
HIGHER ORDER KINEMATIC ANALYSIS OF LONG-DWELL MECHANISMS 

Chiara Lanni, Giorgio Figliolini, Luciano Tomassi 

University of Cassino and Southern Lazio, Cassino (Fr), Italy 

ABSTRACT 
This paper deals with the higher order kinematic analysis of 

a long-dwell mechanism, which is synthesized by applying the 

dead-points superposition method. In particular, a crank-rocker 

four-bar linkage, a centered slider-crank mechanism, an 

orthogonal Cardan mechanism and an offset slider-rocker 

mechanism, are connected in series to give a crank-driven 10-

bar long dwell mechanism, which kinematic analysis is 

formulated for the first time, up to the sixth-order and thus, 

including velocity, acceleration, jerk, jounce or snap, crackle 

and pop. The proposed formulation was validated by significant 

graphical and numerical results, which show the long dwell-time 

of the output rocker link for a constant angular velocity of the 

driving crank. Other multi-link mechanisms can be assembled in 

different way by using the dead-points superposition method and 

thus, obtaining a long-dwell mechanism. 

Keywords: Higher order kinematic analysis, long dwell 

mechanisms, dead-points superposition method. 

1. INTRODUCTION
The higher-order time derivatives of the position vector are

of great importance in practical engineering, as for designing 

high-speed automatic machines. The jerk, the time rate of change 

of the acceleration, has some typical applications in cams and 

Geneva mechanisms design and analysis [1-4]. 

The indexing mechanisms are used to generate an 

intermittent motion, but in many applications linkages can be 

used for the same purpose. In fact, dwell mechanisms are often 

used in automatic machines to generate intermittent motions 

with a suitable holding position of the output member, but from 

the point of view of the design of the desired movement, the 

kinematic synthesis is more complicated. However, the 

kinematic synthesis of these mechanisms is traditionally 

formulated through two different approaches. The first is the one 

that refers to some important geometric loci of interest, such as 

the inflection circle, the cubic of stationary curvature and the 

Ball point [5-9], in order to obtain a dwell configuration that is 

related to two, three or four infinitesimal displacements, 

respectively. 

The Burmester theory has also been largely used through 

years with the aim of designing dwell and long-dwell 

mechanisms, as reported in [10-15]. 

The second approach is the one that refers to the dead-point 

superposition method, obtained by assembling in series a train of 

linkages at dead-point position [16]. For example, a four-bar 

linkage, a slider-crank/rocker and double-slider mechanisms can 

be used for this purpose, as proposed in [17] and [18]. 

The analysis of the kinematic properties of N-bar long-dwell 

mechanisms, which are synthesized by applying the dead-points 

superposition method, is the main goal of this research activity. 

In particular, several four-bar linkages of any type, but able to 

give dead-points configurations, are assembled in series and 

according to their output rigid body motion, in order to obtain a 

suitable N-bar long-dwell mechanism, with N an even number. 

This analysis is also addressed to design N-bar long-dwell 

mechanisms with assigned dwell-time and kinematic 

characteristics, in terms of number and type of the assembled 

four-bar mechanism with dead point configurations, which can 

be of 4R, 3RP, 2R2P and RPRP types. 

In this paper, the higher order kinematic analysis of a 10-bar 

long-dwell mechanism, which is obtained by assembling in 

series four 4-bar linkages, i.e. a crank-rocker four-bar linkage, a 

centered slider-crank mechanism, an orthogonal Cardan 

mechanism or elliptic trammel and an offset slider-rocker 

mechanism, is formulated up to the sixth-order. In particular, the 

10-bar long-dwell mechanism is driven by the crank of the four-

bar linkage, in order to transmit the motion to the output rocker 

link, which shows a very long dwell time. 

Proceedings of the ASME 2023 
International Design Engineering Technical Conferences and 

Computers and Information in Engineering Conference 
IDETC-CIE2023 

August 20-23, 2023, Boston, Massachusetts 

DETC2023-116699

1 Copyright © 2023 by ASME



 

2. HIGHER ORDER KINEMATIC ANALYSIS 
Referring to the sketch of Fig. 1, the type synthesis of the 

proposed 10-bar long dwell mechanism has been carried out by 

assembling in series four 4-bar linkages and in particular, the 

crank-rocker four-bar mechanism A0ABB0, the slider-crank 

mechanism B0BC, the orthogonal Cardan mechanism CD, the 

offset slider-rocker mechanism DEE0. Of course, this approach 

can be extended to other assembly modes and combinations of 

four-bar linkages of 4R, 3RP, 2R2P and RPRP types by applying 

the dead-points superposition method. 

The planar positions of the fixed revolute joints A0, B0 and 

E0, and the axes of the two prismatic pairs of pistons 6 and 8, are 

given by the angle  1 and the distance A0B0 of length r1, along 

with the distances l and e of E0 by the straight paths of points C 

and D, respectively. The distance of B0 by the prismatic pair axis 

with piston 8 is h and the link lengths are given by ri for i = 1 to 

5, and also for i = 7, 9 and 10. 

Moreover, the driving crank 2 is supposed to be moved with 

a constant angular velocity and  2,  2,  2,  2 and  2 are the 

crank angle and the angular velocity, acceleration, jerk, jounce 

or snap, crackle and pop, respectively. 

