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ABSTRACT

This paper deals with the higher order kinematic analysis of
a long-dwell mechanism, which is synthesized by applying the
dead-points superposition method. In particular, a crank-rocker
four-bar linkage, a centered slider-crank mechanism, an
orthogonal Cardan mechanism and an offset slider-rocker
mechanism, are connected in series to give a crank-driven 10-
bar long dwell mechanism, which kinematic analysis is
formulated for the first time, up to the sixth-order and thus,
including velocity, acceleration, jerk, jounce or snap, crackle
and pop. The proposed formulation was validated by significant
graphical and numerical results, which show the long dwell-time
of the output rocker link for a constant angular velocity of the
driving crank. Other multi-link mechanisms can be assembled in
different way by using the dead-points superposition method and
thus, obtaining a long-dwell mechanism.

Keywords: Higher order kinematic analysis, long dwell
mechanisms, dead-points superposition method.

1. INTRODUCTION

The higher-order time derivatives of the position vector are
of great importance in practical engineering, as for designing
high-speed automatic machines. The jerk, the time rate of change
of the acceleration, has some typical applications in cams and
Geneva mechanisms design and analysis [1-4].

The indexing mechanisms are used to generate an
intermittent motion, but in many applications linkages can be
used for the same purpose. In fact, dwell mechanisms are often
used in automatic machines to generate intermittent motions
with a suitable holding position of the output member, but from
the point of view of the design of the desired movement, the
kinematic synthesis is more complicated. However, the
kinematic synthesis of these mechanisms is traditionally
formulated through two different approaches. The first is the one

that refers to some important geometric loci of interest, such as
the inflection circle, the cubic of stationary curvature and the
Ball point [5-9], in order to obtain a dwell configuration that is
related to two, three or four infinitesimal displacements,
respectively.

The Burmester theory has also been largely used through
years with the aim of designing dwell and long-dwell
mechanisms, as reported in [10-15].

The second approach is the one that refers to the dead-point
superposition method, obtained by assembling in series a train of
linkages at dead-point position [16]. For example, a four-bar
linkage, a slider-crank/rocker and double-slider mechanisms can
be used for this purpose, as proposed in [17] and [18].

The analysis of the kinematic properties of N-bar long-dwell
mechanisms, which are synthesized by applying the dead-points
superposition method, is the main goal of this research activity.
In particular, several four-bar linkages of any type, but able to
give dead-points configurations, are assembled in series and
according to their output rigid body motion, in order to obtain a
suitable N-bar long-dwell mechanism, with N an even number.

This analysis is also addressed to design N-bar long-dwell
mechanisms  with assigned dwell-time and kinematic
characteristics, in terms of number and type of the assembled
four-bar mechanism with dead point configurations, which can
be of 4R, 3RP, 2R2P and RPRP types.

In this paper, the higher order kinematic analysis of a 10-bar
long-dwell mechanism, which is obtained by assembling in
series four 4-bar linkages, i.e. a crank-rocker four-bar linkage, a
centered slider-crank mechanism, an orthogonal Cardan
mechanism or elliptic trammel and an offset slider-rocker
mechanism, is formulated up to the sixth-order. In particular, the
10-bar long-dwell mechanism is driven by the crank of the four-
bar linkage, in order to transmit the motion to the output rocker
link, which shows a very long dwell time.
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2. HIGHER ORDER KINEMATIC ANALYSIS

Referring to the sketch of Fig. 1, the type synthesis of the
proposed 10-bar long dwell mechanism has been carried out by
assembling in series four 4-bar linkages and in particular, the
crank-rocker four-bar mechanism A,ABBo, the slider-crank
mechanism BoBC, the orthogonal Cardan mechanism CD, the
offset slider-rocker mechanism DEE,. Of course, this approach
can be extended to other assembly modes and combinations of
four-bar linkages of 4R, 3RP, 2R2P and RPRP types by applying
the dead-points superposition method.

The planar positions of the fixed revolute joints Ao, Bo and
Eo, and the axes of the two prismatic pairs of pistons 6 and 8, are
given by the angle @1 and the distance A¢Bo of length ry, along
with the distances | and e of Eq by the straight paths of points C
and D, respectively. The distance of Bo by the prismatic pair axis
with piston 8 is h and the link lengths are given by ri fori=1to
5, and also for i =7, 9 and 10.

