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ABSTRACT This paper proposes a novel methodology based on the Genetic Programming (GP) to derive
behavioral models describing the transient evolution of the terminal voltage of a battery. These models
analytically relate the battery voltage to its state of charge, charge/discharge rate, and temperature. Compared
to the popular equivalent circuit-based models, one of the main advantages is the significant reduction of the
effort to produce the experimental dataset required to identify the model parameters. The GP generates
a family of optimal ‘‘candidate’’ analytical models, each associated with suitable metrics that quantify
performance indicators like simplicity and accuracy. The methodology is applied to describe the transient
discharge phase of a Lithium Iron Phosphate (LiFePO4 or LFP) battery under realistic operating conditions,
considering the state-of-charge between 20% and 80%, discharge rates comprised between 0.25C and 1C,
and temperature ranging from 5◦C to 35◦C. The GP provides different solutions that can be chosen by
imposing the desired trade-off between accuracy and simplicity. Two models are selected and validated
against experimental results. The chosen models guarantee a quite low level of the relative root mean square
error (maximum 0.31% and 0.22%, respectively) over the range of analysis.

INDEX TERMS Li-ion batteries, behavioral modeling, genetic programming, multi-objective optimization.

I. INTRODUCTION
Batteries have become a key energy storage technology
in many fields, including e-mobility applications [1], [2].
Lithium (Li-ion) batteries are especially characterized by
a high investment cost compared to other energy storage
technologies (e.g., lead acid or nickel metal hydride batter-
ies). However, their success in the automotive application is
related to high energy density, limited self-discharge, negligi-
ble hysteresis, long life cycle, and lower weight [3]. However,
the battery’s performance is highly influenced by current,
temperature (T), Charge/discharge rate (Crate), and State-
of-Charge (SoC). Regardless of the chosen technology, the
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development of accurate and reliable models represents a
fundamental key in all phases of a battery’s life [4], [5], [6]
in order to:

• drive and optimize its design;
• manage its nominal operating conditions through the
Battery Management System (BMS);

• improve charging/discharging techniques;
• prevent unsafe operating conditions (e.g., overcharging
or over-discharging, which can lead to serious damage
or danger);

• reliably predict its long-term behavior (e.g., estimating
end-of-life and implementing predictive maintenance in
second-life battery applications).

Among all the others, the electro-thermal models play
a special role since they can describe the behavior of the
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battery voltage versus SoC, Crate, and T. The strict correlation
among all battery parameters, such as the voltage, current,
temperature, and SoC, leads to rather complex and multi-
physical models [7].

Given its importance, battery modeling has been given a
large and increasing amount of attention by the scientific
community in the past decades, leading to a large variety
of battery models available in the literature with different
levels of complexity and accuracy. They can be grouped into
three main categories, depending on the physical level of
description.

On the one hand, the electrochemical models describe
in detail the battery in its materials (conductors, elec-
trolytes, etc.) and geometry (electrodes, package shapes,
etc.), and simulate the actual chemical and electrical phenom-
ena involved in it, possibly taking into account environmental
conditions such as the temperature distribution [8], [9]. All
the parameters of such models have a physical meaning as
they are related to the geometry, the physical and chemical
properties of the materials, and so on. The main drawbacks
of these models are the need for deep knowledge of the
device (to set the parameters) and the high computational
cost required when complex systems have to be analyzed
(such as battery packs). On the other hand, the behavioral
models are built from the knowledge (usually given by an
experimental characterization) of the input-output relations
imposed by the battery. In this case, the battery is considered
a ‘‘black box’’, and thus the model parameters do not have
any physical meaning as they are set by the adopted strategy
of the model identification, like the coefficients of a fitting
function.

Behavioral models are based on data-driven methods [10],
and can be analytical [11], stochastic [12], or based on
Machine Learning (ML) [13]. Analytical models usually rely
on a few equations to describe the overall battery properties,
while stochastic models mainly refer to the Markov process,
where one can predict the future of the process based on its
present state but without knowing its full history. The major
drawback of both of these models is the complexity of the
approaches used to derive them. ML is a specific application
of artificial intelligence that allows computers to learn from
data and experience via algorithms and has recently emerged
as a promising modeling approach for batteries [14], [15].
As a major drawback, ML-based models deeply depend on
the availability of large time-consuming data sets.

In the scenario of the behavioral models, there is also a
fourth category of models to which the popular Equivalent
Circuit Models (ECMs) belong: the hybrid models. In this
case, behavioral models are developed based on prearranged
and fixed structures. Indeed, ECMs are associated with a
given equivalent circuit, for instance, a cascade of branches
of resistors and capacitors, with suitable voltage sources. The
single circuit elements can be given a physical meaning, like
in the electrochemical models, but their values are identified
from an input-output characterization of the battery, like

in the behavioral models. These models are very popular
because of their capability to describe the electro-thermal
behavior of the batteries with satisfactory accuracy while
retaining a simple structure [16], [17]. Electrical models
are available for all kinds of batteries, from lead-acid to
Li-ion ones [18]. Depending on the adopted circuital struc-
tures, these models fall into three main classes: Thévenin-,
impedance-, and runtime-based models, each one with some
pros and cons. The Thévenin-basedmodel is the simplest one:
in its most basic form, it uses a series resistor and an RC
parallel network to predict the battery response to transient
load events at a particular SoC, by assuming the Open-Circuit
Voltage VOC (SoC) as a constant [19]. Some enhanced
Thévenin-based models assume variable capacitor instead of
constant VOC (SoC) to represent nonlinear open-circuit volt-
age [20], or include additional nonlinear relationships to take
into account current, temperature, and time dependency [21],
or rely on SPICE-based sources implementing electrochem-
ical equations [21]. An improved ECM model is presented
in [23], where the identification of the model parameters is
fastened by using a genetic algorithm and a least square opti-
mization. However, all these models have some predicting
capability limitations in steady-state and runtime operations.

