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Abstract. A general algorithm to trace the first and second order centrodes of
slider-crank mechanisms is proposed by using the instantaneous geometric and
kinematic invariants. Bresse’s circles can be also traced in order to validate the
instantaneous positions of the velocity and acceleration poles. In particular, the
second order centrodes give kinematic properties of the coupler motion and, thus,
they are computed and traced for a constant angular velocity of the driving crank.
Significant examples are included in the paper to validate the proposed algorithm.
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1 Introduction

Linkages and mainly those derived by four-bar kinematic chains through different kine-
matic inversions, find several applications in different fields, where they can play the
role of kinematic structure of industrial and non-industrial robots, as walking machines,
and/or the role of mechanisms to move the fingers of grippers and robotic hands, as
described in [1–4]. In particular, the kinematic analysis and synthesis of planar mecha-
nisms can be developed with the aid of suitable geometric loci, as the fixed and moving
centrodes and Bresse’s circles, as shown in [5–9]. Interesting applications can be also
found in spherical and spatial mechanisms, in terms of pitch cones [10] and axodes [11],
along with the spherical equivalent of Bresse’s circles [12]. Moreover, the instantaneous
geometric and kinematic invariants that are directly related to the rigid body motion,
can be very useful for the kinematic analysis and synthesis of mechanisms and to deter-
mine the main geometric loci of the coupler motion. In fact, these loci take a convenient
algebraic form, when they are referred to the canonical frame, as shown in [13–25].

This paper deals with the formulation of a general algorithm to trace the first and
second order centrodes of both types of centered and offset slider-crank mechanisms, by
using the instantaneous geometric and kinematic invariants. Bresse’s circles can be also
traced in order to validate the instantaneous positions of the velocity and acceleration
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poles. In particular, the second order centrodes are computed and traced for a constant
angular velocity of the driving crank. Significant results are shown in order to validate
the proposed algorithm.

2 Instantaneous Invariants

The instantaneous invariants have been introduced in order to evaluate coefficients,
constants and parameters that can characterize the motion of a planar mechanisms by
geometrical and kinematical points of view.

The instantaneous geometric invariants are related to the rigid motion and the instan-
taneous kinematic invariants are time-dependent. In particular, the instantaneous geo-
metric invariants are defined invariants among any pairs of fixed and moving reference
frames or coordinate systems, since related to the motion characteristics of the coupler
link and thus, they are independent by the particular choice of the reference frames.

Referring to the offset slider-crank mechanism of Fig. 1, the pairs of fixed F (O, X,
Y ) and moving f (�, x, y) reference frames, were chosen along with the corresponding
fixed and moving canonical reference frames 1( , , )P X Y and f̃ (P1, x̃, ỹ), which origin

coincides with the instantaneous center of rotation P1 of the coupler link AB. The Ỹ -
axis is orthogonal at P1 point to the fixed centrode π and oriented toward the moving
centrode that is not shown in Fig. 1. Thus, the X̃ -axis is tangent to both centrodes at
P1 point and oriented clockwise with respect to the Ỹ -axis, while the moving canonical
reference frame f̃ is assumed as coincident with at the referring configuration. These
canonical frames are very important for the kinematic analysis and synthesis of planar
mechanisms, because the geometric loci, which are of kinematic interest, take a simple
mathematical form, when expressed with respect to them.

Fig. 1. Original (F and f ) and canonical ( and f̃ ) reference frames for a general offset slider-
crank mechanism.

The position vector r� of the origin � of f (�, x, y) can be expressed as

r� = r [ cos δ sin δ ] T (1)
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where r and δ are respectively, the A0A crank length and the oriented counter-clockwise
angle of A0A with respect to the X-axis. Thus, during the mechanism motion, F and
remain fixed to the frame, while f and f̃ move as attached to the coupler link AB of the
slider-crank mechanism. The same rigid body motion can be also obtained by rolling
the moving on the fixed centrode by giving the successive positions of P1 as the tangent
point between them.

The instantaneous geometric invariants an and bn are the n-order (where n is a natural
number) derivatives of the Cartesian-coordinates X̃P1 and ỸP1 of P1 with respect to the
oriented angle ϕ of f̃ with respect to during the coupler motion

an = dnX̃P1

dϕ n
bn = dnỸP1

dϕ n
(2)

For the convenient starting configuration of the mechanism, where δ and ϕ are equal
to zero, points P1 and B are coincident and both canonical frames coincide each other,
the instantaneous geometric invariants up to the second order are given by the following
expressions

a 0 = b 0 = a 1 = b 1 = a 2 = 0 (3)

b 2 =
√ (

d2X�

dϕ2 + dY�

dϕ

)2

+
(
d2Y�

dϕ2 − dX�

dϕ

)2

(4)

