plots com-

paring over time the acquired torques and the reconstructed ones by

exploiting the chosen validation trajectory and the method selected by

the drop-down menu (for instance, CLS-3 in Fig. 7.1).

Moreover, the main functionalities of the software are implemented in

• identification_ULS for ULS method [113];

• identification_CLS1 for CLS-1 method (inspired by) [84];

• identification_CLS2 for CLS-2 method [86];

• identification_CLS3 for CLS-3 method [88, 90];

• validation_CAD to validate on the selected trajectories the CAD method;

• validation_CLS1 to validate on the selected trajectories the CLS-1 method;

• validation_CLS2 to validate on the selected trajectories the CLS-2 method;

• validation_CLS3 to validate on the selected trajectories the CLS-3 method;

• validation_comparison to compare among all the identification meth-

ods;

7.1. Notes on the positive definiteness of dynamic matrix M(q) 119

• TestPropertiesB to verify the inertia matrix properties (symmetry, pos-

itiveness and conditioning number) on 10.000 randomly generated con-

figurations as required by ULS and CLS-1 method that do not guarantee

these properties by construction.

Figure 7.1: Interface of GUI Matlab necessary to reproduce experiments.

7.1 Notes on the positive definiteness of dynamic

matrix M(q)

In this section, it is shown how the constraint on the positive definiteness

property of matrix Li (i = 1, 2, . . . , n) affects the positive definiteness of the

inertia matrix M(q) in Eq. (2.42). To this aim, the kinetic energy of a open-

chain manipulator is

T =
1

2
q̇TM(q)q̇ =

N∑

i=1

Ti (7.1)

being Ti the kinetic energy associated to link i (without loss of generality, only

the link without motor is considered). Therefore, the positiveness of Ti (∀ i) is

a sufficient and necessary condition for the positive definiteness of M(q).

120 Chapter 7. Appendix

Concerning the kinetic energy Ti of the single rigid body, it holds

Ti =
1

2
miv

i
ci

Tvici
+

1

2
ωi
i

T
Ciω

i
i (7.2)

where vci
is the velocity of the center of mass of the link i and Ci is the inertia

tensor about the center of mass. Equation (7.2) can be conveniently rewritten

as

Ti =
1

2
νiCi

T

[

miI3 O3

O3 Ci

]

νici
(7.3)

where On ∈ R
n×n is the null square matrix, νici

=
[

ṗici

T ωi
i
T
]T

and where

the core matrix of the quadratic form is positive definite if and only if mi > 0

and Ci ≻ 0.

The same kinetic energy can be expressed with respect to the velocity of the

origin of the link frame by considering that







pici
= pii + rii,ci

ṗici
= ṗii − S(rii,ci

)ωi
i

Ci = Li −miS(rii,ci
)TS(rii,ci

)

(7.4)

In virtue of the equations above and by defining the vector νii as νii =
[

vii
T ωi

i
T
]T

,

Eq. (7.3) is rewritten as

Ti =
1

2
νii

T

[

miI3 −miS(rii)

−miS(rii)
T

Ci +miS(rii)
TS(rii)

]

νii

=
1

2
νii

T

[

miI3 −S(mir
i
i,Ci

)

−S(mir
i
i,Ci

)T
Li

]

νii

=
1

2
νii

T
Hiν

i
i

(7.5)

where the expression of H i is implicitly defined. It can be easily noticed

that the positive definiteness of miI3 and Li (whose elements appears in

πfull and are the result of the identification process) does not guarantee the

positive definiteness of the quadratic form because of the off-diagonal terms

miS(rii,ci
) = S(mir

i
i,ci

) = S(mci
) which is related to the first moment of

7.2. User Guide 121

mass.

Therefore, the identification process might lead to a not always positive ki-

netic energy that, in turn, leads to M(q) not being positive definite. Finally,

concerning the positive definiteness of matrix H i in Eq. (7.5) which is of type

H i =

[

A B

BT C

]

(7.6)

the concept of Schur complement of matrix H i with respect to A can be

resorted. In details, it holds that matrix H i ≻ 0 if and only if







A ≻ 0

C −BTA−1B ≻ 0
(7.7)

which applied to our case leads to







mi > 0

Li −miS(rii,ci
)TS(rii,ci

) ≻ 0
(7.8)

that automatically holds if Steiner theorem is correctly applied.

As far as it concerns the identification process which requires to separately

identify all or some of the components of Li and of mir
i
i,ci

, the constraints in

Eq. (7.8) must be ensured on the components which effectively appear in the

dynamics of the manipulator.

