
128 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  SEPTEMBER 2021 1070-9932/21©2021IEEE

I
dentifying the dynamic parameters of robots is a long-
standing topic in robot control, and, recently, research 
in the area witnessed a renewal of activity. This is 
motivated by the high performance required for 
model-based control of, for example, legged or surgical 

robots and the need to obtain realistic simulations of 
such systems. 

The operation of computing joint torques starting from 
joint positions, velocities, and accelerations and including 
model-based control approaches relies on the computation of 
inverse dynamics [1]. Direct dynamics, on the other hand, is 
the operation of computing joint accelerations starting from 
joint positions, velocities, and torques and is required, for 
instance, in numerical simulations, recently renamed digital 
twins, and in model-based motion planning. Both operations 
require a representation of the dynamic model of the robot; in 
addition, several other advanced functionalities, such as 
impact detection, also require a good knowledge of the model 
and of its parameters [2].

Consequently, it is of the utmost importance to derive the 
dynamic model and then to estimate its parameters. However, 
physically infeasible estimates might lead to nonpositive iner-
tia matrices at some joint configurations or, in the worst case, 
in the overall joint space. Such dynamic models would lead to 

unrealistic simulations and negatively affect model-based 
control since the use of a dynamic model with a nonpositive 
inertial matrix might lead to an unstable system [3].

In general, robot dynamic parameters, such as mass and 
inertia tensors, exhibit physical restrictions that must be 
properly addressed to obtain meaningful estimates. However, 
several identification solutions, being based on regression 
techniques [4] (with and without considering constraints), 
generate nonphysical estimates due, for instance, to unavoid-
able modeling errors, incorrect setup of the identification 
experiment, and incorrect choice of parameter constraints. 
For all of these reasons, the community has devoted consid-
erable effort to identification topics, resorting to classical data 
estimation algorithms tailored to take into account the 
robotic-related physical constraints [5]. 

Literature Analysis
Most of the identification approaches share the core method-
ology of
●  exploiting the linear-in-the-parameter property of robot 

dynamics
● designing a set of experiments to collect proper data
● implementing the estimation
● validating the data.
The model identified without adding specific constraints on 
the unknown dynamics while minimizing the reconstruction 
error on the specific data [5]–[7] generally suffers from 
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overfitting and, likely, does not exhibit important properties, 
such as positive link masses and positive definiteness of link 
inertia matrices, that constitute the physical meaningfulness 
of the dynamic parameters themselves, defined as consistency 
in part of the literature. 

A first step in this direction was made by the authors of 
[8], who addressed the identification problem by finding a set 
of dynamic parameters that is optimal in a least-squares sense 
and that is closest to a set of physically consistent nominal 
parameters (for example, retrieved from CAD data). Since the 
consistency is not set as a hard constraint, this property is not 
guaranteed; indeed, the authors envisage the need to further 
modify the inertia parameters in the null space of the regres-
sor if this property is to hold.

A constrained nonlinear optimization problem, solved 
via global optimization methods (like genetic algorithms), 
is set forth in [9], with the consistency somehow 
addressed by imposing lower and upper bounds on each 
dynamic parameter; however, even in this case, it is not 
guaranteed that the consistency property is met. In this 
regard, an extension in this direction is presented in [10], 
where a constrained optimization problem is solved via 
iterative techniques.

A rigorous discussion of the physical consistency of 
robot dynamic parameters can be found in [11], where it 
is shown that feasible solutions can be treated within the 
framework of linear matrix inequality (LMI) and han-
dled by semidefinite programming (SDP) techniques 
(LMI–SDP), by which a global solution is found. Specifi-
cally, the considered constraints include, for each link, 
the nonnegativity of the mass, the positive definiteness 
of the link inertia matrix, and bounds on the position of 
the centers of mass. Remarkably, it is highlighted in [12] 
that the inertia matrix not only must be positive definite 
but also must exhibit the triangle inequality concerning 
its eigenvalues. 

Based on this result, the work in [13] overtakes the physi-
cal semiconsistency achieved in [11] and formulates an LMI-
based optimization problem to achieve full physical 
consistency. In addition to constraints on the link inertia 
matrix, the devised solution considers geometric constraints 
concerning the position of the center of mass and the mass 
distribution. In parallel, similar results were achieved in [14], 
in which the authors extend the set of constraints previously 
considered in [11] by taking into account the triangle inequal-
ity constraint; it is proven that this can still be solved in the 
LMI–SDP framework. In the same work, it is experimentally 
shown that adding meaningful physical constraints helps in 
preventing overfitting.

Finally, among the experimental works aimed at provid-
ing to the community a reliable dynamical model of specific 
robotic platforms, it is worth mentioning the work in [15], 
where the dynamic model of the KUKA light-weight robot 
(LWR) robot is identified and where both joint currents and 
torque sensor data, together with some insights concerning 
the mechanical structure of the robot, are exploited to the 

scope. The model is found in the framework of ordinary 
and weighted least-squares methods without additional 
hard constraints. The same 
robot is identified in [16] 
where, different from [15], 
joint elasticity is also taken 
into consideration.

