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Sampling strategies for estimating forest
cover from remote sensing-based
two-stage inventories
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Abstract

Background: Remote sensing-based inventories are essential in estimating forest cover in tropical and subtropical
countries, where ground inventories cannot be performed periodically at a large scale owing to high costs and forest
inaccessibility (e.g. REDD projects) and are mandatory for constructing historical records that can be used as forest
cover baselines. Given the conditions of such inventories, the survey area is partitioned into a grid of imagery segments
of pre-fixed size where the proportion of forest cover can be measured within segments using a combination of
unsupervised (automated or semi-automated) classification of satellite imagery and manual (i.e. visual on-screen)
enhancements. Because visual on-screen operations are time expensive procedures, manual classification can be
performed only for a sample of imagery segments selected at a first stage, while forest cover within each selected
segment is estimated at a second stage from a sample of pixels selected within the segment. Because forest
cover data arising from unsupervised satellite imagery classification may be freely available (e.g. Landsat imagery)
over the entire survey area (wall-to-wall data) and are likely to be good proxies of manually classified cover data
(sample data), they can be adopted as suitable auxiliary information.

Methods: The question is how to choose the sample areas where manual classification is carried out. We have
investigated the efficiency of one-per-stratum stratified sampling for selecting segments and pixels, where to
carry out manual classification and to determine the efficiency of the difference estimator for exploiting auxiliary
information at the estimation level. The performance of this strategy is compared with simple random sampling
without replacement.

Results: Our results were obtained theoretically from three artificial populations constructed from the Landsat
classification (forest/non forest) available at pixel level for a study area located in central Italy, assuming three
levels of error rates of the unsupervised classification of satellite imagery. The exploitation of map data as auxiliary
information in the difference estimator proves to be highly effective with respect to the Horvitz-Thompson estimator,
in which no auxiliary information is exploited. The use of one-per-stratum stratified sampling provides relevant
improvement with respect to the use of simple random sampling without replacement.

Conclusions: The use of one-per-stratum stratified sampling with many imagery segments selected at the first
stage and few pixels within at the second stage - jointly with a difference estimator - proves to be a suitable strategy
to estimate forest cover by remote sensing-based inventories.

Keywords: Spatially balanced sampling; Auxiliary information; Horvitz-Thompson estimator; Difference estimator;
Variance estimator; Forest monitoring
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Background
Deforestation and forest degradation account for nearly
20 % of global greenhouse gas emissions, more than the
entire global transportation sector and second only to
the energy sector. Reducing Emissions from Deforestation
and Forest Degradation (REDD) is a United Nations (UN)
effort to create financial value for the carbon stored in for-
ests, offering incentives for developing countries to reduce
emissions from forested lands. Monitoring systems that
allow for credible measurement, reporting and verification
of REDD efforts are among the most critical elements for
the successful implementation of any REDD mechanism
(UN-REDD 2013).
Among other issues, required data refer to updated and

reliable estimates of the extent of forest cover: periodic
forest cover assessments are crucial for providing bench-
marks for monitoring the performance of various policies
by revealing what the area of existing woodland is and
whether it is increasing or declining (Corona et al. 2011;
Marchetti et al. 2014). Since ground inventories cannot
often be periodically performed under many large-scale
conditions in tropical and subtropical countries, owing to
high costs and/or lack of forest accessibility (e.g. remote
and/or mountainous areas), inventories based on remote
sensing imagery become compulsory. Such inventories are
also mandatory for constructing historical records that
can be used as a forest cover baseline.
Since quite recently, large-scale wall-to-wall remote-

sensing systems are available for this purpose (see e.g.
the CLASlite tool by Asner et al. 2009). However, the
issue of a rigorous statistical assessment of the accuracy
of the sampling strategy adopted to produce estimates is,
in essence, still undervalued. As a corollary, in the REDD
context, estimation must be assessed to have pre-fixed
requisites of statistical accuracy (UN-REDD 2011). On
this issue, it is worth noting that an objective estimation
of accuracy is possible only in a design-based approach,
where no assumptions are made about the population
under study, in such a way that accuracy stems from the
sampling strategy actually adopted to carry out estimates.
Thus, accuracy is real, not assumed or modelled as in
model-based approaches, where accuracy crucially de-
pends on the model which is presumed to generate the
population under study.
Large-scale remote sensing-based inventories of forest

cover are usually carried out by a combination of un-
supervised classification of satellite imagery and subse-
quent manual (visual on-screen) enhancements with the
highest classification accuracy taken as ground truth
(e.g. Hansen et al. 2013). Because visual on-screen oper-
ations are time expensive procedures, manual classifica-
tion may, as a rule, be performed only for a sample of
imagery segments at a first stage selection, while forest
cover within each selected segment is estimated at a

second stage from a sample of pixels selected within the
segment. The forest cover data arising from unsupervised
classification of the satellite imagery available over the
whole survey area (wall-to-wall data) are likely to be good
proxies of the manually classified cover data (sample data),
so that they can be adopted as suitable auxiliary informa-
tion (e.g. Sannier et al. 2014).
The question is how to choose the sample areas where