7.2 User Guide

Here, the user guide to replicate the experiments presented in the paper is

reported. This section does not intend to explain the code architecture, but

only how to reproduce the experiment results shown in the paper and how to

use the GUI to run new experiments. A general idea of the software structure

is illustrated in Fig. 7.2.

122 Chapter 7. Appendix

Figure 7.2: Software architecture.

Code Ocean version

As suggested in RAM Information for Authors1, Code Ocean platform provides

the possibility of reproducing experimental results by cloud computing. In

order to run the provided code, a Code Ocean account is required by adopting

the sign-in functionality. By accessing the link at [111], the code interface as in

Fig. 7.3 appears and it is possible to run the code by using the Reproducible Run

button. This button is made actually active after the duplication of the code

in its own account which can be made by Capsule→Duplicate functionality.

By editing the file main.m, by modifying the variables:

• Identification_Trajectory (values: 1, 2, 3, 4, 5) at line 63, it is possible to

select one of the 5 trajectory to be used for the identification;

• Validation_Trajectory (values: 1, 2, 3, 4, 5) at line 66, it is possible to

select one of the 5 trajectory to be used for the validation;

1https://www.ieee-ras.org/publications/ram/information-for-authors-ram

https://www.ieee-ras.org/publications/ram/information-for-authors-ram

7.2. User Guide 123

• algorithm (values: ’ALL’, ’CAD’, ’ULS’ ’CLS-1’,’CLS-2’,’CLS-3’) at line

69, it is possible to select one of the 5 methods to be used for the iden-

tification of the KINOVA Jaco2 robot. By setting this variable to ’ALL’,

all methods are run.

It is possible to observe that on the right frame are present two folders: mat

and Plot. The former contains the dynamic parameters identified by the se-

lected identification methods, while the latter contains the relative plot results

saved as .pdf files. Furthermore, the console in the bottom frame shows the

reconstruction errors. Unfortunately, among the Code Ocean limitations, files

cannot be larger than 100 MB in size; then, the duration of the 5-th trajec-

tory has been reduced in time in order to have the corresponding regressor

meet the size limitation. For this reason, results relative to this trajectory are

slightly different from the values reported in the paper and the ones produced

by locally running the code as in Sect. 7.2.

Figure 7.3: Code Ocean platform.

IEEE DataPort

Through the available GUI described in details in the following, it can be se-

lected which trajectories to use to compute the identification and validation

124 Chapter 7. Appendix

regressors stored as .mat files. These files are needed to run the identifica-

tion process which generates an estimate of the dynamic parameters of the

KINOVA Jaco2 robot which are stored in a .mat file as well. Finally, for each

identification method the related validation results are computed and shown

by using the previously stored identification .mat files.

7.2.1 Running the code

The software was created under MATLAB 2018b and Ubuntu 16.10 which

represents the recommended configuration. However, the software has been

tested on different platforms (Windows 10 and OS X High Sierra) with MAT-

LAB 2016b and newer versions. The only issue experienced on some Windows

systems is represented by misalignment of characters in the GUI which does

not undermine the core functionalities of the GUI itself.

Required packages are:

• basic installation of Matlab 2016b or newer version;

• CVX MATLAB toolbox available at [110].

As mentioned before, for the software to run it is necessary to download the

CVX tool for the specific operating system at [110]. The version includ-

ing Gurobi and/or MOSEK as in Fig. 7.4 has to be selected.

Figure 7.4: CVX download page.

The CVX folder contained in the downloaded archive needs to be unzipped in

the main folder of the identification too provided as in Fig. 7.5.

Once the Matlab program has been launched, it is required to change the

current working directory as shown in Fig. 7.6 (it is possible to see the script

main.m in the current directory).

7.2. User Guide 125

Figure 7.5: CVX folder extracted in the identification toolbox folder.

Figure 7.6: MATLAB Environment with initialized working directory.

126 Chapter 7. Appendix

First, it is necessary to run the script add_cvx_path in the Matlab environment

in order to setup the CVX tool. In order to launch the application, it is

needed to run the script main.m and the application GUI as seen in Fig. 7.7 will

appear. At this point, it is possible to choose the identification and validation

trajectories by using the load button as seen in Fig. 7.8.

Figure 7.7: GUI how it appears after the file main.m has been launched.

Figure 7.8: Trajectory selection window after either load ID or load VAL
buttons are push.

Regressor matrices associated to trajectories are stored in the Regressors di-

rectory and their computation is skipped if the same trajectory is selected in

successive identification and validation runs. The regressors associated to tra-

jectories provided with the code have been pre-computed and made available

in the directory mentioned above. In the opposite case, Fig. 7.9 shows the

progress bar relative to the regressor computation.