The kinematic analysis of the proposed 10-bar long-dwell 

mechanism of Fig. 1 is formulated through four vector-loops, 

which are shown in Fig. 2 for each of the assembled linkages. 

Thus, the following closed-loop equations can be written 

 

2 3 1 4+ +=r r r r      (1) 

04 5 B C+ =r r r       (2) 

7CO' O'D+ =r r r                                (3) 

9 10FD + =e + r r r                              (4) 

 

where vectors ri are expressed by 

 

 cos , sin =r
T

i i i i ir  r      for i = 1 to 5  (5) 

 

 
 

FIGURE.1: 10-BAR LONG-DWELL MECHANISM. 

and for i = 7, 9 and 10, where T indicates the transpose vector, 

while vectors 
0

rB C , rCO'
, rO'D

, and rFD
 are given by 

 

 
0 1 10, sin

T

B C Cr  y  = +r   (6) 

1 10, sin = − − r 
T

CO' Ch r  y    (7) 

 7 7cos , 0
T

O'D r   =r    (8) 

 0,
T

e  =e    (9) 

 0 , 0
T

FD E Dx x  = −r               (10) 

 

where 
0 1 1cos= + Ex l r  in Eq. (10). 

Therefore, the position vectors rB, rC, rD and rE of points B, 

C, D and E can be expressed as 

 

1 1 4 4 1 1 4 4cos cos , sin sin
T

B r  +r  r  +r      =  r  (11) 

1 1 4 4 5 5

1 1 4 4 5 5

cos cos cos ,

         sin sin sin

C

T

r  + r  r  

r  + r  r  

  

  

= +

+ 

r
 (12) 

1 1 7 7 7 7cos cos , sin   = + r
T

D Cr  +r  y r    (13) 

1 1 10 10

1 1 10 10

cos cos ,

         sin sin

 

 

= −

− 

rE

T

r  +l r  

r  + h+e r  
 (14) 

 

where 4, 5 and 7 are the oriented angles of vectors r4, r5 and 

r7, respectively. The position vector rA of point A is equal to r2 

and thus, it is given by Eq. (5) for i = 2. 

Therefore, the kinematic analysis of the proposed 10-bar 

long-dwell mechanism is formulated in the following up to the 

sixth-order, by considering each of the four assembled linkages 

separately, before to obtain the final formulation. 

 

 
 

FIGURE 2: 10-BAR MECHANISM: VECTOR LOOPS. 
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The velocities, accelerations, jerks, snaps, crackles and pops 

of points A, B, C, D and E will be obtained, as function of  2,  

2,  2,  2 and  2 of the driving crank, along with the angular 

velocities  3,  4,  5 and  6, accelerations  3,  4,  5 and  

6, jerks  3  4,  5 and  6, jounces  3,  4,  5 and  6, angular 

crackles  3,  4,  5 and 6 and pops  3,  4,  5 and  6. 
 

2.1 Crank-rocker four-bar linkage 
For the crank-rocker four-bar linkage of Fig. 1 and assuming 

to know the kinematic input data: 2, 2, 2, 2, 2, 2, 2 of the 

driving crank A0A, the kinematic analysis is developed up to the 

sixth order with the aim to obtain angular and linear pop of point 

B. Thus, from the vector-loop equation (1), one has 
 

2 2 2

1

4 2tan


 −
− − +

−

+
=

B B C A

C A
   (15) 

 

where  is equal to 1 according to a suitable assembly mode 

and the coefficients A, B and C are obtained as function of the 

driving crank angle  2 by 

 

( )

1 4 1 2 4 2

1 4 1 2 4 2

2 2 2 2

1 2 4 3 1 2 1 2 1 2

2 cos 2 cos

2 sin 2 sin

2 cos cos sin sin

= r r r r

= r r r r

= r r r r r r

 

 

   

−

−

+ + − − +

A

B

C

   (16) 

 

Moreover, Eq. (1) can be solved with respect to  3 as 

 

1 1 1 4 4 2 2

3

1 1 4 4 2 2

sin sin sin
tan

cos cos cos

r r r

r r r

  


  

− + −
=

+ −
 (17) 

 

From the first time-derivative of Eq. (1), the angular 

velocities  3 and  4 are obtained as function of the driving 

angular velocity  2 and the crank angle  2 by 

 

( )

( )
2 2 3

4 2

4 4 3

sin

sin

 
 

 

−

−

r
=

r
   (18) 

 

( )

( )
2 2 4

3 2

3 4 3

sin

sin

 
 

 

−

−

r
=

r
   (19) 

 

where the angles  3 and  4 are given by Eqs. (17) - (19). 

The velocity vector vB of point B, as first-time derivative of 

Eq. (11), takes the form 

 

 4 4 4 4 4sin , cos T

B r r  = −v    (20) 

 

where  4 and  4 are expressed by the Eqs. (18) – (19) and (15) 

as function of  2 and  2. 