Impedance-based models realize an AC-equivalent
impedance model of the battery in the frequency domain
using Electrochemical Impedance Spectroscopy (EIS) [24],
[25]. Typically, the resulting ECM parameters are valid
for a specific battery SoC and temperature and need to
be recalibrated during battery operations. However, EIS
measurements can be time-consuming, and recalibration is
sometimes not an affordable solution, especially if the ECM
includes many elements. Moreover, impedance-basedmodels
cannot predict the battery’s DC response or runtime [18].
Finally, runtime-based models use a complex circuit

network to simulate the battery runtime and the DC volt-
age response for a constant discharge current in SPICE-
compatible simulators [26]. Unfortunately, this choice
precludes reliable AC or transient analysis. Whatever its
structure, when an ECM model is needed to perform the
transient analysis of the battery, its calibration must be
done through severely time-consuming techniques (like those
summarized in Section II) that require a large number of
experimental tests in different operating conditions, e.g.,
in terms of the amplitude of the charging/discharging current
and temperature.

In this paper, we propose a new approach to identify suit-
able behavioral models that describe the transient evolution
of the battery terminal voltage as a function of SoC, Crate,
and temperature (T) through analytical relations. The models
are derived by using the Genetic Programming (GP) [27],
which has been recently proposed in the technical literature
to identify behavioral models in other realistic applications,
such as for power devices and power conversion systems [28],
[29], [30]. To the best of the Authors’ knowledge, this kind of
modeling approach has never been applied to batteries. The
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case study analyzed here refers to Lithium-Iron-Phosphate
(LiFePO4 or LFP) batteries and their discharge transient. The
procedure, however, is general and can be applied to other
kinds of batteries or operating conditions.

The paper is organized as follows. Section II provides
details on the experimental characterization and the adopted
dataset. Section III explains the main concepts of GP and
its application to the said dataset, resulting in several possi-
ble behavioral analytical models. Based on their associated
metrics, two GP-based models are selected and discussed
in detail, as they exhibit opposite characteristics in terms of
the ‘‘accuracy’’ and ‘‘simplicity’’ of the resulting analytical
functions. Section IV presents the final applicability and reli-
ability proof of the GP-based models selected in Section III,
and offers a notable comparison of the performances achieved
by the GP-based modeling approach and some popular ML
algorithms. Finally, Section V draws conclusions and pro-
vides ideas for future works.

II. EXPERIMENTAL CHARACTERIZATION AND
GENERATION OF THE MODELING DATASETS
This Section describes the experimental test procedures suit-
able to generate the datasets to be used for the identification
and confirmation of the proposedmodels. The case study ana-
lyzed here refers to a 90-Ah LFP battery from EVE Energy
Co., Ltd [31], and the final goal is to obtain an analytical
model able to describe the behavior of its terminal voltage
during a discharging phase as a function of SoC, Crate, and
T. First, a quick overview is given of the standard character-
ization procedure that would be requested to identify a zero
or higher orders ECM. Then, the procedure to generate the
datasets needed to identify the behavioral models by using
the GP-based modeling approach is described in detail, along
with a discussion of the obtained characterization results.

A. BATTERY CHARACTERIZATION PROCEDURE FOR THE
IDENTIFICATION OF AN ECM
According to the IEC standards and the main testing manuals
for battery systems [32], [33], [34], static and dynamic tests
need to be conducted for a battery to correctly calibrate its
ECM and thus reproduce its electro-thermal behavior. As for
static testing, the multi-rate capacity characterization is usu-
ally adopted for evaluating the actual usable capacity of the
battery under test and the related terminal voltage characteris-
tics in different operating conditions of Crate and T. In detail,
once these conditions are set, multiple full-discharge tests
are performed for each combination of Crate and T starting
from a fully charged battery. The multi-rate characterization
is also called ‘‘static’’ because the discharging current for the
battery under test during each complete discharge is fixed
and constant throughout the entire test and does not involve
any dynamic profile. Note that from a static characterization
test, it would only be possible to identify a zero-order ECM,
consisting of the battery’s series resistance and open circuit
voltage, the latter estimated through an additional discharge
cycle performed at low Crate values [17]. An example of the

application of a single test within the static characterization
procedure for the 90-Ah LFP battery under study is provided
in Figure 1(a) and Figure 1(d), which show the current profile
and the related battery voltage response for a single full
discharge at a constant Crate of 1C and a temperature of 25◦C.