7.2. User Guide 127

Figure 7.9: Building regressor phase with a progress bar showing the
elapsed and remaining time.

After the loading of the identification and validation trajectories, it is possible

to click on the Identification button as in Fig. 7.10.

Figure 7.10: Identification button enabled after the identification and
validation trajectories have been selected and the relative regressors com-
puted.

A progress bar will appear in order to quantify the remaining time relative to

the the selected identification method as shown in Fig. 7.11.

Once the identification is completed, it is possible to validate the dynamic pa-

rameters by choosing the validation method from the menu as seen in Fig. 7.12

(CLS3 in the image). If All is selected, all the identification methods are val-

idated. After the computation is done, plots over time of significant variables

are drawn as in Fig. 7.13, which also shows the average reconstruction Error,

ς, and the Relative Error, ςr, on the GUI.

128 Chapter 7. Appendix

Figure 7.11: Progress bar showing the elapsed and remaining time once
the Identification button is pushed.

Figure 7.12: Validation button enabled with CLS3 method selected.

Figure 7.13: Numerical results displayed at the end of the validation
process.

129

Bibliography

[1] G. Gillini, P. Di Lillo, and F. Arrichiello, “An assistive shared control

architecture for a robotic arm using eeg-based bci with motor imagery,”

in 2021 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pp. 4132–4137, IEEE, 2021.

[2] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling,

and T. Lozano-Pérez, “Integrated task and motion planning,” Annual

review of control, robotics, and autonomous systems, vol. 4, pp. 265–293,

2021.

[3] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-

free paths among polyhedral obstacles,” Communications of the ACM,

vol. 22, no. 10, pp. 560–570, 1979.

[4] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,

S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential

convex optimization and convex collision checking,” The International

Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[5] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration

spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,

pp. 566–580, 1996.

[6] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson, “Effi-

ciently combining task and motion planning using geometric constraints,”

The International Journal of Robotics Research, vol. 33, no. 14, pp. 1726–

1747, 2014.

130 BIBLIOGRAPHY

[7] F. Bertoncelli, M. Selvaggio, F. Ruggiero, and L. Sabattini, “Task-

oriented contact optimization for pushing manipulation with mobile

robots,” in 2022 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 1639–1646, IEEE, 2022.

[8] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser,

K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman, “Anal-

ysis and observations from the first amazon picking challenge,” IEEE

Transactions on Automation Science and Engineering, vol. 15, no. 1,

pp. 172–188, 2016.

[9] F. Ceola, E. Tosello, L. Tagliapietra, G. Nicola, and S. Ghidoni, “Robot

task planning via deep reinforcement learning: a tabletop object sorting

application,” in 2019 IEEE International Conference on Systems, Man

and Cybernetics (SMC), pp. 486–492, IEEE, 2019.

[10] C. Nam, J. Lee, S. H. Cheong, B. Y. Cho, and C. Kim, “Fast and resilient

manipulation planning for target retrieval in clutter,” in 2020 IEEE In-

ternational Conference on Robotics and Automation (ICRA), pp. 3777–

3783, IEEE, 2020.

[11] J. Lee, Y. Cho, C. Nam, J. Park, and C. Kim, “Efficient obstacle re-

arrangement for object manipulation tasks in cluttered environments,”

in 2019 International Conference on Robotics and Automation (ICRA),

pp. 183–189, IEEE, 2019.

[12] M. Stilman and J. Kuffner, “Planning among movable obstacles with

artificial constraints,” The International Journal of Robotics Research,

vol. 27, no. 11-12, pp. 1295–1307, 2008.

[13] K. Hang, J. A. Stork, F. T. Pokorny, and D. Kragic, “Combinatorial op-

timization for hierarchical contact-level grasping,” in 2014 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pp. 381–388,

IEEE, 2014.

[14] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation

planning among movable obstacles,” in Proceedings 2007 IEEE Interna-

tional Conference on Robotics and Automation, pp. 3327–3332, IEEE,

BIBLIOGRAPHY 131

2007.

[15] W. Yuan, K. Hang, D. Kragic, M. Y. Wang, and J. A. Stork, “End-

to-end nonprehensile rearrangement with deep reinforcement learning

and simulation-to-reality transfer,” Robotics and Autonomous Systems,

vol. 119, 2019.

[16] M. Eppe, P. D. Nguyen, and S. Wermter, “From semantics to execution:

Integrating action planning with reinforcement learning for robotic causal

problem-solving,” Frontiers in Robotics and AI, vol. 6, p. 123, 2019.

