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Abstract: (1) Background: Neurofeedback training (NFT) has emerged as a promising approach for
enhancing cognitive functions and reducing anxiety, yet its specific impact on university student
populations requires further investigation. This study aims to examine the effects of NFT on working
memory improvement and anxiety reduction within this demographic. (2) Methods: A total of
forty healthy university student volunteers were randomized into two groups: an experimental
group that received NFT and a control group. The NFT protocol was administered using a 14-
channel Emotiv Epoc X headset (EMOTIV, Inc., San Francisco, CA 94102, USA) and BrainViz software
version Brain Visualizer 1.1 (EMOTIV, Inc., San Francisco, CA 94102, USA), focusing on the alpha
frequency band to target improvements in working memory and reductions in anxiety. Assessment
tools, including the Corsi Block and Memory Span tests for working memory and the State-Trait
Anxiety Inventory-2 (STAI-2) for anxiety, were applied pre- and post-intervention. (3) Results: The
findings indicated an increase in alpha wave amplitude in the experimental group from the second
day of NFT, with statistically significant differences observed on days 2 (p < 0.05) and 8 (p < 0.01).
Contrary to expectations based on the previous literature, the study did not observe a concurrent
positive impact on working memory. Nonetheless, a significant reduction in state anxiety levels was
recorded in the experimental group (p < 0.001), corroborating NFT’s potential for anxiety management.
(4) Conclusions: While these results suggest some potential of the technique in enhancing neural
efficiency, the variability across different days highlights the need for further investigation to fully
ascertain its effectiveness. The study confirms the beneficial impact of NFT on reducing state anxiety
among university students, underscoring its value in psychological and cognitive performance
enhancement. Despite the lack of observed improvements in working memory, these results highlight
the need for continued exploration of NFT applications across different populations and settings,
emphasizing its potential utility in educational and therapeutic contexts.

Keywords: neurofeedback training (NFT); working memory enhancement; anxiety reduction;
university students; alpha amplitude; cognitive functions; EEG-biofeedback; Emotiv Epoc X; State-Trait
Anxiety Inventory (STAI); cognitive performance

1. Introduction

Neurofeedback (or EEG biofeedback) is a non-invasive psychophysiological tech-
nique based on the principle of operant conditioning [1,2]. This technique uses changes in
brain electrical activity to help individuals regulate the activity or power of specific EEG
frequency bands through real-time access to information about their brain electrical activ-
ity [3,4]. Thus, it represents true neuro-cognitive training whereby the individual learns to
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control, regulate, and voluntarily modify their brain electrical activity and to correct EEG
alterations and the pathological states associated with them, thanks to immediate feedback
provided in a visual/graphic and/or auditory form [5,6]. Generally, brain activity can be
measured using various signals that can serve as feedback, such as blood flow, oxygen
consumption, and electrical activity. The latter, through the use of EEG, constitutes the
most common and utilized form of neurofeedback [7–9].

EEG is recorded from the scalp surface, and when pyramidal neurons are activated,
it captures the ionic currents in the cerebral cortex due to synaptic excitation of these
neurons’ dendrites. The EEG trace results from the alternation between excitatory and
inhibitory postsynaptic potentials at these synapses and shows spontaneous activities
varying in frequency. Traditionally, these frequencies are divided into five bands, each with
its own range, corresponding to different brain states. These bands include delta (1–4 Hz),
predominantly observed in deep sleep and in very serious brain disorders; theta (4–8 Hz),
commonly associated with drowsiness, childhood, adolescence, and meditation; alpha
(8–12 Hz), linked to wakeful relaxation, closed eyes, and the inhibition of cortical activity;
beta (12–30 Hz), associated with active thinking, problem solving, active concentration,
and anxiety; and gamma (30 Hz and above), related to high-level cognitive functioning and
information processing, as well as conscious perception [10,11].

The goal of neurofeedback is thus to teach individuals to regulate their brain activity
within a certain frequency band to enhance the associated behavior or mental state [12].
Historically, since its inception in the 1960s, neurofeedback has been used in various fields
and for different purposes: for example, as an alternative to pharmacological treatment
in individuals suffering from headaches, nausea, and epileptic seizures and as an aid in
children with ADHD, who exhibited an unbalanced pattern of brain waves [13–19].

Due to its positive effects in clinical practice, there has been growing interest in
research to verify whether neurofeedback training (NFT) could also positively influence
the cognitive abilities of healthy individuals [20]. Some studies seem to support this
hypothesis [21]. According to Klimesch (1999), the individual upper alpha band is of great
importance for cognitive performance [22].

Based on various studies, researchers have examined the connection between indi-
vidual alpha wave amplitude (IUA), anxiety, and cognitive performance [23,24]. In these
studies, different performance aspects of short-term memory and working memory were
assessed with specific tests like the digit span, the N-back and Oddball task [25], and the
mental rotation task [26]. Mental flexibility and executive functions were investigated
through the Trail Making test [27], and anxiety state through questionnaires like the STAI
(State-Trait Anxiety Inventory) [28]. In all these studies, encouraging results emerged on the
effectiveness of neurofeedback for the improvement of cognitive and emotional functions.
They underscore the intricate relationship between working memory (WM) and anxiety,
revealing that anxiety can significantly impair WM performance. Working memory, the
cognitive system responsible for the temporary storage and manipulation of information,
is crucial for various complex cognitive tasks, including learning, reasoning, and compre-
hension. Anxiety, particularly in academic settings, tends to disrupt the efficiency of this
system, leading to diminished cognitive performance and academic achievement [29].

Neurofeedback training (NFT) has shown the potential to mitigate these effects by
enhancing alpha wave activity, which is associated with a state of wakeful relaxation and
reduced cognitive interference. For anxiety, the modulation of beta waves through NFT
can help reduce symptoms by calming the sympathetic nervous system and reducing
the overall arousal levels that characterize anxiety states. By increasing alpha amplitude,
NFT may help inhibit the overactivation of neural circuits that are detrimental to working
memory due to anxiety. These previous studies have indicated that neurofeedback training
(NFT) targeting alpha wave modulation offers significant benefits in managing anxiety and
enhancing cognitive functions, particularly working memory. These findings are pertinent
to our objectives, as they underline the potential mechanisms through which NFT exerts its
effects. Neurofeedback facilitates the self-regulation of brain activity, allowing individuals
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to consciously influence brain waves associated with cognitive alertness and emotional
calmness. For instance, increasing alpha wave activity through NFT has been linked to
improved relaxation and reduced arousal levels, which are crucial in high-anxiety states
commonly experienced by university students.

The enhancement of alpha activity has been shown to correlate with better perfor-
mance in working memory tasks. This is attributed to alpha waves’ role in inhibiting
distracting stimuli, thus enhancing cognitive focus and information retention. These ca-
pabilities are particularly valuable in academic settings where students are required to
process and retain large amounts of information under pressure. Therefore, the application
of NFT in this context not only supports emotional regulation but also directly contributes
to cognitive enhancements that can improve academic performance [30–35].