Similarly, by the knowledge of the angular acceleration 2 of 

the driving crank A0A and developing the second-time derivative 

of Eq. (1), the angular accelerations  3 and  4 are given by 

( ) ( )

( )

( )

( )

2

2 2 4 2 2 2 4 2

3

3 4 3

2 2

3 3 4 3 4 4

3 4 3

sin cos

sin

cos
       

sin

r r
=

r

r r

r

     


 

   

 

− − + − +

−

+ − −

−

 (21) 

 

( ) ( )

( )

( )

( )

2

2 2 3 2 2 2 3 2

4

4 4 3

2 2

4 4 4 3 3 3

4 4 3

sin cos

sin

cos
       

sin

r r
=

r

r +r

r

     


 

   

 

− − + − +

−

− −

−

  (22) 

 

and, in turn, the acceleration vector aB of point B is given by 

 
2

4 4 4 4 4 4

2

4 4 4 4 4 4

sin cos ,

           cos sin

B

T

r r

r r

   

   

= − −

− 

a
   (23) 

 

By the angular jerk  2 and developing the third-time 

derivative of Eq. (1), the angular jerks  3 and  4 are given by 

 

( )
1 1 4

3

3 3 4 3

tan

cos tan sin




  
= −

−

A + B

r
  (24) 

 

3 3 3 1

4

4 4

cos

cos

 



=

r + B

r
   (25) 

where  
 

3

1 2 2 2 2 2 2 2 2 2 2

3

3 3 3 3 3 3 3

3

4 4 4 4 4 4 4

sin 3 cos sin

      sin 3 cos

      sin 3 cos

      

    

    

= − − +

+ − +

− +

A r r r

r r

r r

 (26) 

 
3

1 2 2 2 2 2 2 2 2 2 2

3

3 3 3 3 3 3 3

3

4 4 4 4 4 4 4

cos 3 sin cos

       cos 3 sin

       cos 3 sin

      

    

    

= − − + +

− − +

+ +

B r r r

r r

r r

 (27) 

 

as function of the angles  2,  3 and  4, the angular velocities 

2,  3 and  4, the angular accelerations  2,  3 and  4, along 

with the angular jerk  2. 

The jerk vector JB of point B takes the form 

 
3

4 4 4 4 4 4 4 4 4 4

3

4 4 4 4 4 4 4 4 4 4

sin 3 cos sin

cos 3 sin cos
B

r r r

r r r

      

      

 − − +
=  

− − 
J  (28) 

 
as function of the driven angle 4 and the velocity 4, 

acceleration 4 and jerk 4 . 

Thus, supposing to know the angular jounce  2 and 

developing the fourth-time derivative of Eq. (1), the angular 

jounce 3 and  4 takes can be expressed as 
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( )
2 2 4

3

3 3 4 3

tan
   

cos tan sin




  
= −

−

A + B

r
  (29) 

 

3 3 3 2

4

4 4

cos

cos

 



=

r + B

r
               (30) 

where  
 

2 4 2

2 2 2 2 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2 3 3 3 3

4 2

3 3 3 3 3 3 3 3 3 3

2 4 2

4 4 4 4 4 4 4 4 4 4

4 4 4 4

6 sin cos cos

      4 cos sin 6 sin

       + cos cos 4 cos

      6 sin cos cos

       4 cos

      

       

      

      

  

= + − −

+ − + +

− − +

+ + − +

−

A r r r

r r r

r r r

r r r

r

     (31) 

 
2 4 2

2 2 2 2 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2 3 3 3 3

4 2

3 3 3 3 3 3 3 3 3 3

2 4 2

4 4 4 4 4 4 4 4 4 4

4 4 4 4

6 cos sin sin

       4 sin cos 6 cos

       sin sin 4 sin

       6 cos sin sin

       4 sin

      

       

      

      

  

= − + − −

+ + − +

− − +

+ + + +

+

B r r r

r r r

+r r r

r r r

r

   (32) 

 

Thus, the jounce, or snap, vector SB of point B takes the form 

 
2

4 4 4 4 4 4 4 4 4 4

2 2 4

4 4 4 4 4 4 4 4 4 4

2

4 4 4 4 4 4 4 4 4 4

2 2 4

4 4 4 4 4 4 4 4 4 4

sin 4 cos 3 cos

3 sin 3 sin cos

cos 4 sin 3 sin

3 cos 3 cos sin

      

      

      

      

 − − − +
 
+ + + 
 =
 
 − − −
 
+ − +  

SB

r r r

r r r

r r r

r r r

 (33) 

 

Thus, supposing to know the angular crackle  2 and 

developing the fifth-time derivative of Eq. (1), the angular 

crackle  3 and  4 takes can be expressed as 
 

( )
3 3 4

3

3 3 4 3

tan

cos tan sin




  
= −

−

A + B

r
   (34) 

 

3 3 3 3

4

4 4

cos

cos

 



=

r + B

r
         (35) 

where 

 
5 3 2

3 2 2 2 2 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2 2 2 2 2 2

5 3

2 2 2 3 3 3 3 3 3 3

2 2

3 3 3 3 3 3 3 3

3 3 3 3 3

sin 10 cos 15 sin

      10 sin 10 cos 5 cos

       sin sin 10 cos

      15 sin 10 sin

      10 cos 5

       

        

      

     

   

= − + +

+ − − +

− − +

+ −

− −

A r r + r

r r r

r r r +

+ r r

r r 5

3 3 3 4 4 4

3 2

4 4 4 4 4 4 4 4

2

4 4 4 4 4 4 4 4 4 4 4 4

cos sin

      10 cos 15 sin

      10 sin 10 cos 5 cos

   