In the present work, by 
following the guidelines of 
the community [17], a 
reproducible comparison of 
some of the main techniques 
available in the literature for 
the identification of the 
dynamic model of open-
chain robots is provided. 
Five algorithms are taken 
into consideration in the 
comparison:

●● �a CAD-based estimate in which model parameters are 
extracted from the CAD models generally provided by 
robot manufacturers

●● �unconstrained least squares (ULS) [6], in which model 
parameters are extracted from data with no constraints on 
the robot model parameters

●● �constrained least squares (CLS), technique 1 (CLS-1) 
(inspired by [9])

●● CLS, technique 2 (CLS-2) [11]
●● �CLS, technique 3 (CLS-3) [13], [14]. 

The last three methods, like the second one, extract the robot 
model from acquired data; however, different from it, the 
model is constrained to account for the physical property of 
the model itself. The comparison is carried out by running 
experiments on the Kinova Jaco2 anthropomorphic arm with 
seven degrees of freedom (DoF), and a quantitative metric is 
adopted to validate the algorithms. Moreover, the data and 
the code are made available to the community for improve-
ment and further comparison. 

As a further contribution of this article, a fully physically 
consistent model of this robot is for the first time, to the best of 
our knowledge, released to the community. A version of the 
code without a graphical user interface (GUI) can be run online 
on the Code Ocean platform [23], while a version with a GUI 
can be freely downloaded and locally run in the MATLAB 
environment at [24] and [25].

The Considered Robot Model
Here, we consider open-chain manipulators composed of n 
rigid links connected through n rotational or prismatic joints. 
The equations of motion of such a system can be obtained via, 
e.g., the recursive Newton–Euler or Lagrange formulation [1].

In our notation, the superscript i denotes that the corre-
sponding quantity is expressed with respect to frame i, while 
no superscript means it is expressed in the world reference 
frame. The mathematical model of the manipulator can be 
written in compact form as

In general, robot dynamic 

parameters, such as mass 

and inertia tensors, exhibit 

physical restrictions 

that must be properly 

addressed to obtain 

meaningful estimates.
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	 ( ) ( , ) ( ) ( , , )B q q C q q q g q Y q q q.. . . . ..
full fullx r= + + = ,� (1)

where ( )B q Rn n! #  is the symmetric and positive definite 
inertia matrix, ( , )C q q q R

. . n!  denotes the Coriolis and cen-
trifugal vector, ( )g q Rn!  is the gravity vector, and Rn!x  is 
the vector collecting joint torques. Moreover, (1) also high-
lights that the model can be rewritten in an alternative form by 
taking into consideration that it is linear with respect to the 
dynamic parameters [5], which are Y Rn n10

full !
#  (an upper 

triangular matrix) and R n10
full !r  (the vector collecting the 

dynamic parameters of each link). 
In detail and by referring to Table 1, the ith link is charac-

terized by 10 parameters, which are , mm R Ri c
3

i! !  and 
the inertia matrix L Ri

3 3! #  referred to the link frame but of 
which only six parameters are considered due to its  
symmetry; that is, .l l l l l l l R, , , , , ,

T
i i xx i xy i xz i yy i yz i zz

6!= 6 @  
These parameters are stacked into the vector mi ir = 6
m l RT T

c
i

i
T 10

i !@ , which represents the vector of the dynamic 
parameters relative to link i, while vector fullr  in (1) is such as 

[ ]T T T T
n1 2full fr r r r= .

It is worth noticing that the model described is written at 
the link side, i.e., ignoring the motor inertia and the motor 
friction. This is rather common for the latest generation of 
robots defined as lightweight, which embed a torque sensor in 
each of the joints at the link side [9], [15].

It is well known that, in general, not all of the dynamic 
parameters provide a dynamic contribution [11]. Indeed, by 
resorting to, for instance, the numerical procedure described 
in [18], they can be clustered in three groups, namely, 1) iden-
tifiable, 2) not identifiable, and 3) identifiable in linear combi-
nation. By ignoring the not-identifiable parameters since they 
do not contribute to the robot dynamics (e.g., the mass of the 
base link of fixed-base manipulators with a first rotational 
joint), by removing the corresponding column from Yfull , and 
by properly merging together the columns of the regressor 
Yfull  corresponding to parameters identifiable in linear com-
bination, the regressor-based model can be rewritten as

	 ( , , )Y q q q. ..
b bx r= ,� (2)

with Y Rn n
b

b! #  and Rn
b

b!r  and where the dimension 
n nn 10bb #^ h depends on the specific robot kinematics and 

will be specified for the Kinova Jaco2 robot in the “Experimen-
tal Conditions” section. The set of all of the dynamic parame-
ters, defined previously as full, is also defined as standard by 
part of the literature; the set of the dynamic parameters pro-
viding a dynamic contribution is defined as the base parame-
ters or dynamic coefficients.

Constraints on the Robot Model
Since robots are physical systems, the vector of the dynamics 
parameters fullr  (and )br  is constrained to account for the 
physical properties of the system. For instance, as mentioned 
in the introduction, it is well known that the inertia matrix 

( )B q  is positive definite. The main physical constraints con-
sidered in the literature are briefly reviewed.