Moreover, the driving crank 2 is supposed to be moved with
a constant angular velocity and 8, @2, a2, @ 2 and y , are the
crank angle and the angular velocity, acceleration, jerk, jounce
or snap, crackle and pop, respectively.

The kinematic analysis of the proposed 10-bar long-dwell
mechanism of Fig. 1 is formulated through four vector-loops,
which are shown in Fig. 2 for each of the assembled linkages.

Thus, the following closed-loop equations can be written

r,+ry=r+r, (l)
M+l =Tgc 2
lg +Top =15 3)
e+ +I, =0, 4)

where vectors r; are expressed by

r,=[r cosg, rsing]"

fori=1to5 (5)

FIGURE.1: 10-BAR LONG-DWELL MECHANISM.

and for i = 7, 9 and 10, where T indicates the transpose vector,
while vectors Iy ¢ , Iy s Fop » @nd I, are given by

e =[0, 5 sing +yc]' (©)
. T

I :[O, h-r, sm&l—yc] (7)

foo =[F, cos,, 0] (8)

e=[0, e]' ©9)

Feo =[%eo = %o, 0] (10)

where x., =I+rcosd in Eqg. (10).
Therefore, the position vectors rg, rc, rp and re of points B,
C, D and E can be expressed as
. . T
ry =[1, C080, +1,c0s6,, 1,sind,+r,sing, | (1)

re =[r, c0s, +, cosd, +1, cosd,

_ _ oo (12)
r,sing, +r, siné, +r, sm&s]
r, =[r1 C0S@, +T, C0SO,, Y, +T, sin@]T (13)
re =[r, cos, +1 -1, cos,,
(14)

. . T
r,sing, +h+e—r, sind, |

where &, & and & are the oriented angles of vectors ra4, rs and
r7, respectively. The position vector ra of point A is equal to r»
and thus, it is given by Eq. (5) fori=2.

Therefore, the kinematic analysis of the proposed 10-bar
long-dwell mechanism is formulated in the following up to the
sixth-order, by considering each of the four assembled linkages
separately, before to obtain the final formulation.

FIGURE 2: 10-BAR MECHANISM: VECTOR LOOPS.
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The velocities, accelerations, jerks, snaps, crackles and pops
of points A, B, C, D and E will be obtained, as function of €, @
2, a2, ¢ 2 and y , of the driving crank, along with the angular
velocities ws, w4, @sand ws, accelerations a3, a4, asand «
6, Jerks @3 ¢4, @sand @, jounces y s, w4, wsand we, angular
crackles ¢ 3, ¢4, ¢sand gs and pops ys, 74, ysand ye.

2.1 Crank-rocker four-bar linkage

For the crank-rocker four-bar linkage of Fig. 1 and assuming
to know the kinematic input data: 0, w2, a2, @2, W2, ¢2, v2 Of the
driving crank AoA, the kinematic analysis is developed up to the
sixth order with the aim to obtain angular and linear pop of point
B. Thus, from the vector-loop equation (1), one has

_ B+ j 22 2
0, =2tan™* BroyB-C +A (15)

cC-A

where o is equal to +1 according to a suitable assembly mode
and the coefficients A, B and C are obtained as function of the
driving crank angle 8, by

A =2rr,c086, —2r,1,€0s6,

B=2rr,sing, —2r,r,sin 6, (16)

C=ri+rivri-ri-2nr, (cosﬁlcosﬁ2 +sing, sin 6’2)

Moreover, Eg. (1) can be solved with respect to 853 as

4 Ising +r,sin@, —r,sing,
I, cosé, +1,cos6, —r,Ccoso,

6, =tan a7

From the first time-derivative of Eq. (1), the angular
velocities w 3 and w 4 are obtained as function of the driving
angular velocity w2 and the crank angle 8, by

w, :w% (18)
r,sin(6,—-6,)
_nsin(6,-6,)

r,sin(6,-6,) * (19

3

where the angles 83 and 84 are given by Egs. (17) - (19).
The velocity vector vg of point B, as first-time derivative of
Eq. (11), takes the form

Vg =, [-1,sing,, 1,c0s6,]" (20)

where w4 and 64 are expressed by the Egs. (18) — (19) and (15)
as function of > and wo.