[17] K. B. Shimoga, “Robot grasp synthesis algorithms: A survey,” The In-

ternational Journal of Robotics Research, vol. 15, no. 3, pp. 230–266,

1996.

[18] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,”

in Proceedings 2000 ICRA. Millennium conference. IEEE international

conference on robotics and automation. Symposia proceedings (Cat. No.

00CH37065), vol. 1, pp. 348–353, IEEE, 2000.

[19] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp syn-

thesis—a survey,” IEEE Transaction on robotics, vol. 30, no. 2, pp. 289–

309, 2013.

[20] C. Eppner, S. Höfer, R. Jonschkowski, R. Martín-Martín, A. Sieverling,

V. Wall, and O. Brock, “Lessons from the amazon picking challenge: Four

aspects of building robotic systems.,” in Robotics: Science and Systems,

2016.

[21] P. R. Wurman and J. M. Romano, “Amazon picking challenge 2015,” AI

Magazine, vol. 37, no. 2, pp. 97–99, 2016.

[22] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose detection

in point clouds,” The International Journal of Robotics Research, vol. 36,

no. 13-14, pp. 1455–1473, 2017.

[23] J. A. Haustein, J. King, S. S. Srinivasa, and T. Asfour, “Kinody-

namic randomized rearrangement planning via dynamic transitions be-

tween statically stable states,” in 2015 IEEE International Conference

132 BIBLIOGRAPHY

on Robotics and Automation (ICRA), pp. 3075–3082, IEEE, 2015.

[24] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “In-

cremental task and motion planning: A constraint-based approach.,” in

Robotics: Science and systems, vol. 12, p. 00052, Ann Arbor, MI, USA,

2016.

[25] G. Havur, G. Ozbilgin, E. Erdem, and V. Patoglu, “Geometric rear-

rangement of multiple movable objects on cluttered surfaces: A hybrid

reasoning approach,” in 2014 IEEE International Conference on Robotics

and Automation (ICRA), pp. 445–452, IEEE, 2014.

[26] H. Karami, A. Thomas, and F. Mastrogiovanni, “A task-motion planning

framework using iteratively deepened and/or graph networks,” arXiv

preprint arXiv:2104.01549, 2021.

[27] B. Bonet and H. Geffner, “Planning as heuristic search,” Artificial Intel-

ligence, vol. 129, no. 1-2, pp. 5–33, 2001.

[28] A. H. Qureshi, A. Mousavian, C. Paxton, M. C. Yip, and D. Fox, “Nerp:

Neural rearrangement planning for unknown objects,” arXiv preprint

arXiv:2106.01352, 2021.

[29] M. Q. Mohammed, K. L. Chung, and C. S. Chyi, “Review of deep re-

inforcement learning-based object grasping: Techniques, open challenges

and recommendations,” IEEE Access, 2020.

[30] P. Kormushev, S. Calinon, and D. G. Caldwell, “Reinforcement learning

in robotics: Applications and real-world challenges,” Robotics, vol. 2,

no. 3, pp. 122–148, 2013.

[31] W. Bejjani, W. C. Agboh, M. R. Dogar, and M. Leonetti, “Occlusion-

aware search for object retrieval in clutter,” in 2021 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pp. 4678–

4685, IEEE, 2021.

[32] Y. Deng, X. Guo, Y. Wei, K. Lu, B. Fang, D. Guo, H. Liu, and F. Sun,

“Deep reinforcement learning for robotic pushing and picking in cluttered

BIBLIOGRAPHY 133

environment,” in 2019 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), pp. 619–626, IEEE.

[33] B. Wu, I. Akinola, and P. K. Allen, “Pixel-attentive policy gradient for

multi-fingered grasping in cluttered scenes,” in 2019 IEEE/RSJ Intelli-

gent Conference on Intelligent Robots and Systems (IROS), pp. 1789–

1796, IEEE, 2019.

[34] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-

ing,” arXiv preprint arXiv:1312.5602, 2013.

[36] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,

D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-

forcement learning,” in International Conference on Machine Learning,

pp. 1928–1937, PMLR, 2016.

[37] J. Pan and D. Manocha, “Fast probabilistic collision checking for

sampling-based motion planning using locality-sensitive hashing,” The

International Journal of Robotics Research, vol. 35, no. 12, pp. 1477–

1496, 2016.

[38] D. Di Vito, M. Bergeron, D. Meger, G. Dudek, and G. Antonelli, “Dy-

namic planning of redundant robots within a set-based task-priority in-

verse kinematics framework,” in 2020 IEEE Conference on Control Tech-

nology and Applications (CCTA), pp. 549–554, IEEE, 2020.