Physical Feasibility
First of all, the mass mi and inertia matrix Li  are constrained, 
such as to be a positive scalar and a definitive positive matrix, 
respectively; m 0i 2  and .L 0i (  However, these constraints 
are not sufficient to guarantee that matrix ( )B q  is positive 
definite since Li  is the inertia matrix about the ith link 
frame. The property ( ) ,B q q0 6(  is ensured if the follow-
ing constraints are jointly considered:

	
m 02

( ) ( )C L S S mmm
1 0T

i i
i

c
i

c
i

i

i i (= -* ,� (3)

where ( )S $  is the skew-symmetric matrix operator, and Ci  is 
the inertia matrix about the center of mass of link i, which, 
based on the Huygens–Steiner theorem, is related to the iner-
tia matrix .Li

Physical Consistency
The authors of [12] highlighted that, in addition to the 
constraints in (3), an additional condition needs to be 
considered (namely, the triangle inequality) on the 
eigenvalues jm  of Ci  ( j = 1, 2, 3) to achieve the so-called 
physical consistency. This specific condition is proven to 
be a consequence of the nonnegativity of mass density. 
Such a condition is taken into consideration in [13] and 
[14] and is formulated as

	
0
0
0

3 1 2

2 1 3

1 2 3

1 1
1 1
1 1

m m m

m m m

m m m

+

+

+
* ,� (4)

which actually implies the second condition of (3).
Additional constraints might exploit the knowledge of the 

robot’s geometric structure by introducing bounded-volume 
limits [13], [19]. These mainly relate to the position of the 
center of mass of each link, which might lie in a cuboid 
expressed in the link frame [9], [11] as

	 m m m,c
i

c
i

c
i

,LB UBi i i# # ,� (5)

Table 1. The Denavit–Hartenberg table for the 
Kinova Jaco2 robot.

Joint a (m) a  (rad) d (m) i  

1 0 /2r  0.2755 1i

2 0 /2r  0 2i

3 0 /2r  −0.41 3i

4 0 /2r  −0.0098 4i

5 0 /2r  −0.3111 5i

6 0 /2r  0 6i

7 0 0 0.2638 7i
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with m ,c LBi  and m ,c UBi  as the lower and the upper bounds, 
respectively, and where the inequalities are intended to be 
componentwise.

Alternatively, by following the approach in [13], it is possi-
ble to require the center of mass of link i to lie inside an ellip-
soid Ei , with center x Rc

3
i !  described by

	 | ( ) ( )x x Q x xx 1RE s
T

i c
i

c
i3

i i i #! - -= " ,,� (6)

where Q Rs
3 3

i !
#  is a positive definite matrix defining the 

shape and orientation of the ellipsoid in the link frame. Final-
ly, as further constraints considered in [13], the overall mass 
of a link might be required to lie inside a region Si  (which 
could be an ellipsoid as well; see the “CLS-3” section). This 
constraint, together with the physical consistency, is 
addressed as S -density realizability in [13]. As an example, 
Figure 1(a) reports the ellipsoid S4  (in orange) containing the 
fourth link and the ellipsoid E4  (in red) in which the center 
of mass mc

4
4  constraint is to lie.

Estimate of the Dynamic Parameters
In this section, we review the main identification methods 
listed in the “Literature Analysis” section and which will be 
the objects of our comparison. More mathematical details, 
together with instructions to run the code, can be found in 
the supplemental material available in [26].

Here, it is worth considering that, apart from the CAD 
method, the other four identification approaches require either 
that data be acquired or that data be reconstructed from the 
robot’s onboard sensors, consisting of N joint configurations 
( ( ), ( ), ( ))q q qt t t. ..

i i i , together with the corresponding torque 
vector ( )tix , with ti being the generic time instant and 

{ , , , }.i N1 2 f!  These data, together with (1) or (2), are gener-
ally used to build an overdetermined system of linear equations 
in the unknown vector of dynamic parameters br  in the case 
of the ULS method and fullr  in the cases of the CLS-1, CLS-2, 
and CLS-3 methods in the form of
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where Y( )$  and ( )r $  are either the base or full regressor com-
puted in the ith configuration and the base or full vector of 
the dynamic parameters, depending on the identification 
method adopted.

CAD Estimate
The simplest way to obtain the vector of the dynamic parame-
ters fullr  is to retrieve it from CAD data, which many robot 
manufacturers make available to the community. The link 
parameters can be automatically extracted by CAD software 
once, for instance, properties like the density of each 

component are specified. However, due to the complexity of 
the robot structure, the many components involved, and the 
uniform density assumption, which is usually made, the 
extracted data might be significantly different than the real 
data. Moreover, parameters related to friction, when relevant, 
are unavailable with a CAD approach. On the other hand, the 
physical constraints in the “Constraints on the Robot Model” 
section are met by construction.