Similarly, by the knowledge of the angular acceleration o of
the driving crank AoA and developing the second-time derivative
of Eq. (1), the angular accelerations « 3 and « 4 are given by

_—ha,sin(6,-6,)+r, w5c0s(6, - 6,)+
- r,sin(6, —6;)

3

, , (21)
+r, w3C08(6, —6,) -1, 0
r,sin(6, —6;)
L sin(6, —6,)+1, w;cos(6, —6,)+
! r,sin(6, -6,) 22

—r, ;cos(6, - 6,)+1, w;
r,sin(6,-6;)

and, in turn, the acceleration vector ag of point B is given by

ag = [—r4 a,sin@, —r, w%cosd,,
L, T (23)
r, &, C0s0, —1, }sing, |

By the angular jerk ¢ » and developing the third-time
derivative of Eq. (1), the angular jerks ¢ 3 and ¢ 4 are given by

A +B tang,

= 24
?s r,(cosé, tan @, —sin 6, (24)
r,cosd,+B
®, = @3l 37 By (25)
r,cosd,
where
A =1, w}sing, -3r, w,a, cosd, -1, @,sing, +
+1, ®3sin 0, —3r, @, a, COS O, + (26)
-1, ®}sin g, +3r, ,a, cosH,
B, =1, @508 6, —3r, w,, SiN G, +1, ¢, 0S Y, +
— 1, ®35c080, —3r, @,a, Sin G, + (27)

3 .
+1, ,c086, +3r, w,c,SiNG,

as function of the angles 8, 83 and @4 4, the angular velocities
an, @3 and w 4, the angular accelerations « 2, a3 and « 4, along
with the angular jerk ¢ ».
The jerk vector Jg of point B takes the form
3 :{—4¢43in94—3r4 w, 0, COSO, +1, w3sin b, 28)
r, ¢, €os6, —3r, w, a,sin6, —1, @;cos0,

as function of the driven angle 6; and the velocity ax,
acceleration o4 and jerk ¢,.

Thus, supposing to know the angular jounce y » and
developing the fourth-time derivative of Eq. (1), the angular
jounce s and w4 takes can be expressed as
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A, +B,tang,
ry(cosé, tang, —sin 6, )

Vs=- (29)
r,coséd,+B
W, = Wils 3 2 (30)
r,cosé,
where

A, =6r,w5a,sin6, +1, 03086, T, a’C0S 6, —
+4r1, ®,p,C086, — T, y,SiN 6, + 61, w5 a,sin b, +
+, @5 C0S 6, — I, 5086, — 4, w, ¢, COS O, + (31)
+6r, @2a,sing, +1, ®;c0806, -1, a’cosh, +

—4r, w,p, COSH,

B, =—6r, w5, 080, +1, w3sin@, — 1, a2siné, —
+41, @,0,8IN 0, +T, y, COS O, — 61, ®’ at, COS O, +
+1, 35iN0, — 1, aisin g, —4r, w,¢,sin 6, + (32)
+6r, w5, c0s6, +1, ®;SinG, +1, a’sind, +

+4r, w,¢,siN6,

Thus, the jounce, or snap, vector Sg of point B takes the form

[—r,y,sin6, —4r, o, ¢, cos 6, —3r, a? c0s 6, + ]
+3r, w} o, sin 6, +3r, @; sin 6, +1, w, cos b,

S; = (33)
r,w,Cos6, —4r, o, ¢,sin6, —3r, o’ sin 6, —

| +3r, @} a, 086, —3r, @] c0s b, +T, w, sin6, |

Thus, supposing to know the angular crackle ¢ » and
developing the fifth-time derivative of Eqg. (1), the angular
crackle ¢ 3 and ¢ 4 takes can be expressed as

PR il LU (34)
r(cosé, tan 6, —sin6,)
@,r,cos6,+B
= 3°3 3 3 (35)

r,cosd,
where

A, =1, ®5sin 6, +10r, a,w}cos @, +15r, a5 w,sing, +
+10r, @’ g, sin 6, —10r, a,p, 0S8, —5r, @,y, COS b, +
—1, ¢,5in6, —1, 3sin 9, +10r, a,wCc0S O, +
+15r, a2, sin 6, +10r, e, sin 6, — (36)
—10r, o, ¢, COS 6, — 51, w,y, COS O, + 1, w5 sin b, +
-10r, a,wcos @, —15r, a’w,sin 6, —
—10r, w. @, sin 6, +10r, o, @, COS 6, +5¥, w,y, COSH,

B, =1, w;c0sd, +10r, a,w5sin 6, —15r, a5, cos 6, —
+10r, w?p, cos 6, —10r, a, @, Sin 6, — 51, w,w, Sin 6, +
+1, ¢, 080, + I, 5c0s 6, +10r, a,m3cos b, +
+15r, %, cos 0, —10r, @@, cos 6, — (37)
—10r, o, @, Sin 6, =51, w,y, Sin 6, — 1, @, c0s 6, —
+10r, a,wisin G, +15r1, a’w, coso, +