manual classification is to be carried out. A wide variety
of strategies is available to this end. The determination
of the minimum -variance strategy to estimate population
totals and averages is a challenging issue when the strat-
egies are evaluated from a design-based point of view.
Indeed, under design-based inference there is a lack of
optimal results, in the sense that it is not possible to
determine the minimum-variance strategy, as is cus-
tomary in model-based approaches (e.g. Thompson
2002, Chapter 9). Accordingly, we claim no general val-
idity about the results achieved; these should be ascribed
to the conditions under which they have been obtained or
extended, at most, to similar, related cases.
When sampling spatial units, the achievement of a so

called spatially balanced sample (SBS), i.e., a sample in
which units are well spread throughout the survey area,
has been the main target for a long time. In most situa-
tions, nearby units are more similar than units far apart,
thus giving a poor contribution to sample information.
In these cases, the presence of spatial autocorrelation
should be handled by avoiding the selection of neighbor-
ing units. From the results of a recent wide investigation
(Fattorini et al. 2015), the so-called one-per stratum
stratified sampling (OPSS) seems to be a suitable spatial
scheme, accomplishing simplicity and efficiency, com-
pared to other schemes investigated.
The purpose of our investigation was to compare the

statistical efficiency of OPSS for selecting satellite imagery
segments at a first sampling stage and pixels within the se-
lected segments at a second sampling stage with respect
to the benchmark use of simple random sampling without
replacement (SRSWOR) at both stages. The comparison
was performed on the basis of the actual relative root
mean squared errors obtained from three artificial situa-
tions which mimic forest cover estimations.
We used Landsat imagery as a reference; since it is, by

and large, the most commonly applied method to sup-
port multi-temporal delineation between forest and non-
forest cover types by both manual (e.g. Townshend et al.
1995) and unsupervised automated or semi-automated
(e.g. Achard et al. 2002) classification procedures and
their combinations (e.g. McRoberts et al. 2014; Sannier
et al. 2014).
Our presentation is organized as follows. We provide

the statement of the problem. Then, we delineate the
two-stage estimation of forest cover from a general point
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of view. Subsequently, the estimation strategies achieved
using SRSWOR and OPSS, respectively, are detailed, to-
gether with problems related to variance estimation and
a study is performed to compare SRSWOR and OPSS.
In order to be realistic, a real map reporting the satellite
classification (forest/non forest) is considered, from
which the manual classification is artificially generated
using assumed classification error rates. Concluding
remarks are given.
It is worth noting that, even if not pursued by us, alter-

native criteria could be considered for selecting a sampling
strategy, besides statistical efficiency. For example, cost
issues could be addressed, such as when, in a multi-scene
situation, image acquisition and processing costs are re-
duced by using multi-stage designs selecting a sample of
scenes at the first stage.

Methods
Statement of the problem
Consider a survey area covered by a grid of N rectangles
of pre-fixed size, referred to as segments or primary
sampling units (PSUs) by Sannier et al. (2014). Denote
by U the population of the N segments. In turn each seg-
ment is constituted by M satellite pixels referred to as
secondary sampling units (SSUs). Denote by Pj the
population of the M pixels within the j-th segment. As a
whole, there is a target population of N × M pixels to
be sampled by a two-stage scheme.
The pixel-level information consists of two dichotom-

ous variables xi,j and yi,j. The variable xi,j arises from for-
est/non-forest satellite classification and is equal to 1 if
the i-th pixel of the j-th segment is classified as forest
and 0 otherwise. Similarly, the variable yi,j arises from
forest/non forest on-screen interpretation and has the
value 1 if the i-th pixel of the j-th segment is interpreted
as forest and 0 otherwise. While the xi,j variables arise
from satellite spectral classes regrouped into forest and
non-forest thematic classes and readily available from
satellite maps for all the pixels in the population, the yi,j
variables arise from time consuming efforts by forest ex-
perts, based on satellite imagery in combination with
available very high resolution imagery and Google Earth,
as well as map archives such as Bing Maps, Google Map,
national maps and local maps (e.g. Sannier et al. 2014).
For these reasons, the xi,j s are referred to as map data
and will be used as auxiliary information in forest cover
estimation, while the yi,js are higher quality data (e.g. more
accurate data and/or with higher spatial resolution), re-
ferred to as reference data. These data will be taken as
ground truth, given that field data cannot be collected
due to the difficulty of access in dense forests. Owing
to the high cost of reference data collection, these data
cannot be known for all the pixels in the population
but only for a sample.

For each segment j∈U; denote xj as the fraction of
pixels of the j-th segment classified as forest from satel-
lite information, i.e.,

xj ¼ 1
M

X
i∈Pj

xi;j

Because all the xi,js are known, the xjs are known for
each j∈U: Accordingly, their population mean

�X ¼ 1
N

X
j∈U

xj

is also known and represents the fraction of the grid area
classified as forest from the satellite map. Similarly, for
each segment j∈U; denote by yj the fraction of pixels of
the j-th segment interpreted as forest by experts, i.e.,

yj ¼
1
M

X
i∈Pj

yi;j

As stated earlier, the yi,js, and subsequently the yjs,
cannot be completely known owing to their recording
costs. Accordingly their population mean

�Y ¼ 1
N

X
j∈U

yj

is unknown. It represents the fraction of grid area inter-
preted as forest by experts and is taken as the ground
truth. Usually �Y is referred to as the forest cover. It con-
stitutes the target parameter to be estimated on the basis
of a sampling strategy.
On the basis of empirical investigations, Sannier et al

(2014) provide evidence that satellite classifications
come close to resemble expert interpretation. The close
matching between map and reference data suggests the
use of xjs as accurate and effective proxies for the yjs.