In light of established research demonstrating the efficacy of neurofeedback training
(NFT) in modifying alpha activity and reducing anxiety across both clinical and healthy
populations, the current investigation extends these findings to a novel context: healthy
university students. Despite the prevalence of academic and social pressures experienced by
this demographic, which significantly contribute to elevated levels of anxiety and cognitive
load, little research has specifically examined the potential cognitive and emotional benefits
of NFT within this group. University students are at a critical developmental juncture
where cognitive capabilities such as working memory are heavily utilized and are integral
to academic success. By focusing on this population, we aim to elucidate the role of alpha
activity modulation in cognitive and emotional regulation, potentially offering a non-
pharmacological intervention to enhance student well-being and academic performance.

Recent studies have highlighted the significance of alpha waves (8–12 Hz) in cognitive
and emotional regulation. Alpha waves are predominantly associated with states of
wakeful relaxation and cognitive inhibition, which help minimize distractions and enhance
cognitive focus. The choice of electrodes in this study, specifically the parietal (P7 and P8)
and occipital (O1 and O2) regions, is based on their established roles in visual processing
and attentional control. These regions are crucial for tasks involving working memory,
which requires the integration and manipulation of visual and spatial information. By
targeting these areas, the NFT aims to increase alpha wave amplitude, promoting an optimal
state of relaxation that can enhance cognitive processing and reduce anxiety. The rationale
is that elevated alpha activity can inhibit the overactivation of neural circuits involved
in stress responses, thereby improving emotional regulation and cognitive performance.
This study seeks to extend the understanding of these mechanisms within a population of
university students who often experience high levels of cognitive load and anxiety.

In addition to neurofeedback training (NFT), relaxation techniques were incorporated
into the intervention to enhance the overall effectiveness of the training. Relaxation tech-
niques, such as guided imagery and mental exercises, have been shown to promote alpha
wave activity by inducing a state of calm and reducing cognitive arousal. The synergistic
use of NFT and relaxation techniques is hypothesized to facilitate a more robust increase in
alpha wave amplitude, thereby optimizing the conditions for cognitive enhancement and
anxiety reduction. By combining these methods, the study aims to leverage the immediate
calming effects of relaxation techniques with the longer-term neural training provided by
NFT, potentially leading to more significant improvements in both working memory and
anxiety levels.

Objectives and Hypotheses

General Objective: To explore the effects of neurofeedback training (NFT) on cognitive
and emotional functions in university students. Specific Objective 1: To determine if NFT
can improve working memory performance. Specific Objective 2: To evaluate if NFT can
reduce levels of state and trait anxiety.

Hypothesis 1. Neurofeedback training (NFT) combined with relaxation techniques targeting
the alpha frequency band will significantly enhance working memory in university students. This
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hypothesis is grounded in previous research indicating that increased alpha wave activity, facilitated
by both NFT and relaxation techniques, is associated with improved cognitive functions, particularly
working memory.

Rationale: Alpha waves (8–12 Hz) are linked to wakeful relaxation and cortical inhi-
bition, which can enhance cognitive processes by reducing interference from irrelevant
stimuli. The selected electrodes (P7, P8, O1, and O2) cover parietal and occipital regions
associated with visual processing and attentional control, both of which are crucial for
working memory tasks. The inclusion of relaxation techniques aims to induce a state of
calm that further promotes alpha wave activity.

Hypothesis 2. NFT combined with relaxation techniques will lead to a significant reduction in
state and trait anxiety levels among participants. This reduction is expected due to the combined
ability of NFT and relaxation techniques to modulate brain activity in frequency bands associated
with relaxation and stress reduction.

Rationale: Increased alpha activity has been correlated with reduced anxiety and
enhanced relaxation. By focusing on the parietal and occipital regions, the NFT aims to
elevate alpha waves, promoting a state of calm that can mitigate anxiety symptoms. The
relaxation techniques are intended to provide immediate reductions in cognitive arousal,
complementing the long-term effects of NFT. The expected direction of the effect is an
increase in alpha wave amplitude, which should correspond with decreased anxiety levels.

These hypotheses will be tested using a controlled experimental design, where the
experimental group will receive NFT with real-time feedback aimed at enhancing alpha
waves in specific brain regions, while the control group will not receive this targeted
feedback. The effectiveness of the intervention will be measured through standardized
tests for working memory and anxiety before and after the NFT sessions.

2. Materials and Methods
2.1. Sample

To verify the hypotheses of this study, a statistical power analysis was performed to
estimate the sample size using G*Power 3.1 software. Considering a repeated measures
ANOVA design with within–between interactions taking into account Group (experimental
and control) and Time (six sessions), the following parameters were set: the effect size (ES)
was set at 0.30, considered medium according to Cohen’s criteria, an assumed correlation
among repeated measures of 0.5, and a significance level α of 0.05. The nonsphericity
correction was set to 1, assuming complete sphericity of the measures. The analysis
revealed a non-centrality parameter of 24.00, a critical F value of 2.069, with numerator
degrees of freedom of 7 and denominator degrees of freedom of 154. The total sample size
calculated to achieve adequate power (0.80) was 28 participants. However, the analysis
indicated that with this sample size, the actual power of the test reaches 0.960, suggesting a
very high probability of detecting a significant effect if present.

Recruitment was carried out by forwarding a request for voluntary participation to
the students of the University of Cassino and Southern Lazio, using the informational
channels of the internal internship office, through which it is possible to participate in
scientific research. The recruitment aimed at ensuring a diverse and representative sample
of the student population. Inclusion criteria were as follows: aged between 19 and 26 years;
full-time enrollment at the university; and willingness to participate in all sessions and
comply with study requirements. Exclusion criteria were as follows: history of neurological
or psychiatric disorders; ongoing pharmacological treatment that might affect neurological
functioning; and vision impairments not correctable with standard eyewear. An initial
screening interview was conducted to verify eligibility, gather basic demographic infor-
mation, assess understanding of and commitment to the study protocol, and address any
potential medical or psychological issues that might contraindicate participation.
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A total of 40 students, aged between 19 and 26 years and balanced by sex, thus
exceeding the minimum number indicated by the calculation performed with G*Power,
participated in the study. After passing the preliminary assessments, candidates provided
informed consent before participating. They were informed of their right to withdraw
from the study at any time without any consequence. All data were collected with strict
adherence to privacy standards and were used exclusively for scientific purposes.

2.2. Tools

For the NFT interventions, the following were used:

- Emotiv Epoc X device (https://www.emotiv.com/epoc/, accessed on 4 March 2024) [36].
This tool is non-invasive as it does not emit any harmful signals to health but is
able to detect the EEG signal on the scalp surface using passive saline sensors. The
device is easy to use and has not shown any harmful health effects, as supported
by recent studies, showing suitable quality in recording the electroencephalographic
signal [37–40]. The device complies with the requirements of the Low Voltage Directive
2006/95/EC, the EMC Directive 2004/108/EC, and the R&TTE Directive 1999/5/EC
and has the CE and C-Tick conformity marks [41]. The Emotiv Epoc X collects the EEG
signal from 14 different channels (AF3, AF4, F7, F3, F4, F8, FC5, FC6, T7, T8, P7, P8,
O1, and O2) on the scalp surface, as illustrated by Figure 1. The device is wireless
and transmits data via Bluetooth over a 2.4 GHz band with a sampling frequency of
128 bits per second and a bandwidth ranging from 0 to 64 Hz. The associated Emotiv
Pro Lab software (version 3.0) allows for the processing and encoding of the outgoing
EEG signal.
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Figure 1. (a) Emotiv Epoc X headset; (b) Positioning of the 14 EEG channels on the scalp used for
neurofeedback training, highlighting the regions of interest for alpha wave enhancement.

