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Fourier analysis is used as a framework in which to obtain spectral estimates for non–stationary discrete time signals.Analysis
of the auto–power spectrum and the cross–power spectrum makes it possible to distinguish between false alarms and real risk
situations and, in the latter case, to determine the propagation of any possible damage in its earliest phases. This analysis then
allows corrective actions to be taken, such as parts replacement, in order to limit damage and contamination of component parts in
fatigue tests and thus shorten machine stoppage times. [DOI:10.1115/1.1448.320]1

1 Introduction

Discrete time signals and systems possess both a time do-
main and a frequency domain, each of which plays an
important role in the theory and design of discrete time
signal processing systems. In many situations the indus-
trial processes that generate signals are somewhat com-
plex, and modelling the signal as a stochastic process may
therefore be analytically useful. Furthermore, many me-
chanical systems generate acoustic or vibratory signals
that can be processed to diagnose potential failure and
these are often best modelled as stochastic signals. A
stochastic signal is characterised by a set of probability
functions and the key to its mathematical representation
lies in describing it in terms of mean values. In this paper
we perform a statistical analysis of the accelerations ac-
quired by sensors installed on the transmission box called
the Intermediate Gearbox (figure 1), which connects the
main transmission shaft to the tail rotor of anEH101 he-
licopter. The transmission box was mounted on the gear
testing stand so that gear fatigue tests could be performed.
We consider the spectrum of the ball bearings as the tra-
jectory of a stochastic process. Each spectrum has a dif-
ferent signature, a feature that rules out the possibility of
using a deterministic approach which would require equal
spectra in the same experimental conditions. As we could
not consider equal spectra, we adopted the statistical ap-
proach and developed a theory to calculate the waveforms
of auto–correlation and cross–correlation functions in a
univariate and a multivariate analysis.The mechanism by
which high frequency noise is transmitted through the

gearbox support struts is rather complex. However, two
analytical models proposed by Brennan et al. [1] make
it possible to predict the dynamic behaviour of an exper-
imental rig containing an EH101 helicopter gearbox sup-
port strut. In order to rank the contributions of the vari-
ous vibration modes through the strut, the kinetic energy
of the receiving structure was calculated from measured
data. Signal processing is an extremely important activ-
ity as pulse and vibration signals in gears are often as-
sociated with impacting faults and can therefore be used
as fault indicators. These signals are analysed in the time
and frequency domains using a Wigner higher order time–
frequency representation [2]. Dellomo [3] considers the
feasibility of using a neural network to perform fault de-
tection on vibration measurements given by accelerometer
data.

An exact description of the mechanical system is nei-
ther simple nor desirable but it is possible to describe a
single component of the mechanical system. For exam-
ple, Ono et al. [4] describe an investigation into bearing
vibration caused by the outer race waviness of a ball bear-
ing. This waviness is assumed to exist only on the outer
race but not on the inner race. Another theoretical model
was presented by Tandon et al. [5] to predict the vibra-
tion response of rolling element bearings with distributed
defects on the outer race, inner race, or one of the rolling
elements. As it is no simple task to describe the analytical
model of a mechanical system, signal analysis of the me-
chanical systems needs to be developed in order to predict
damage to ball bearings [6].
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 Figure 1: Box of transmission

2 Analysis

There stationary phenomenon in one which the statis-
tical quantities do not change as a function of time. Since
we cannot consider all statistical quantities at the same
time, a random process is stationary if the mean value
of the random process, the autocorrelation function value
and the cross correlation function value are independent
of the considered moment in time [7]. A nonstationary
signal is one for which the signal properties vary with
time, for example a sum of sinusoidal components with
time–varying amplitudes, frequencies or phases. Typi-
cally, when the input to a linear time–invariant system is
modelled as a stationary random process, many of the es-
sential input and output characteristics can be adequately
represented by mean properties such as the mean values of
the auto–power spectrum and the cross–power spectrum.
Consequently, these functions of the random process offer
tools to examine the evolution of damage phenomena.