[39] G. Golluccio, D. Di Vito, A. Marino, and G. Antonelli, “Robotic weight-

based object relocation in clutter via tree-based q-learning approach us-

ing breadth and depth search techniques,” in 2021 20th International

Conference on Advanced Robotics (ICAR), pp. 676–681, IEEE, 2021.

[40] G. Golluccio, D. Di Vito, A. Marino, A. Bria, and G. Antonelli, “Task-

motion planning via tree-based q-learning approach for robotic object

displacement in cluttered spaces.,” in ICINCO, pp. 130–137, 2021.

134 BIBLIOGRAPHY

[41] G. Golluccio, P. Di Lillo, D. Di Vito, A. Marino, and G. Antonelli,

“Objects relocation in clutter with robot manipulators via tree-based

q-learning algorithm: Analysis and experiments,” Journal of Intelligent

& Robotic Systems, vol. 106, no. 2, pp. 1–20, 2022.

[42] B. Akgun and M. Stilman, “Sampling heuristics for optimal motion plan-

ning in high dimensions,” in 2011 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 2640–2645, IEEE, 2011.

[43] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library for

collision and proximity queries,” in 2012 IEEE International Conference

on Robotics and Automation, pp. 3859–3866, IEEE, 2012.

[44] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for

computing the distance between complex objects in three-dimensional

space,” IEEE Journal on Robotics and Automation, vol. 4, no. 2, pp. 193–

203, 1988.

[45] M. Kleinbort, O. Salzman, and D. Halperin, “Collision detection or

nearest-neighbor search? on the computational bottleneck in sampling-

based motion planning,” arXiv preprint arXiv:1607.04800, 2016.

[46] P. Jiménez, F. Thomas, and C. Torras, “Collision detection algorithms

for motion planning,” Robot Motion Planning and Control, pp. 305–343,

1998.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” Communications of the ACM,

vol. 60, no. 6, pp. 84–90, 2017.

[48] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on

point sets for 3d classification and segmentation,” in Proceedings of the

IEEE Conf. on Computer Vision and Pattern Recognition, pp. 652–660,

2017.

[49] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d

shapenets: A deep representation for volumetric shapes,” in Proceed-

ings of the IEEE Conf. on Computer Vision and Pattern Recognition,

pp. 1912–1920, 2015.

BIBLIOGRAPHY 135

[50] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud

based 3d object detection,” in Proceedings of the IEEE Conf. on Com-

puter Vision and Pattern Recognition, pp. 4490–4499, 2018.

[51] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network

for real-time object recognition,” in 2015 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pp. 922–928, IEEE,

2015.

[52] P. Schmidt, N. Vahrenkamp, M. Wächter, and T. Asfour, “Grasping

of unknown objects using deep convolutional neural networks based on

depth images,” in 2018 IEEE International Conference on Robotics and

Automation (ICRA), pp. 6831–6838, IEEE, 2018.

[53] K. Huebner, K. Welke, M. Przybylski, N. Vahrenkamp, T. Asfour,

D. Kragic, and R. Dillmann, “Grasping known objects with humanoid

robots: A box-based approach,” in 2009 International Conference on

Advanced Robotics, pp. 1–6, IEEE, 2009.

[54] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic

grasps,” The International Journal of Robotics Research, vol. 34, no. 4-5,

pp. 705–724, 2015.

[55] L. Berscheid, T. Rühr, and T. Kröger, “Improving data efficiency of self-

supervised learning for robotic grasping,” in 2019 International Confer-

ence on Robotics and Automation (ICRA), pp. 2125–2131, IEEE, 2019.

[56] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-

graspnet: Efficient 6-dof grasp generation in cluttered scenes,” in 2021

IEEE International Conference on Robotics and Automation (ICRA),

pp. 13438–13444, IEEE, 2021.

[57] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,

“Deepsdf: Learning continuous signed distance functions for shape rep-

resentation,” in Proceedings of the IEEE/CVF Conf. on Computer Vision

and Pattern Recognition, pp. 165–174, 2019.

136 BIBLIOGRAPHY

[58] N. Das and M. Yip, “Learning-based proxy collision detection for robot

motion planning applications,” IEEE Transaction on Robotics, vol. 36,

no. 4, pp. 1096–1114, 2020.

[59] M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox, “Object rearrange-

ment using learned implicit collision functions,” in 2021 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pp. 6010–6017,

IEEE, 2021.

[60] M. D. Fiore, G. Meli, A. Ziese, B. Siciliano, and C. Natale, “A general

framework for hierarchical redundancy resolution under arbitrary con-

straints,” IEEE Transactions on Robotics, pp. 1–20, 2023.