However, dynamic tests, such as the basic pulsed test or the
widely adoptedHybrid Pulse Power Characterization (HPPC)
[34], are needed for calibrating first or higher-order ECMs.
These procedures are both based on the evaluation of the
terminal voltage response during repetitive discharging and
rest phases, which are alternatively operated at different SoC
intervals. The basic pulsed test applied to the battery under
study results in the current and voltage profiles shown in
Figure 1(b) and Figure 1 (e), respectively. It starts with a
fully charged (discharged) battery and initially discharges
(charges) the battery at a fixedCrate (here 1C) and temperature
(here 25◦C) until an SoC decrease (increase) equal to the
desired SoC step (here 10%) is reached. Then an adequate
rest time is performed for extinguishing the electrochemical
transients in the battery, before starting with the next dis-
charging (charging) phase. The HPPC procedure also starts
with a fully charged (discharge) battery but relies on single
discharge and charge current pulses of 10 seconds, each one
followed by a short relaxation time. The resulting current and
voltage profiles shown in Figure 1(c) and Figure 1(f) refer to
the same Crate, SoC step and T as in the basic pulsed test.
Note that all the testing times for the different procedures
shown in Figure 1 are expressed in arbitrary units (a.u.) due
to their strong variability with the operating conditions in
terms of Crate and relaxation times. Due to the need for
relaxation times between two consecutive discharging SoC
steps, the dynamic tests require a huge amount of time for
a specific operating condition only (1C, 25◦C). Therefore,
considering that the generation of a suitable dataset would
require testing a significant number of conditions in (Crate, T),
it turns out that pulsed characterizations are time-consuming.
For example, assuming a rest time of two hours between
two consecutive discharges of 10% SoC, the basic pulse test
requires an overall time of 20 hours plus the time needed
for completely discharging the battery at the desired Crate.
On the other hand, considering the typical HPPC procedure
illustrated in [34], a common testing time of about 23 hours
is requested regardless of the desired discharging Crate. Con-
versely, a single static test only requires the time needed for
completely discharging the battery at the desired Crate. It is
important to highlight that all these testing times refer to a
single Crate and temperature condition for the battery under
test.

B. BATTERY CHARACTERIZATION PROCEDURE FOR THE
IDENTIFICATION OF THE PROPOSED BEHAVIORAL MODEL
The dataset needed to identify the proposed behavioral
model can be generated by using only the static proce-
dures described above, therefore with a huge reduction of
the experimental characterization effort. Specifically, a static
multi-rate test procedure is adopted, and herein discussed,
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FIGURE 1. Current profiles for (a) static, (b) basic pulsed and (c) HPPC test procedures, with the related voltage responses (d, e, f).

to perform the characterization in the discharging mode of
the 90-Ah LFP battery, whose main specifications are sum-
marized in Table 1.

As previously said, the battery terminal voltage VB
depends on the given values of SoC, Crate, and T.Accordingly,
reference value ranges for these quantities must be selected to
build a consistent modeling dataset.

As for the SoC, this quantity value is calculated using the
Coulomb counting method, which integrates the discharging
(charging) current over time [35]. A discretization proce-
dure is consequently required to limit the number of SoC
values comprised in a given reference range. Additionally,
it is worth highlighting that a discharging–charging rate com-
prised between 20% and 80% of SoC represents the SoC area
within which a Li-ion battery should operate [36]. In fact,
batteries operating between 20% and 80% of SoC present
an excellent cycling performance with essentially reduced
capacity degradation [37], [38]. As a result, we take into
account only SoC values with steps of 2.5% in the range from
20 % to 80 % (namely, 25 SoC values).

As for the Crate, we consider four values: 0.25C, 0.33C,
0.5C, and 1C. Note that, although LFP batteries usually allow
charging and discharging operations at higher Crate, the ones
chosen for this paper are limited to a maximum continuous
discharging current of 1C, as declared by the manufacturer.

As for the temperature, we consider the values: 5◦C, 15◦C,
25◦C and 35◦C. Note that, to validate the proposed model-
ing approach in a temperature range as close as possible to
common real-world applications, the dataset was specifically
tailored between 5◦C and 35◦C. Indeed, temperatures outside
this range significantly contribute to accelerate degradation
phenomena, potentially impacting the long-term safety and
operation of the battery.

A picture and a schematic representation of the experi-
mental setup implemented and adopted for performing the
static multi-rate test procedure are respectively shown in

Figure 2(a) and Figure 2(b). The SM70-CP-450 Delta Elek-
tronika bidirectional power supply is adopted for performing
the static characterization, which integrates both the power
supply for charging and the electronic load for discharg-
ing in a single unit, also resulting in less space-consuming
and control complexity for the experimental setup. More-
over, considering its voltage and current resolutions, this
bidirectional power supply also operates as a measurement
instrument. In detail, the sensing features of the bidirectional
power supply are enabled and the related sensing wires are
directly connected to the battery terminals, to correctly mea-
sure the battery voltage during the experimental test and
compensate for the voltage drop on the power lines due to the
flow of the charging/discharging current. A normally-open
contactor (model EVC250 by TE Connectivity), connected
to the positive electrical interconnection between the bidi-
rectional power supply and the battery, is used to ensure its
complete disconnection during the rest time between two con-
secutive charging and discharging operations, thus resulting
in a correct open circuit condition for the battery under test.
The opening and closing of this contactor are controlled by
the dedicated MX100TP Aim-TTi power supply. Moreover,
a thermal management system (TMS) based on two CP-
110 Peltier junction devices from TE Technology is adopted
within the experimental setup, as shown in Figure 2(c),
to maintain the temperature of the battery surface at the
fixed and desired value during each test within the static
characterization. A custom-made software is implemented
for managing remotely both the bidirectional and the external
power supply, thus properly reproducing the specific current
profile while minimizing the acquisition time, as well as
setting the temperature reference for the TMS. According to
the experimental setup just described, the static multi-rate test
procedure is operated to achieve the characteristic curves of
the battery terminal voltage in discharging mode for all the
combinations of Crate (4 values) and T (4 values) previously
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FIGURE 2. (a) Picture of the experimental setup implemented for battery characterization purposes. (b) Schematic representation of
the experimental setup. (c) Detail of the disassembled thermal management system, based on two Peltier junction devices, with the
battery under test.

TABLE 1. Specifications of the 90-Ah LFP battery from EVE energy [31].

illustrated, resulting in an overall number of 16 discharging
characteristic curves. In detail, the operations illustrated in
Table 2 are executed sequentially for each test.