Two-stage estimation
At the first stage, consider a sampling scheme without
replacement to select a sample of n segments S⊂U;
where n <N. Denote by πj and πjh h > j∈Uð Þ the first-
and second-order segment inclusion probabilities in-
duced by the first-stage scheme (see e.g. Hedayat and
Sinha 1991, section 1.3). Similarly, at the second stage,
consider a sampling scheme without replacement to se-
lect a sample of m pixels Qj⊂Pj; where m <M for each
segment j∈S selected at the first stage. Denote by τi,j and
τih,j h > i∈Pj

� �
the first- and second-order pixel inclu-

sion probabilities induced at the second-stage. All these
probabilities are known and previously established be-
fore sampling.
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If the second stage were not performed, i.e., if all the
pixels of the segments selected in the first stage were
interpreted, the yjs would be recorded without error and

�̂Y 1 ¼
X
j∈S

yj
πj

ð1Þ

would constitute the (virtual) one-stage Horvitz-Thompson
(HT) estimator of �Y : From the theory of HT estimation,
(1) is design-unbiased with design-based variance

VS
�̂Y 1

� �
¼ 1

N2

X
h>j∈U

πjπh−πjh
� � yj

πj
−
yh
πh

� �2

ð2Þ

which represents the variance due to the first stage, i.e.
the uncertainty only due to the selection of segments.
Actually, at the second stage, a sample of pixels is se-

lected within each selected segment. From the theory of
two-stage estimation (Särndal et al. 1992, Chapter 4), the
two-stage HT estimator of �Y is given by

�̂Y 2 ¼ 1
N

X
j∈S

ŷj
πj

ð3Þ

where

ŷj ¼
1
M

X
i∈Qj

yi;j
τi;j

; j∈S ð4Þ

is the HT estimator of yj obtained from the sample of
pixels Qj selected at the second stage for each segment j
selected at the first stage.
According to Särndal et al. (1992), the two-stage HT es-

timator (3) is design-unbiased with design-based variance

V �̂Y 2

� �
¼ VS �̂Y 1

� �
þ 1

N2

X
j∈U

VQ ŷj
� �
πj

ð5Þ

where the second term represents the increase in vari-
ance due to the second stage, i.e., the uncertainty due to
the estimation of the yjs in the selected segments and

VQ ŷj
� �

¼ 1

M2

X
h>i∈Pj

τi;jτh;j−τih;j
� � yi;j

τi;j
−
yh;j
τh;j

� �2

ð6Þ

is the variance of the HT estimator (4) for any j∈U:
Henceforth the subscript S will denote expectation and
variance with respect to the first sampling stage, the sub-
script Q will denote expectation and variance with re-
spect to the second sampling stage, conditional to the
sample S selected in the first stage, while expectation
and variance with respect to both stages are presented
without a subscript.
Because the xjs are known for each segment, they may

be used as auxiliary information exploited at the design

or estimation level. Because nothing ensures that the xjs
are invariably positive, they cannot be used at the design
level for constructing a so-called probability-proportional-
to-size scheme (Hedayat and Sinha 1991), in which the πjs
are proportional to the xjs. Alternative ways to exploit the
xjs at the design level are the adoption of an x-based strati-
fication or balancing schemes (e.g. Deville and Tillé 2004)
ensuring that the sample estimate of the auxiliary mean
agrees with the known population mean �X :
If the xjs constitute good proxies for the yjs, an alter-

native estimation strategy is to adopt a first stage scheme
where the πjs are not affected by the xjs and to use the
difference (D) estimator, in order to exploit auxiliary in-
formation at the estimation level by predicting the yjs by
means of the xjs (Särndal et al. 1992, Section 6.3). Once
again, if all the pixels of the segments selected at the first
stage were interpreted, the yjs would be recorded with-
out error and

~�Y 1 ¼ �X þ 1
N

X
j∈S

ej
πj

ð7Þ

would constitute the (virtual) one-stage D estimator of
�Y ; where ej = yj − xj denotes the error obtained from pre-
dicting yj by means of xj. From the theory of D estima-
tion, (7) is design-unbiased with a design-based variance

VS
~�Y 1

� �
¼ 1

N2

X
h>j∈U

πjπh−πjh
� � ej

πj
−
eh
πh

� �2

ð8Þ

which represents the variance due to the first stage, i.e.,
the uncertainty only due to the selection of segments.
On the other hand, the two-stage D estimator turns out
to be

