
Citation: Schettino, F. Analytically

Regularized Evaluation of the

Coupling of Planar Concentric

Conducting Rings. Appl. Sci. 2023, 13,

218. https://doi.org/10.3390/

app13010218

Academic Editor: Antonio Di

Bartolomeo

Received: 11 October 2022

Revised: 5 December 2022

Accepted: 20 December 2022

Published: 24 December 2022

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Analytically Regularized Evaluation of the Coupling of Planar
Concentric Conducting Rings
Fulvio Schettino

Department of Electrical and Information Engineering, University of Cassino and Southern Lazio,
03043 Cassino, Italy; schettino@unicas.it; Tel.: +39-0776-299-3890

Abstract: In this paper, an accurate and efficient method for the analysis of coupled perfectly
conducting annular rings is presented. The problem is first formulated as a couple of Integral
Equations (IEs) in the Vector Hankel Transform (VHT) domain, considered as unknowns in the
cylindrical harmonics of the unknown surface current density. As a second step, Galerkin’s method
is applied with suitable expansion functions. The selected functions have two main properties: they
reconstruct the expected physical behavior of the nth cylindrical harmonic at the edges of the annular
rings, and their VHT transform is analytical and can be expressed in closed-form. Consequently, the
method is effective and the problem is regularized, as testified by the truncation error. Comparisons
with the commercial software CST Microwave Studio have been carried out and are presented to
validate the method.

Keywords: method of moments; methods of analytical regularization; electromagnetic coupling;
grating; electromagnetic scattering

1. Introduction

The canonical annular ring shape has attracted much attention during recent decades
due to its relative simplicity, which has also not prevented it from having numerous
practical applications. Microstrip ring antennas have been proposed since the 1980s [1],
due to their compactness and greater versatility with respect to patch disc antennas, and
have been the subject of intensive work [2–6]. A particularly attractive property of this
kind of geometry is the possibility to consider concentric configurations, especially suited
for multi-band operation [7–12], even in reflect array structures [13]. Another relevant
configuration where the annular ring geometry is applied is represented by grating. As
a matter of fact, metal grating on a dielectric surface has many important applications,
such as frequency selective surfaces [14–16], leaky wave antennas [17–19], and optical
devices [20,21].

In the above mentioned contexts it is of paramount importance that the characteriza-
tion of the coupling between annular rings be accurate, since they can be very close to each
other and their coupling cannot be neglected or misestimated in order to correctly predict
the behavior of the device at hand. The aim of this paper is to show a full wave, accurate,
and effective method to analyze annular ring coupled structures based on Method of Ana-
lytical Regularization (MAR). The focus is on the method itself, so only concentric annular
rings in free space will be considered: different configurations can be analyzed by means of
the same functions presented here, and medium stratification can be taken into account by
modifying the Green’s function, without any other change in the overall method.

Maxwell equations can be solved by using many different methods in the time or
frequency domain; finite difference and finite elements discretizations are the most common
examples. However, in such methods high accuracy and error control are difficult to achieve
due to issues related to the truncation of the investigation domain and its meshing and the
consequent large matrices produced. Another possibility is to resort to Green’s function
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methods [22]; in such a case the boundary value problem is formulated as IEs, leading to
various advantages. Among them, the main one is that the discretization is needed only on
finite domains. Nevertheless, that is not a panacea, since IEs that are obtained are usually
of the first kind with logarithmic-type (or higher order) singular kernels. Consequently, if
Method of Moments (MoM) is directly applied, then usually ill-conditioned dense matrices
are obtained. In addition, it is not possible to demonstrate the convergence of MoM in every
case or even the existence of an exact solution for such IEs [23]. Similar considerations
hold when IEs are of the second kind, but with strongly singular kernels, and MoM is
applied blindly.

The aforementioned difficulties can be overcome by transforming the IEs from the
first to the second kind, with smoother kernels. In such a case, the new equations of
the Fredholm type can be discretized by a Galerkin-type projection onto suitable basis
functions. Matrix equations are then obtained, which are much better conditioned, so that if
the “impedance-matrix” size is progressively increased the condition number remains small.
The mentioned approach is called MAR [24,25], and it relies on the analytical inversion of
the singular part of the original IE. The identification of the operator to be inverted is the
first step and many options are possible. On the other hand, its analytical inversion is very
difficult and is based on very specialized functional techniques such as Wiener–Hopf or
similar methods.