Then, given all the 16 experimental battery terminal volt-
age characteristics collected during the characterization, the
SoC discretization approach previously described is carried
out to achieve the final modeling dataset, comprised of
400 overall operating conditions, namely combinations of the
SoC (25 values), Crate (4 values) and T (4 values) considered
for the static multi-rate test procedure. All the experimental
settings adopted for the GP-based modeling approach are
summarized in Table 3.

Finally, the standard measurement uncertainty was esti-
mated, based on the bidirectional power supply specifi-
cations. In particular, concerning the operating conditions
defined and reported in Table 3, the expanded measurement
uncertainty was calculated with a confidence level of about
98%, being the measured voltage associated with a uniform
probability distribution. Accordingly, the measured battery
voltage can be represented by a coverage interval with a con-
fidence interval of about 98%, as shown later in Section IV
(see Figure 9).

III. BEHAVIORAL MODELING BASED ON
MULTI-OBJECTIVE GENETIC PROGRAMMING
This Section discusses the GP-based approach proposed to
identify optimal behavioral models for the battery terminal
voltage, given its SoC, Crate, and T values. Firstly, a brief
introduction to the GP is provided, along with a description of
the specific goal for the given case study and a reference to the
multi-objective optimization approach adopted to improve
the performance of the resulting GP solutions. Then, after
some preliminary considerations on the reference datasets,
optimal GP-based behavioral models are identified, based on
absolute error metrics (e.g., RMS, mean, standard deviation,
and maximum value of the absolute error values).
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TABLE 2. Sequence of operations performed for each test within the static characterization.

TABLE 3. Adopted settings for GP-based modeling.

A. MULTI-OBJECTIVE GENETIC PROGRAMMING: SETUP
PARAMETERS AND OBJECTIVES FUNCTIONS
The GP is an evolutionary algorithm where the population is
composed of models. Each model is a mathematical function
(symbolized by ‘‘f ’’) that can be represented as a ‘‘tree’’:
its internal nodes encode algebraic operators (+, −, ×, ÷)
or basic analytic functions (e.g., power, sine, exponential,
logarithm, etc.), while its external nodes, also referred to as
leaves, simply encode inputs or constants [27]. During its
evolution, the GP applies the Darwinian principle of survival
of the fittest, by applying classical genetic operations such
as selection, cross-over, mutation, and elitism, to create a
new offspring population from the current population of mod-
els. The effectiveness of these genetic operations has been
extensively discussed in the literature [39], [40], and depends
on the occurrence percentages of each of them. The typical
flowchart of the GP is shown in [41], where the representation
of a numeric expression using a tree structure is also provided.

Many GP software tools have been developed over the
last thirty years [42]. Among them, several open-source
tools are coded in MATLAB®, like GPTIPS2 [43] or
GPLAB [43], mainly intended for symbolic regression prob-
lems, or CGP4MATLAB [44], specially developed for signal
processing and image processing problems. Other popular
GP tools are developed in Python, like GPLEARN [45]
and PyGEP [46], or in Java, like GEP4J [47]. All these
open-source tools are quite versatile and easily extendable,
given a minimum knowledge of MATLAB, Python, or Java
programming environments. Depending on the nature of the
problem, many setup parameters can be configured and opti-
mized differently. Additional multi-objective optimization

tasks could be required, which are usually not implemented in
basic GP codes. Accordingly, starting from such open-source
GP tools, it is quite common to customize a GP code for a
given application, with respect to multiple goals or objective
functions. This is the case of this work, where GPTIPS2 is
adopted as the reference GP software tool, while a dedicated
multi-objective optimization infrastructure is built on top of
it.

The goal of the proposed GP-based approach is to identify
a behavioral (‘‘bhv’’) analytical formula expressing the bat-
tery terminal voltage VB,bhv as a mathematical function f of
SoC, Crate, and temperature, according to (1):

VB,bhv = f [SoC , Crate , u1, . . . , un] (1)

where u = [u1, u2, . . . , un] is a vector of numerical coef-
ficients (determined using nonlinear least square methods,
as discussed in Appendix Section B), each one in turn
expressed as a function of the temperature T (namely, as u(T)
= [u1(T), u2(T), . . . , un(T)]). The number of these numerical
coefficients can vary for different functions f . Generally
speaking, the GP allows ‘‘discovering’’ a simple and accurate
function f , such that the VB,bhv value returned by (1) is as
close as possible to the true battery terminal voltage value,
for each condition of the training dataset. The main concept
embedded in the canonic expression (1) is that the SoC and
the Crate have a major effect on the VB,bhv value so that they
appear as explicit variables in f . Conversely, the temperature
T has a minor effect on VB, so that it simply influences the u
coefficients of the function f . In other words, the SoC and the
Crate are adopted as primary variables, and the temperature
as a secondary variable.

For the case study under discussion, each GP individual
represents a single-gene model, where a bias coefficient and
a scaling coefficient can be forced as additive and multi-
plicative coefficients by the end-user when launching the
GP, or can be let evolve freely during the GP generations.
Additionally, the GP was configured based on the following
assumptions:

- the best 1% of the GP population is subject to elitism
and is directly copied into the next generation;
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- the k-Selection Tournament with k = 4 is adopted,
so that 4 individuals are randomly selected from the
entire population: they compete against each other, and
the individual with the highest fitness wins and is chosen
as one of the two next-generation parents;

- the remaining part of the population not subject to
elitism is obtained through crossover and mutation oper-
ations, which occur with 80% and 20% probability,
respectively.