- The Emotiv BrainViz software (version Brain Visualizer 1.1). This software was used
to provide visual feedback to the participants. It offers a real-time 3D visualization
of the electrical activity recorded by the Epoc X device, as shown in Figure 2. In the
visualization, the 4 frequency bands (theta, alpha, beta, and gamma) are color coded,
making it possible to visualize their location on the scalp surface in real time. This
visualization thus allows one to see both spatial properties (the areas where brain
activity occurs) and temporal properties (the type of activity) at the same time [42].

https://www.emotiv.com/epoc/
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The Emotiv BrainViz software plays a crucial role in our neurofeedback protocol
by transforming raw EEG data into a comprehensible and actionable format. This trans-
formation begins with the recording of electrical activity via non-invasive EEG sensors
positioned on the scalp. The recorded signals, which primarily capture cortical electrical
patterns, are then processed to identify the alpha frequency band, known for its importance
in cognitive relaxation and attentiveness. Once the alpha activity is isolated, the Emotiv
BrainViz software employs advanced algorithms to render these data into a real-time 3D
visualization of brain activity. This visualization is not merely a surface projection but an
interpretation of cortical and subcortical regions based on the distribution and amplitude
of alpha waves. To enhance the spatial resolution and accuracy of this representation, the
software utilizes a technique akin to source localization. This technique involves estimating
the origins of brain activity within the cortical structure by using mathematical models that
approximate the volume conduction of neural signals through various brain tissues.

The 3D visualization thus provided offers both real-time feedback to the participant
and valuable insights for researchers, allowing for immediate adjustments in training pro-
tocols to optimize neurofeedback efficacy. By leveraging this sophisticated visual represen-
tation, participants can effectively target specific brain areas for alpha wave enhancement,
directly linking their cognitive efforts with visual outcomes.

For cognitive tests, assessments were carried out via computerized administration
through the PEBL platform [43]. The reference platform is a collection site for various
psychometric tests designed to be easily used across multiple operating systems [44].
The current version of the platform is designed to work with PEBL version 0.13 and
was released in 2012. It is distributed with PEBL 0.13 and is automatically installed in
Documents\pebl.0.13\battery on Windows. Figure 3 shows the test launch screen available
on the platform.
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The tests used for the assessment were as follows:
Two different working memory tests were employed to comprehensively evaluate

the cognitive effects of neurofeedback training (NFT) on participants: the Memory Span
and Corsi Block tests, each serving a specific evaluative purpose tailored to the study’s
objectives. The Corsi Block test, administered before and after the entire NFT training
sequence—specifically on the first and eighth days—was used to measure broader changes
in visuo-spatial working memory across the entire intervention period. This assessment
strategy was chosen to capture any enduring cognitive enhancements or adaptations
resulting from the neurofeedback sessions, providing insights into the long-term effects
of NFT on working memory capacity. Nine blue squares appear on the computer screen,
lighting up in a progressively numerical quantity, and the participant must reproduce the
exact sequence in which they lit up by clicking on each square with the mouse. It starts with
a sequence of 2 squares and continues until the subject can no longer accurately remember
the last observed sequence. In contrast, the Memory Span test was administered at both the
beginning and end of each of the eight training sessions. This frequent assessment schedule
was designed to monitor the immediate, session-specific effects of neurofeedback on verbal
working memory. By evaluating participants’ memory performance more regularly, we
could track the short-term fluctuations and potential immediate improvements in memory
capacity that may occur from session to session. This approach allows for a detailed analysis
of the dynamic changes in working memory over the course of the training, offering a
nuanced understanding of how each session might contribute to cognitive performance.
Memory Span is a simple test to assess short-term memory consisting of 9 stimuli (words
and images) presented in rotation. The number of stimuli presented to the subject increases
progressively, and the task is to remember as many as possible. It starts with a list of
3 stimuli, and each time the subject correctly recalls all the stimuli in a list, the list increases
by one until the subject can no longer remember all the stimuli of the last presented list.

To assess anxiety, the following questionnaire was used:
The State-Trait Anxiety Inventory-2 (STAI-2) [45] is a self-assessment questionnaire

where the participant rates, on a 4-point Likert scale (where 1 = not at all and 4 = very
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much), how much different statements reflect their behavior. This scale consists of a
total of 40 questions, 20 for state anxiety (Y1) and 20 for trait anxiety (Y2). The STAI
can be administered to individuals or groups and takes 8 min to complete one scale and
about 15 min to complete both, allowing for two distinct scores to be derived depending
on the aspect being investigated. STAI scores are commonly classified as “no or low
anxiety” (scores 20–37), “moderate anxiety” (scores 38–44), and “high anxiety” (scores
45–80). The decision to use STAI over other measures, such as the State-Trait Inventory for
Cognitive and Somatic Anxiety (STICSA), was motivated by several factors: (1) The STAI
has long been validated and is widely used in both clinical and research settings, providing
robust measures of both state and trait anxiety. Its reliability and validity across diverse
populations make it a trusted tool for assessing the psychological condition of university
students. (2) While STICSA offers a detailed breakdown of the cognitive and somatic
aspects of anxiety, our study was primarily focused on the broader psychological impacts
of neurofeedback on anxiety. The STAI, which assesses the general feeling of anxiety and
its stable occurrence as a trait, was deemed more appropriate for gauging the overall
psychological and emotional state changes induced by neurofeedback training. (3) The
use of STAI allows for comparative analysis with a broader range of previous studies in
neurofeedback and anxiety, many of which have also employed STAI. This compatibility is
crucial for situating our findings within the existing research landscape and for potential
meta-analyses in future studies.

2.3. Procedure

The 40 participants in the pilot study were preliminarily randomized into 2 groups
(experimental and control) of 20 individuals each.

The 20 participants in the experimental group were individually administered a
15 min NFT, divided into 5 sessions of 3 min each, interspersed with 1 min of recovery, for
8 consecutive days. In the training sessions, participants in the experimental group were
provided precise instructions aimed at enhancing their alpha wave activity, a key focus
of our study due to its correlation with reduced anxiety and improved cognitive function.
They were asked to enhance alpha waves in the parietal areas P7 and P8 and occipital areas
O1 and O2. Specifically, participants were instructed to increase the prominence of the
purple color in the 3D brain visualization provided by the Emotiv Brain Viz software, which
represented alpha wave activity. To achieve this, participants were guided through a series
of mental exercises designed to promote relaxation and mental calmness, thereby elevating
alpha wave production. These exercises included focusing on positive memories, engaging
in mental imagery of peaceful scenes, and other personalized relaxation techniques that
participants found effective. They were continuously monitored and received real-time
feedback, allowing them to see the effects of their mental strategies on alpha wave activity.

The aim was to make the purple color, indicative of alpha activity, expand across the
3D visualization of their brain, providing a clear and engaging target for the participants.
This interactive and visual approach was intended not only to facilitate the understanding
and control of brain activity through neurofeedback but also to reinforce the learning of
self-regulation techniques that participants could apply outside of the experimental setting.
Thanks to the visual feedback of alpha wave activation, set to the frequency of 7.5–12.5 Hz
by the Emotiv BrainViz software (version Brain Visualizer 1.1) [46], subjects could observe
the progressive trend of their alpha-type brain activity.