[61] A. Rocchi, E. M. Hoffman, D. G. Caldwell, and N. G. Tsagarakis, “Open-

sot: a whole-body control library for the compliant humanoid robot co-

man,” in 2015 IEEE International Conference on Robotics and Automa-

tion (ICRA), pp. 6248–6253, IEEE, 2015.

[62] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based re-

dundancy control of robot manipulators,” The International Journal of

Robotics Research, vol. 6, no. 2, pp. 3–15, 1987.

[63] A. Del Prete, F. Nori, G. Metta, and L. Natale, “Prioritized motion–force

control of constrained fully-actuated robots:“task space inverse dynam-

ics”,” Robotics and Autonomous Systems, vol. 63, pp. 150–157, 2015.

[64] A. Dietrich, C. Ott, and A. Albu-Schäffer, “An overview of null space

projections for redundant, torque-controlled robots,” The International

Journal of Robotics Research, vol. 34, no. 11, pp. 1385–1400, 2015.

[65] L. Penco, E. M. Hoffman, V. Modugno, W. Gomes, J.-B. Mouret, and

S. Ivaldi, “Learning robust task priorities and gains for control of re-

dundant robots,” IEEE Robotics and Automation Letters, vol. 5, no. 2,

pp. 2626–2633, 2020.

[66] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid

whole-body behavior: A focus on sequencing and tasks transitions,”

in 2011 IEEE International Conference on Robotics and Automation,

pp. 1283–1290, IEEE, 2011.

BIBLIOGRAPHY 137

[67] M. Karimi and M. Ahmadi, “A reinforcement learning approach in as-

signment of task priorities in kinematic control of redundant robots,”

IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 850–857, 2021.

[68] S. Kim, K. Jang, S. Park, Y. Lee, S. Y. Lee, and J. Park, “Continu-

ous task transition approach for robot controller based on hierarchical

quadratic programming,” IEEE Robotics and Automation Letters, vol. 4,

no. 2, pp. 1603–1610, 2019.

[69] R. Lober, V. Padois, and O. Sigaud, “Variance modulated task prioritiza-

tion in whole-body control,” in 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 3944–3949, IEEE, 2015.

[70] N. Dehio, R. F. Reinhart, and J. J. Steil, “Multiple task optimization

with a mixture of controllers for motion generation,” in 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

pp. 6416–6421, IEEE, 2015.

[71] N. Dehio and J. J. Steil, “Dynamically-consistent generalized hierarchical

control,” in 2019 International Conference on Robotics and Automation

(ICRA), pp. 1141–1147, IEEE, 2019.

[72] J. Silvério, S. Calinon, L. Rozo, and D. G. Caldwell, “Learning task

priorities from demonstrations,” IEEE Transactions on Robotics, vol. 35,

no. 1, pp. 78–94, 2018.

[73] S. Hak, N. Mansard, O. Stasse, and J. P. Laumond, “Reverse control

for humanoid robot task recognition,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 6, pp. 1524–

1537, 2012.

[74] H.-C. Lin, M. Howard, and S. Vijayakumar, “Learning null space projec-

tions,” in 2015 IEEE International Conference on Robotics and Automa-

tion (ICRA), pp. 2613–2619, IEEE, 2015.

[75] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,

A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering

the game of go without human knowledge,” nature, vol. 550, no. 7676,

pp. 354–359, 2017.

138 BIBLIOGRAPHY

[76] G. Golluccio, D. Di Vito, A. Marino, A. Bria, and G. Antonelli, “Task-

motion planning via tree-based q-learning approach for robotic object

displacement in cluttered spaces,” in Proceedings of the 18th Interna-

tional Conference on Informatics in Control, Automation and Robotics -

ICINCO, pp. 130–137, INSTICC, SciTePress, 2021.

[77] S. Chiaverini, “Singularity-robust task-priority redundancy resolution for

real-time kinematic control of robot manipulators,” IEEE Transactions

on Robotics and Automation, vol. 13, no. 3, pp. 398–410, 1997.

[78] E. Magrini, F. Flacco, and A. De Luca, “Estimation of contact forces us-

ing a virtual force sensor,” in 2014 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 2126–2133, IEEE, 2014.

[79] K. Yoshida and W. Khalil, “Verification of the positive definiteness of

the inertial matrix of manipulators using base inertial parameters,” The

International Journal of Robotics Research, vol. 19, no. 5, pp. 498–510,

2000.