Three objective functions are identified and adopted for the
behavioral modeling of this case study: the error between the
outputs of the model and the training dataset, the complexity
of the resultant model f , and the monotonicity of its u coeffi-
cients to temperature values. Accordingly, a multi-objective
optimization problem is set up [48], whose fitness function
FFIT can be expressed as the weighted sum given in (2):

FFIT= α Frms+β Fcmp+γ Fmnt (2)

where α, β, and γ are weighting coefficients and Frms, Fcmp,
and Fmnt are the objective functions for the RMS error, the
model complexity, and the coefficients monotonicity, respec-
tively. The weighting coefficients − whose value influences
the presence of each GP model in the Pareto front [48] −

are chosen so that α + β + γ = 1. The objective functions
Frms, Fcmp, and Fmnt, described in more detail in Appendix
Section B, are given in the range [0, 1].

B. GENETIC PROGRAMMING: DATASET, METRICS, AND
RESULTS
The 90-Ah LPF battery dataset described in Section II was
adopted for the GP execution. Similarly to all algorithms
based on data-driven predictions or decisions, these input
data are used to build the model and are usually divided into
multiple data sets. In particular, three datasets are commonly
used in different stages of the model definition: training,
validation, and test datasets. The training dataset consists of
the data samples used to identify the model during the GP
evolution. Then, the validation dataset is used to provide an
unbiased assessment of howwell amodel fits the training data
set, while still tuning the model’s hyper-parameters. Finally,
the test dataset consists of data samples used to provide an
unbiased evaluation of the final discovered model, identi-
fied among all the models discovered thanks to the training
dataset. For this battery case study, a total of 400 operating
conditions, given as a combination of the SoC, Crate, and
temperature values listed in Table 3, were considered as GP
inputs. A set of 40 conditions (10% of the dataset) was ran-
domly selected to create a test dataset Tts, common to all GP
runs. Then, for each run, the remaining 360 conditions (90%
of the dataset) were randomly divided into 288 conditions
for the training dataset Ttr (80% of the remaining dataset)
and 72 conditions for the validation dataset Tvs (20% of the
remaining dataset).

Different fitness weighting coefficient setups were chosen
(see Table 4 ), to explore solutions with the prevalence of

TABLE 4. Fitness weighting coefficients and bias/scaling coefficients.

different objective functions. Among the α, β, and γ coef-
ficients, a higher weight was assigned to the RMS error
objective function Frms, to guarantee the occurrence of more
individuals (models) with lowRMS error. This choice is taken
based on the preliminary analysis of the experimental data,
evidencing an inherent smooth behavior of the battery voltage
with respect to SoC, Crate, and T, which fairly yields simple
functions f and monotonic u coefficients. Furthermore, the
GP was set up with different combinations of bias and scaling
coefficients, as shown in Table 4.

The GP was executed over 50 runs per each setup included
in Table 4, with a population of 100 models, evolving over
50 generations for each run. After every 10 generations,
the RMS error of the best model on both the Ttr and Tvs
datasets was evaluated. If the RMS error on the Tvs dataset
is significantly worse than that on the Ttr dataset, then over-
fitting would be detected. In our case, the RMS errors on
the Tvs and Ttr datasets were almost similar across gener-
ations, indicating that no overfitting was observed. At the
end of each run, all GP models were pre-selected based
on RMS error achieved on the Ttr dataset. An RMS error
lower than 10 mV was imposed, which aligns with the level
of accuracy required for modeling this type of battery and
the measurement uncertainties associated with the adopted
characterization method [50], as discussed in detail later (see
Fig. 9).
The GP ended all the runs and compiled a list of suitable

solutions (i.e., analytical functions), which are all poten-
tial candidates for the problem we are investigating, despite
their different values of fitness. Among these solutions, all
non-dominated models in the (Fcmp, Frms, Fmnt) domains
were considered, then sorted based on their FFIT values and
labeled with increasing numbers (in our case, from #1 up to
#16). These models are all listed in Table 5, along with their
values of FFIT, Fcmp, Frms, and Fmnt. It is worth noting that
all u coefficients are purely numerical at this stage and were
evaluated using a nonlinear least square optimizationmethod,
as discussed in Appendix, Section B.

For all these GP-based models, Table 6 summarizes the
mean (µerr), standard deviation (σerr), maximum (errmax),
and RMS values of the absolute error over both the training
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TABLE 5. Expressions of best models obtained from GP.

dataset Ttr and the test dataset Tts. For each column, a color
scale from blue to red is adopted in Table 6 to highlight the
minimum andmaximumvalues of each quantity, respectively.
All these models have a maximum RMS value of the abso-
lute error lower than 9.5 mV over the training dataset and
9.8 mV over the test dataset. Among them, some models
can be preferred to others. For example, models #1 and #2
are characterized by the lowest value of FFIT (namely, the
best trade-off in terms of the three objective functions) and
have the clear advantage of relying on the minimum number
of u coefficients (only two numerical coefficients, u1 and
u2). Both are performing better on the test dataset (data not
explored by the GP during its evolution), where the minimum
errmax value is achieved. Conversely, models with a number
of u coefficients greater than five show very good metrics
on the training dataset (e.g., models #5, #11, #12, #13, #14,
and #16) and an acceptable compromise on the test dataset.
Model #15 (with eight numerical coefficients) instead shows
excellent performance on the training dataset against the
highest values of σerr, errmax and RMS of the entire test
dataset. A good compromise is achieved with model #5, with
an average fitness value FFIT and quite low values of µerr,
σerr and RMS.
Therefore, in the following, we consider the comparison

between:
- model #1 (i.e., the simplest model, with the minimum
number of coefficients), with the best fitness value FFIT,
the highest RMS value (Frms = 0.003) but a quite

low complexity value (Fcmp = 0.056), and a negligible
monotonicity factor (Fmon = 0);

- model #5 (i.e., the most complex model, with the maxi-
mum number of coefficients), with a higher fitness value
FFIT, the lowest RMS value (Frms = 0.0013) but the
highest complexity value (Fcmp = 0.389), and a quite
low level of monotonicity factor (Fmon = 0.0008).