However, what is really needed is a discretized counterpart of IEs, that is, a matrix
equation, to find a solution numerically. Consequently, an approach usually adopted to deal
with the above mentioned cases [24,25] is to find a set of orthogonal eigenfunctions of the
most singular part of the integral operator. Then Galerkin’s method can be used to solve the
original singular IE of the first kind, adopting such eigenfunctions as basis and projection
functions, leading to a regularized discretization scheme (i.e., obtaining a Fredholm second-
kind infinite matrix-operator equation). Indeed, in this way both regularization (semi-
inversion) and discretization are combined in a single procedure, and there is no need
of the explicit Fredholm second kind-IE. In fact, the use as expansion functions of the
orthogonal eigenfunctions of the singular integral operator allows for the diagonalization
of the operator and guarantees convergence. However, even more can be said: such an
approach properly works, i.e., it is also possible to apply Fredholm theory when the matrix
operator corresponding to the singular part is invertible (not necessarily diagonal) with
a continuous two-side inverse and the residual part is a compact operator [26]. Such a
procedure has been called Method of Analytical Preconditioning (MAP) [27], and has been
used to solve a huge number of scattering, radiation, and propagation problems [28–45].

In this paper, the aforementioned procedure is applied to the analysis of the scattering
of a plane wave by a number of planar concentric conducting rings. The formulation of
the problem is presented in Section 2, where a system of coupled IEs is obtained. In the
same Section suitable basis and projection functions are also introduced which factorize the
correct edge behavior of the unknowns, thus leading to the regularization of the problem
when used in a Galerkin’s scheme. Numerical results are shown in Section 3, whereas
conclusions are drawn in the last Section.

2. Statement of the Problem

Let us consider the geometry depicted in Figure 1: a set of Q coplanar concentric
rings, with inner and outer radii riq and roq, respectively, for q = 1 . . . Q. A plane wave
impinges on the rings with an incidence angle θinc with respect to z axis. Due to the
symmetry the azimuthal angle of incidence is not essential and can be set to 0. Many
different configurations are considered throughout the paper. All dimensions normalized
to wavelength are summarized in Table 1. In particular, geometry #1 is composed of rings
with a quite large width, very close to each other. In geometry #2, a regular lattice of four
rings and slits is considered, whereas in geometry #3 the same rings as in geometry #2 are
considered, but they are very close to each other. Finally, geometry #4 is again a regular
lattice of rings and slits, with six narrow elements.
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Figure 1. Geometry of the problem: Q coplanar perfectly conducting concentric rings, with inner
and outer radii riq and roq, respectively, for q = 1 . . . Q. A plane wave impinges on the rings with an
incidence angle θinc with respect to z axis. Due to the symmetry the azimuthal angle of incidence is
not essential.

Table 1. List of configurations analyzed throughout the paper. All dimensions are normalized to the
wavelength.

Label ri1 ro1 ri2 ro2 ri3 ro3 ri4 ro4 ri5 ro5 ri6 ro6

Geom1 0.2 0.6 0.62 1.02 1.04 1.44 - - - - - -
Geom2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 - - - -
Geom3 0.2 0.4 0.42 0.62 0.64 0.84 0.86 1.06 - - - -
Geom4 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Due to the revolution symmetry of the geometry, a cylindrical harmonics expansion
can be adopted for currents and fields. Moreover, the radial and azimuthal components
will be gathered in vector notation as

F(n)(ρ, z) ≡ F(ρ, z) =
[

Fr(ρ, z)
−jFϕ(ρ, z)

]
(1)

In (1) F represents the nth harmonic of either the surface current density or the field.
Note that since cylindrical harmonics are independent of each other, the analysis can be
carried out harmonic by harmonic. Consequently the superscript (n) is understood and
will be omitted throughout the paper. The VHT of F will also be introduced as

F̃(w, z) =
∫ ∞

0
Hn(wρ)F(ρ, z)ρdρ (2)

where the kernel of VHT is defined as

Hn(wρ) =

[
J′n(wρ) n

wρ Jn(wρ)
n

wρ Jn(wρ) J′n(wρ)

]
(3)