~�Y 2 ¼ �X þ 1
N

X
j∈S

êj
πj

ð9Þ

where êj = ŷj − xj is the second-stage estimate of ej. From
Särndal et al. (1992), the two-stage estimator (9) is
design-unbiased with a design-based variance

V ~�Y 2

� �
¼ VS

~�Y 1

� �
þ 1

N2

X
j∈U

VQ ŷj
� �
πj

ð10Þ

where the second term is the same as that of equation
(5) and represents the increase in the variance due to
the second stage.
Regarding the criteria for exploiting information from

remote sensing at the estimation level in forest inventories,
many recent papers make use of the generalized regression
(GREG) estimator (e.g. Opsomer et al. 2007; Mandallaz
et al. 2013; McRoberts et al. 2014). While the D estimator
is used when an auxiliary variable (proxy) strictly resembles
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the survey variable, the GREG estimator is used when one
or more auxiliary variables are strongly correlated with the
survey variable. Given a close match between map and
reference data, the use of the D estimator is suitable in
remote sensing-based inventories. It should be noted that
the D estimator is theoretically simpler than the GREG
estimator, based on the fact that it is unbiased with an
exact variance expression. On the other hand, the GREG
estimator is not unbiased, but unbiased up to the first
order of approximation, its variance is unknown and must
be approximated up to the first order approximation
(Särndal et al. 1993, Result 6.6.1).
Finally, for the variance estimation of both HT and D

estimators, suitable solutions depend on the characteris-
tics of the schemes adopted at the first and second
stages. On this topic, it should be noted that at both
stages we are dealing with the selection of spatial units
(segments or pixels) from a regular grid of units, i.e., we
are moving in the framework of spatial sampling. In
order to reduce the selection of neighboring units
(which tend to be more similar than units far apart), it is
a common feature of spatial schemes that the second-
order inclusion probabilities are zero or very close to
zero for units that are close in distance. Moreover, explicit
expressions for the second-order inclusion probabilities
might be lacking for the most common spatial schemes.
In these cases it is not possible to perform standard
design-unbiased variance estimation and ad-hoc solutions
should be pursued.

Two-stage simple random sampling
The simplest way to select spatial units from a grid is to
adopt SRSWOR. Accordingly, the use of SRSWOR for
selecting segments at the first stage as well as pixels
within segments at the second stage is considered as a
benchmark. In this case, the first-stage inclusion prob-
abilities are πj = n/N and πjh = {n(n − 1)}/{N(N − 1)} for
each h > j∈U; and τi,j =m/M and τih,j = {m(m − 1)}/
{M(M − 1)} for each h > i∈Pj: From these inclusion
probabilities the two-stage HT estimator (3) reduces to
(Cochran 1977, Chapter 10)

�̂Y 2 ¼ 1
n

X
j∈S

ŷj ð11Þ

where the second-stage HT estimator (4) reduces to

ŷj ¼
1
m

X
i∈Qj

yi;j

which represents the fraction of pixels interpreted as
forest out of the m pixels selected within segment j.
Moreover, equation (2) reduces to

VS
�̂Y 1

� �
¼ N−n

N

S2y
n

ð12Þ

where

S2y ¼
1

N−1

X
j∈U

yj−�Y
� �2

is the population variance of the yjs, while equation (6)
reduces to

VQ ŷj
� �

¼ M−m
M

S2j
m

where S2j is the variance of the yi,js within segment j.

Because the yi,js are 0-1 variables, S2j can be rewritten as

S2j ¼
M

M−1
yj 1−yj
� �

from which equation (6) ultimately reduces to

VQ ŷj
� �

¼ M−m
M

S2j
m

¼ M−m
M−1

yj 1−yj
� �
m

ð13Þ

Replacing equations (12) and (13) into equation (5),

the variance of �̂Y 2 reduces to

V �̂Y 2

� �
¼ N−n

N

S2y
n
þ 1
Nn

M−m
M−1

1
m

X
j∈U

yj 1−yj
� �

ð14Þ

(see also Cochran 1977, equation 10.8).
With SRSWOR a design-unbiased estimator of vari-

ance is given by

V̂ 2 ¼ N−n
N

s2ŷ
n
þ 1
Nn

M−m
M

1
m−1

X
j∈S

ŷj 1−ŷj
� �

ð15Þ

where

s2ŷ ¼
1

n−1

X
j∈S

ŷj− �̂Y 2

� �2

is the sample variance of the ŷjs (see Cochran 1977,
equation 10.15 and the subsequent proof).
If the xjs are used as proxies for the yjs, from equation

(9) the D estimator with SRSWOR reduces to

~�Y 2 ¼ �X þ 1
n

X
j∈S

êj ð16Þ

Since under SRSWOR equation (8) reduces to
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VS
~�Y 1

� �
¼ N−n

N
S2e
n

where

S2e ¼
1

N−1

X
j∈U

ej−�E
� �2

is the population variance of the ejs and �E ¼ �Y −�X their

population mean, from equation (10) the variance of ~�Y 2

reduces to

V ~�Y 2

� �
¼ N−n

N
S2e
n
þ 1
Nn

M−m
M−1

1
m

X
j∈U

yj 1−yj
� �

ð17Þ

Under SRSWOR, an unbiased estimator of variance is
given by

~V 2 ¼ N−n
N

s2ê
n
þ 1
Nn

M−m
M

1
m−1

X
j∈S

ŷj 1−ŷj
� �

ð18Þ
where

s2ê ¼
1

n−1

X
j∈S

êj−�̂e
� �2

is the sample variance of the êjs and �̂e ¼ ~�Y 2−�X their
sample mean. The proof for the unbiasedness of (18) is
similar, mutatis mutandis, to the proof adopted by
Cochran (1977) to demonstrate the unbiasedness of (15).