During the neurofeedback sessions, participants in the experimental group received
real-time feedback based on their alpha wave activity, visualized through the Emotiv Brain
Viz software. This feedback was not limited to passive observation; instead, participants
were actively engaged in manipulating their brain activity. The feedback mechanism was
designed to be intuitive: the purple color representing alpha activity would intensify and
expand across the 3D brain model as alpha levels increased, providing a direct visual
representation of brain activity changes.
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Participants were instructed that the goal was not necessarily to continuously increase
alpha activity throughout the entire session but rather to maintain it within an optimal
range that supports relaxation and focused attention. This approach helps in avoiding
fatigue and allows participants to stabilize their brain activity at a beneficial level. Training
sessions included periods where maintaining a consistent alpha level was emphasized over
increasing it, providing a balanced challenge that facilitates learning and adaptation to
neurofeedback techniques.

Immediately following each session, participants were asked to describe the mental
strategies they employed to control or influence their brain activity. This process was con-
ducted through open-ended questions during a brief, structured interview. The responses
were analyzed using qualitative content analysis to identify common themes and strate-
gies across participants. This approach allowed us to understand the types of cognitive
processes participants found most effective in manipulating their EEG signals.

The Corsi test and the STAI-2 for assessing memory and anxiety were administered
before and after the NFT training on the first and eighth day of the experiment, while
the Memory Span test was administered at the beginning and end of each session for the
duration of the intervention, i.e., for all eight sessions. Employing both memory tests in
these specific ways enabled a comprehensive analysis of working memory modifications
due to NFT, capturing both the immediate effects of each session and the cumulative
impact over the entire training period. This methodology also provides a robust framework
for assessing how different aspects of working memory (visuo-spatial versus verbal) are
affected by such cognitive training.

The other 20 participants in the control group were not exposed to visual feedback
but only underwent a 15 min EEG recording, again divided into 5 sessions of 3 min each,
interspersed with 1 min of recovery. In this case, the procedure was focused only on
viewing a graphical representation of a relaxing image depicting a sunny beach with a calm
sea projected on the PC screen placed in front of the participants. In this group, the Corsi
test and the STAI-2 for assessing memory and anxiety were administered before and after
the 15 min EEG recording on the first and eighth day, while the Memory Span test was
administered at the beginning and end of each session for the duration of the program, i.e.,
for all eight sessions.

2.4. Description of the General Procedure Action Sequence

Participants were individually summoned (by appointment) to the dedicated experi-
mentation space at the University of Cassino and Southern Lazio in the Folcara Campus.
They were welcomed by a first operator in a quiet space, free of noise and distractions, so
as to not compromise the validity of the study. After collecting the informed consent of the
participants, explaining the experimental procedure to them, and allowing them to become
familiar with the environment, the pre-evaluation phase commenced.

Participants were asked to sit on a comfortable chair in front of a computer to perform,
with the support of a second operator, the pre-specified computerized pre-tests for the
study (assessment of working memory and anxiety).

After completing the pre-evaluation procedure, participants in the experimental
groups were accommodated at a second station, placed in front of a PC (whose bright-
ness was set within safety parameters for sight), and a second operator explained the
operation of the Emotiv Epoc X device and prepared its placement on the participant’s
head, ensuring that the head was not wet, that the subject did not wear metallic objects,
and that no excessive movements were made that could interfere with the detection of
the electroencephalographic signal, and that the sensors were adequately moistened with
saline solution to ensure signal conductivity.

The participant was then provided instructions on how to perform the neurofeedback
training with the related EEG recordings.
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Once the NFT recording phase (lasting 20 min) was completed, one of the researchers
removed the device from the participant’s head and disinfected the sensors and the device
for measurement with the next participant.

The same procedure was carried out for participants in the control group, with the
difference being that they were not subjected to neurofeedback training but were instructed
to observe a relaxing image on the screen (also for a duration of 20 min).

Subsequently, one of the operators had the participant sit back at the starting station
to undergo (where appropriate) the cognitive and anxiety tests again. At the end of the
session, feedback on the session was requested from the participant, and any observations
on the experience were collected. The participant was then dismissed and reminded of the
next appointment.

2.5. Statistical Analyses

In order to clean EEG artifacts, compute the Fourier transform, and obtain a first
matrix of each individual recording, the proprietary Emotiv software named Analyzer
(version 3.0) was used. The MATLABTM computing software (version 23.2) was used to
separate the baseline from the recording trace and for the construction of computation
matrices for averages in reference to the relative alpha normalized to the reference sample.
All other analyses were performed with the IBM Statistical Package for Social Sciences
(SPSS version 26) for multivariate and regression analyses.

To evaluate whether the NFT program had significant effects on the variables of
the alpha wave, a variance analysis with a mixed factorial model was conducted, which
included the time variable (eight sessions) as a factor within participants and the group
variable as a factor between subjects. Therefore, for each dependent variable considered,
corresponding two-way mixed ANOVAs (8 × 2) were performed. For state and trait
anxiety, average scores of State-Trait Anxiety Inventory (STAI-2) before and after the
intervention were calculated and analyzed using repeated measures ANOVA. The visuo-
spatial working memory test (Corsi Block test) was administered pre- and post-intervention.
Consequently, to assess the impact of the NFT, we performed a repeated measures ANOVA
focusing on the group (experimental vs. control) and time (pre- vs. post-intervention)
as factors. As the Memory Span test was administered at the beginning and end of each
of the eight NFT sessions, data were analyzed using repeated measures ANOVA, with
time as a within-subject factor across the eight sessions, to monitor changes in memory
performance throughout the intervention. Following Cohen [47], partial Eta squared was
the measure used to assess the effect size (0.01 = small, 0.06 = medium, 0.13 = large). The
significance level was set at p < 0.05, while for checking the effects of multiple univariate
interactions, a Bonferroni adjustment was introduced by dividing the declared level of
statistical significance by the number of dependent variables: p < 0.025 (i.e., p < 0.05 ÷ 2).