+10r, @’ @, cos @, +10r, o, @, Sin 6, +5r, @,y sin 6,

Therefore, the crackle vector Cg of point B takes the form

1, ¢,5in 6, +10r, & , c0SH, -, W SiN G, ++|
151, @, a; sin 6, +10r, ., Sin 6, +

-10r, , ¢, c0s 6, 51, w,, COSH,
Cy = (38)
r, ¢, cos6, +10r, @’ a, sing, + 1, w; cosf, +

-15r, @, &} cos 6, —10r, . ¢p, cos G, +

| —10r, o, @, sin 6, —5v, w,y, Sin G,

Finally, supposing to know the angular pop 7 and developing
the sixth-time derivative of Eq. (1), the angular pop ys and 7 can
be expressed as

+B, tang
o Lo (39)
r 4(cosé, tan g, —siné,)
¥4I ,C056,+B
= 3°3 3 4 (40)
r,cosd,

where

A, =151, a3sin 9, —10r,p 2 cos 9, 151, w;a, sin 6, +
—1, ®5¢0s 8, ++20r, w3, cos §, + 151, vy, sin 6, +
— 451, w}a? cos @, —151, a ,w, cos b, —6r, w,$, COSH, +
+60r, ®,a,p,5IN6, -1, ,sin G, +15r, a 3sin G, +
-10r,p;cos @, —151, @ a,Sin 6, + (41)
—1, 05c0s 6, + 201, wip, cos O, +15r, ly,sin b, +
+45r, ol cos 0, — 151, a ,y, cos 6, — 61, @, ¢, COS 6, +
+60r, @, a,p,sin 6, —15r, a;sin§, +10r,p5cos b, +
+15r, @}, sinf, +r1, w$cosd, —20r, o’ ¢, cos b, +
-15r1, 0}y, sin 6, — 451, w;a} cos, +15r, a v, cos O, +
+6r, w,¢,cos6, -60r, ,a,p,sin6,
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B, = —15r, a jcos 6, —10r,p3sin 8§, + 151, @ o, COS 6, +
—T1, ®3sin 6, + 20r, wsp, sin 8, —15t, wiy, cos 6, +
+451, wla sin 6, —151, oy, SN0, — 61, @, ¢,sin 6, +
-60r, ®,a,p, cosé, +1, y,cosd, —15r, acosé, +
~10r,p2sin 6, +15r, @} a, cOS 6, (42)
— 1, @3sin 0, + 201, @@, sin 6, — 151, w’y, cos 6, +
+45r1, @aZ sin 0, 151, a .y, sin 6, —6r, w,¢,sin 6, +
—60r, @, a0, cos 6, +15r, o cos 6, +10r,p2sin G, +
-15r1, w,a, cosf, + 1, wsin, —20r, @’ ¢, sin G, +
+15r, w2y, cos 8, — 451, wia? sin 6, +151, a ,y,sin 6, +
+6r, ,¢,sin6, +60r, »,a,p, Cc0sH,

Therefore, the pop vector Pg of point B is obtained in the form

[—r, 7,5in 6, —10r, p? c0s 6, — T, W’ COS 6, + |
+15r, &} sin 6, —151, w;a, Sin 6, +

+20r, @3, c0s 6, +151, wly, sin 6, +

+45r, @} a; cos 6, — 151, a,y, COs 6, +

—6r, m,¢, c0s 6, +60r, ,a,p, Sin 0,

Py = (43)
r, 7, €0s6, —10r, 7 sin 6, —r, w; sin g, +
~15r, o} cos 0, +15r, w; a, Cos G, +
+20r, @i, sin 6, —15r, w}y, cos 0, +

+451, @} a} sin @, —151, a,p, sin 6, +

| —6r, w,¢,sin 6, —60r, ®,a,p, cOSO,

2.2 Centered slider-crank mechainsm

For the slider-crank/rocker mechanism, referring to Fig. 1
and assuming to know the kinematic input data: 64, ws, o, @a,
s, ¢4, v4 Of the driving link BB, which coincides in this case
with the driven link of the four-bar linkage, the kinematic
analysis is developed up to the sixth order with the aim to obtain
the pop of point C.