[80] G. Antonelli, F. Caccavale, and P. Chiacchio, “A systematic procedure for

the identification of dynamic parameters of robot manipulators,” Robot-

ica, vol. 17, pp. 427–435, 1999.

[81] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling,

planning and control. Springer Verlag, 2009.

[82] J. Hollerbach, W. Khalil, and M. Gautier, Model identification, pp. 113–

137. Cham: Springer International Publishing, 2016.

[83] P. Nadeau, M. Giamou, and J. Kelly, “Fast object inertial parameter

identification for collaborative robots,” in 2022 International Conference

on Robotics and Automation (ICRA), pp. 3560–3566, IEEE, 2022.

[84] C. Gaz, F. Flacco, and A. De Luca, “Extracting feasible robot parame-

ters from dynamic coefficients using nonlinear optimization methods,” in

2016 IEEE international conference on robotics and automation (ICRA),

pp. 2075–2081, IEEE, 2016.

BIBLIOGRAPHY 139

[85] A. Jubien, M. Gautier, and A. Janot, “Dynamic identification of the

Kuka LWR robot using motor torques and joint torque sensors data,”

IFAC Proceedings Volumes, vol. 47, no. 3, pp. 8391–8396, 2014.

[86] C. D. Sousa and R. Cortesão, “Physical feasibility of robot base iner-

tial parameter identification: A linear matrix inequality approach,” The

International Journal of Robotics Research, vol. 33, no. 6, pp. 931–944,

2014.

[87] M. Gautier, “Numerical calculation of the base inertial parameters of

robots,” Journal of robotic systems, vol. 8, no. 4, pp. 485–506, 1991.

[88] P. M. Wensing, S. Kim, and J.-J. E. Slotine, “Linear matrix inequalities

for physically consistent inertial parameter identification: A statistical

perspective on the mass distribution,” IEEE Robotics and Automation

Letters, vol. 3, no. 1, pp. 60–67, 2018.

[89] S. Traversaro, S. Brossette, A. Escande, and F. Nori, “Identification of

fully physical consistent inertial parameters using optimization on mani-

folds,” in 2016 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 5446–5451, IEEE, 2016.

[90] C. D. Sousa and R. Cortesão, “Inertia tensor properties in robot dynam-

ics identification: A linear matrix inequality approach,” IEEE/ASME

Transactions on Mechatronics, vol. 24, pp. 406–411, Feb 2019.

[91] J. Jovic, A. Escande, K. Ayusawa, E. Yoshida, A. Kheddar, and G. Ven-

ture, “Humanoid and human inertia parameter identification using hier-

archical optimization,” IEEE Transactions on Robotics, vol. 32, pp. 726–

735, June 2016.

[92] M. Gautier and G. Venture, “Identification of standard dynamic param-

eters of robots with positive definite inertia matrix,” in 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 5815–

5820, IEEE, 2013.

[93] B. Armstrong, “On finding exciting trajectories for identification exper-

iments involving systems with nonlinear dynamics,” The International

journal of robotics research, vol. 8, no. 6, pp. 28–48, 1989.

140 BIBLIOGRAPHY

[94] C. Presse and M. Gautier, “New criteria of exciting trajectories for robot

identification,” in Proceedings 1993 IEEE International Conference on

Robotics and Automation, (Atlanta, GA), pp. 907–912, 1993.

[95] KINOVA, “Official ros packages for kinova robotic arms.” https://

github.com/Kinovarobotics/kinova-ros, 2019.

[96] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,

no. 3, pp. 279–292, 1992.

[97] W. S. McCulloch and W. Pitts, “Neurocomputing: Foundations of re-

search,” ch. A Logical Calculus of the Ideas Immanent in Nervous Activ-

ity, pp. 15–27, 1988.

[98] F. Rosenblatt, “The perceptron: a probabilistic model for information

storage and organization in the brain.,” Psychological review, vol. 65,

no. 6, p. 386, 1958.

[99] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach

to single-query path planning,” in Proceedings 2000 ICRA. Millennium

Conference. IEEE International Conference on Robotics and Automa-

tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2, pp. 995–1001,

IEEE, 2000.

[100] B. Siciliano and J.-J. E. Slotine, “A general framework for managing mul-

tiple tasks in highly redundant robotic systems,” in Proc. Fifth Interna-

tional Conference on Advanced Robotics (ICAR), (Pisa, Italy), pp. 1211–

1216, IEEE, 1991.

[101] P. Di Lillo, F. Arrichiello, D. Di Vito, and G. Antonelli, “BCI-controlled

assistive manipulator: developed architecture and experimental results,”

IEEE Transaction on Cognitive and Developmental Systems, pp. 1–1,

2020.