Jn(·) being the Bessel function of the first kind and order n and the apex representing the
derivative with respect to the argument. Some useful properties of the VHT can be found
in [46] whereas its relationship with the Scalar Hankel Transform is quite evident and will
be employed later on.
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The incident electromagnetic field induces a surface current on the rings, which in
turn generates a scattered field. Such scattered field can then be written in the spectral
domain as in [47], the generalization to multiple rings being straightforward

Esc(ρ, z) = j
ζ0

2

Q

∑
q=1

∫ ∞

0
Hn(wρ)G(w) J̃q(w)e−j|z|

√
k2

0−w2
wdw (4)

where ζ0 and k0 are the free space impedance and wavenumber, respectively. In (4) J̃q(w)

is the VHT of the current density induced on q− th ring, and G(w) is the Green’s function
in the spectral domain, defined as

G(w) =

[
KTM(w) 0

0 KTE(w)

]
=


√

w2−k2
0

k0
0

0 − k0√
w2−k2

0

 (5)

An Electric Field Integral Equation (EFIE) can then be obtained by imposing the
boundary condition at z = 0, that is the null of the tangential component of the total electric
field, as

Esc(ρ, z = 0) = −Einc(ρ, z = 0) ρ ∈
⋃

q=1...Q
[riq, roq] (6)

Relation (6) represents a couple of IEs to be solved with respect to the unknown current
densities. In the following subsections the proposed method will be described to achieve
the analytical regularization of the problem at hand.

2.1. MoM Solution: Expansion

Equation (6) can be solved numerically by means of MoM. However, caution has
to be paid when resorting to numerical methods, as their accuracy and effectiveness, or
even their convergence, cannot be taken for granted at all. MAP can allow it to achieve all
three mentioned attractive features, by applying a Galerkin discretization scheme, with a
suitable selection of expansion and projection functions, to recast the integral equation as a
Fredholm second-kind matrix operator equation. In particular, such an approach properly
works, i.e., Fredholm theory can be applied, even when the most singular part of the
obtained matrix operator is not diagonal but simply invertible with a continuous two-side
inverse and the remaining part is a compact operator [26]. As a matter of fact, it has been
shown that such a goal is achieved when using expansion functions factorizing the correct
edge behavior of the unknowns in the spatial domain. Furthermore, in order for the method
to also be effective, it is desirable to be able to perform the transform of the expansion
functions analytically. All mentioned features can be found in the following functions:

ψm(ρ) =
4ρp(ρ)

πab
Tn

(
ρ2 + riro

2ρa

)
Tm

(
1− 2

ρ2 − r2
i

r2
o − r2

i

)
with ρ ∈ [ri, ro] (7)

χm(ρ) =
4ρ

πp(ρ)ab
Tn

(
ρ2 + riro

2ρa

)
Tm

(
1− 2

ρ2 − r2
i

r2
o − r2

i

)
with ρ ∈ [ri, ro] (8)

where Th(·) is the Chebychev polynomial of first kind and order h, and the weighting

function p(ρ) =
√
(ρ2 − r2

i )(r
2
o − ρ2) factorizes the correct edge behavior of the current

components according to Meixner conditions [48]. Thus, (7) and (8) can be used as ex-
pansion functions of radial and azimuthal components of the induced current density,
respectively, as shown later in expression (13). In particular, it is worth noting that in (7)
and (8) the first Chebychev polynomial, which is a continuous, smooth, functional, and
depends on the azimuthal index, but is independent of m and the weighting function p(ρ).
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Consequently, when summing over m it is factorized and the reconstruction of the smooth
part of the current density is left to the Chebychev polynomials of order m.