Thus, from the vector-loop equation (2), one has

X — X
6, =cos™ [%j (44)
5

and differentiating a first time, the angular velocity s takes the
form

v
=B (45)

w; = -
I, sin 6,

and, in turn, the velocity vector vc of point C is given by
Ve =[0, Vs +rmc0s6, | (46)

as function of the kinematic input data.

From the second-time derivative of Eq. (2), the angular
acceleration as of the coupler link BC of the centered slider-
crank mechanism and the acceleration vector ac of point C,
which revolute kinematic pair joins the piston 6 to the CD
coupler link of the orthogonal Cardan mechanism, can be
expressed as follows

2
a,, —I.w:Ccos0b.
a5: Bx 5. 5 5 (47)
r,sin g,

a. =[0, ag, +10C086, —faf sin495JT (48)

and in turn, from the third-time derivative of Eq. (2), the angular
jerk ¢s and the jerk vector Jc of point C take the following
expressions

Jg, — 31, @, a; COS G, + T, w3sin 6,

= 49

vs r,sin 6, (49)

J 0 50
¢ | Jg + @086, —3rw SN G, —Lwlsin G (50)

where the X-component is equal to zero since point C moves
along the Y-axis.

Similarly, from the fourth-time derivative of Eq. (2), the
angular jounce or snap s and the snap vector Sc of point C are
given by

Sg, — 41, @, 0, COS O, + 61, Sin G, +

Vs = r,sin 6,
. (51)
=3I, o, oSG + I, COS b,
I, sin g,
0
S. = (52)

Sg, + 55 COSO, — 4K, o, ¢, SING; +

—6r,m? a, oS, — 3,z SiN 6, + I, wg sin G,

Likewise, from the fifth-time derivative of Eq. (2), the
angular crackle ¢s and the crackle vector Cc of point C can be
expressed in the following form
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_ Cy, +101, 0% @, Sin 6; — 101z, @, COS B, .
I, sin 6,

¢

+10r5a)5a52 sing, +10r, @} o, cos 6, .
I, sin o,

(53)

| 5oy, cos6, - I, w;sin 6,
I, sin o,

0

C. =|Cyy+I,¢ COSH, + I w3sin g, —15n, w,a 2cos b + | (54)
+10r, wla, sin g, —10r, @’ @, sin 6, —

| +101, w0505 Sin 6, =51, /s Sin 6

Finally, the angular pop js and the pop vector Pc of point C
are given by

P, +15r,a isin 6, —10r, ¢? cos @, — 1, w; COS b, .
Vs = :
I, sin g,
4 ; 3 2 ;
N =151, o, sin 6, + 20r,p.w .c0S &, +15r,@; v, Sin 6, N

I, Sin g,

. 451, a, cos 0, — 151,01, v, COS O, s
I, sin o,

, ~Br0€086, + 60,0 05, Sin b,
r,sin g,
(59)

P,, +15r,a2c0s 6, —10r; ¢ sin 6, —r 0. sin 6, +
P, =| +1560; o €086, + 201, g0 3SiN 6, +1, 75 COS G, + | (56)
+15r,0] w, cos O, + 451, o Sin 6, +

-15a, 7 sin g, —br.gm . Sin 6, +

| —60r, s 55 COS 6;

2.3 Orthogonal Cardan mechanism
For the orthogonal Cardan mechanism, still referring to Fig.
1 and assuming to know the kinematic input data: yc, v, , a, ,

Joy» Seyand P, which correspond respectively to the position,

velocity, acceleration, jerk, jounce or snap, crackle and pop of
point C of piston 6 that is also the driving member of the Cardan
mechanism, from the vector-loop equation (3), one has

9, = sin‘l[rs;—ycj (57)
7

and, in turn, the angular velocity @y of the coupler link r7 and the
velocity vector vp of point D of the dwell piston 8, are expressed
as follows

Ve,

0 = (58)
" r,cosé,

vy =[-ra,sing, 0] (59)

The angular acceleration 7 and the acceleration vector ap of
point D are given by

rw’sing, —
a, = 7% 7 aCy (60)
I, cosé,

a, =[ 1,0, 5in6, -1, wicos b, O]T (61)

and, consequently, the angular jerk ¢ 7 and the jerk vector Jp take
the expressions

H 3
_3nw,a;sinG, +1,07C080, - I

y
= 62
o r, s 6, (62)

—1,¢,8iN0, —3r,w, a, COS O, + I, @SN G,

Jp = 0

(63)

similarly, the angular jounce 7 and the snap vector Sp of point
D can be expressed as follows

4,0, ¢,5in0, +3r,a2sin 6, + 61, w7 a; C0S G, +

7

I, cosé,
. 64
—r,@3sind, - S, (64)
r, cos 6,
—1,y, SiN 6, — 41, @, p, cos, —3r,a>cos b, +
s, - +61, w2 a, Sin @, +1, w7c0s 6, (65)

where the Y-component of Sp is equal to zero since the dwell
piston 8 translates along the X-axis.