     

        

+ +

− − −

− + +

r

r r

r r r

(36) 

5 3 2

3 2 2 2 2 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2 2 2 2 2 2

5 3

2 2 2 3 3 3 3 3 3 3

2 2

3 3 3 3 3 3 3 3

3 3 3 3 3 3

cos 10 sin 15 cos

      10 cos 10 sin 5 sin

      cos cos 10 cos

      15 cos 10 cos

       10 sin 5

       

        

      

     

   

= + − −

+ − − +

+ + +

− −

− −

B r r r

r r r

r r r +

+ r r

r r 5

3 3 4 4 4

3 2

4 4 4 4 4 4 4 4

2

4 4 4 4 4 4 4 4 4 4 4 4

sin cos

       10 sin 15 cos

       10 cos 10 sin 5 sin

   

     

        

− −

+ + +

+ + +

r

r r

r r r

(37) 

 

Therefore, the crackle vector CB of point B takes the form 

 

 
3 5

4 4 4 4 4 4 4 4 4 4

2 2

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

3 5

4 4 4 4 4 4 4 4 4 4

2 2

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

sin 10 cos sin

15 sin 10 sin

10 cos 5 cos

cos 10 sin cos

15 cos 10 cos

10 sin 5 sin

      

     

     

      

     

     

− + − + +


+ +

− −
=


+ + +

− − +

− −

CB

r r r

r r

r r

r r r

r r

r r









 
 
 
 



(38) 

 

 

Finally, supposing to know the angular pop 2 and developing 

the sixth-time derivative of Eq. (1), the angular pop 3 and 4 can 

be expressed as 

 

( )
4 4 4

3

3 3 4 3

tan

cos tan sin




  
= −

−

A + B

r
                  (39) 

 

3 3 3 4

4

4 4

cos

cos

 



=

r + B

r
     (40) 

 

where 

 

 
3 2 4

4 2 2 2 2 2 2 2 2 2 2

6 3 2

2 2 2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2 2 2 2 2

3

2 2 2 2 2 2 2 2 3 3 3

15 sin 10 cos 15 sin

       cos 20 cos 15 sin

       45 cos 15 cos 6 cos

       60 sin sin 15 sin

       

      

       

        

       

= − − +

− + + + +

− − − +

+ − + +

−

A r r r

r r r

r r r

r r r

2 4

3 3 3 3 3 3 3

6 3 2

3 3 3 3 3 3 3 3 3 3 3

2 2

3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 4 4 4

10 cos 15 sin                               (41)

       cos 20 cos 15 sin

       45 cos 15 cos 6 cos

       60 sin 15 sin 1

    

       

        

     

− +

− + + +

+ − − +

+ − +

r r

r r r

r r r

r r 2

4 4 4

4 6 3

4 4 4 4 4 4 4 4 4 4 4

2 2 2

4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4

0 cos

       15 sin cos 20 cos

       15 sin 45 cos 15 cos

      6 cos 60 sin

 

       

        

      

+

+ + − +

− − + +

+ −

r

r r r

r r r

r r
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3 2 4

4 2 2 2 2 2 2 2 2 2 2

6 3 2

2 2 2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2 2 2 2 2

3

2 2 2 2 2 2 2 2 3 3 3

15 cos 10 sin 15 cos

       sin 20 sin 15 cos

       45 sin 15 sin 6 sin

       60 cos cos 15 cos

       

      

       

        

       

= − − + +

− + − +

+ − − +

− + − +

−

B r r r

r r r

r r r

r r r

2 4

3 3 3 3 3 3 3

6 3 2

3 3 3 3 3 3 3 3 3 3 3

2 2

3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 4 4 4

10 sin 15 cos                                (42)

       sin 20 sin 15 cos

       45 sin 15 sin 6 sin

       60 cos 15 cos 1

    

       

        

     

+

− + − +

+ − − +

− + +

r r

r r r

r r r

r r 2

4 4 4

4 6 3

4 4 4 4 4 4 4 4 4 4 4

2 2 2

4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4

0 sin

       15 cos sin 20 sin

      15 cos 45 sin 15 sin

      6 sin 60 cos

 

       

        

      

+

− + − +

+ − + +

+ +

r

r r r

r r r

r r

 

 

 

Therefore, the pop vector PB of point B is obtained in the form 

 
2 6

4 4 4 4 4 4 4 4 4

3 4

4 4 4 4 4 4 4

3 2

4 4 4 4 4 4 4 4

2 2

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4

2 6

4 4 4 4 4 4 4 4 4

3

4 4

sin 10 cos cos

15 sin 15 sin

20 cos 15 sin

45 cos 15 cos

6 cos 60 sin

cos 10 sin sin

15

B

r r r

r r

r r

r r

r r

r r r

r

     

    

     

     

      

     



− − − +

+ − +

+ + +

+ − +

− +

=

− − +

−

P

4

4 4 4 4 4

3 2

4 4 4 4 4 4 4 4

2 2

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4

cos 15 cos

20 sin 15 cos

45 sin 15 sin

6 sin 60 cos

r

r r

r r

r r

   

     

     

      

 
 
 
 
 
 
 
 
 
 
 
 
 + +
 
+ − + 
 
+ − + 
 − − 

      (43) 

 

 

2.2 Centered slider-crank mechainsm 
For the slider-crank/rocker mechanism, referring to Fig. 1 

and assuming to know the kinematic input data: 4, 4, 4, 4, 

4, 4, 4 of the driving link B0B, which coincides in this case 

with the driven link of the four-bar linkage, the kinematic 

analysis is developed up to the sixth order with the aim to obtain 

the pop of point C. 