The recorded EEG data were pre-processed using the Emotiv Analyzer and MATLABTM

software to perform automatic artifact removal, separation of the EEG signal into various
bands, and calculation of relative alpha for both the experimental and control groups.
In this study, relative alpha refers to the proportion of alpha wave activity within the
overall EEG signal, a commonly used measure in neurofeedback protocols to assess the
effectiveness of training aimed at enhancing cognitive functions and reducing anxiety.
The relative alpha values were calculated from the pre-processed EEG by dividing the
average amplitude of the alpha band by the average amplitude of the entire EEG band.
The relative alpha is calculated using the following formula: Power of Alpha Band/Total
Power Across All Bands. This calculation is facilitated by the Emotiv Pro Lab software,
which processes the raw EEG data recorded via the Emotiv Epoc X headset. The software
isolates the alpha frequency band, typically ranging from 8 to 12 Hz, from the EEG signal
and computes its power. The total power is calculated by summing the power across all
frequency bands captured by the EEG. The relative alpha metric provides a normalized
measure of alpha activity, offering insights into the participant’s state of relaxation and
cognitive alertness during and after the neurofeedback sessions. The choice to use relative
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alpha as a measure is based on its recognized sensitivity to changes in cognitive states
induced by neurofeedback, making it a valuable indicator of the training’s effectiveness.
By quantifying how much of the brain’s electrical activity falls within the alpha band
relative to the entire spectrum of brain waves, we can more accurately assess the impact
of our neurofeedback protocol on enhancing cognitive function and reducing anxiety in
participants. For the purposes of this study, relative alpha values were specifically obtained
from the four recording channels used in the neurofeedback protocol: P7, P8, O1, and O2.
These channels were chosen due to their relevance in capturing alpha activity associated
with visual processing and attention, areas directly implicated in the cognitive functions
targeted by our neurofeedback training. By focusing on these channels, we aimed to
precisely measure changes in alpha activity that are most relevant to the desired outcomes
of enhanced working memory and reduced anxiety. This selective approach allows for a
more accurate assessment of how neurofeedback influences specific areas critical to the
regulation of anxiety and cognitive performance rather than a generalized EEG activity
across the entire scalp. Regarding relative alpha data, the analysis of studentized residuals
demonstrated normality in distribution, assessed by the Shapiro–Wilk test, and the absence
of outliers, evaluated by studentized residuals not exceeding ±3 standard deviations. The
sphericity of the interaction term was confirmed, as assessed by Mauchly’s test of sphericity
(p > 0.05).

3. Results
3.1. Evaluation of the Intervention Effect on Alpha Wave Amplitude

Considering the alpha wave amplitude variable, no statistically significant interaction
between Group and Time emerged, F(7,133) = 1.02, p > 0.05, partial η2 = 0.051. Therefore,
simple main effects were evaluated. Significance was detected for the Group variable alone:
F(1,19) = 6.05, p < 0.05 partial η2 = 0.242.

Table 1 below shows the recorded alpha values (indicated in mean, standard error,
and confidence interval) obtained in the two groups over the eight days comprising the
training. Data shown are averages obtained specifically from the neurofeedback protocol
channels P7, P8, O1, and O2.

Table 1. Group and Time alpha wave amplitudes.

Group Time Mean Std. Error
Confidence Interval 95%

Lower Limit Upper Limit

Experimental
Group

1 0.659 0.037 0.581 0.736
2 0.820 0.050 0.716 0.924
3 0.751 0.044 0.658 0.844
4 0.803 0.049 0.700 0.905
5 0.769 0.046 0.674 0.865
6 0.790 0.026 0.736 0.844
7 0.791 0.032 0.725 0.857
8 0.830 0.035 0.756 0.904

Control
Group

1 0.638 0.041 0.553 0.724
2 0.658 0.055 0.554 0.782
3 0.663 0.051 0.556 0.770
4 0.672 0.051 0.566 0.778
5 0.671 0.038 0.591 0.751
6 0.656 0.062 0.526 0.786
7 0.652 0.061 0.525 0.779
8 0.637 0.049 0.533 0.740

Subsequently, the pairwise comparisons for each of the eight days were then per-
formed, comparing alpha wave values between the control group and the experimental
group. Below, in Table 2, are reported the resulting averages and the p-value for each day.
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Table 2. Group alpha wave pairwise comparisons across the eight days.

Day Mean
Difference

Standard
Error Lower Limit Upper Limit F p-Value Partial Eta

Squared

1 0.021 0.052 −0.089 0.130 0.154 0.699 0.008
2 0.162 * 0.049 0.018 0.221 6.054 0.024 0.242
3 0.751 0.074 −0.067 0.244 1.431 0.246 0.070
4 0.130 0.072 −0.021 0.282 3.239 0.088 0.146
5 0.098 0.066 −0.041 0.066 2.183 0.156 0.103
6 0.134 0.066 −0.004 0.272 4.111 0.057 0.178
7 0.139 0.073 −0.013 0.292 3.652 0.071 0.161
8 0.193 * 0.059 0.069 0.318 10.564 0.004 0.357

Note. * = p < 0.05.

From the results, only day 2 and day 8 showed statistically significant differences
(p < 0.05) between the two groups in alpha wave amplitude. This indicates that on days 2
and 8, the experimental group exhibited a significant increase in alpha wave amplitude
compared to the control group. The other days did not show statistically significant
differences.

In Figure 4 below, one can more clearly observe the variation in alpha wave amplitude
recorded in the two groups during the eight sessions. The average of the intervals compris-
ing each daily training session was calculated for each session. After the baseline recording
on the first day, which saw the two groups starting from a substantially homogeneous level,
differences emerged from the second day, where the experimental group recorded higher
average alpha amplitude levels than the control group. This difference remained evident for
all seven days following the first session, with a greater amplitude detectable on the second,
fourth, and eighth days, although these specific peaks did not constitute a statistically
significant difference between the sessions, configuring a substantial “plateau effect” of
the training starting from the second day. This effect has already been documented in the
literature [35,48,49], indicating that the increase in alpha does not continue incrementally
but tends to maintain a stable level after the start of treatment.
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3.2. Evaluation of the Intervention Effects on Short-Term Memory

To evaluate the effect of the treatment on short-term memory, measures from the Corsi
Block test and the Memory Span test in the two groups were compared. For Memory
Span, the repeated measures ANOVA showed significance for the time variable but not
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for the group: F(1,19) = 85.80, p < 0.001, partial η2 = 0.819; Table 3 below shows the means,
standard error, and confidence interval recorded in the two groups over the eight days.

Table 3. Group and Time Memory Span performances.

Group Time Mean Std. Error
Confidence Interval 95%

Lower Limit Upper Limit

Experimental
Group

1 4.419 0.158 4.088 4.751
2 4.572 0.140 4.279 4.864
3 4.781 0.182 4.400 5.163
4 4.970 0.212 4.526 5.414
5 5.027 0.257 4.489 5.565
6 5.267 0.228 4.789 5.744
7 5.475 0.267 4.916 6.034
8 5.504 0.242 4.998 6.010

Control
Group

1 4.389 00.117 4.143 4.634
2 4.601 0.129 4.331 4.871
3 4.920 0.196 4.511 5.329
4 5.015 0.167 4.666 5.364
5 5.113 0.186 4.725 5.502
6 5.292 0.198 4.879 5.705
7 5.390 0.227 4.916 5.864
8 5.609 0.167 5.259 5.959

Figure 5 below illustrates with greater clarity the variations in the two groups. As
can be observed, there was a progressive increase on the mnemonic plane, but the trend is
substantially homogeneous between the two groups; hence, no direct effect of the employed
neurofeedback training on the working memory of the participants in the experimental
group can be associated.
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Figure 5. Memory Span performance trends. Progressive trends in Memory Span scores across
sessions for both experimental and control groups, indicating a general learning effect without
significant differences attributable to neurofeedback training.

The Corsi Block test, administered in the first and last training session, also did
not confirm, through the comparison of values reported in Table 4, the hypothesis of a
significant and positive change in mnemonic performance in favor of the experimental
group (p > 0.05; F = 0.031 partial Eta squared = 0.003).
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Table 4. Corsi Block test performance before and after intervention.