Similarly, the angular crackle ¢; and the crackle vector Cp of
point D are given by
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Ce, +10r, ] ¢, c0s 6, +10r, @, @, Sin 6,
= +

¢

I, cosé,
156, w,a; cos 6, —10r, w3 a, sin 6, . (66)
r, cosé,
| Sroy,sing, - I, w5cos 6,
r, cosé,
- O 7
C. =|10r, & @, sin 6, —10r, a, , COS 6, + (67)

+151, w,a? sin @, +10r, w3 a, cos @, +

| 451, @, 7, €0S O, — 1, w3sin B, =1, ¢, sin 6, |
Finally, the angular pop »; and the pop vector Pp of point D are

3 2 - 6 =
_ —Fy +15r, 50086, +101; @7 sin 6, +1, w;sin 6, +
V1=
r,cosé,

-15r,@; o, c0s @, + 20,0, 3sin O, +
r, cosé,

(68)

+15r,0% v, cos O, — 451,00’ o’ sin 6, +
r, cosé,

+151,a, y, sin 6, +6r,¢,0,5in 0, + 601, , @, ¢, COS G,
I, cosé,

151, & 3sin @, —10r, @’ cos @, —r, w5 cos @, —
P, =| +15r,0; a, sin 6, + 20r,0,@3c08 0, + y, sind, | (69)
+15r,02 y, sin @, + 4510’ o’ cos 6, +

+151a, 7, oS8, —6r,¢,w,C0s 6, +

| +60r,a ;0 ,¢, Sin 6,

2.4 Offset slider-rocker mechanism
For the offset- slider- rocker mechanism, referring to Fig. 1
and assuming to know the kinematic input data: xp, Vv,,, ap,.

Joe» Spyand Py, which correspond respectively to the position,

velocity, acceleration, jerk, jounce or snap, crackle and pop of
point D of piston 8 that is also the driving member of the offset
slider-rocker mechanism, from the vector-loop equation (4), one
has

. { 2 2 2
6, =2tan™ LroyE-F +D (70)

F-D

where o is equal to +1 according to a suitable assembly mode
and the coefficients D, F and 7 as function of xp by

D=2ry(Xeo — X5 )

E=2re (71)
F= _rg"' rlZO_(XEO _XD)Z -e
. e—r,sing,
6, =sin" ($j (72)
o

and differentiating, a» and @i take the form

VDx (7 3)

), =
° r,(sing, —tan 6, cos b, )

r, COS 6,
Wy = _9—6’9 W, (74)
I, COS 6,

and, in turn, the velocity vector ve of point E is given by
Vg = [rlo @,SiNG,, —Ty@y COS&lO]T (75)

as function of the kinematic input data.

From the second-time derivative of Eq. (4), the angular
accelerations ay, aio and the acceleration vector ag can be
expressed as

. = '% + BS tan 610 (76)
* 1,(sing, —tan 6, cos g, )

B, +r,a, COS 6,

o, = (77)
I, COs &,
ag = [rlo @10SiN Gy + 1 @}, COS b,
o (78)
- 10 04 C0S By + 1, 7SN Gy |
where
2 2
A =ap, —I,w, Cos6, —I,w;, CosH,, 29
» = (79)
B, = —l,w; sin G, —r,w;, sin 6,

and in turn, from the third-time derivative of Eq. (2), the angular
jerks go, @10 and the jerk vector Je of point E take the following
expressions

+B; tan 4,
(09 — . A% 6 10 (80)
Iy (sin g, —tan 6, cos 6, )
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B, +1,¢, COS 6,

= = 81
Pio . C0S0, (81)

. 3
J. = o 101N Gy + 31 @y 01, COS By — Iy @, SIN G 82)
o P10 COS Gy + 31 045 4 SIN G + 1 a’fo cos by,

where

A =g, +1,0dsing, +r, 0’ sin 6, — 3,0, COS 6, + ©3)