Thus, from the vector-loop equation (2), one has 

 

1

5

5

cos −  −
=  

 

C Bx x

r
                             (44) 

 

and differentiating a first time, the angular velocity 5 takes the 

form 

5

5 5sin



= Bxv

r
                                 (45) 

 

and, in turn, the velocity vector vC of point C is given by 

 

5 5 50, cos  = + v
T

C Byv r                      (46) 

 

as function of the kinematic input data. 

From the second-time derivative of Eq. (2), the angular 

acceleration 5 of the coupler link BC of the centered slider-

crank mechanism and the acceleration vector aC of point C, 

which revolute kinematic pair joins the piston 6 to the CD 

coupler link of the orthogonal Cardan mechanism, can be 

expressed as follows 

 
2

5 5 5

5

5 5

cos

sin

 




−
= Bxa r

r
                             (47) 

 

2

5 5 5 5 5 50, cos sin    = + − a
T

C Bya r r             (48) 

 

and in turn, from the third-time derivative of Eq. (2), the angular 

jerk 5 and the jerk vector JC of point C take the following 

expressions 

 
3

5 5 5 5 5 5 5

5

5 5

3 cos sin

sin

    




− +
= BxJ r r

r
                 (49) 

 

3

5 5 5 5 5 5 5 5 5 5

0

cos 3 sin sin      

 
=  

+ − − 
JC

ByJ r r r
     (50) 

 

where the X-component is equal to zero since point C moves 

along the Y-axis. 

Similarly, from the fourth-time derivative of Eq. (2), the 

angular jounce or snap 5 and the snap vector SC of point C are 

given by 

 
2

5 5 5 5 5 5 5 5

5

5 5

4

5 5 5 5 5 5

5 5

4 cos 6 sin

sin

3 cos cos
       

sin

     




   



− + +
=

− +

BxS r r

r

r r

r

       (51) 

 

5 5 5 5 5 5 5

2 4

5 5 5 5 5 5 5 5 5 5

0

cos 4 sin

6 cos 3 sin sin

    

      

 
 
 =
 + − +
 
− − +  

SC
ByS r r

r r r

        (52) 

 

 

Likewise, from the fifth-time derivative of Eq. (2), the 

angular crackle 5 and the crackle vector CC of point C can be 

expressed in the following form 
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2

5 5 5 5 5 5 5 5

5

5 5

2 3

5 5 5 5 5 5 5 5

5 5

5

5 5 5 5 5 5 5

5 5

10 sin 10 cos

sin

10 sin 10 cos
      

sin

5 cos sin
      

sin

     




     



    



+ −
= +

+
+ +

− −
+

BxC r r

r

r r

r

r r

r

         (53) 

 

5 2

5 5 5 5 5 5 5 5 5 5

3 2

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5

0

y cos sin 15 cos

10 sin 10 sin

10 sin 5 sin

      

     

     

 
 
 
 + + − +=
 
+ − − 
 
+ − 

C BC
C r r r

r r

r r

   (54) 

 

Finally, the angular pop 5 and the pop vector PC of point C 

are given by 

 
3 2 6

5 5 5 5 5 5 5 5 5

5

5 5

4 3 2

5 5 5 5 5 5 5 5 5 5 5 5

5 5

2

5 5 5 5 5 5 5 5

5 5

5 5 5 5 5 5 5 5 5

5 5

15 sin 10 cos cos

sin

15 sin 20 cos 15 sin
       +

sin

45 cos 15 cos
       +

sin

6 cos 60 sin
       

sin

     




        



     



      



+ − −
= +

− + +
+

−
+

− +
+

BxP r r r

r

r r r

r

r r

r

r r

r

(55) 

3 2 6

5 5 5 5 5 5 5 5 5

4 3

5 5 5 5 5 5 5 5 5 5 5

2 2

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

5 5 5 5 5

0

15 cos 10 sin sin

15 cos 20 sin cos

15 cos 45 sin

15 sin 6 sin

60 cos

     

       

     

     

   

 
 
 
 + − − +
 
 + + + +=
 
+ + + 
 
− − + 
 − 

P

By

C

P r r r

r r r

r r

r r

r

    (56) 

 

2.3 Orthogonal Cardan mechanism 
For the orthogonal Cardan mechanism, still referring to Fig. 

1 and assuming to know the kinematic input data: yC, Cyv , Cya , 

CyJ , CyS and CyP  which correspond respectively to the position, 

velocity, acceleration, jerk, jounce or snap, crackle and pop of 

point C of piston 6 that is also the driving member of the Cardan 

mechanism, from the vector-loop equation (3), one has 
 

1 5

7

7

sin −  −
=  

 