Group Time Mean Std. Error
Confidence Interval 95%

Lower Limit Upper Limit

Experimental
Group

Pre 5.300 0.213 4.817 5.783
Post 5.650 0.380 4.789 6.511

Control
Group

Pre 5.350 0.198 4.902 5.798
Post 5.700 0.186 5.280 6.120

Figure 6 clearly shows that there was no difference between the two groups. The slope
with an increase in the measure taken in the final session, although less pronounced than
what was recorded for the Memory Span evaluation, suggests a slight learning effect of the
test. This effect was very pronounced in the trend of the Memory Span scores, also because,
in that case, the administrations were carried out on all eight days of the program, which
probably facilitated learning of the task, influencing the mnemonic recall values.
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Figure 6. Comparison of Corsi Block test scores. A slight learning effect observed in the Corsi Block
test scores from the first to the last session, without significant differences between groups.

Overall, the study observed that the neurofeedback program had a discernible effect
on alpha amplitude from the second day. However, unlike findings from other stud-
ies in the literature [35,50], it did not confirm the expected concurrent improvement in
working memory.

3.3. Evaluation of the Intervention Effect on Anxiety Levels

Within the protocol, the measure of general state and trait anxiety in participants
was included. The hypothesis was to achieve as a concurrent effect of the neurofeedback
intervention on the alpha wave a reduction in general anxiety levels in participants. This
effect is well highlighted in numerous works in the literature [51–53]. The evaluation
was carried out in the first and last training sessions, considering state and trait anxiety.
Firstly, a two-way repeated measures ANOVA was run to determine the effect of NFT
over time on state anxiety. Analysis of the studentized residuals showed that there was
normality, as assessed by the Shapiro–Wilk test of normality, and no outliers, as assessed
by no studentized residuals greater than ±3 standard deviations. There was sphericity for
the interaction term, as assessed by Mauchly’s test of sphericity (p > 0.05). There was a
statistically significant interaction between NFT and time on state anxiety, F(1,19) = 61.69,
p < 0.001, partial η2 = 0.765. The contrast analysis, shown in Table 5, reveals a significant
interactive effect between the duration of the treatment and the group membership, with
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effect size measures of 0.342 (partial Eta squared) for the group and 0.822 for the duration
of the treatment.

Table 5. Interactive effects of treatment duration and Group on state anxiety values.

Origin
Type III
Sum of
Squares

df Quadratic
Mean F Sign. Partial Eta

Squared

Group 103.513 1 103.513 9.871 0.005 0.342
Error (Group) 199.237 19 10.486
Time 137.813 1 137.813 87.463 0.000 0.822
Error (Time) 29.938 19 1.576
Group × Time 94.613 1 94.613 61.695 0.000 0.765
Error (Group × Time) 29.137 19 1.534

Therefore, simple main effects were run. State anxiety was not statistically signifi-
cantly different in the control group (M = 29.35, SD = 1.09) compared to the experimental
group (M = 29.25, SD = 1.02) at the beginning (pre-) of the NFT, F(1,19) = 0.02, p = 0.886,
partial η2 = 0.001. However, state anxiety resulted statistically significantly different in the
experimental group (M = 24.45, SD = 1.02) compared to the controls (M = 28.90, SD = 1.01)
at the end of the NFT (post-), F(1,19) = 27.17, p = 0.000, partial η2 = 0.978, a mean differ-
ence of −4.45, 95% CI [−6.24, −2.66]. Therefore, the pre–post comparison between the
experimental group and the control group recorded a significant reduction in state anxiety
levels in the participants of the experimental group. Table 6 below shows the pre–post state
anxiety values recorded in the two groups. Means, standard error, and confidence interval
are indicated.

Table 6. State anxiety values pre–post-intervention.

Group Time Mean Std. Error
Confidence Interval 95%

Lower Limit Upper Limit

Experimental
Group

Pre 29.25 1.018 27.119 31.381
Post 24.45 1.025 22.305 26.595

Control
Group

Pre 29.35 1.094 27.061 31.639
Post 28.90 1.005 26.797 31.003

Figure 7 below illustrates the positive change in the experimental group, which
recorded a significant reduction in state anxiety after eight days.
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Also, for trait anxiety, a two-way repeated measures ANOVA was run to determine
the effect of NFT over time. Analysis of the studentized residuals showed that there was
normality, as assessed by the Shapiro–Wilk test of normality, and no outliers, as assessed
by no studentized residuals greater than ±3 standard deviations. There was sphericity for
the interaction term, as assessed by Mauchly’s test of sphericity (p > 0.05). A statistically
significant interaction between NFT and time on trait anxiety resulted: F(1,19) = 9.88,
p < 0.05, partial η2 = 0.342. The contrast analysis, shown in Table 7, reveled a significant
interactive effect between the duration of the treatment and the group membership, with
effect size measures of 0.599 (partial Eta squared) for the duration of NFT and 0.002
for Group.

Table 7. Trait anxiety values pre–post-intervention.

Origin
Type III
Sum of
Squares

df Quadratic
Mean F Sign. Partial Eta

Squared

Group 2.112 1 2.112 0.046 0.832 0.002
Error (Group) 871.637 19 45.876
Time 56.113 1 56.113 28.326 0.000 0.599
Error (Time) 37.637 19 1.981
Group × Time 30.013 1 30.013 9.876 0.005 0.342
Error (Group × Time) 57.737 19 3.039

After simple main effects have been run, trait anxiety results were not statistically
significantly different in the control group (M = 34.00, SD = 1.03) compared to the experi-
mental group (M = 32.45, SD = 0.99), both at the beginning (pre-) of the NFT, F(1,19) = 0.02,
p = 0.886, partial η2 = 0.001, and at the end of the NFT (post-), F(1,19) = 0.32, p = 0.578,
partial η2 = 0.017, where also no statistical difference in the experimental group (M = 31.10,
SD = 1.03) compared to the controls (M = 32.00, SD = 0.98) has been detected. Therefore, for
trait anxiety, a reduction in the levels attributable to the neurofeedback treatment did not
occur. Table 8 and Figure 8 below report trait anxiety scores for the two groups before and
after neurofeedback training.

Table 8. Trait anxiety values before and after NFT.

Group Time Mean Std. Error
Confidence Interval 95%

Lower Limit Upper Limit

Experimental
Group

Pre 34.00 1.026 31.853 36.147
Post 31.10 1.026 28.953 33.247

Control
Group

Pre 32.45 0.993 30.371 34.529
Post 32.00 0.979 29.952 34.048
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Overall, the results suggested a possible association between increased alpha ampli-
tude and a significant reduction in state anxiety in the group that underwent the neuro-
feedback intervention.

4. Discussion

The study presented here utilized an economical, commercially available Brain–
Computer Interface device (Emotiv Epoc X) as the NFT device to voluntarily control
and enhance EEG activity of the relative alpha rhythm (8–12 Hz) and consequently in-
duce an improvement in short-term memory performance and a reduction in anxiety in a
single-blind design. In line with previous results [35,50], an enhancing effect of training on
relative alpha and short-term memory performance (measured with the Memory Span and
Corsi Block tests), as well as a reduction in state and trait anxiety levels (measured with
STAI-Y), was expected.