Two-stage one-per-stratum stratified sampling
When sampling units from a grid, a wide variety of
spatial sampling schemes is available besides SRSWOR.
To obtain a SBS sample, in which units are well spread
throughout the survey area, has been the main target for
a long time. SBSs can be obtained using spatial versions
of traditional sampling schemes such as stratified or sys-
tematic sampling (e.g. Thompson 2002, Chapters 11, 12)
or by schemes explicitly constructed to avoid or reduce
the selection of contiguous units such as the generalized
random-tessellation stratified sampling method by Stevens
and Olsen (2004), the drawn-by-drawn sampling scheme
excluding the selection of contiguous units by Fattorini
(2006), the local pivotal method of first type by Grafström
et al. (2012), the spatially correlated Poisson sampling by
Grafström (2012) and the doubly balanced spatial sam-
pling by Grafström and Tillé (2013).
In this setting, the choice of effective strategies to per-

form forest cover estimation is a challenging issue. Our
decision of adopting OPSS at both stages is based on a
study recently carried out by Fattorini et al. (2015). In
the presence of effective auxiliary information, as usually
occurs in forest cover estimation, all these schemes are

likely to provide good and similar performance of the D
estimator. Accordingly, the use of the OPSS seems suitable.
Its performance is similar to the more complex explicitly-
constructed spatial schemes but, in contrast to these
schemes, it straightforwardly provides SBS samples and
can be well understood and readily planned even by non-
statisticians. On the other hand, when using these spatial
schemes, the sample selection is computationally intense
and becomes practically impossible to apply in large popula-
tions of pixels, as those occurring in forest cover estimation.
In this case, suboptimal implementations of the schemes
are necessary (Grafström et al. 2014 and their references).
Under OPSS, the grid U of N segments is partitioned

into n blocks of contiguous segments U1;…;Un; each
consisting of N/n segments, where one segment is ran-
domly selected from each block. Then, at the second
stage, the selected segment j∈S is partitioned into m
blocks of contiguous pixels Pj 1ð Þ;…;Pj mð Þ; each consisting
of M/m pixels, where again one pixel is randomly selected
from each block. The scheme probably constitutes the
first and simplest way to weaken the selection of contigu-
ous polygons (Thompson 2002, Chapters 11, 12) and has
a long standing in statistical literature (Breidt 1995). It
should be pointed out that in forest cover estimation,
Sannier et al. (2014) use OPSS at the first stage to se-
lect segments, while they use simple random sampling
with replacement to select pixels at the second stage
within the selected segments. We have considered the
use of OPSS at both stages. In this case, the first order in-
clusion probabilities of segments and pixels are n/N and
m/M, respectively, as is the case in SRSWOR, while those
of the second order are 0 if two segments or pixels belong
to the same block and are n2/N2 or m2/M2 otherwise.
From these inclusion probabilities the two-stage HT

estimator coincides with the estimator (11) obtained
with SRSWOR. On the other hand, with OPSS, equation
(2) turns out to be

VS
�̂Y 1

� �
¼ N−n

Nn2
Xn
l¼1

S2y lð Þ ð19Þ

where

S2y lð Þ ¼
1

N=n−1

X
j∈Ul

yj−�Y l

� �2

is the variance of the yjs within the l-th block of segments
Ul and �Y l their mean, while equation (6) turns into

VQ ŷj
� �

¼ M−m
Mm2

Xm
k¼1

S2j kð Þ

where S2j kð Þ is the variance of the yi,js within block k of

segment j. Because the yi,js are 0-1 variables, S2j kð Þ can be

rewritten as
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S2j kð Þ ¼
M=m

M=m−1
yj kð Þ 1−yj kð Þ

� �

where

yj kð Þ ¼
1

M=m

X
i∈Pj kð Þ

yi;j

is the fraction of pixels interpreted as forest within block
k of segment j. Thus, equation (6) ultimately reduces to

VQ ŷj
� �

¼ 1
m2

Xm
k¼1

S2j kð Þ ð20Þ

Replacing equations (19) and (20) in equation (5), the

variance of �̂Y 2 reduces to

V �̂Y 2

� �
¼ N−n

Nn2
Xn
l¼1

S2y lð Þ

þ 1
Nn

1
m2

X
j∈U

Xm
k¼1

yj kð Þ 1−yj kð Þ
� �

ð21Þ

If the xjs are used as proxies for the yjs, the two-stage
D estimator coincides once again with the estimator (16)
obtained with SRSWOR. On the other hand, under
OPSS, equation (8) reduces to