ULS
The ULS method [5] is a popular method for robots and, in 
general, for systems identification that, in the case considered 
and in virtue of (7), consists of solving the following minimi-
zation problem in the unknown vector br :

	 ( ) ( ) .min Y Yb b b b
T

b
x r x r- -

r
r r r r � (8)

In particular, identification requires proper design of the 
experiments, and it is important to design exciting trajecto-
ries to provide accurate and fast parameter estimation, even 
in the presence of measurement noise, unmodeled dynam-
ics, and external disturbances. Most works in the field of 
robot identification relate the condition number of regres-
sor Ybr  to the reliability of the data [5] and design the identi-
fication trajectory so as to minimize this condition number, 
as in [4].

However, despite its simplicity, the ULS approach leads 
to an estimate of br  for which the physical properties 

x0
y0

z0

x1

y1

z1 x2
y2

z2

x3

y3

z3
x4y4

z4

x5

y5

z5

x6 y6

z6
x7

y7

z7

d1

d3

d4

d5

d7

(a) (b)

Figure 1. The Kinova Jaco2 robot considered here as test case. 
(a) In orange, the external ellipsoid bounding, for example, 
the fourth link and, in red, the internal ellipsoid containing the 
center of mass. (b) The reference frames of the Kinova Jaco2 
robot according to the Denavit–Hartenberg convention.
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mentioned in the “Constraints on the Robot Model” section 
are not guaranteed and might suffer from overfitting [13], 
[14].  For these reasons, in recent decades, many research-
ers have put effort into the constrained identification of 
robot manipulators, which basically differ in the number 
and type of constraints considered (see the “Constraints on 
the Robot Model” section) and in the methods adopted to 
solve these problems.

CLS-1
The goal of constrained identification is to extract a dynamic 
model maintaining, as much as possible, the physically mean-
ing of the parameters. As seen in [8] and [9], constraints on 
the numerical value of the dynamic parameters in terms of 
bounds on the CAD values could be added. Inspired by the 
approach presented in [9], the method consists of estimating 
the vector of full parameters fullr ; in detail, it exhibits the fol-
lowing characteristics.

●● �The dependency of br  on the full vector fullr  is required; 
that is, ( ).b b fullr r r=  This relationship can be either lin-
ear or nonlinear, depending on the parameterization 
assumed.

●● �This dependency is necessary since constraints are set on 
the vector of full parameters and are in the form 

LB full UB# #r r r , where LBr  and UBr  are the lower and 
upper bounds on the full vector of dynamic parameters, 
respectively, mainly obtained by CAD and heuristic con-
siderations (e.g., masses are positive).

●● �The solution sought is the one that, taking into account the 
acquired data, is closest to a vector ,brt  which may be 
exactly the unconstrained solution in the “ULS” section 
and which meets the bounds on .fullr

Moreover, it is important to highlight here that the prob-
lem formulation is slightly changed with respect to [9], 
but the overall approach is kept. Finally, it is worth notic-
ing that, with this approach, neither the physical feasibili-
ty nor the physical consistency is guaranteed. Indeed, this 
property can only be verified a posteriori, and the 
bounds may eventually be modified according to a trial-
and-error approach.

CLS-2
Different from the previously mentioned techniques, the 
approach in [11] properly takes into account the constraints 
in (3). In particular, the considered constrained identification 
aims to estimate the full vector of parameters fullr  by mini-
mizing the reconstruction error, as in (8), and where the base 
quantities are substituted by their full counterparts with the 
following constraints for each link.

●● �The physical feasibility is described in the “Physical Feasi-
bility” section. 

●● �The lower and upper bounds are considered for link mass 
mi, designated m ,i LB and ,m ,i UB  respectively. 

●● �The lower and upper bounds are considered for the first 
moment of mass mc

i
i , designated m ,c

i
LBi  and m ,c

i
UBi , 

respectively.

The overall constrained problem is globally solved in the 
framework of LMI–SDP. Since the full vector of parameters 
is identified, the full regressor is used, which in general, is 
intrinsically numerically bad conditioned; i.e., the matrix 
Yfullr  is never full rank no matter the data collected. There-
fore, it is necessary to provide the algorithm with a regular-
ization coefficient.

CLS-3
The last method we consider is presented in [13] (a similar 
approach is presented in [14]) and is the most complete of the 
constraints presented in the “Constraints on the Robot 
Model” section. Similarly to CLS-2, the CLS-3 technique aims 
to estimate the full vector of parameters fullr  by minimizing 
the reconstruction error while considering the following con-
straints for each link.

●● �The physical consistency is described in the “Physical Con-
sistency” section. 

●● �The position of the first moment of mass mci  is forced to 
reside in an ellipsoid Ei  described by matrix Qsi  and its 
center xci , as in (6).

●● �The mass of link i is contained within a given region Si , 
also represented as an ellipsoid.

From the mathematical perspective, the solution of CLS-3 
is identical to that of CLS-2, and, thus, it lays in the frame-
work of LMI–SDP. A regularization factor is needed as 
well [13].

Experimental Conditions

Hardware Description
In this article, the robot Kinova Jaco2 is considered for the 
purpose of experimental validation. Kinova Jaco2 is a light-
weight robot characterized by 7 DoF, the Denavit–Hartenberg 
(DH) table for which is reported in Table 1 and the corre-
sponding link frames in Figure 1(b).