Cr y

r
    (57) 

and, in turn, the angular velocity 7 of the coupler link r7 and the 

velocity vector vD of point D of the dwell piston 8, are expressed 

as follows 

 

7

7 7cos



= −

Cyv

r
    (58) 

 

 7 7 7sin , 0
T

D r = −v   (59) 

 

The angular acceleration 7 and the acceleration vector aD of 

point D are given by 

 
2

7 7 7

7

7 7

sin

cos

 




−
=

Cyr a

r
                            (60) 

 

2

7 7 7 7 7 7sin cos , 0
T

D r r    = − − a                 (61) 

 

and, consequently, the angular jerk  7 and the jerk vector JD take 

the expressions 

 
3

7 7 7 7 7 7 7

7

7 7

3 sin cos

cos

    




+ −
=

Cyr r J

r
               (62) 

 
3

7 7 7 7 7 7 7 7 7 7sin 3 cos sin

0

       − − +
=  
 

JD

r r r
       (63) 

 

similarly, the angular jounce  7 and the snap vector SD of point 

D can be expressed as follows 

 
2 2

7 7 7 7 7 7 7 7 7 7 7

7

7 7

4

7 7 7

7 7

4 sin 3 sin 6 cos

cos

sin
        

cos

       




 



+ + +
=

− − Cy

r r r

r

r S

r

     (64) 

 
2

7 7 7 7 7 7 7 7 7 7

2 4

7 7 7 7 7 7 7

sin 4 cos 3 cos

6 sin cos

0

      

    

 − − − +
 
+ + =
 
 
  

SD

r r r

r r
      (65) 

 

 

where the Y-component of SD is equal to zero since the dwell 

piston 8 translates along the X-axis.  

Similarly, the angular crackle 7 and the crackle vector CD of 

point D are given by 
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2

7 7 7 7 7 7 7 7

7

7 7

2 3

7 7 7 7 7 7 7 7

7 7

5

7 7 7 7 7 7 7

7 7

10 cos 10 sin

cos

15 cos 10 sin
     

cos

5 sin cos
     

cos

     




     



    



+ +
= +

−
+ +

−
+

CyC r r

r

r r

r

r r

r

 (66) 

 

2

7 7 7 7 7 7 7 7

2 3

7 7 7 7 7 7 7 7

5

7 7 7 7 7 7 7 7 7 7

0

10 sin 10 cos

15 sin 10 cos

5 cos sin sin

     

     

      

 
 
 
 − +=
 
+ + + 
 
+ − − 

CC
r r

r r

r r r

 (67) 

 

Finally, the angular pop 7 and the pop vector PD of point D are 

 
3 2 6

7 7 7 7 7 7 7 7 7

7

7 7

4 3

7 7 7 7 7 7 7 7

7 7

2 2 2

7 7 7 7 7 7 7 7

7 7

7 7 7 7

15 cos 10 sin sin

cos

15 cos 20 sin
                                  (68)

cos

15 cos 45 sin
        

cos

15 sin 6
        

     




     



     



  

− + + +
=

− + +

+ − +

+ +

CyP r r +r

r

r r

r

r r

r

r r7 7 7 7 7 7 7 7 7

7 7

sin 60 cos

cos

      



+ r

r

 

 

3 2 6

7 7 7 7 7 7 7 7 7

4 3

7 7 7 7 7 7 7 7 7 7 7

2 2 2

7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7

7 7 7 7 7

0

15 sin 10 cos cos

15 sin 20 cos sin

15 sin 45 cos

15 cos 6 cos

60 sin

     

       

     

     

   

 
 
 
 − − −
 
+ + + =
 
+ + + 
 + − +
 
 + 

PC

r r r

r r r

r r

r r

r

    (69) 

 

 

2.4 Offset slider-rocker mechanism 
For the offset- slider- rocker mechanism, referring to Fig. 1 

and assuming to know the kinematic input data: xD, Dxv , Dxa , 

DxJ , DxS and DxP  which correspond respectively to the position, 

velocity, acceleration, jerk, jounce or snap, crackle and pop of 

point D of piston 8 that is also the driving member of the offset 

slider-rocker mechanism, from the vector-loop equation (4), one 

has 

 
2 2 2

1

9 2tan


 − − − +

−

+
=

E E F D

F D
 (70) 

where  is equal to 1 according to a suitable assembly mode 

and the coefficients D, E and F as function of xD by 

 

( )

( )

9 0

9

22 2 2

9 10 0

2

2

−

− + − − −

E D

E D

= r x x

= r e

= r r x x e

D

E

F

 (71) 

 

1 9 9

10

10

sin
sin


 −  −

=  
 

e r

r
   (72) 

 

and differentiating, 9 and 10 take the form 

 

( )
9

9 9 10 9sin tan cos


  
=

−

Dxv

r
   (73) 

 

9 9

10 9

10 10

cos

cos


 


= −

r

r
  (74) 

 

and, in turn, the velocity vector vE of point E is given by 

 

 10 10 10 10 10 10sin , cos   = −v
T

E r r  (75) 

 

as function of the kinematic input data. 