The data indicated an increase in relative alpha in the neurofeedback experimental
group from the first to the last recording session, an observation not paralleled in the con-
trol group. Additionally, contrast analysis suggested that the increase in alpha amplitude
occurred earlier, starting from the second session, for participants who monitored their
brain activity in real time compared to those who were exposed to a neutral image. It is
noteworthy that after this initial rise, the increase in relative alpha rhythm in the experi-
mental group appeared to stabilize or show slight increments throughout the sessions. The
statistically significant results on days 2 and 8, where p-values are less than 0.05, suggest
that the intervention had a measurable impact on alpha wave amplitude on these specific
days. This might indicate that the experimental conditions or the participants’ responses
to the neurofeedback training peaked effectively at these times. The lack of statistically
significant differences on the other days could suggest several things. The effect of the
intervention may have fluctuations due to various factors, such as participant fatigue, adap-
tation to the neurofeedback, or external variables not controlled within the study. It may
also suggest that the changes in alpha amplitude, while possibly present, were not robust
enough on these days to be detected as statistically significant against the natural variability
within the control group. The significant increases on specific days but not others could be
indicative of learning or adaptation effects. It is possible that participants are gradually
improving their ability to control or enhance alpha wave activity through neurofeedback,
with fluctuations in effectiveness. This could be explored further by analyzing the strategies
used by participants on successful days versus non-successful days. Given the variability
in results, future studies might look into more extended periods of training, perhaps with
additional sessions, to see if a more consistent pattern of alpha wave amplitude increase
can be achieved. Examining individual differences in response to neurofeedback could
help tailor more effective personalized interventions.

This result could indicate a plateau effect of neurofeedback training, as an initial
increase in relative alpha rhythm after the first session was followed by an adaptation
that led to stabilizing the new rhythm and not exponentially increasing it. This effect
has also been found in previous studies in the literature [35,48,49]. In various studies
conducted on healthy participants, it has been reported that the incremental curve of
NFT reaches a plateau after 4–6 sessions with a subsequent stagnation (total number of
sessions 8–10) [49,54–57]. It is hypothesized that these plateaus reflect training fatigue or
over-learning. Furthermore, learning curve models of a clinical sample might differ from
those of healthy subjects. For example, Kübler et al. [58] found that healthy subjects reached
a learning plateau after 3 sessions, while in patients with Amyotrophic Lateral Sclerosis,
no learning plateau was reached after 12 sessions. In a neurofeedback study on patients
with primary insomnia, participants showed fluctuating learning, which, interrupted
by stagnation sessions, increased over the sessions [59]. In anxious patients, Hardt and
Kamiya [60] hypothesized a fifth-order learning curve, starting with an initial increase,
followed by a decline, a second increase, and a final exponential increase for the learning of
alpha-neurofeedback.
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In general, the results regarding relative alpha demonstrated that training the alpha
rhythm with a real-time NFT procedure facilitates the enhancement process of alpha activity.
Therefore, the findings of this study are in agreement with some of the most recent studies
in the literature [24,35,61], which suggest that neurofeedback training on the alpha rhythm,
repeated over several days, produces an increase in relative alpha activity.

The hypothesis, which anticipated an improvement in anxiety levels following NFT
on the alpha rhythm compared to the control group, was confirmed. Here again, the results
are in line with some of the most recent studies on the subject [50–52]. Neurofeedback
training on low-frequency brain waves (alpha–theta) allows for a reduction in anxiety and
inhibits the activity of specific brain regions, which are determinants in the induction of
hyper-arousal [62].

An aspect to highlight in this study is the strategies used for the enhancement of the
relative alpha rhythm. In the analysis of the neurofeedback sessions, it was noted that
participants commonly used specific mental strategies to enhance their EEG feedback
results. These strategies included thinking about emotionally charged subjects, both
positive and negative, and visualizing active scenarios such as participating in sports
or recalling interactions with loved ones. These observations were derived from qualitative
data collected at the end of each neurofeedback session. From the descriptive analysis, it
emerged that the most used strategies to obtain feedback activation on the screen were
related to thinking about something that evoked emotions, both positive and negative,
visualizing oneself in a sporting activity, or thinking about a loved one, a love, or a strong
feeling. The analysis of these three strategies on the alpha rhythm, pre–post-training,
highlighted two contrasting trends: thinking about positive or negative emotions did not
produce a positive increase in the alpha rhythm, while strategies concerning thinking about
a situation related to sports activity or a feeling were correlated with an incremental trend of
the relative alpha rhythm. This might imply that it is possible to deduce appropriate mental
strategies within a session and that consistent visual feedback might not be necessary for
subsequent sessions to over-regulate alpha to a certain extent, provided that the appropriate
mental strategy is used. This interpretation seems to be in line with studies showing an
improvement in alpha from certain types of meditation [63,64]. A replication study with an
additional control group, uninformed about which strategies are generally linked to the
improvement of the alpha rhythm, could help to further investigate this matter.

Another possible explanation for the improvement in alpha with the aforementioned
strategies could be found in the realm of psychophysiological processes. It has been re-
ported in the literature that the alpha rhythm is favored by a relaxed state, and over the
course of the study presented here, participants increasingly became familiar with the ex-
perimental environment, as well as with the experimenters. It is possible that participants
became increasingly relaxed, comfortable, and calm during subsequent neurofeedback
sessions, which could have facilitated the improvement of the alpha rhythm in the ex-
perimental group. In line with Thibault et al. [65], it might be important to include, in a
future study, a control group that works with an inverse neurofeedback program (aimed at
reducing the alpha frequency).

An additional result observed in the conducted study is a clear improvement in
Memory Span tests over the sessions. However, a significant incremental increase was
observed in both groups (experimental and control). Likely, the Memory Span test results
were influenced by the learning effect of the tasks. Repeating the Memory Span tests pre
and post each session facilitated learning of the task and the adoption of strategies for score
improvement. As for the other memory test used, from the analysis of the Corsi Block test
scores, there was a linearity between pre- and post-NFT. In this case, the learning effect
did not occur, as the scores did not significantly deviate from the initial scores. This result
was also obtained because the Corsi Block test, unlike Memory Span, was administered
only on two occasions, at the beginning and at the end of the program. These results were
observed in both groups and did not confirm our initial hypotheses. Several explanations
can be proposed to justify them. Firstly, the rapid improvement in the Memory Span task
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observed in most participants is most likely due to practice and was stronger than the
increase in alpha frequency across the sessions.

The placement of electrodes might also have been responsible for the lack of NFT
effect on working memory performance. Feedback signals were acquired from P7, O1, O2,
and P8 because the occipital cortex is involved in every visual process, and the parietal
sites are connected to attention [66,67]. It is possible that the choice of electrodes could
have influenced or compromised the NFT’s effect on memory performance. Many authors
have used electrodes in other sites, such as Cz, Pz, Fz, and C3, which differ from the sites
used in this study [68–70].

The study had some limitations that could have reduced the effectiveness of the
planned intervention. Although used in various clinical test batteries and generally con-
sidered a useful indicator for cognitive performance, the Memory Span task administered
in this study showed rather low intra-individual variation and strong learning effects in
the repeated measures chart. It is also possible that the conditioning program was not
efficient enough due to the use of a dimensional color code as a feedback signal. Other
authors have worked with very specific reward symbols and sounds (for example, acoustic
signals, counters, and pleasant sounds [71,72]). Another limitation of the study refers to
the software used for NFT, which did not allow for the selection of specific frequency
bands. Considering that many studies on working memory improvement have focused
on training the individual upper alpha (IUA) [73–75], not being able to set the program to
such frequency may have reduced the efficacy of the training itself. Another limit of the
study could have been using only a relaxing image of the sea for the control group to focus
on. It can be observed that for some subjects, this image could evoke relaxing sensations,
while for others, it could activate opposite sensations. Thus, for a future study, it might be
preferable to include a variety of choices among relaxing images (sea, mountain, etc.) so
that everyone can lean toward the one most congenial to their preferences.