By applying the numerical procedure described in [18], 
it is possible to cluster the Kinova Jaco2 dynamic parame-
ters as shown in Table 2 with the linear combination 
reported in Table 3. The robot is equipped with joint 
torques mounted after the gear, common to several light-
weight arms, such as, for example, the hardware described 
in [9] and [15]. In addition to the joint torques, the joint 
positions can be measured only at a sampling frequency 

  f 100s =  Hz with a Ethernet connection, resorting to the 
library developed by the manufacturer under the Robot 
Operating System [20].

Validation Methodology
Two main requirements concerning validation need to be 
satisfied. On one hand, the identification nature asks for a 
minimization of the reconstruction error along a set of data 
(the identification set) different from the one used for the 
identification itself (the validation set). On the other hand, it 
is required that the constraints in the “Constraints on the 
Robot Model” section are met, which have, as a main 
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consequence, that the joint-space inertia matrix is strictly 
positive definite ( ( )B q 0( ).

The first requirement is usually verified by resorting to a 
proper metric, typically the reconstruction error, and, eventu-
ally, relative information such as the percentage error. In this 
article, the following errors are considered:

	 ,N r

2 2

x
w

|
w

|
= =

r
,� (9)

where N is the number of samples of the data set at hand and 
2|  is defined as

( )Y
for ULS
for CAD,CLS 1,2,3

T

T x r- -
.( ) ( )

( )
Y Y
Y

b b b b2

full full full full

x r x r

x r
| =

- -

-

r r t r r t

r r t r r t
)

By defining /2 2v | o= , with ν as the difference between 
the number of samples and the number of dynamic parame-
ters identified, an estimate of the covariance matrix Mt  of the 
estimated parameters is [5]

	 ( )M Y Yb b
2 1T
v= -t r r � (10)

for all of the techniques. For CLS-1, CLS-2, and CLS-3, which 
identify the full vector of dynamic parameters, the covariance 
is actually computed on the base representation of the 
obtained estimation.

The requirement on the positive definiteness of ( )B q  
is actually a binary constraint and is met via construc-
tion by the CAD estimates and algorithms CLS-2 and 
CLS-3; however, the ULS and CLS-1 methods may or 
may not meet it. Since the method CLS-1 outputs the 
full vector of dynamic parameters, it is possible to check 
on their value for the fulfillment of the constraints, 
although this is not possible in the ULS case; in addi-
tion, since symbolic computation of the positive defi-
niteness of ( )B q  is computationally intractable, 
numerical methods must be implemented to check this 
property. In this case, the numerical validation of the 
condition ( )B q 0(  is valid for a specific joint configu-
ration q, and a sample-based approach is needed to 
check it against the joint space. Obviously, one single 
counterexample is sufficient to invalidate the property, 
while the opposite is true only in a probabilistic fashion 
for a large number of samples.

Identification and Validation Trajectories
Numerical conditioning on the various optimization 
problems to be solved needs to be properly guaranteed 
[5], [21], [22]. Considering the stacked regressor matri-
ces Ybr  in (7), it is required that its condition number be 
kept as small as possible while increasing the minimum 
singular value. In the case of Yfullr  in (7), it is, instead, 
required that the smallest nonzero singular value be as 
large as possible.

Table 2. The identifiability of the parameters.

Parameters 1 2 3 4 5 6 7

m 

m ,c x  

m ,c y  

m ,c z  

l xx

lyy

l zz

lyz

l xy

l xz

Red cells: not identifiable; blue cells: identifiable in linear 
combination; white cells: identifiable alone.

Table 3. The dynamic parameters  
in linear combinations.

Parameters 

l l, ,yy zz1 1 2b = +

( )m d m m m m m, ,c y c z2 3 4 5 6 73 2b = - + + + +

( )l l l d m m m m, , ,xx zz zz3 2 2 3 3
2

4 5 6 7b = - + + + + +

( )l l d m m m m, ,yy zz4 2 3 3
2

4 5 6 7b = + + + + +

( )m d m m m m, ,c y c z5 4 6 7 54 3b = + + + +

( )l l l d m m m, , ,xx zz zz6 3 3 4 4
2

5 6 7b = - + + + +

( )l l d m m m, ,yy zz7 3 4 4
2

5 6 7b = + + + +

( )l d d m m m d m, ,yz c y8 3 3 4 5 6 7 3 4b = - + + -

( )m d m m m, ,c y c z9 5 6 75 4b = + + +

( )l l l d m m, , ,xx zz zz10 4 4 5 5
2

6 7b = - + + +

( )l l d m m, ,yy zz11 4 5 5
2

6 7b = + + +

( )l d d m m d m, ,yz c y12 4 4 5 6 7 4 5b = - + -

m m, ,c y c z13 6 5b = +

l l l, , ,xx zz zz14 5 5 6b = - +

l l, ,yy zz15 5 6b = +

l d m, ,yz c y16 5 5 6b = -

m m, ,c z c z17 6 7b = +

l l l, , ,xx yy zz18 6 7 6b = + -

l l, ,yy yy19 6 7b = +

l l, ,xx yy20 7 7b = -
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In practice, this means properly spanning the collected 
data within the allowed range of joint positions, velocities, 
and accelerations characterizing the robot under study. In 
our cases, five different trajectories have been considered 
and generated as in [4], each playing the role of identifica-
tion trajectory; the remaining ones play the role of valida-
tion trajectories.