It is worth noting that the lower the monotonicity factor,
the higher the probability of easily expressing the u coef-
ficients as a function of the temperature T. For example,
models #6 and #16 could both appear as good compromising
solutions, with a reduced number of coefficients with respect
to model #5 and better error metrics with respect to model
#1. However, models #6 and #16 have a quite high level of
monotonicity factor, which can compromise the real chance
of representing the u coefficients as a temperature-dependent
function (as clarified in Section IV).

Figures 3 and 4 show the absolute error Ea =

VB,exp−VB,bhv between the experimental terminal battery
voltage given into the GP dataset and the corresponding volt-
age predicted by using the GPmodels #1 and #5, respectively.
In this analysis, we consider all the experimental samples
adopted in both the training and validation datasets (circle
markers) and the test dataset (star markers). Overall, these
results confirm the good level of accuracy of behavioral
model #1, especially for intermediate values of the SoC and
lower values of Crate. The highest error values are achieved at
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TABLE 6. Metrics values for selected GP models.

FIGURE 3. Absolute error between the experimental dataset and the
battery terminal voltage predicted by using the GP model #1: circle
markers = training dataset samples, star markers = test dataset samples.
For each temperature value and Crate subset (Crate =0.25, Crate =0.33,
Crate =0.50, Crate =1), data samples are sorted from SoC = 80% to SoC =

20%.

lower values of the SoC (e.g., model #1 realizes the highest
error errmax = 43.5 mV at Crate = 0.25, SoC = 20%, and
T = 5◦C). Conversely, the reliability and good accuracy of
behavioral model #5 are verified for almost all values of SoC,
Crate, and temperature (e.g., at Crate = 0.25, SoC = 20%, and
T = 5◦C, the behavioral model #5 realizes the highest error
errmax = 38.9 mV at Crate = 1, SoC = 20%, and T = 15◦C).
To summarize, model #1 and model #5 respectively realize a
maximum relative RMS error of 0.31% and 0.22% over the
training and test datasets, thus both ensuring a good level of
accuracy [51].

FIGURE 4. Absolute error between the experimental dataset and the
battery terminal voltage predicted by using the GP model #5: circle
markers = training dataset samples, star markers = test dataset samples.
For each temperature value and Crate subset (Crate =0.25, Crate =0.33,
Crate =0.50, Crate =1), data samples are sorted from SoC = 80% to SoC =

20%.

IV. FINAL RELIABILITY PROOF AND COMPARISONS
A. GP-BASED MODELING RELIABILITY
This Section aims to confirm the applicability and reliability
of the proposed GP-based models in the whole considered
range of investigation for the SoC, Crate, and T parameters.
For each given value of temperature T = {5, 15, 25, 35} ◦C,
the numerical coefficients uwere determined by the GP using
a nonlinear least squares optimization method (see Appendix,
Section B). This process allows us to obtain the VB,bhv versus
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FIGURE 5. Battery terminal voltage experimental values (circle markers = training dataset samples, star markers = test
dataset samples), and results based on model #1 with constant coefficients u (continuous lines).

FIGURE 6. Battery terminal voltage experimental values (circle markers = training dataset samples, star markers = test
dataset samples), and results based on model #5 with constant coefficients u (continuous lines).

SoC characteristics for the given values of Crate and SoC.
In fact, in the previous analysis, only 25 SoC values for each
Crate value were considered, ranging from SoC = 20% up to
SoC = 80% with steps of 2.5% (see Figures 3 and 4).
Figures 5 and 6 show the fitting of the battery terminal volt-

age (continuous lines) for any SoC values ranging from 20%
to 80%, asmodeled bymodels #1 and #5. These are compared
against all experimental samples from the training and valida-
tion datasets (circle markers) and test dataset (star markers).
Both models accurately predict the battery terminal voltage
trend for any SoC value within the original dataset. Specifi-
cally, model #1 effectively predicts the battery terminal volt-
age behavior for intermediate SoC values, although it shows
a larger error at the lowest SoC values (the voltage scales in
Figure 5 have been adjusted for clarity). In contrast, model
#5 accurately follows the trend of experimental data samples
across various SoC, Crate, and temperature conditions.

As an additional reliability proof of the proposed approach,
the GP-based models were also verified for Crate and T values
included in the original range of definition, but not in the
adopted GP dataset. To this end, the trend of coefficients u
with respect to T was determined. The plots in Figure 7 show
the coefficients u1 and u2 for T= {5, 15, 25, 35}◦C (red dots),
and the coefficient trend u1(T) and u2(T) for model #1. This
trend can be expressed as in (3)

ui(T) = ci1 T3+ci2 T2+ci3 T+ci4 (3)

for i = {1, 2} and coefficients ci1, . . . , ci4 listed in Table 7.
Similarly, the plots in Figure 8 show the coefficient values

u1, . . . , u9 for T = {5, 15, 25, 35}◦C (red dots), and the
coefficient trend u1(T), . . . , u9(T) for model #5. Again, this
coefficient trend can be expressed as in (3) for i= {1, . . . , 9},
given the numeric coefficients ci1, . . . , ci4 listed in Table 8.
Accordingly, model #1 and model #5 with their coefficients
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FIGURE 7. Coefficients values u1 and u2 for T = {5, 15, 25, 35}◦C (red dots), and
coefficients trend u1(T) and u2(T) for the GP model #1.