= 3@y, COS b},

B, = —I,@; cos 6, — I, cos b, — 3r,a, Sin 6, + 64)
— 3@, 8IN 0

Similarly, the angular jounce ws, w10 and the snap vector Sg
of point E are given by

A +B tand,
Iy (sin &, —tan 6, cos 6, )

Yy = (85)

B, +r,y, cos 6,

=" = 86
Vi ., C0S0, (86)

_ ) , ) _
o W10SIN 6} + 41, @,,,,COS 6, — 61 @) 01, SIN O, +
+310 g COS By — Iy 0, COS 6

Se = (87)
; 2
Fo Y19 C0S By + 41y @3021SIN By + 61 @}y 011, C0S By +

| +3n, 0y sin Gy — 1w} sin 6,
where

A, =S, —3r,a cos@, —3r,a’ cos b, +r,a, COSH, +
+ 1wy COS 6, + byl a, Sin 6, +6r,wh o, sinf, +  (88)

— A1,y COS Oy — ATy, COS O

B, = -3r,a¢ sin @, — 3,0, Sin G,y + r,w, sin g, +
+1,05 Sin G, — 6,0’ a, CoS 6, —6r w0, cosb, +  (89)

— 4,5/, SN Gy — An, @0, SIN G

The angular crackle ¢, ¢10 and the crackle vector Ce of point
E are given by

4 - A +Bgtang,, (90)

1, (sing, —tan g, cosé, )

B B, +1,¢, COS 6,
I, COS6,,

$o = (91)

_rlo $o sin 6,0 + 51, w,,,,C0S G, +
+101,, ¢y, €08 6, — 108, oy, SiN Gy +
-151, w0 sin 6, — 101, @5 o, COS 6, +
+1, @) Sin 6,

Ce = (92)

—lo $,08IN Oy + 50, @y, SIN G, +

+10n, ay, 9,08In G, +10r;, wlzo("m cosf,, +

+151, 0,421, €08 6, — 108, @}y, SiN 6 +

| o a’150 cos b,

where

A, =Cy, —1,@; Sin G, — o), sin 6, +
+10r,wia, cos 6, +10r,,w] ar,, COS 6, +
+15r,0,0¢ sin 0, +156, w0 sin G, +
+10r,? ¢, sin 6, +10r, @} @,, Sin 6, + ©3)
—-10ry0, ¢, COS 6, — 101, 01,0, COS G,y +
=Sl COS by — 51,0k, COS By

B, = r,w; c0S O, + I, @), COSO,, +
+10r,0a, sin 6, +10r,,0} a,, Sin 6, +
~15r,@,0 c0s 6, — 155w, COS 6y, +
—10r,@? p, c0s 6, —10r,, @} ¢,, COS G, + &9
—-10r,a, @, Sin 6, — 101,22, SIN G, +
= 51,0,/ SIN 6, — Srmy0, SiN Oy

Finally, the angular pop j, 710 and the pop vector Pe of point
E are given by

A,+B, tan 6,

A (sin 6, —tan 6, cos 4, ) ®9)
B, + 1,7, C0S 4,
Yo = 9 9/977"70 (96)
rlO Ccos 610

Copyright © 2023 by ASME



Iy 710SiN 6, =151, ash sin 6, +10r,, @2 cos 6, +
+1, 8, €0 0, +156, a0’ sin 6, +
+201,, @}y Py COS 6, — 158, iy, SIN Gy, +
—451, w} el c0s B,y +156, oy, COS 6, +
+61, ;45 €OS 6 — 601, @200, SIN G
Pe = ©7)
—I,, 7,0 C0S 6,, + 151, a) cos 6, +10r,, ¢ sin G, +
+r10 wleo sin 9]_0 _15'10 aloa)ﬁl Cos 910 +

—201,, w5y, SIN O, +150,, @5y, COS G, +

—451, ) ol sin 8, +151, oy, Sin 6, +

| +610 @y SIN 6, + 601, 21401, COS B

where
A, =P, +15r,a7 sin 6, +15r,,05 sin 6, +
~10r,¢. cos 6, —10r,,p}, €0s 6, — a3 oS 6, +
— 08 c0s 6, —15n,m; a, Sin 6, —
+151, @5 a1y, SiN 6, + 201,030, COS 6,
+ 201,00 ¢, C0S 6, + 1502w, Sin 6, + (©8)
+156, @5y, Sin 8, + 45r,0¢ al cos 6, +
+451,, @5 o) €0S 6, — 151,04, COS 6, +
—10r, a0, COS 6, — 61y, ¢, COS B, +
—6h,@,,¢,, C0S 6, + 60r,w,0r, 0 SiN G, +