As an example, one exciting trajectory is shown in Figure 2. 
The corresponding base regressor is characterized by a condition 
number of approximately 50 with a minimal singular value of 34.

Data Filtering
Since the data are spoiled from noise, 
it is necessary to carry out low-pass 
filtering on these data. A Butterworth 
second-order low-pass filter with a 
cutoff frequency equal to 5 Hz has 
been implemented. In the literature, a 
similar choice of cutoff frequency is 
adopted; for example, in [9], the 
value of 1 Hz has been used in the 
identification of the KUKA LWR IV. 
In Figure 3, an example of the effect 
of filtering on the torque data of joint 
2 in one of trajectories is reported.

Results and Discussion
The CAD parameter values have been derived from the 
official repository of the manufacturer [20], properly 
referred to the adopted DH-compliant frames by resorting 
to the Huygens–Steiner theorem. Moreover, the identifica-
tion algorithms described previously have been run. The 
identified parameters are reported in Table 4, together 
with the corresponding variance of the estimate (for 
instance, the fourth trajectory is adopted to the scope of 
identification, and the third trajectory is adopted for the 
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Figure 2. The (a) joint position, (b) velocity, and (c) acceleration zoom representation of the first 20 s of the third trajectory. The full 
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Figure 3. The low-pass filter effect on joint torque: an example for the second joint of the 
third trajectory. A zoom-in plot in the time interval of 4.4–5 s is reported. 
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Table 4. The numerical values for base dynamic parameters of the algorithms on the third validation trajectory.

  ULS CLS-1 CLS-2 CLS-3 

Parameter CAD Value v Value v Value v Value v

1b 0.003715 −0.027334 3.9e–03 0 1.7e–02 0.003664 8.3e–03 0.000824 3.9e–03 

2b −0.956111 −1.391333 6.9e–04 −1.076 2.9e–03 −1.383625 1.5e–03 −1.390848 6.9e–04 

3b 0.413706 0.535243 9.5e–03 0.47706 4.0e–02 0.579379 2.0e–02 0.594658 9.5e–03 

4b 0.414086 0.585506 4.5e–03 0.45706 1.9e–02 0.605004 9.6e–03 0.596306 4.5e–03 

5b −0.016199 −0.035576 4.7e–04 −0.01764 2.0e–03 −0.033551 1.0e–03 −0.03573 4.7e–04 

6b 0.000463 0.031621 6.5e–03 −0.016427 2.8e–02 0.054993 1.4e–02 0.004703 6.6e–03 

7b 0.000843 0.024736 2.8e–03 0.000573 1.2e–02 0.004193 6.0e–03 0.006755 2.8e–03 

8b −0.006642 −0.017786 2.3e–03 −0.007232 9.8e–03 −0.013756 4.9e–03 −0.008831 2.3e–03 

9b −0.370088 −0.572468 5.0e–04 −0.373640 2.1e–03 −0.678596 1.1e–03 −0.572292 5.1e–04 

10b 0.116272 0.165417 4.1e–03 0.118846 1.8e–02 0.210676 8.8e–03 0.173466 4.2e–03 

11b 0.116576 0.188398 2.7e–03 0.115246 1.2e–02 0.210918 5.7e–03 0.177551 2.7e–03 

12b −0.00357 −0.015456 1.6e–03 −0.003603 6.6e–03 −0.006591 3.3e–03 −0.004862 1.6e–03 

13b 0 −0.002278 3.4e–04 0 1.5e–03 –0.000001 7.2e–04 −0.002054 3.4e–04 

14b 0.002554 −0.002358 3.4e–03 0.001 1.4e–02 0.013544 7.2e–03 0.000973 3.4e–03 

15b 0.002647 −0.006334 2.0e–03 0.001 8.4e–03 0.00373 4.2e–03 0.001497 2.0e–03 

16b 0 0.000519 1.3e–03 0 5.5e–03 0 2.7e–03 −0.001571 1.3e–03 

17b −0.042324 0.142087 3.5e–04 –0.0436 1.5e–03 −0.043599 7.5e–04 0.142759 3.5e–04 