According to theorem of Wiener–Khintchine, we
compute the single–sided, scaled auto–power spectrum of
a time domain signal, assuming a first finite record of a
random signalX [n] [8, 9]. The sequence is denoted as

V [n] =

{

X [n] 0 ≤ n ≤ N − 1

0 otherwise,
(1)

whereN is the number of points in the signal arrayX. We
computeDFT (X), theN–point Discrete Fourier Trans-
form ofX [n],

DFT (X) = X [k] =
N−1
∑

n=0

X [n] e−j(2π/N)kn , (2)

for k = 0, 1, . . . , N − 1. If we multiply by DFT ∗ (X),
where ∗ denotes the complex conjugate, we obtain
|X [k]|

2, which corresponds to the circular convolution
of finite–length sequenceX [n]. Then, we calculate the
auto–power spectrum as

APS =
|X [k]|

2

N
=

DFT (X)×DFT ∗ (X)

N
, (3)

In order to calculate the cross-power spectrum of two
time domain signals we assume a second finite record of
a random signalY [n]. The sequence is denoted as

W [n] =

{

Y [n] 0 ≤ n ≤ N − 1

0 otherwise,
(4)

whereN is the number of points in the signal arrayY . We
computeDFT (X), theN–point Discrete Fourier Trans-
form ofY [n],

DFT (Y ) = Y [k] =

N−1
∑

n=0

Y [n] e−j(2π/N)kn , (5)

for k = 0, 1, . . . , N − 1. Then we compute the single–
sided, scaled cross–power spectrum of two time domain
signals. The cross-power spectrum is defined as

CPS =
DFT (X)×DFT (Y )

N
. (6)

A typical estimate of the mean value of a stationary
random process from a finite length segment of data is the
sample mean, defined as

I =
1

N

N−1
∑

n=0

X [n] . (7)

The percent total harmonic distorsion plus noise present
in the input auto–power spectrum is computed using the
following equation:

%TDH +Noise =
100

√

∑

(APS)2

A (f1)
. (8)

where

•
∑

(APS) is the sum of the auto–power spectrum
without the power nearDC and near the fundamen-
tal frequency;

• A (f1) is the amplitude of the fundamental compo-
nent.

3 Application

With reference to the kinematic diagram in Fig.1, the me-
chanical system comprises two rotating shafts connected
through a toothed couple. The first shaft rotates at a fre-
quency of56.6 Hz and is mounted on ball bearings de-
nominatedV505 (duplex ball bearing n.1 in Fig.1) and
V502(roller bearing n.2 in Fig.1), respectively. The sec-
ond shaft rotates at a frequency of42.1 Hz and is mounted
on ball bearings denominatedV502 (roller bearing n.3 in
Fig.1) andV507 (duplex ball bearing n.4 in fig.1), respec-
tively. The characteristic frequencies of these ball bear-
ings are shown in Table 1. The cogwheel hasz1 = 32
teeth and the crown hasz2 = 343 teeth. The transmission
relationship is1.3 (see Table 2).
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The inner race of the driven wheel’s duplex ball bear-
ing presents a defect which consists of spalling over a
surface area of45e− 6 m2. During fatigue tests we ob-
served a progressive increase in modulation at1× rev of
the crown around the harmonics of the ball bearing’s inner
race frequency (IRF = 380Hz ).

The defect on the rotating part consists of spalling
over 90e− 6 m2 of a roller, originating on the side ra-
dius and propagating towards the centre of the roller in
the bearing mounted on the driving wheel. During fa-
tigue tests we observed a progressive increase in the har-
monics of the roller bearing’s outer race frequency (ORF
= 324 Hz).
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Figure 2: Waterfall of the Discrete Fourier Transform of
signal X
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Figure 3: Waterfall of the Auto Power Spectrum of signal
X
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Figure 4: Auto Power Spectrum of ninth hour
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Figure 5: Max Value of APS around 380 Hz
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Figure 6: Numerical Integral of the APS of signal
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Figure 7: Waterfall of Cross Power Spectrum
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Figure 8: Cross Power Spectrum of ninth hour
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Figure 9: Max Value of CPS around 380 Hz
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Figure 10: THD+Noise present in the APS