VS
~�Y 1

� �
¼ N−n

Nn2
Xn
l¼1

S2e lð Þ ð22Þ

where

S2e lð Þ ¼
1

N=n−1

X
j∈Ul

ej−�El
� �2

is the variance of the ejs within the l-th block of seg-
ments Ul and Ēl their mean. Thus, from equation (10)

the variance of ~�Y 2 reduces to

V ~�Y 2

� �
¼ N−n

Nn2
Xn
l¼1

S2e lð Þ

þ 1
Nn

1
m2

X
j∈U

Xm
k¼1

yj kð Þ 1−yj kð Þ
� �

ð23Þ

From equations (21) and (23) it is apparent that the

variances of the two-stage estimators �̂Y 2 and ~�Y 2 depend
on the variances of the yjs or ejs within the n blocks par-
titioning the grid of segments, as well as on the vari-
ances of the yi,js within the m blocks partitioning each
segment. Because a single segment and a single pixel is
selected within their corresponding blocks, it is not possible
to estimate block variances from the sample information.
Thus, there is no possibility to obtain design-unbiased esti-
mators for these variances.

Conservative estimation for (21) and (23) can be
attempted by using equations (15) and (18), respectively,
as if SRSWOR were adopted at both stages. Because
SRSWOR tends to provide greater variances than OPSS,
with OPSS equations (15) and (18) tend to overestimate
the actual variances (21) and (23). However, in one stage
sampling, the bias induced by presuming SRSWOR
when the actual scheme is OPSS, has been theoretically
investigated by Mihályffy (2001); and nothing ensures
that it is invariably positive. Thus, nothing ensures that
(15) and (18) are invariably conservative. From tedious
but conceptually simple algebra, the expectations of (15)
and (18) with OPSS turn out to be

E V̂ 2
� � ¼ N−n

N n−1ð Þ
N−1
N

S2y−VS �̂Y 1

� �� 	

þ 1

N2

N−n
n

−
M−m

M m−1ð Þ
� 	X

j∈U

VQ ŷj
� �

þ 1

N2

M−m
M m−1ð Þ

X
j∈U

yj 1−yj
� �

ð24Þ

and

E ~V 2
� � ¼ N−n

N n−1ð Þ
N−1
N

S2e−VS
~�Y 1

� �� 	

þ 1

N2

N−n
n

−
M−m

M m−1ð Þ
� 	X

j∈U

VQ ŷj
� �

þ 1

N2

M−m
M m−1ð Þ

X
j∈U

yj 1−yj
� �

ð25Þ

where VS �̂Y 1

� �
; VQ(ŷj) and VS

~�Y 1

� �
are provided by

equations (19), (20) and (22), respectively.

Analytical tests for artificial populations
The performance of the four possible strategies obtained
by combining SRSWOR and OPSS with the HT and D
estimators, were tested for three artificial populations.

Populations
For generating the populations of yjs we started from a
real survey area located in central Italy, consisting of a
20 km by 20 km square area. For this area, the Landsat
classifications (forest/non forest) were available for each
1 ha pixel (Fig. 1). The area was partitioned into a grid
of N = 400 segments of 100 ha. Each segment consisted
of a square grid of M = 100 pixels. For each segment j,
the fraction of forest cover xj was readily calculated as
the average of the xi,js available from the satellite map.
The fraction for the whole area turned out to be �X ¼ 0:57:
The xjs were subsequently used to generate the forest
cover values yjs for the three populations. We assumed
that α was the probability that a pixel classified as forest
from satellite information was interpreted as forest and β,
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the probability that a pixel classified as non-forest from
satellite information, was interpreted as non-forest.
Thus, the interpreted forest cover in the segment j was
generated as

yj ¼
1
M

X
i∈Pj Fð Þ

ui;jþ
X

i∈Pj NFð Þ

vi;j

8<
:

9=
;

where Pj Fð Þ and Pj NFð Þ were the sets of pixels of the j-th
segment classified as forest and non-forest from satellite in-
formation and the ui,js and vi,js were independent Bernoulli
random variables with parameter α and 1 − β, respectively.
Clearly, for each j, the generated set of the M Bernoulli
random variables gives rise to the reference values yi,js.
In order to obtain three different populations, the yjs

were generated from the xjs presuming α = 0.80 and β =
0.70 for population 1 (referred to as P1), α = 0.80 and β =
0.75 for population 2 (P2) and α = 0.85 and β = 0.85 for
population 3 (P3). To avoid excessive, unrealistic fragmen-
tation of the map, when a cluster of ten or fewer contigu-
ous pixels of one class was completely surrounded by
pixels of the other class, the cluster was assigned to the
other class.
The resulting populations P1, P2, and P3 (Fig. 2a, b, c)

had forest cover of 0.62, 0.59, and 0.57, respectively. For
each population, the graph of yjs vs xjs gave rise to point
scatters clumped around the line x = y (Fig. 3a, b, c) with
R2 values of 0.80, 0.92 and 0.99.