From the second-time derivative of Eq. (4), the angular 

accelerations 9, 10 and the acceleration vector aE can be 

expressed as 

 

( )
5 5 10

9

9 9 10 9

tan

sin tan cos




  
=

−

A + B  

r
   (76) 

 

5 9 9 9

10

10 10

cos

cos

 



= −

B +r

r
    (77) 

 
2

10 10 10 10 10 10

2

10 10 10 10 10 10

sin cos ,

        cos sin

E

T

r r

- r r

   

   

= +

+ 

a
   (78) 

 

where 

 
2 2

5 9 9 9 10 10 10

2 2

5 9 9 9 10 10 10

cos cos

sin sin

   

   

= − −

= − −

DxA a r r

B r r
  (79) 

 

and in turn, from the third-time derivative of Eq. (2), the angular 

jerks 9, 10 and the jerk vector JE of point E take the following 

expressions 

 

( )
6 6 10

9

9 9 10 9

tan

sin tan cos




  
=

−

A + B  

r
                    (80) 
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6 9 9 9
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10 10

cos

cos

 



= −

B +r

r
        (81) 

 
3

10 10 10 10 10 10 10 10 10 10

3

10 10 10 10 10 10 10 10 10 10

sin 3 cos sin

cos 3 sin cos

      

      

 + −
=  

+ 
JE

r r r

r r +r
 (82) 

 

where 

 
3 3

6 9 9 9 10 10 10 9 9 9

10 10 10 10

sin sin 3 cos

       3 cos

     

  

= − +

−

DxA J +r +r r

r
 (83) 

 
3 3

6 9 9 9 10 10 10 9 9 9

10 10 10 10

cos cos 3 sin

       3 sin

     

  

= − − − +

−

B r r r

r
 (84) 

 

Similarly, the angular jounce 9, 10 and the snap vector SE 

of point E are given by 

 

( )
7 7 10

9

9 9 10 9

tan

sin tan cos




  
=

−

A + B  

r
                    (85) 

 

7 9 9 9
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10 10

cos

cos
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B +r

r
                          (86) 
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2 4
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2
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sin 4 cos 6 sin
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cos 4 sin 6 cos
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SE

r r r
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(87) 

 
where 

 
2 2 4

7 9 9 9 10 10 10 9 9 9

4 2 2

10 10 10 9 9 9 9 10 10 10 10

9 9 9 9 10 10 10 10

3 cos 3 cos cos

      cos 6 sin 6 sin

       4 cos 4 cos

     

       

     

= − −

+ + +

− −

DxA S r r +r +

+r r r

r r

     (88) 

 
2 2 4

7 9 9 9 10 10 10 9 9 9

4 2 2

10 10 10 9 9 9 9 10 10 10 10

9 9 9 9 10 10 10 10

3 sin 3 sin sin

      sin 6 cos 6 cos

       4 sin 4 sin

     

       

     

= − −

− − +

− −

B r r +r +

+r r r

r r

     (89) 

 

The angular crackle 9, 10 and the crackle vector CE of point 

E are given by 

 

( )
8 8 10

9

9 9 10 9

tan

sin tan cos




  
=

−

A + B  

r
                  (90) 

 

8 9 9 9

10

10 10

cos

cos

 



= −

B +r

r
                         (91) 

 

 

10 10 10 10 10 10 10

2

10 10 10 10 10 10 10 10

2 3
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10 10 10 10 10 10 10

2

10 10 10 10 10 10 10 10
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sin 5 cos

10 cos 10 sin

15 sin 10 cos
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sin 5 sin

10 sin 10 cos

15

    

     

     

 

    

     



+ +

+ − +

− − +

+

=
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+
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r r

r r

r r

r

r r

r r

r 2 3

10 10 10 10 10 10 10

5

10 10 10

cos 10 sin

cos

    

 

 
 
 
 
 
 
 
 
 
 
 
 
 − +
 
−  

r

r

     (92) 

 
where 

 

 
5 5

8 9 9 9 10 10 10

3 3

9 9 9 9 10 10 10 10

2 2

9 9 9 9 10 10 10 10

2 2

9 9 9 9 10 10 10 10

9 9 9 9 10 10 10 10

9

sin sin

     10 cos 10 cos

     15 sin 15 sin

     10 sin 10 sin

     10 cos 10 cos

     5

   

     

     

     

     



= − − +

+ + +

+ + +

+ + +
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−

DxA C r r

r r

r r

r r

r r

r 9 9 9 10 10 10 10cos 5 cos    − r

      (93) 

 

 
5 5

8 9 9 9 10 10 10

3 3

9 9 9 9 10 10 10 10

2 2

9 9 9 9 10 10 10 10

2 2

9 9 9 9 10 10 10 10

9 9 9 9 10 10 10 10

9

cos cos

     10 sin 10 sin

      15 cos 15 cos

      10 cos 10 cos

      10 sin 10 sin

      5

   

     

     

     

     



= +

+ + +

− − +

− − +

− − +

−

B r +r

r r

r r

r r

r r

r 9 9 9 10 10 10 10sin 5 sin    − r

      (94) 

 
Finally, the angular pop 9, 10 and the pop vector PE of point 

E are given by 

 

( )
9 9 10

9

9 9 10 9

tan

sin tan cos




  
=

−

A + B  

r
                   (95) 

 

 

9 9 9 9

10

10 10

cos

cos

 



= −

B +r

r
                          (96) 
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where 
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  (98) 