4 Results

With reference to the univariate analysis, we examine the
maximum auto–power spectrum values of the whole his-
torical series (Fig.2) from the beginning of the experiment
(30 minutes) to the failure of the mechanical system (11
hours). We observe two trends in the maximum auto–
power spectrum value: stationary and nonstationary. We
observe a non–stationary trend in the auto–power spec-
trum around the harmonics of the ball bearing’s inner race
frequency (IRF = 380 Hz). At the beginning of the ex-
periment we have a maximum auto-power spectrum value
of 0.017 V2

rms. In the phase from the first to the ninth
hour of testing we find a stationary trend for the maxi-
mum auto-power spectrum value, ranging between0.017
and0.019 V2

rms (Fig.3). In the proximity of system fail-
ure (9 hours) we observe an increase in the maximum
auto-power spectrum value to0.023 V2

rms (Fig.4). The
set of tests close to system failure shows a non–stationary
trend, after the above increase in the maximum auto–
power spectrum value (Fig.8).

In other words, we observe an increase in the numer-
ical integration values of auto–power spectrum of the vi-
bration signals. At the beginning, the numerical integra-
tion value of theAPS of X is 0.13 V2

rmsHz (Fig.6).
During the stationary phase, the numerical integra-

tion value of the auto–power spectrum of the signalX

is constant and about0.15 V2
rmsHz. In proximity of sys-

tem failure, the numerical integration value of the auto–
power spectrum of the signalX is 0.21 V2

rmsHz, because
the ground noise of the same vibration signal increases.
Therefore, the increase in ground noise is related to the
incipient failure of the mechanical system. The tendency
of the non–stationariness of vibrations, indicated by the
function of the auto–correlation factor, could be assumed
as a first warning of system failure.

As regards the multivariate analysis, we examine the
maximum cross–correlation values for the whole histori-
cal series from the beginning of the experiment (30 min-
utes) to mechanical system failure (11 hours). We calcu-
late the maximum cross–power spectrum values (Fig.7),
choosing the reference signalX = 0.5 hour and0.5 ≤
Y ≤ 11 hours (Table 3). We observe two trends for the
maximumCPSvalue, stationary and non–stationary. We
observe a non–stationary trend for the cross–power spec-
trum around the harmonics of the ball bearing’s inner race
frequency (IRF = 380 Hz). At the beginning of the exper-
iment we have a maximumCPSvalue of7.9e− 6 V2

rms.
In the phase between the first and the ninth hour of tests
we observe a stationary trend in the maximumCPSvalue,
between6.0e− 6 V2

rms and7.9e− 6 V2
rms. In the prox-

imity of system failure (9 hours) we observe an increase in
the maximumCPSvalue to8.4e− 6 V2

rms (Fig.10). From
the set of tests close to system failure we observe a non–
stationary trend, after the above increase in the maximum
CPSvalue (Fig.??).

The increase in the maximumCPS value is caused
by an increase in the area subtended to the signalY . As
pointed out in the discussion ofAPS, we observe the in-
crease in ground noise (Fig.9), related to a phenomenon
of incipient failure of the mechanical system. Therefore,
the tendency of non–stationariness of vibrations, identi-
fied by the function of the cross–correlation factor, could
be assumed as a second warning of system failure

5 Conclusions

The development of a helicopter transmission system en-
tails an extensive testing procedure if it is to (i) en-
sure compliance with the design’s technical specifications
(performance and weight); (ii) meet the standards laid
down in the regulations of the agencies issuing civil certi-
fication and military qualification; and (iii) assess product
maturity (safety and reliability) and guarantee a highTBO
value (Time Between Overhauls).

During the design development phase, fatigue tests are
carried out on the transmission gears in order to check
the structural strenght of components subjected to work-
ing loads and to identify any differences between one pro-
duction batch and another. Therefore, from the viewpoint
of signal diagnostics verification, the gear fatigue tests are
extremely rigorous.

These tests are carried out on a test rig in order to ver-
ify the infinite life cycle requisite (10.000.000 cycles) for
all transmission gears by applying the maximum work-
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ing load envisaged for the aircraft, duly increased to make
allowance for a safety factor, under nominal rotation con-
ditions.

The gear fatigue tests generally give rise to certain
problems in other components of the transmissions sys-
tem (castings, free wheels, bearings) that are not subjected
to such tests and this may well jeopardise the possibility
of passing the test.