18b 0.003917 0.036578 2.4e–03 −0.001 1.0e–02 0.114899 5.0e–03 0.017273 2.4e–03 

19b 0.00401 0.021991 1.5e–03 0 6.5e–03 0.105452 3.3e–03 0.017606 1.5e–03 

20b 0 −0.018514 1.6e–03 0 6.7e–03 −0.00852 3.3e–03 0.000107 1.6e–03 

m ,c x2 0 0.006347 4.0e–04 0 1.7e–03 0 8.4e–04 0.006854 4.0e–04 

l ,xy2 0 0.000908 4.1e–03 0 1.7e–02 0 8.7e–03 0 4.1e–03 

l ,xz2 0 0.041782 4.1e–03 0 1.8e–02 0 8.8e–03 0 4.2e–03 

l yz2 0 −0.006675 2.4e–03 0 1.0e–02 0 5.0e–03 0 2.4e–03 

m ,c x3 0 0.013107 5.3e–04 0 2.3e–03 −0.000001 1.1e–03 0.01237 5.3e–04 

l ,xy3 0 −0.003376 2.1e–03 0 9.0e–03 0 4.5e–03 0 2.1e–03 

l ,xz3 0 −0.022552 3.1e–03 0 1.3e–02 0 6.5e–03 0 3.1e–03 

m ,c x4 0 0.028568 3.8e–04 0 1.6e–03 0 8.1e–04 0.02833 3.8e–04 

l ,xy4 0 0.016842 1.6e–03 0 6.9e–03 0 3.4e–03 0 1.6e–03 

l ,xz4 0 0.008521 1.8e–03 0 7.8e–03 0 3.9e–03 0 1.8e–03 

m ,c x5 0 0.002895 4.2e–04 0 1.8e–03 0.000001 9.0e–04 0.003247 4.3e–04 

l ,xy5 0 0.003167 1.1e–03 0 4.7e–03 0 2.3e–03 0 1.1e–03 

l ,xz5 0 −0.017816 1.5e–03 0 6.3e–03 0 3.1e–03 0 1.5e–03 

m ,c 6x 0 0.005368 3.6e–04 0 1.5e–03 0.000001 7.7e–04 0.004566 3.6e–04 

l ,xy6 0 0.006955 9.9e–04 0 4.2e–03 0 2.1e–03 0 9.9e–04 

l ,xz6 0 0.003348 9.6e–04 0 4.1e–03 0 2.0e–03 0 9.6e–04 

l ,yz6 0 0.010184 1.0e–03 0 4.4e–03 0 2.2e–03 0 1.0e–03 

m ,c 7x 0 0.000949 2.9e–04 0 1.2e–03 0 6.2e–04 0 2.9e–04 

m ,c 7y 0 −0.001331 2.8e–04 0 1.2e–03 0 6.0e–04 –0.000298 2.9e–04 

l ,xy7 0 0.004124 7.6e–04 0 3.3e–03 0 1.6e–03 0 7.7e–04 

l ,xz7 0 0.00202 7.2e–04 0 3.1e–03 0 1.5e–03 0 7.3e–04 

l ,yz7 0 0.003968 7.4e–04 0 3.2e–03 0 1.6e–03 0 7.4e–04 

l ,zz7 0.000582 0.00047 1.1e–03 0.00047 4.6e–03 0.000004 2.3e–03 0.000107 1.1e–03 
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validation). As already mentioned, since ULS identifies 
only the base vector br , while the other algorithms iden-
tify the full vector ,fullr  the linear combinations of the 
latter have been considered to compare them with the 
former. Since a graphical visualization of the errors is 
always meaningful, Figures  4–8 report the reconstruc-
tion errors as a time history of measured versus estimat-
ed torques for the different algorithms using trajectory 3 
for validation.

Table 5 reports an overall comparison of the various tech-
niques among different identification and validation trajecto-
ries. Several interesting comments can be made. 

●● �The ULS always exhibits the smallest error along the iden-
tification trajectory. This superior performance, however, is 
not confirmed along the validation trajectories.

●● �This confirms the observation made in [14], i.e., that the 
ULS somehow overfits the identification trajectory, while 
other techniques, taking into account the physical con-
straints, finally better perform on the validation trajectories.

●● �The reconstruction made by resorting to the CAD val-
ues is polarized to be the worst among the various 
techniques, confirming the importance of the identifi-
cation process.

●● �The CLS-3 method almost always exhibits the smallest 
error; for a few samples, it is overperformed by ULS and, 
in one case, by CLS-1. It is worth noticing that the dis-
placement of the first moment of inertia is numerically 

small and that the errors are numerically very close one 
each other.

●● �The last two lines of Table 5 show the binary condi-
tions resulting in the requirement to satisfy the physi-
cal constraints in the “Constraints of the Robot Model” 
section: the sole CAD and CLS-3 satisfy all of them. 
However, if the reconstruction error is considered, the 
performance of CLS-3 among the five methods is 
clearly superior.
As a final consideration, since the robot at hand is 

equipped with sensors at the link side, motor inertia and 
joint friction parameters at the motor side are not taken 
into consideration, because the torque measures are insen-
sitive to these parameters. The identifications discussed 
have been run as well, including the friction terms at the 
link side; consistent with the literature, the result was that 
the errors were almost invariant, while the variances corre-
sponding to those parameters, computed as in (10), were 
much higher than the rest of the parameters. 

Conclusions
In this article, a reproducible comparison of some of the 
main dynamic identification algorithms of open-chain 
manipulators is reported. The overall objective of the iden-
tification process is to minimize the reconstruction error 
while meeting physical constraints on the identified param-
eters. The dynamic parameters extracted from CAD data 
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Figure 4. The CAD reconstruction errors along the third trajectory. 
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Figure 5. The ULS reconstruction errors along the third trajectory. 
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Figure 8. The CLS-3 reconstruction errors along the third trajectory.
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Figure 7. The CLS-2 reconstruction errors along the third trajectory.
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are physically consistent but fail in providing an acceptable 
reconstruction error. The ULS method guarantees a small 
reconstruction error on the identification trajectories but 
suffers from overfitting and, in general, does not meet the 
physical constraints on the parameters. 