[102] P. Di Lillo, E. Simetti, F. Wanderlingh, G. Casalino, and G. Antonelli,

“Underwater intervention with remote supervision via satellite commu-

nication: Developed control architecture and experimental results within

the dexrov project,” IEEE Transaction on Control Systems Technology,

vol. 29, no. 1, pp. 108–123, 2021.

https://github.com/Kinovarobotics/kinova-ros
https://github.com/Kinovarobotics/kinova-ros

BIBLIOGRAPHY 141

[103] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.

Marín-Jiménez, “Automatic generation and detection of highly reliable

fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,

pp. 2280–2292, 2014.

[104] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: Unified, real-time object detection,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 779–788, 2016.

[105] A. M. Andrew, “Multiple view geometry in computer vision,” Kybernetes,

2001.

[106] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D

data processing,” arXiv:1801.09847, 2018.

[107] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin,

“The ball-pivoting algorithm for surface reconstruction,” IEEE Transac-

tions on Visualization and Computer Graphics, vol. 5, no. 4, pp. 349–359,

1999.

[108] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-

genet: A large-scale hierarchical image database,” in 2009 IEEE Conf.

on Computer Vision and Pattern Recognition, pp. 248–255, 2009.

[109] D. Di Vito, C. Natale, and G. Antonelli, “A comparison of damped least

squares algorithms for inverse kinematics of robot manipulators,” IFAC-

PapersOnLine, vol. 50, no. 1, pp. 6869–6874, 2017.

[110] http://cvxr.com/cvx/download/.

[111] https://codeocean.com/capsule/31dcd5d6-7a11-4002-87f5-

4d904d13b98a.

[112] https://ieee-dataport.org/documents/robot-dynamics-

identification.

[113] J. Swevers, C. Ganseman, D. B. Tukel, J. de Schutter, and H. Van Brus-

sel, “Optimal robot excitation and identification,” IEEE Transactions on

Robotics and Automation, vol. 13, pp. 730–740, Oct 1997.

http://cvxr.com/cvx/download/
https://codeocean.com/capsule/31dcd5d6-7a11-4002-87f5-4d904d13b98a
https://codeocean.com/capsule/31dcd5d6-7a11-4002-87f5-4d904d13b98a
https://ieee-dataport.org/documents/robot-dynamics-identification
https://ieee-dataport.org/documents/robot-dynamics-identification

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	State of the Art
	Thesis Outline and Contribution
	Publications
	Other Contributions

	Background
	Robot Modelling and Identification
	Kinematics
	Position and Orientation of a Rigid Body
	Direct Kinematics
	Inverse Kinematics

	Dynamics
	Lagrange Formulation
	Kinetic Energy
	Potential Energy
	Equations of Motion

	Dynamic Parameters
	Identification of Dynamic Parameters
	Constraints on the Robot Model
	Physical Feasibility
	Physical Consistency

	Methods for Estimating Dynamic Parameters
	CAD
	Unconstrained Least Square (ULS)
	Constrained Least Square (CLS) - Technique 1 (CLS-1)
	Constrained Least Square (CLS) - Technique 2 (CLS-2)
	Constrained Least Square (CLS) - Technique 3 (CLS-3)

	Identification Methods: A Comparison
	Validation methodology
	Trajectories
	Results

	Machine Learning
	Reinforcement Learning
	Rooted Trees

	Supervised Learning
	Neural Networks
	Feed-Forward Neural Networks
	Convolutional Neural Network

	Task-Motion Planning via Reinforcement Learning
	Retrieving Objects from Clutter
	System Architecture
	Low-level: Motion Planner
	High-level: RL-Task Planner

	Exploration Policies
	Tree-search Methods
	Q-Tree Learning Algorithm
	Optimality Analysis

	Simulation and Experiments
	Case 1: Identical Objects
	Case 2: Different Objects

	Learning-based Robot Collision Detection
	Data Representation and Camera
	Problem Description
	Data Generation
	Depth Images
	Point Clouds

	Collision Checkers
	Geometric-based
	CNN-based
	FCNN - 1 Depth Image
	FCNN - 2 Depth Images
	ResNet18

	PointNet-based
	Standard PointNet
	Fast-PointNet

	Hybrid-based
	MixNet

	Simulation & Results

	Deep Learning for Task Priority Inverse Kinematics
	Multi-class Problem
	Learning Model

	Validation
	Dataset Generation
	Results

	Conclusions and Future Works
	Appendix
	Notes on the positive definiteness of dynamic matrix M(q)
	User Guide
	Code Ocean version
	IEEE DataPort

	Running the code

	Bibliography