Referring to Eq. (1), the first and second derivatives with respect to the oriented angle
ϕ of the Cartesian coordinates X� and Y� that represent the components of the position
vector r�, are given by

dX�

dϕ
= −r sin δ

dδ

dϕ

dY�

dϕ
= r cos δ

dδ

dϕ
(5)

d2X�

dϕ 2 = −r

[
cos δ

(
dδ

dϕ

)2

+ sin δ
d2δ

dϕ2

]
d2Y�

dϕ2 = −r

[
sin δ

(
dδ

dϕ

)2

− cos δ
d2δ

dϕ2

]

(6)

Similarly, the first and second derivatives of the crank angle δ with respect to ϕ can
be expressed in sequence, as follows

sin δ = e − l sin ϕ

r
,

dδ

dϕ
= − l cosϕ

r cos δ
,

d2δ

dϕ2 =
l
(
sin ϕ cos δ − cosϕ sin δ dδ

dϕ

)
r cos2 δ

(7)

The proposed formulation allows the computations of the instantaneous geometric
invariants an and bn for n = 0, 1, 2 which are very useful to express in a canonical
algebraic form, the most significant geometric loci with respect to f̃ (P1, x̃, ỹ).

This computation can be very complex when referring to the canonical frames
directly, from which the convenience to make use of a different pair of frames, as f and
F , which are closer to the mechanism motion than the canonical frames. The first and



306 C. Lanni et al.

second derivatives of the crank angle ϕ with respect to δ can be expressed in sequence,
as follows:

ϕ = sin−1
(
e − r sin δ

l

)
ϕ̇ = dϕ

dδ
= − r cos δ

l cosϕ
δ̇ (8)

ϕ̈ = d2ϕ

dδ2
= δ̇2 r sin δ cosϕ − δ̈ r cos δ cosϕ + δ̇2 r2 cos2 δ sin ϕ

l cosϕ

l cos2 ϕ
(9)

where δ̇ and δ̈ are the input angular velocity and acceleration of A0A crank, respectively.

3 First and Second Order Centrodes

The fixed and moving centrodes of first and second order are traced by the instantaneous
center of rotationP1 and the acceleration poleP2, with respect to the fixedF andmoving
f reference frames.

The position of a generic coupler point M can be expressed as

XM = r� x + xM cosϕ − yM sin ϕ YM = r� y + xM sin ϕ + yM cosϕ (10)

In particular, when M coincides with P1, Eqs. (10) give

XP1 = r� x + xP1 cosϕ − yP1 sin ϕ YP1 = r� y + xP1 sin ϕ + yP1 cosϕ (11)

and since P1 is the velocity pole, one has dXP1
dt = dYP1

dt = 0, and in turn

dX�

dϕ

dϕ

dt
− xP1

dϕ

dt
sin ϕ − yP1

dϕ

dt
cosϕ = 0

dY�

dϕ

dϕ

dt
+ xP1

dϕ

dt
cosϕ − yP1

dϕ

dt
sin ϕ = 0

(12)

Thus, Eqs. (12) give

xP1 = dX�

dϕ
sin ϕ − dY�

dϕ
cosϕ yP1 = dX�

dϕ
cosϕ + dY�

dϕ
sin ϕ (13)

and considering the Eqs. (5), one has

xP1 = −r
dδ

dϕ
(sin δ sin ϕ + cos δ cosϕ) yP1 = r

dδ

dϕ
(sin δ cosϕ + cos δ sin ϕ) (14)

Substituting the second of Eqs. (7) in Eqs. (14), the following parametric equations
of the first order moving centrode l1 in f are obtained

xP1 = l cosϕ(tan δ sin ϕ + cosϕ) yP1 = l cosϕ(tan δ cosϕ − sin ϕ) (15)

The parametric equations of the first order fixed centrode λ1 in F take the following
form

XP1 = r cos δ

(
1+ l cosϕ

r cos δ

)
YP1 = r sin δ

(
1+ l cosϕ

r cos δ

)
(16)
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Likewise, when point M coincides with P2, the second order fixed centrode λ2 can
be expressed as