FIGURE 8. Coefficient values u1, . . . , u9 for T = {5, 15, 25, 35}◦C (red dots), and coefficient trend u1(T), . . . , u9(T) for
the GP model #5.

trend (3) can be used to obtain the battery terminal voltage for
any SoC values from 20% to 80%, Crate values from 0.25 to 1,
and temperature values from 5◦C to 35◦C.
Note that some of the previous metrics given in Table 6 can

varywhenmodel #1 andmodel #5 are usedwith ui(T). Table 9
lists the new resulting metrics for the original dataset. In this
case, the new metrics are quite similar to those obtained with
purely numerical coefficients u identified by the GP listed
in Table 6. This is mainly due to the monotonic trend of
the numerical coefficients u, which can easily be fitted with
analytical functions.

As a final endorsement step, the experimental setup
adopted for the previous datasets was adopted to perform
a new characterization of the same 90-Ah LFP battery in
discharging mode. For Crate = 0.6C and T = 10◦C, over-
all 55500 SoC values ranging from 20% to 80% were
collected. Figure 9 shows the error between this new experi-
mental battery terminal voltage dataset and the one predicted
by using GP model #1 (blue line) and GP model #5 (red
line) along with their coefficient trend u(T). The dashed
black lines represent the measurement uncertainty that was
calculated with a confidence level of about 98%, as detailed
in Section II. Model #5 predicts the battery terminal voltage
with a maximum absolute error lower than 15 mV, per-
fectly included in the given measurement uncertainty for
Crate = 0.6C and T = 10◦C, and all the SoC values com-
prised between 20% and 80%. Conversely, the absolute error
of model #1 does not always fall into the given measure-
ment uncertainty but still ensures a good prediction of the
battery terminal voltagewith amaximum absolute error lower
than 20 mV.

TABLE 7. Coefficient values for the behavioral model #1.

TABLE 8. Coefficient values for the behavioral model #5.

B. MACHINE LEARNING VERSUS GENETIC
PROGRAMMING-BASED MODELING APPROACHES
This last paragraph compares the performance of the
GP-basedmodels derived in previous sections with the results
of some of the most popular ML algorithms. Specifically,
we refer to neural networks, linear regressors, and decision
trees, which are well-known ML algorithms commonly used
for their capability to create interpretable models [52]. Below,
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TABLE 9. New metrics values for selected GP models, when coefficients
trend (3) and values given in Table 7 and 8 are adopted.

FIGURE 9. Absolute error between the experimental battery terminal
voltage for Crate = 0.6C and T = 10◦C and the one predicted by using
model #1 (blue line) and model #5 (red line) along with coefficients u(T).

we provide a brief overview of theML algorithms used for the
comparison, all implemented through the SciKit library [53]
and applied to the same datasets described in Section III-B:

• theMulti-Layer Perceptron (MLP) regressor [54], which
stands out for deep learning capabilities, with insights
into complex patterns thanks to its layered architecture;

• the Cat-Boost (CBO) regressor [55], which allows pre-
dicting continuous data using decision trees;

• the Lasso (LAS) regressor [56], which is effective in
feature selection, simplifying models, and enhancing
their interpretability.

Table 10 shows the performance comparison of the
GP-based and ML-based modeling approaches. These val-
ues clearly demonstrate the superior performance of the
GP-based models over the ML-based ones. It is worth not-
ing that the minimum amount of data required for good
ML results greatly varies depending on the problem, model
complexity, and data quality. In many scenarios, the cost
of data acquisition can significantly impact modeling feasi-
bility. An empirical approach, starting with a small dataset,
gradually increasing its size, and continuously evaluating
model performance, is often the only way to determine the
minimum data volume needed to achieve satisfactory out-
comes. Specialized techniques, like regularization and data
augmentation, can improve the performance of ML-based
modeling approaches. Given the constraints of battery charac-
terization processes and the need for a significant reduction in

TABLE 10. Metrics For ML-based and GP-based modeling approaches
over the testing dataset.

experimental effort (see Section II), the GP-based modeling
approach represents a winning strategy for the behavioral
modeling of Li-ion batteries.

Despite their different levels of complexity, the two GP
models analyzed in the previous sections are both reliable
analytical models. In a ‘‘direct problem,’’ they can be simi-
larly implemented into a BMS to predict the battery terminal
voltage. The level of complexity can be increased, and all
constraints on the coefficients released, if the ultimate goal is
to achieve higher accuracy. However, a powerful aspect of the
GP analytical representation lies in its reversibility, allowing
it to be used in an ‘‘inverse problem,’’ such as optimization or
uncertainty analysis during the design phase. For these pur-
poses, simpler analytical models with monotonic coefficients
are of considerable added value.

V. CONCLUSION AND FUTURE WORKS
The paper proposes a novel methodology to derive analytical
behavioral models for batteries using Genetic Programming
(GP). Specifically, a 90-Ah Lithium Iron Phosphate (LFP)
battery is modeled with the scope of describing its termi-
nal voltage during a discharge phase as a function of the
parameters State-of-Charge (SoC), charging/discharging rate
(Crate), and temperature (T), under realistic operating condi-
tions: SoC between 20% and 80%, Crate between 0.25C and
1.0C, and T between +5◦C and +35◦C. The methodology
generates a variety of analytical models, each evaluated with
metrics to select the final model based on a desired trade-off
between accuracy and complexity. Two models of varying
complexity and accuracy are extensively discussed and val-
idated against experimental results, demonstrating maximum
relative root mean square error values of 0.31% and 0.22%
over the reference dataset, respectively.

The main merits of the new proposed approach are sum-
marized as follows.