Sampling
The closest matching between satellite and real classifi-
cations, also proved by Sannier et al (2014) via empirical
investigations, rendered the xjs accurate and effective
proxies for the yjs to be suitably used at the estimation
level by the D estimator.
We considered SRSWOR and OPSS schemes. In first

instance, these were used without exploiting auxiliary in-
formation by means of the HT estimator, followed by
the exploitation of auxiliary information at the estima-
tion level by means of the D estimator. We presumed
the forest cover estimation to be as follows: for each of
the four strategies, final samples of n × m = 100, 400
and 2000 pixels were assumed, corresponding to 0.25 %,
1 % and 5 % sampling fractions. Samples of 100 pixels
were obtained by selecting n = 4, 10 or 25 segments at
the first stage and m = 25, 10 or 4 pixels at the second
stage, in such a way that the total number of selected
pixels turned out to be 100. Similarly, samples of 200
pixels were obtained by opting for n = 16, 20 or 25 and
m = 25, 20 or 16, respectively and samples of sizes 2000
were obtained by n = 40, 50 or 100 and m = 50, 40 or 20.

Performance indicators
Owing to the simplicity of the sampling schemes adopted,
there was no need for simulation to determine the per-
formance of the four sampling strategies. Each strategy
gave rise to design-unbiased estimators, so that their
accuracy could be determined exactly from their vari-
ance expressions, rather than approximated by Monte
Carlo distributions, as is customary in more complex
cases. More precisely, the variances of HT and D esti-
mators obtained with SRSWOR were determined using
equations (14) and (17), respectively, while those from
OPSS were determined by equations (21) and (23). From
these quantities, the values of relative standard errors (RSE)
were determined as the ratio SE=�Y of the square root of
the variance (SE) to the value under estimation, i.e., �Y :
For the estimation of variances, no investigations were

necessary with SRSWOR, because in this case unbiased
estimators were possible for the HT estimator from
equation (15) and for the D estimator from equations
(18). On the other hand, with OPSS the expectations of
the estimators (15) and (18) were analytically determined,
respectively, from equations (24) and (25). Finally the
values of the relative bias (RB) were obtained as the ratio
of the bias, i.e., the expectation minus the actual variance,
to the actual variance. Because variances are squared
quantities and as such are difficult to interpret, it is
customary to estimate the relative standard error as the
ratio of the square root of the estimated variance to the
estimate of the population mean. As the ratio of two esti-
mates, it is not possible to derive the expectation of the

Fig. 1 Satellite map consisting of 40,000 square pixels with a 100 m
side length classified as forest (white) and non forest (black) for an
area of 20 km by 20 km located in central Italy
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relative standard error estimator (ERSEE) analytically and
therefore, we considered the first order approximation of
this expected value. After some mathematical manipula-
tion, the approximate expectation of the relative standard
error estimator (AERSEE) turns out to be

AERSEE ¼ RSE 1þ RBð Þ1=2

Results and discussion
Table 1 presents the RSE values for each of the popula-
tions, strategies and combinations of n and m. It also
shows, in parentheses, the AERSEE values from OPSS.
The results of Table 1 motivate the following inferences.
Owing to the strong correlation between map and

reference data, the exploitation of map data as auxiliary
information in the D estimator proves to be highly effective
with respect to the HT estimator, in which no auxiliary in-
formation is exploited. With SRSWOR the decrease in RSE
varies from about 20 % to 75 % and are more marked for
the P3 population when the yjs are maximally correlated
with the xjs. With OPSS, the improvement involved by
using the D estimator are even more pronounced. In this
case the decrease in RSE varies from about 30 % to 80 %.
The use of OPSS provides considerable improvement

with respect to the use of SRSWOR. When the HT esti-
mator is used, i.e., when no auxiliary information is
exploited, the improvements are similar in each of the
three populations. Decreases in RSE vary from about 10 %
to 35 % and are more marked with the greatest sampling
effort, i.e., of 2000 pixels. When the D estimator is used,
the improvements involved when OPSS is used are even
more pronounced, with decreases in RSE varying from
about 20 % to 55 % and were more marked for the P3
population, when the yjs were maximally correlated with
the xjs.
Given the repartitioning of the sampling effort between

the two sampling stages, for a specific number of selected
pixels n ×m, the performance tends to increase for the
three populations and four strategies when the number
of selected segments n increases, with fewer pixels m
selected within them.
When no auxiliary information is exploited (HT), the

performance tends to improve as the forest cover in-
creases. When auxiliary information is exploited, the per-
formance tends to improve as the correlation between
auxiliary and survey variable increases.

Fig. 2 Reference maps artificially generated from the satellite map
of Fig. 1, presuming three probability levels α = 0.80, 0.80, 0.85 that a
pixel classified as forest from satellite information was interpreted as
forest and three probability levels β = 0.70, 0.75, 0.85 that a pixel
classified as non-forest from satellite information was interpreted
as non-forest
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Given the estimation of RSE with OPSS, true values
are overestimated up to a maximum of 3 percentage
points. In relative terms, overestimation is moderate
when accuracy is poor and tends to increase as accuracy
increases. Estimates of the small RSEs tend to be about
twice the size of the actual values.