Furthermore, the Hankel transform of functions (7) and (8) is analytical; indeed, the
scalar Hankel transform of χm(ρ) is known and can be written as [47]∫ ro

ri

ρχm(ρ)Jn(wρ)dρ = Jn+m(wa)Jm(wb) ≡ Fm(w) (9)

where a = (ri + ro)/2 and b = (ro − ri)/2. Since χm(ρ) is suitable as an expansion function
of the azimuthal component of the current density, resembling notation (1), we can consider

the quantity
[

0
χm(ρ)

]
, for which it is easy to show that

VHT
[

0
χm(ρ)

]
=

[ n
w
d

dw

]
Fm(w) (10)

Moreover, using the recurrence relations of Chebychev polynomials, after some alge-
braic manipulations it is possible to demonstrate the following recurrence relationship∫ ro

ri

ρψm(ρ)Jn(wρ)dρ = 2Fm(w)− Fm−2(w)− Fm+2(w) ≡ Gm(w) (11)

which also defines the scalar Hankel transform of ψm(ρ). Similar to what was conducted

before, we can consider the quantity
[

ψm(ρ)
0

]
and calculate the corresponding VHT as

VHT
[

ψm(ρ)
0

]
=

[ d
dw
n
w

]
Gm(w) (12)

Finally, it is worth noting that recurrence relation (11) can be very helpful in the
evaluation of the scattering matrix in order to reduce the overall number of integrals to be
calculated numerically.

Consequently, the unknown current density can be expanded as

J(ρ) =
Q

∑
q=1

∞

∑
m=0

{
c(q)m

[
ψ
(q)
m (ρ)

0

]
+ d(q)m

[
0

χ
(q)
m (ρ)

]}

=
Q

∑
q=1

∞

∑
m=0

{
c(q)m Ψ(q)

m (ρ) + d(q)m X(q)
m (ρ)

}
(13)

where c(q)m and d(q)m are unknown expansion coefficients to be evaluated numerically.
Its VHT can be calculated analytically as shown above, and can be substituted into the
scattered field, to give the integral equation

j
ζ0

2

Q

∑
q=1

∞

∑
m=0

∫ ∞

0
Hn(wρ)G(w)

{
c(q)m

[ d
dw
n
w

]
Gm(w) + d(q)m

[ n
w
d

dw

]
Fm(w)

}
wdw = (14)

−Einc(ρ, z = 0)

In the following subsection the next step of the procedure will be described, leading to
the solution of the problem.

2.2. MoM Solution: Projection

Equation (14) can be solved by means of a suitable projection: in order to fall in
the framework of Galerkin’s Method, we can multiply both sides of the equation by[

Ψ(p)
m (ρ)

]T
and

[
X(p)

m (ρ)
]T

with p = 1 . . . Q, where the superscript T stands for transpose,
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and integrate with respect to ρdρ from rip to rop. Such a projection is analytical on both
sides of the equation; on the left hand side it is just necessary to apply again the VHT
Formulas (10) and (12), whereas on the right hand side, resorting to the cylindrical wave
expansion of a plane wave, it is not difficult to show that∫ rop

rip

[
Ψ(p)

m (ρ)
]T

Einc(ρ, z = 0)ρdρ = jn−1 n
k0sinϑi

F(p)
k (k0sinϑi) (15)

∫ rop

rip

[
X(p)

m (ρ)
]T

Einc(ρ, z = 0)ρdρ = jn−1 dG(p)
k (w)

dw

∣∣∣∣
k0sinϑi

(16)

in the Transverse Magnetic (TM) case, and

∫ rop

rip

[
Ψ(p)

m (ρ)
]T

Einc(ρ, z = 0)ρdρ = jn−1 dF(p)
k (w)

dw

∣∣∣∣
k0sinϑi

(17)

∫ rop

rip

[
X(p)

m (ρ)
]T

Einc(ρ, z = 0)ρdρ = jn−1 n
k0sinϑi

G(p)
k (k0sinϑi) (18)

in the Transverse Electric (TE) case. The problem is therefore reduced to the solution of an
algebraic system of linear equations. The coefficients’ matrix, that is the scattering matrix,
has to be computed numerically. This is not generally an easy task, as the entries of the
matrix are integrals of slowly decaying oscillating functions. Different strategies can be
adopted to accelerate the numerical computation of the integrals. A first possibility is to
subtract the asymptotic behavior of the kernels, thus leading to integrals of the product of
four Bessel functions and powers. Such an approach has been used, for example, in [44] in
a simpler, scalar case. As a matter of fact, it can be shown that the integral of the product of
four Bessel functions can be analytically evaluated as a Meijer function. This is very useful
for numerical calculation because currently there are efficient routines evaluating such a
special function.

A second possible approach consists of resorting to the integration in the complex
plane along a suitable integration path, as performed in [47]. In such a case the integrals at
hand can be written as a superposition of proper integrals and fast converging improper
integrals. In both cases, an effective calculation of the scattering matrix is possible, and
numerical results can be obtained without excessive computational burden.