 
3 3

9 9 9 9 10 10 10

2 2 6

9 9 9 10 10 10 9 9 9

6 4

10 10 10 9 9 9 9

4 3

10 10 10 10 9 9 9 9

3 2

10 10 10 10 9 9 9 9

15 cos 15 cos

      10 cos 10 cos sin

      sin 15 cos

     15 cos 20 sin

     20 sin 15 cos

     

   

     

    

     

     

= − − +

− − − +

− + +

+ +

− +

B r r

r r r

r r

r r

+ r r

2 2 2

10 10 10 10 9 9 9 9

2 2

10 10 10 10 9 9 9 9

10 10 10 10 9 9 9 9

10 10 10 10 9 9 9 9 9

10 10 10 10 10

15 cos 45 sin

     45 sin 15 sin

     10 sin 6 sin

     6 sin 60 cos

     60 cos

     

     

     

      

   

− + +

+ − +

− − +
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  (99) 

 

3. GRAPHICAL AND NUMERICAL RESULTS 
The kinematic analysis of the proposed 10-bar long-dwell 

mechanism of Fig. 1 was developed according to the formulation 

described above, which has been implemented in a Matlab 

program and validated by means of several examples. In 

particular, Fig. 3 shows a simulation of a 10-bar long-dwell 

mechanism with the following geometric characteristics: r1 =58. 

30 u, r2 = r9 = 10 u, r3=40 u, r4 = r5 = r7 = 30 u, r10 = 20 u, where 

u is the unit length. This example refers to the kinematic input 

data: 2 = 1 r/s, 2 = 2 = 2 = 2 = 2 = 0. Tabs. 1 and 2 

summarize the kinematic characteristics for 2 = 0°, which 

means to have all sub-mechanisms at the dead-point 

configuration. In particular, Tab. 1 shows the punctual kinematic 

characteristics of A, B, C, D and E, while Tab. 2 shows the 

angular kinematic characteristics of links 2, 3, 4, 5, 7, 9 and 10, 

where the last is the output rocker. 

 

 
 

FIGURE 3: LONG-DWELL MECHANISM DURING MOTION. 

 

 
TABLE 1: VELOCITY, ACCELERATION, JERK, SNAP, 

CRACKLE, POP OF POINTS A, B, C, D AND E WHEN 2 = 0°. 

Point

s 

v  

[u/s] 

a 

[u/s2] 

J 

[u/s3] 

S 

[u/s4] 

C 

[u/s5] 

P 

[u/s6] 

A 10 10 10 10 10 10 

B 0 12.5 0 32.9 14.1 184.2 

C 0 0 0 -31.2 0 362.6 

D 0 0 0 0 0 0 

E 0 0 0 0 0 0 

 

 

 
TABLE 2: VELOCITY, ACCELERATION, JERK, SNAP, 

CRACKLE, POP OF LINKS 2, 3, 4, 5, 7, 9 AND 10 WHEN 2 = 0°. 

 

Links 
  

[r/s] 

 

[r/s2] 

 

[r/s3] 

 

[r/s4] 

 

[r/s5] 

  

[r/s6] 

2 1 0 0 0 0 0 

3 0.2 0 0.23 -0.4 -0.1 4.2 

4 0 0.4 0 -0.9 0.4 0 

5 0 -0.4 0 0.9 0.4 0 

7 0 0 0 1 0 -12.9 

9 0 0 0 0 0 0 

10 0 0 0 0 0 0 
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a) 

 
b) 

 
c) 

 
d) 

FIGURE 4: VELOCITY, ACCELERATION, JERK, JOUNCE OR 

SNAP, CRACKLE AND POP DIAGRAMS OF POINTS B, C, D AND 

E VERSUS THE CRANK ANGLE  2. 

 
a) 

 
b) 

 
c) 

 
d) 

 

FIGURE 5: ANGULAR VELOCITY, ACCELERATION, JERK, 

JOUNCE OR SNAP, CRACKLE AND POP OF LINKS 4, 5, 7 AND 9 

VERSUS THE CRANK ANGLE  2. 
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Moreover, Fig. 4 shows the diagrams of the punctual 

velocity, acceleration, jerk, jounce or snap, crackle and pop of 

points B, C, D and E, as function of the crank angle 2, while 

Fig.5 shows the diagrams of the angular velocity, acceleration, 

jerk, jounce or snap, crackle and pop of links 4, 5, 7 and 10, as 

function of the crank angle 2. 

In particular, a very long-dwell is obtained on the output 

rocker link 10 by observing Figs. 4d and 5d in the angular range 

that is centered on 360°, which corresponds to the total dead-

points configuration. 
 

4. CONCLUSIONS 
The higher order kinematic analysis of a 10-bar long-dwell 

mechanism that was synthesized by applying the dead-points 

superposition method and thus, connecting in series four 

mechanisms. This approach can be extended to the synthesis of 

N-bar long-dwell mechanisms with assigned dwell-time and 

kinematic characteristics, in terms of number and type of the 

assembled four-bar mechanisms with dead-points 

configurations, which can be of 4R, 3RP, 2R2P and RPRP types. 

The proposed formulation was implemented in Matlab and 

validated by means of several graphical and numerical results. 
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