In particular, the bearings are designed for a finite life
cycle according to the helicopter’s average range of use.
Bearing failure depends on the type of failure occuring
in the transmission system and will result in the lamina-
tion of particles between gear wheel surfaces or the loss
of shaft constraint, which will have serious consequences
on all adjacent parts.

As mentioned above, fatigue test monitoring is a
highly complex operation which is carried out using ex-
tremely sophisticated diagnostic and verification instru-
ments and systems. Acceleration, oil temperature and oil
pressure in the most critical components, such as bearings
subjected to high–speed (turbine intake) or high load (the
main rotor shaft bearings) are monitored in real time along
with other particular features, including:

• the formation (if any) of metal particles (debris)
identified by chip detectors;

• the forces applied to the main rotor shaft;

• the oscillations and variation of the applied tor-
sional load;

• and the vibrations generated by gears and bearings.

These sophisticated systems make it possible to dis-
tinguish between false alarms and real risk situations and,
in the latter case, to determine the propagation, type and
position of any possible damage in its earliest phases so
that corrective action can be taken or parts replaced. The
aim of this monitoring operation is thus to limit damage
and contamination of component parts in fatigue tests and
thus shorten machine stoppage times.

The drawbacks identified in the present study regard
the damage of two different bearings, a ball bearing (de-
fect in the inner race) and a roller bearing (defect in
the rotating element), which occur at two different times
in the Intermediate Gearbox (Fig.1). This transmission
box links the main transmission shaft to theEH101 he-
licopter’s tail rotor mounted on the transmission testing
stand so that gear fatigue tests could be performed. In
our investigation, bearing vibrations were verified using
in frequency spectrum analysis of the vibration accelera-
tions acquired by an accelerometer fitted on the box. In

particular, the trends of the auto–correlation and cross–
correlation factors were recorded. The trends of the auto–
correlation and the cross–correlation factors offer two in-
dicators of incipient mechanical failure. The maximum
values of the auto–power spectrum and the cross–power
spectrum factors increase in the proximity of system fail-
ure. A comparison of the auto–power spectrum and cross–
power spectrum factors shows that incipient system fail-
ure is better indicated by the non–stationary trend of the
auto–power spectrum factor. The main features of the
method and its limitations of applicability can be sum-
marised as follows:

1. It makes it possible to recognize signal non–
stationariness and hence the presence of defects re-
lated to the non - linearity of the mechanical system.

2. It identifies the propagation of possible damage in
any type of ball bearing.

3. It is not possible to identify the geometric position
of the part of the damaged mechanical component.

4. It does not present any limitations of a numerical
nature.

5. Levels similar to or higher than11th hour level are
experienced at various times. This severely limits
the amount of warning the method is able to pro-
vide.
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Ball Outer Inner Roll
Bearing Race Race Element Cage

Frequency Frequency Frequency Frequency Type
(Hz) (Hz) (Hz) (Hz)

V505 393.1 512.2 183.1 24.6 Duplex
V502 324.0 468.1 150.5 23.1 Roller
V502 241.2 348.4 112.0 17.2 Roller
V507 292.6 381.2 136.3 18.3 Duplex

Table 1: Characteristic Frequencies

ID Shaft N. teeth RPM Rot. freq. (Hz)
N1 First z1 = 32 3394.829 56.6
N2 Second z2 = 43 2526.384 42.1

Table 2: Cogwheel

Time–Domain Time–Domain Cross–Power
SignalX SignalY Spectrum
(Hour) (Hour) (Hour)

0.5 0.5 0.5
0.5 1 1
0.5 2 2
0.5 3 3
0.5 4 4
0.5 5 5
0.5 6 6
0.5 7 7
0.5 8 8
0.5 9 9
0.5 10 10
0.5 11 11

Table 3: Cross–Power Spectrum

Nomenclature
∗ = Complex coniugate
APS= Auto Power Spectrum
CPS= Cross Power spectrum
DFT(X) = Discrete Fourier Transform
N = Number of points
I = Medium value of the random process
V [n] ,W [n] = Input sequence
X [n] , Y [n] = Random signal
z1, z2 = Number of teeth
%THD+ noise = Percent total harmonic distorsion plus noise
∑

APS = Sum of the auto–power spectrum
A (f1) = Amplitude of the fundamental component
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