XP2 = r� x + xP2 cosϕ − yP2 sin ϕ YP2 = r� y + xP2 sin ϕ + yP2 cosϕ (17)

and since P2 is the acceleration pole, one has
dX 2

P2
dt2

= dY 2
P2

dt2
= 0, and in turn

d2 X�

dϕ2

(
dϕ

dt

)2
+ dX�

dϕ

d2ϕ

dt2
− xP2

[
cosϕ

(
dϕ

dt

)2
+ sin ϕ

d2ϕ

dt2

]
+ yP2

[
sin ϕ

(
dϕ

dt

)2
− cosϕ

d2ϕ

dt2

]
= 0

d2 Y�

dϕ2

(
dϕ

dt

)2
+ dY�

dϕ

d2ϕ

dt2
− xP2

[
sin ϕ

(
dϕ

dt

)2
− cosϕ

d2ϕ

dt2

]
− yP2

[
cosϕ

(
dϕ

dt

)2
+ sin ϕ

d2ϕ

dt2

]
= 0

(18)

Thus, the parametric equations of the second order moving centrode l2 in f take the
following form

xP2 = 1

ϕ̇4 + ϕ̈2

[(
d2X�

dϕ2 cosϕ + d2Y�

dϕ2 sin ϕ

)
ϕ̇4 +

(
dX�

dϕ
cosϕ + d2X�

dϕ2 sin ϕ

+ dY�

dϕ
sin ϕ − d2Y�

dϕ2 cosϕ

)
ϕ̇2ϕ̈ +

(
dX�

dϕ
sin ϕ − dY�

dϕ
cosϕ

)
ϕ̈2

]
(19)

yP2 = 1

ϕ̇4 + ϕ̈2

[(
−d2X�

dϕ2 sin ϕ + d2Y�

dϕ2 cosϕ

)
ϕ̇4 +

(
−dX�

dϕ
sin ϕ + d2X�

dϕ2 cosϕ

+dY�

dϕ
cosϕ + d2Y�

dϕ2 sin ϕ

)
ϕ̇2ϕ̈ +

(
dX�

dϕ
cosϕ + dY�

dϕ
sin ϕ

)
ϕ̈2

]
(20)

It is well known, that the fixed andmoving centrodes of first order are always tangent
each other at the instantaneous center of rotation and that the rigid body motion can be
reproduced by the pure rolling of the moving centrode on the fixed one. Instead, the fixed
and moving centrodes of second order intersect each other in more than one point, for
which the position of the acceleration pole is not straightforward to determine. However,
one way to find the acceleration pole is to use Bresse’s circles because they intersect
each other in both poles P1 and P2.

Thus, the inflection and stationary circles are determined by still using the instan-
taneous invariants and even for validation purposes, because the acceleration pole must
be one of the intersection points between the second order centrodes, but also one of the
two intersection between Bresse’s circles.

In particular, the inflection circle is the geometric locus of the coupler points,
which show an inflection point in their paths and is always tangent to both centrodes at
the instantaneous center of rotation P1. Referring to f̃ , one has

x̃ 2 + ỹ 2 − b2 ỹ = 0 (21)

where the diameter b2 of is obtained by the Eq. (4).
Likewise, the stationary circle that is the geometric locus of the coupler points,

which show a pure normal acceleration, is given by

ϕ̈
(
x̃ 2 + ỹ 2

)
+ b 2 ϕ̇ 2 x̃ = 0 (22)
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where ϕ̇ and ϕ̈ are the angular velocity and acceleration, respectively, which are
expressed by Eqs. (8) and (9). Equations (19), (20) and (22) depend by the kinematic
properties by means of ϕ̇ and ϕ̈, while the inflection circle is related to the geometry of
the coupler motion.

The proposed algorithm has been implemented in Matlab and validated through
several significant examples dealing with centered and offset slider-crank mechanisms.
In particular, Figs. 2 and 3 have been obtained for r = 10 cm, l= 2r, δ̇ = 1 r/s, δ̈ = 0 and
e (offset)=−50 cm.When δ = 0 deg, point B is at top dead center and thus, it coincides
with P1, as shown in Fig. 2b) and for δ = 90 deg, both Bresse’s circles degenerates in
two orthogonal straight lines, Fig. 3a).

a)                                       b)

Fig. 2. Fixed and moving centrodes of first and second order, along with the inflection and
stationary circles, for a centered slider-crank mechanism: a) δ = 60 deg; b) δ = 0 deg.

a)                                       b)

Fig. 3. Fixed and moving centrodes of first and second order, along with the inflection and
stationary circles of an offset slider-crank mechanism: a) δ = 90 deg; b) Top dead center.
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4 Conclusions

A general algorithm to trace the first and second order centrodes of centered and offset
slider-crank mechanisms, along with Bresse’s circles, has been formulated by using
the instantaneous geometric and kinematic invariants. In particular, the second order
centrodes have been computed and traced for a constant angular velocity of the driving
crank, otherwise the fixed andmoving second order centrodeswould change accordingly,
by losing their practical meaning. The proposed algorithm was implemented in aMatlab
program and significant examples have been obtained and discussed in order to validate
the proposed algorithm.
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