3. Results

As a first task, the convergence of the method has been checked. As outlined in the
Introduction, a blind application of numerical methods can lead to slow convergence, or
could even not converge at all. On the contrary MAR allows to achieve fast convergence
and error control. In order to verify the effectiveness of the method illustrated in previous
Section the following error is introduced

e(N) =

∥∥∥c(N+1) − c(N)
∥∥∥∥∥c(N)

∥∥ +

∥∥∥d(N+1) − d(N)
∥∥∥∥∥d(N)

∥∥ (19)

where N is the truncation order (actually, two different truncation orders should be intro-
duced for the two components of the current. In the present work they have been taken
equal for simplicity), namely the number of terms retained in expansion (13.), c(N) and
d(N) are the coefficients vectors corresponding to that truncation error, and the standard
euclidean norm in `2 is employed. The error is plotted in Figure 2 for all geometries listed
in Table 1 in TE case for an incidence angle θinc = 45◦. In Figures 3 and 4 the error is plotted
for geometry #2, for different incidence angles, in TE and TM case, respectively. As can be
seen, in all the cases shown, as well as in any other case considered and not displayed for
the sake of brevity, the error is exponentially decaying, thus confirming the effectiveness of
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the method. In the following all the reported examples have been calculated taking into
account seven expansion terms, thus ensuring an accuracy not larger than 10−3.

Figure 2. Plot of the error for the geometries of Table 1 for TE incidence and an incidence angle
θinc = 45◦.

Figure 3. Plot of the error for the geometry #2 of Table 1 (sketched in the inset) for TE incidence and
different incidence angles θinc.
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Figure 4. Plot of the error for the geometry #2 of Table 1 (sketched in the inset) for TM incidence and
different incidence angles θinc.

Once the unknown coefficients have been calculated, the currents and the fields can
be evaluated. As an example, the reconstructed current density behavior is plotted in
Figures 5 and 6 for the case of geometry #2 of Table 1 for an incidence angle θinc = 0.
As can be seen, the edge behavior of both current components is perfectly reconstructed. As
expected, the radial component vanishes at the edges, whereas the azimuthal component
diverges, as prescribed by Meixner’s conditions [48].

Figure 5. Behavior of the radial component of the current density for the geometry #2 of Table 1
(sketched in the inset) for an incidence angle θinc = 0◦.
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Figure 6. Behavior of the azimuthal component of the current density for the geometry #2 of Table 1
(sketched in the inset) for an incidence angle θinc = 0◦.

Finally, the bistatic radar cross section is plotted in Figures 7–9 for different geometries
and different incidence angles. As expected, the more oblique the incidence, the less smooth
the radar cross section. In the same plots, a comparison with CST Microwave Studio is also
shown, exhibiting a very good agreement in any case.

Figure 7. Bistatic radar cross section for geometry #1 (sketched in the inset) for different incidence
angles θinc. Solid line: this method; dashed line: CST Microwave Studio.
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Figure 8. Bistatic radar cross section for geometry #2 (sketched in the inset) for different incidence
angles θinc. Solid line: this method; dashed line: CST Microwave Studio.

Figure 9. Bistatic radar cross section for geometry #4 (sketched in the inset) for different incidence
angles θinc. Solid line: this method; dashed line: CST Microwave Studio.

4. Conclusions

In this paper, a method for the analysis of infinitesimally thin coupled perfectly con-
ducting rings has been presented. The procedure falls within the framework of Analytical
Regularization, i.e., methods which converge to the solution and allow the full control
of the discretization error when the number of ’mesh points’ is increased. The proposed
methodology is based on a suitable choice of the functions to be used in a Galerkin’s
scheme, which factorize the correct edge behavior of the unknowns. The method proved
itself to be very accurate and fast converging in all the considered examples. Only coplanar
rings in free space have been considered in this work, in order to focus on the method itself,
but the generalization to stratified media is straightforward, with a suitable change of the
Green’s function of the problem at hand. Furthermore, a change of the incident field does
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not impact on the method and on the calculation of the scattering matrix. The method can
then be applied to the many different contexts, as mentioned in the Introduction.
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