For these reasons, constrained identification algorithms 
were considered. The CLS-1 algorithm explicitly considers 
bounds on the vectors of dynamic parameters; however, 
this does not guarantee that the physical consistency 

property is met. CLS-2 sets constraints on the sign of the 
inertia matrix and on the first moment of mass and outper-
forms CLS-1 concerning the reconstruction error. Finally, 
CLS-3 considers the full set of constraints while generally 
minimizing the reconstruction error. Moreover, the overall 
code used to carry out the comparison of the five algo-
rithms considered in this article is made available to the 
community, together with the dynamic model of the Kino-
va Jaco2 robot.

Table 5. A summary of the results.

CAD ULS CLS-1 CLS-2 CLS-3 

Trajectory w  [Nm] rw w  [Nm] rw w  [Nm] rw w  [Nm] rw w  [Nm] rw

Identification: Traj 1 0.01694 0.39842 0.00302 0.07097 0.01465 0.34454 0.00724 0.17023 0.0031 0.07297 

  Validation: Traj 2 0.01947 0.39431 0.00537 0.10872 0.0169 0.34224 0.00665 0.13477 0.00526 0.10647 

  Validation: Traj 3 0.007 0.43991 0.00213 0.13407 0.00648 0.40725 0.00298 0.1874 0.00203 0.12791 

  Validation: Traj 4 0.00556 0.42289 0.00166 0.12647 0.00505 0.38421 0.00265 0.20172 0.00159 0.1206

  Validation: Traj 5 0.00348 0.41734 0.0009 0.10735 0.0031 0.37147 0.00133 0.15957 0.00089 0.1071

Identification: Traj 2 0.01947 0.39431 0.00292 0.05909 0.01689 0.34222 0.00585 0.11841 0.00307 0.0621

  Validation: Traj 1 0.01694 0.39842 0.00468 0.11017 0.01464 0.3443 0.00797 0.18741 0.00408 0.09599 

  Validation: Traj 3 0.007 0.43991 0.00166 0.10448 0.00648 0.40728 0.00287 0.18031 0.00154 0.09691 

  Validation: Traj 4 0.00556 0.42289 0.0015 0.11404 0.00505 0.3842 0.00256 0.19432 0.00129 0.09794 

  Validation: Traj 5 0.00348 0.41734 0.00078 0.09305 0.0031 0.37148 0.00134 0.16051 0.00071 0.08475 

Identification: Traj 3 0.007 0.43991 0.00143 0.08963 0.00647 0.40677 0.00277 0.17403 0.00144 0.0903

  Validation: Traj 1 0.01694 0.39842 0.00378 0.08884 0.01462 0.3439 0.00781 0.18363 0.0038 0.08928 

  Validation: Traj 2 0.01947 0.39431 0.00328 0.06651 0.01688 0.34183 0.0062 0.12555 0.00326 0.06609 

  Validation: Traj 4 0.00556 0.42289 0.00123 0.09381 0.00505 0.38369 0.00254 0.19269 0.00121 0.09225 

  Validation: Traj 5 0.00348 0.41734 0.00065 0.07827 0.00065 0.07827 0.00133 0.15934 0.00066 0.07852 

Identification: Traj 4 0.00556 0.42289 0.00118 0.08982 0.00505 0.38382 0.00251 0.19105 0.00119 0.09044 

  Validation: Traj 1 0.01694 0.39842 0.00476 0.08842 0.01464 0.34425 0.00783 0.18409 0.00373 0.08766 

  Validation: Traj 2 0.01947 0.39431 0.00329 0.06663 0.01688 0.34195 0.00607 0.12303 0.0033 0.06678 

  Validation: Traj 3 0.007 0.43991 0.00148 0.09291 0.00647 0.40691 0.00281 0.17648 0.00146 0.09193 

  Validation: Traj 5 0.00348 0.41734 0.00066 0.07911 0.0031 0.37138 0.00134 0.16069 0.00066 0.07902 

Identification: Traj 5 0.0048 0.41734 0.00062 0.07412 0.0031 0.37152 0.00132 0.1582 0.00064 0.07676 

  Validation: Traj 1 0.01694 0.39842 0.0053 0.12469 0.01465 0.34457 0.00744 0.17503 0.00372 0.08743 

  Validation: Traj 2 0.01947 0.39431 0.00429 0.08688 0.0169 0.34238 0.00636 0.12886 0.00323 0.0655

  Validation: Traj 3 0.007 0.43991 0.00198 0.12472 0.00648 0.4074 0.00286 0.18003 0.00148 0.09326 

  Validation: Traj 4 0.00556 0.42289 0.0018 0.13693 0.00506 0.38436 0.00259 0.19691 0.00123 0.09333 

Additional Criteria 

Physical  
feasibility (3) 

Yes No No Yes Yes 

Triangle  
inequality (4) 

Yes No No No Yes 

First moment  
(5) or (6)

Yes No Yes Yes Yes 

Cells with a red background indicate the largest error for a specific trajectory; those with a green background indicate the smallest. Traj: trajectory. 
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