+60n,@,,0,¢;, SN 6

B, = —15r,a; cos§, —15r,,a5 cos 6, +
~10r,¢’ cos @, —10r,,p? €0S ,, — s Sin 6, +
— 1,08 Sin 6, +15r,m; , C0S G, +
+151,, 05ty COS 6, + 201,03, SiN 6,
+ 201, ¢, Sin 6, — 151,02y, COS 6, + (©9)
~156, @7y, COS B, + 45r,0fal sin 0, +
+451, 0% ol sin 6, — 156, SiN 6, +
—10r,01,04, SIN Gy, — 61,04 ¢, SIN G, +
—61,@,,0,, Sin 6, +—60r,a,a, ¢, COS G, +

= 601,050, COS G

3. GRAPHICAL AND NUMERICAL RESULTS

The kinematic analysis of the proposed 10-bar long-dwell
mechanism of Fig. 1 was developed according to the formulation
described above, which has been implemented in a Matlab
program and validated by means of several examples. In
particular, Fig. 3 shows a simulation of a 10-bar long-dwell
mechanism with the following geometric characteristics: r; =58.

30U, r2=rg=10u,r3=40 U, ra=rs =r7; =30 U, r1p = 20 u, where
u is the unit length. This example refers to the kinematic input
data: e =1t/s, 2= @ = y2= ¢ = » = 0. Tabs. 1 and 2
summarize the kinematic characteristics for & = 0°, which
means to have all sub-mechanisms at the dead-point
configuration. In particular, Tab. 1 shows the punctual kinematic
characteristics of A, B, C, D and E, while Tab. 2 shows the
angular kinematic characteristics of links 2, 3, 4, 5, 7, 9 and 10,
where the last is the output rocker.

60

40 -

FIGURE 3: LONG-DWELL MECHANISM DURING MOTION.

TABLE 1: VELOCITY, ACCELERATION, JERK, SNAP,
CRACKLE, POP OF POINTS A, B, C, D AND E WHEN 62 = 0°.

Point \Y a J S C P
S [u/s] | [ws?] | [u/s®] | [ufs] | [u/s®] | [u/sf]

A 10 10 10 10 10 10
B 0 125 0 32.9 141 | 184.2
C 0 0 0 -31.2 0 362.6
D 0 0 0 0 0 0

E 0 0 0 0 0 0

TABLE 2: VELOCITY, ACCELERATION, JERK, SNAP,
CRACKLE, POP OF LINKS 2, 3,4,5,7,9 AND 10 WHEN 0, = 0°.

@ @ @ y ¢ Y
Links [r/s] [r/s?] [r/s?] [r/s4 [r/s%] [r/s8]
2 1 0 0 0 0 0
3 0.2 0 0.23 -0.4 -0.1 4.2
4 0 0.4 0 -0.9 0.4 0
5 0 -0.4 0 0.9 0.4 0
7 0 0 0 1 0 -12.9
9 0 0 0 0 0 0
10 0 0 0 0 0 0
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FIGURE 4: VELOCITY, ACCELERATION, JERK, JOUNCE OR FIGURE 5: ANGULAR VELOCITY, ACCELERATION, JERK,
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Moreover, Fig. 4 shows the diagrams of the punctual
velocity, acceleration, jerk, jounce or snap, crackle and pop of
points B, C, D and E, as function of the crank angle &, while
Fig.5 shows the diagrams of the angular velocity, acceleration,
jerk, jounce or snap, crackle and pop of links 4, 5, 7 and 10, as
function of the crank angle 6.

In particular, a very long-dwell is obtained on the output
rocker link 10 by observing Figs. 4d and 5d in the angular range
that is centered on 360°, which corresponds to the total dead-
points configuration.

4. CONCLUSIONS

The higher order kinematic analysis of a 10-bar long-dwell
mechanism that was synthesized by applying the dead-points
superposition method and thus, connecting in series four
mechanisms. This approach can be extended to the synthesis of
N-bar long-dwell mechanisms with assigned dwell-time and
kinematic characteristics, in terms of number and type of the
assembled  four-bar  mechanisms  with  dead-points
configurations, which can be of 4R, 3RP, 2R2P and RPRP types.

The proposed formulation was implemented in Matlab and
validated by means of several graphical and numerical results.
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