Conclusions
Remote sensing from satellites is important in data col-
lection on forest cover on a large scale and is conceived
as an essential tool for REDD monitoring (UN-REDD
2013). Given this perspective, the remote sensing-based
forest cover inventory procedure proposed by us proves
to be suitable for any type of imagery (including that from
supervised classifications or from active sensors, such as
SAR interferometry or radargrammetry that can overcome
eventual classification problems due to cloudiness).
From the results of our study, the use of OPSS with

many image segments selected at the first stage and few
pixels at the second stage - jointly with the D estimator -
proves to be a suitable strategy to estimate forest cover by
remote sensing-based inventories. OPSS straightforwardly
provided SBSs with segments well dispersed within the
survey area and pixels well spread within the selected seg-
ments. As well, the use of many segments selected at the
first stage and few pixels at the second stage further in-
creases the distribution of selected pixels onto the survey
area, avoiding clumping of sample pixels within the se-
lected segments. Finally, the D estimator exploits map
data information as effective proxies of reference data.
At least for the populations we investigated, the per-
formance of this strategy was appealing. For large n and
small m values, the RSEs are invariably less than 7 %
even with the low sampling fraction of 0.25 % of pixels,
decreasing to 1 %-1.5 % with a sampling fraction of 5 %.
Because the performance of this strategy improves as the
forest cover increases, better results can be expected with
forest cover greater than 60 %, as frequently happens in
tropical areas where coverage of about 80 % is customary
(Sannier et al. 2014).
A less satisfactory issue concerns the estimation of

RSE with OPSS. The proposed strategy tends to overesti-
mate the actual values and is more marked when RSE is
small. If a moderate overestimation is appealing, because
it avoids the dangerous incidence of concluding that a
strategy is accurate when it is not, some relevant overesti-
mations obtained in our study are unsuitable, because they
likely mask the accuracy gained by the use of OPSS jointly
with the D estimator. As pointed out by Grafström (2012),

Fig. 3 Scatter plots of forest fractions from the map of Fig. 1 vs.
forest fractions from the three reference maps of Fig. 2 for the 400
segments partitioning the squared area with a side length of 20 km
located in central Italy
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Table 1 Values (in %) of relative standard errors obtained from the four strategies adopted in estimating remote sensing-based forest cover for the three artificial populations
P1, P2 and P3 and each combination of n and m. Values in brackets represent the approximate expectations of the standard error estimators adopted with OPSS

Population nxm N m SRSWOR + HT OPSS + HT SRSWOR + D OPSS + D

P1 100 4 25 25.0 22.1 (23.2) 14.2 10.3 (10.3)

�Y ¼ 0:62 10 10 18.2 14.4 (15.3) 12.9 7.8 (8.1)

R2 = 0.80 25 4 14.2 9.2 (10.8) 11.7 6.6 (7.3)

400 16 25 12.3 9.8 (11.5) 7.1 4.7 (5.3)

20 20 11.1 8.9 (10.7) 6.5 4.8 (5.7)

25 16 10.0 8.0 (9.9) 5.9 4.7 (5.7)

2000 40 50 7.1 5.2 (7.0) 3.4 2.2 (3.2)

50 40 6.3 4.4 (6.6) 3.2 2.4 (3.5)

100 20 4.5 2.9 (5.0) 2.8 1.9 (3.5)

P2 100 4 25 28.7 25.9 (27.1) 13.4 8.7 (8.7)

�Y ¼ 0:59 10 10 20.4 16.7 (17.7) 12.8 7.1 (7.4)

R2 = 0.92 25 4 15.4 10.2 (12.2) 11.8 6.4 (7.0)

400 16 25 14.2 11.4 (13.5) 11.8 4.2 (4.7)

20 20 12.7 10.3 (12.4) 6.2 4.5 (5.3)

25 16 11.4 9.1 (11.4) 5.7 4.5 (5.5)

2000 40 50 8.3 5.8 (8.2) 3.0 1.9 (2.7)

50 40 7.3 5.1 (7.6) 2.8 2.2 (3.3)

100 20 5.2 3.4 (5.7) 2.7 1.8 (3.4)

P3 100 4 25 33.0 30.1 (31.6) 11.8 5.2 (5.1)

�Y ¼ 0:57 10 10 22.9 19.1 (20.2) 12.2 5.3 (5.6)

R2 = 0.99 25 4 16.7 11.0 (13.4) 11.6 5.3 (5.8)

400 16 25 16.3 13.2 (15.6) 5.9 2.6 (3.0)

20 20 14.6 11.9 (14.3) 5.6 3.5 (4.3)

25 16 13.1 10.4 (13.0) 5.2 3.8 (4.8)

2000 40 50 9.6 6.5 (9.5) 2.3 1.1 (1.6)

50 40 8.5 5.8 (8.6) 2.3 1.6 (2.7)

100 20 5.9 3.8 (6.3) 2.5 1.5 (3.1)

C
orona

et
al.Forest

Ecosystem
s

 (2015) 2:18 
Page

11
of

12



variance estimation is a bit tricky for spatial sampling in
general and the construction of less biased variance esti-
mators is a necessary step which calls for additional work
in future investigations.
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