One notable limitation of our study pertains to the feedback mechanism used during
the neurofeedback sessions. While participants received real-time visual feedback on
their alpha wave activity through changes in color intensity on the 3D brain model, our
protocol did not include additional reinforcement signals, such as a green checkmark, that
could have explicitly indicated successful maintenance of optimal alpha activity levels.
This absence might have limited participants’ ability to clearly discern when they had
reached or maintained the desired activity level, potentially impacting their motivation
and the efficacy of self-regulation strategies. The lack of explicit reinforcement could
have implications for the learning and generalization of self-regulation skills beyond the
laboratory setting. Participants might have benefited from more structured feedback that
not only reflected changes in brain activity but also affirmed correct performance through
positive reinforcement cues. Future studies could improve upon this by incorporating a
multimodal feedback system that includes both visual and auditory signals to clearly denote
when participants achieve or maintain target brain activity levels. This could enhance
the training effect by providing immediate and clear reinforcement, thereby potentially
increasing the effectiveness of neurofeedback training in real-world applications.

The study used a single-blind design as the experimenters knew which type of group
(experimental or control) the participating subjects had been assigned to. In a future study,
the hypothesis that even the experimenters are unaware of the group division (double-blind
study) should be considered so as not to influence the results, even unconsciously. Moreover,
in NFT studies, control groups with Sham feedback are often employed, where subjects in
the control group are given false feedback instead of neutral/pleasant stimuli. Planning
a Sham control group is considered in the literature as the most appropriate research
design for studying an NFT intervention, as it provides a control method for various
components that are fundamentally not related to EEG regulation but can nevertheless
influence EEG [76,77], including the effects of attention and expectation [78,79]. The
non-utilization of a SHAM group as a control is an important limitation, as with the use
of a “passive” control (viewing an image) instead of a SHAM group (non-contingent
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neurofeedback to the target activity), it cannot be discerned whether the observed pre–post
changes are indeed due to the modulation of the alpha activity or to the attention and
expectations generated by engaging in any activity with a purpose (increasing alpha).

The research project planned and carried out eight daily recording sessions, five
consecutive in one week and an additional three consecutive in the following week. This
administration mode may have been a limitation, as it likely exposed subjects to fatigue
and a significant plateau effect. In future work, it should be considered to schedule
interventions with longer breaks between training sessions to foster participants’ motivation
and concentration while simultaneously reducing fatigue.

For a study revision, it would also be appropriate to focus on other cognitive functions,
such as inhibitory control, attention, attentive focus, and executive functions, in addition
to memory. It might also be useful to use other sensors (e.g., frontal and fronto-temporal
areas) that concern frontal executive functions, which are widely involved in memory
processes [80–82].

Further investigation should verify the temporary or lasting and stable nature of the
cognitive function outcomes from neurofeedback training. One way to explore this question
is to conduct long-term follow-up studies. On this topic, one of the most comprehensive
follow-up analyses on neurofeedback was conducted by Tansey et al. [83]. In this study,
researchers carried out an NFT protocol of the SMR rhythm of a teenager with ADHD.
After 20 sessions of neurofeedback aimed at increasing SMR activity, the boy showed
specific improvement in reading and comprehension and a reduction in his hyperactive
behavior. An initial follow-up conducted 24 months after treatment revealed that the
boy had maintained his behavioral, attentional, and academic progress. After 10 years, a
further follow-up showed that the individual continued to demonstrate both academic
and personal successes and a normalized EEG profile. Further studies on a larger sample
should be planned to verify the long-term efficacy of NFT interventions.

The results of our study revealed that all participants (experimental and control
groups) improved in the Memory Span test (performed pre–post for 8 consecutive days)
regardless of NFT treatment. This result raises the question of the most suitable intervention
method to improve working memory level through NFT.

The findings of this study underscore the significance of tailoring NFT protocols to
enhance alpha waves, which have been linked to reduced anxiety and improved cognitive
functions, specifically within a university student population. Considering the unique
stressors faced by these individuals, including high cognitive demands and the stress
associated with academic performance, the application of NFT could represent a targeted
strategy to bolster psychological resilience and cognitive efficiency. Our results align with
the broader literature on the benefits of NFT in diverse populations but highlight the
practical implications of extending these benefits to the educational context.

5. Conclusions

This study primarily investigated the impacts of neurofeedback training (NFT) on
working memory and anxiety among university students, employing the 14-channel Emotiv
Epoc X headset and Brainviz software. Our findings indicate an enhancement in alpha
wave amplitude starting from the second day of NFT, suggesting the potential efficacy of
this neuro-cognitive technique in improving neural efficiency. Contrary to expectations
and the existing literature, no significant improvements were observed in working memory
capacities despite the increase in alpha amplitude.

However, the study successfully documented a significant reduction in state anxiety
levels among the experimental group. This underscores the potential of NFT not only in
cognitive enhancement but also as a formidable tool for anxiety management within an
educational context. Such findings advocate for the incorporation of NFT in psychological
health strategies, particularly in stress-prone environments like universities.

Despite these promising outcomes, the absence of expected improvements in working
memory highlights the complexity of cognitive processes and suggests that alpha wave
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modulation might not directly correlate with cognitive enhancements as previously per-
ceived. This discrepancy also indicates the necessity for further research to explore the
intricate dynamics between different neural activities and cognitive functions.

The application of NFT showed that simpler, cost-effective neurofeedback devices
could be practically integrated into regular educational settings, offering a non-invasive
method to aid mental health and cognitive performance. Future studies should consider
diverse neurofeedback protocols and perhaps integrate multimodal approaches to fully
understand and harness the benefits of neurofeedback.

Our findings indicated a significant reduction in state anxiety levels following the
combination of neurofeedback training and relaxation techniques. While this reduction is
beneficial for managing high anxiety levels, it is important to consider the potential impact
of excessively low anxiety on cognitive performance. Cognitive tasks typically require a
certain level of cognitive arousal to maintain optimal performance. According to the Yerkes–
Dodson law, there is an optimal level of arousal for peak performance, and both insufficient
and excessive arousal can impair cognitive functioning. In this study, the particularly low
levels of state anxiety achieved may have reduced cognitive arousal to a point where it
negatively affected working memory performance. This suggests that while reducing high
anxiety to moderate levels can enhance cognitive functions, further reduction to very low
levels may not be advantageous and could even hinder performance. Future research
should explore the balance between anxiety reduction and cognitive arousal to identify the
optimal level for enhancing cognitive performance in educational and therapeutic settings.

While these results suggest some potential of the technique in enhancing neural
efficiency, the variability across different days highlights the need for further investigation
to fully ascertain its effectiveness. The study confirms the beneficial impact of NFT on
reducing state anxiety among university students, underscoring its value in psychological
and cognitive performance enhancement. Despite the lack of observed improvements
in working memory, these results highlight the need for continued exploration of NFT
applications across different populations and settings, emphasizing its potential utility in
educational and therapeutic contexts.
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