• The GP effectively identifies suitable behavioral models
that describe the transient evolution of the battery ter-
minal voltage as a function of SoC, Crate, and T. The
modeling approach is versatile and can accommodate
various types of datasets, including those incorporating
environmental factors and aging dependencies.
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• Only a few discharging curves obtained from full-
discharge static characterization are required to generate
a sufficient dataset for the GP.

• The GP-based models demonstrate high accuracy, per-
forming well within the measurement uncertainties
associated with the reference valuesof SoC, Crate,
and T.

Future work will be devoted to quantifying the advantages
of this methodology over the existing modeling approaches,
especially those relying on the popular Equivalent Circuit
Models (ECMs). The robustness of the GP approach will also
be tested on different types of batteries, with special emphasis
on battery sizes (cylindrical, pouch) and chemistries, e.g.
Nickel-Manganese-Cobalt Oxide (NMC) and Nickel-Cobalt-
Aluminum Oxide (NCA).

APPENDIX
GP SETTINGS AND MULTI-OBJECTIVE OPTIMIZATION
As mentioned in Section III, the goal of our GP is to express
the battery terminal voltage VB,bhv as a function of SoC, Crate,
and temperature, according to (1). To evaluate the ‘‘quality’’
of each model discovered by the GP, three objective functions
were adopted: the error between the outputs of the discov-
ered model and the training data (evaluated by the objective
function Frms), the complexity of the model (evaluated by
the objective function Fcmp), and the monotonicity of its u
coefficients with respect to Crate (evaluated by the objective
function Fmnt). This results in a multi-objective optimization
problem, whose fitness function FFIT was expressed as the
weighted sum given in (2). This Appendix aims to provide
some clarifications on some GP settings (e.g., how the GP
operators are set) and on the objective functions Fcmp, Fcmp
and Fmnt.

A. GP SETTINGS
Table 11 summarizes the GP settings andmain parameter val-
ues. Table 12 shows the elements of the terminal set (external
nodes) and non-terminal set (internal nodes) used by the GP
for models’ generation. In this paper, the external nodes and
internal nodes were assigned different complexity factors,
with lower complexity factors given to the elements of the
terminal set, to limit the vertical development of the models
(i.e., involved functions of functions).

Then, the complexity cf of a model was calculated as
follows:

- each external node (input or coefficient) implies a
0.8 additive contribution to the overall complexity;

- each internal node implies an additive contribution to
complexity, depending on the type of algebraic operator
or basic function it implements;

- each internal node implies an extra additive contribution
equal to the product of the complexity of the function
and its argument, with different complexities for the
function if the argument is an external or an internal
node.

TABLE 11. GP settings and parameters.

All these choices limit the so-called bloat phe-
nomenon [57], with models resulting in involved functions
of functions or with many operations on simple functions.

B. GP OBJECTIVE FUNCTIONS
1) MODEL ERROR Frms

Each element ui ( i = 1,. . . , n) of the coefficients vector u
was obtained by processing the m values uij ( j = 1, . . . , m),
calculated using the Levenberg-Marquardt Non-Linear Least
Square (NLLS) optimization method [58], over the m-size of
the secondary variable data vector. In particular, for each j =
1, . . . , m, the NLLS method provides the optimal values of
each element uij minimizing the relative RMS error between
the output values of the training dataset and those predicted
by the model.

For example, given model #5 discussed in Section III,
we have n= 9 andm= 4, for a training dataset length of pTr =
288. Given the numerical coefficients u, the global accuracy
of each GPmodel must be estimated over the training dataset,
by calculating the objective function for the relative RMS
error as given in (4):

Frms =
1
100

√√√√ 1
pTr

pTr∑
k=1

(
VB,k-VB,bhv,k

VB,k

)2

(4)

2) MODEL COMPLEXITY Fcmp

There are many ways to classify the complexity of a model.
The most common approach is to simply consider the depth
and number of nodes that make up the tree. In this paper,
the elements of the external nodes and internal nodes were
assigned different complexity factors, as detailed in Table 12.
The global complexity cf of each constructed GP model was
estimated accordingly (see Appendix A). The normalized
complexity objective function Fcmp is then given by (5):

Fcmp =
cf − cf, min

cf, max − cf, min
(5)

where cf is the complexity factor value of a given model
function, and cf,min = 7.5 and cf,max = 80 are the minimum
and maximum levels of complexity, specifically identified
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TABLE 12. GP external and internal node complexities.

for the case under study after some preliminary runs of
the GP. These coefficients, like all the other assumptions
for the configuration setup of the GP (e.g., the setting and
parameters listed in Tables 11 and 12) can all be the object
of a further level of optimization, as it usually happens for
evolutionary algorithms intended for solving multi-objective
problems [49].

It is worth noting that the function Fcmp refers solely to
the complexity of the model function f and is then associated
with its dependence on the primary variables SoC and Crate
only.

3) MODEL MONOTONICITY Fmnt
The objective function Fmnt expresses a qualitative charac-
teristic of the u coefficients, namely their monotonicity with
respect to temperature values for the case under study, and
is calculated as in (5)-(9), according to the method detailed
in [59]:

Fmnt =
1
k

∑k

i=1
2min

{
X(-),X(+)

}
(6)

where:

X(+)
=

∑m−1

j=1

(
Cratej+1 − Cratej

) u̇(+)
i,j+1 + u̇(+)

i,j

2
(7)

X(-)
=

∑m−1

j=1

(
Cratej+1 − Cratej

) u̇(−)
i,j+1 + u̇(−)

i,j

2
(8)

u̇(+)
i,j = max

(
ui,j − ui,j−1

Cratej − Cratej−1
, 0

)
(9)

u̇(−)
i,j = max

(
ui,j−1 − ui,j

Cratej − Cratej−1
, 0

)
(10)
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