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Abstract The debate on gravity theories to extend or modify general relativity is very active
today because of the issues related to ultraviolet and infrared behavior of Einstein’s theory.
In the first case, we have to address the quantum gravity problem. In the latter, dark matter
and dark energy, governing the large-scale structure and the cosmological evolution, seem
to escape from any final fundamental theory and detection. The state of the art is that, up to
now, no final theory, capable of explaining gravitational interaction at any scale, has been
formulated. In this perspective, many research efforts are devoted to test theories of gravity
by space-based experiments. Here, we propose straightforward tests by the GINGER experi-
ment, which, being Earth based, requires little modeling of external perturbation, allowing a
thorough analysis of the systematics, crucial for experiments where sensitivity breakthrough
is required. Specifically, we want to show that it is possible to constrain parameters of gravity
theories, like scalar–tensor or Horava–Lifshitz gravity, by considering their post-Newtonian
limits matched with experimental data. In particular, we use the Lense–Thirring measure-
ments provided by GINGER to find out relations among the parameters of theories and finally
compare the results with those provided by LARES and Gravity Probe B satellites.

1 Introduction

General relativity (GR) is one of the cornerstones of modern physics predicting the behavior
of gravitational field from very large astrophysical scales up to local scales. For instance, it
provides corrections to the path of planets orbiting around stars, which undergo a perihelion
precession which cannot be theoretically obtained by Newtonian gravity. Moreover, in the
last few years, the gravitational waves detection [1–5] and the confirmation of the existence of
black holes [6] further corroborated the validity of the Einstein geometric view of gravitational
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interaction. The theory satisfactorily explains most of the cosmic evolution, starting from the
very early up to the present epoch giving rise to the so-called Cosmological Standard Model
[7]. For these reasons, nowadays GR is the best accepted theory describing gravity.

Nevertheless, though it fits a large amount of observational data, it suffers many problems
at very large and very small scales. Several shortcomings arise in the attempt to coherently
describe the large-scale structure and cosmology. In particular, recent observations suggest
that the universe is undergoing an accelerated expansion in the late epoch. The current
explanation for this issue is that the expansion should be driven by a cosmological constant �
acting at large scales or some form of dark energy which allows the evolution of cosmological
constant from early to present epochs. According to the observations, dark energy represents
almost 70% of the whole matter–energy content of the universe, but a final explanation of its
fundamental nature is still missing.

On the other hand, the velocity of stars and gas clouds orbiting around galaxies led to
introduce an unknown form of dark matter [8–11]. Its existence was firstly inferred by the
observations of the galaxy rotation curves. Astrometric data suggest that dark matter in the
universe is of the order of 25–30 % of the total amount of cosmic matter–energy leaving very
little room for the observed ordinary baryonic matter. Also in the case of dark matter, there
is no final evidence, at fundamental quantum level, also if its cumulative effects are present
at astrophysical scales.

Dark energy and dark matter constitute the most striking shortcomings of Cosmological
Standard Model if no final signature of their existence is revealed at fundamental level, despite
of the several models proposed to explain them.

Furthermore, at ultraviolet scales, GR cannot be dealt under the standard formalism of
Quantum Field Theory. The reason is because space and time cannot be simply considered
as quantum variables. Several approaches are under scrutiny like the canonical formalism,
started from the early works by Arnowitt, Deser and Misner [12–16], the Quantum Field The-
ory formulation on curved spacetimes [17–19], the Superstring Theory [20], the Supergravity
[21] and others, but none, up to now, can be considered the final, self-consistent formulation
of Quantum Gravity [22].

However, under some assumptions, the semiclassical formulation (that is quantum fields
formulated on curved “classical” spaces) is giving rise to physically consistent results related,
for example, to black holes [23–27], to the inflationary universe [28–32] and to other top-
ics related to the behavior of gravitational field in strong regime. The paradigm is that, in
the semiclassical limit, the gravitational action can be corrected with curvature invariants,
scalar fields or other geometric invariants (like torsion) in order to represent the effective
gravitational interaction [33,34]. As a result, the Hilbert–Einstein action of gravity results
was extended or modified giving the possibility to fix shortcomings of GR at infrared and
ultraviolet scales.

Essentially, these effective actions can be distinguished in two main categories: Extended
Theories of Gravity [35–42] which improve the Hilbert–Einstein action involving higher-
order curvature invariants or scalar fields, and Alternative Theories of Gravity, where some
basic assumptions of GR are relaxed, as well as the torsionless connection, the metricity or
the universal validity of the equivalence principle [43–49].

For instance, f (R) gravity is a straightforward generalization of GR where a generic
function of the Ricci curvature scalar R is introduced relaxing the linearity in R. In this case,
the field equations exhibit an effective energy–momentum tensor where further curvature
components can play the role of dark energy and dark matter [50–56]. In particular, it is
possible to show that such a curvature stress–energy tensor can be recast in a perfect fluid
form where cosmological dynamics is ruled by the form of f (R) function [57].
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It is possible to show that a conformal transformation provides the Hilbert–Einstein action
minimally coupled to a scalar field φ related to the first derivative of f (R) function [58–60].
This means that Extended Theories of Gravity can be recast in equivalent forms where GR is
minimally coupled to one or more scalar fields depending on the involved degrees of freedom
of gravitational action. Scalar fields are usually introduced to drive the cosmological inflation
at early times and to mimicking dark energy behavior at late time of the universe expansion
[50].

Other important classes of alternative theories of gravity are the so-called Teleparallel
Gravity [61], Symmetric Teleparallel Gravity [62], Horava–Lifshitz gravity [63] where the
Lorentz–invariance turns out to be broken at fundamental level. In this perspective, it is
important to point out that an apparatus like GINGER, for testing the Lorentz Invariance, is
reliable as reported by J. Tasson and collaborators in the framework of the Extended Standard
Model of Particles [64].

In general, modifying or extending the gravitational action yields further degrees of free-
dom. Even the simplest extensions, like f (R) gravity, lead to further gravitational waves
modes [65] and to fourth-order field equations, in the metric formalism, depending on the
function f (R).

Several phenomenological selection criteria aim to find out the form of f (R) by best
fitting observations. In [66,67], for example, the theory is selected by means of galaxy rota-
tion curves; in [68], cosmographic parameters are used in order to find the shape of action
respecting the energy conditions. In [69], actions providing bouncing universes are taken into
account. From an astrophysical point of view, theories of gravity can be constrained accord-
ing to the parameters of compact objects [70] or the multimessenger astronomy combining
gravitational waves and electromagnetic signals [71]. Finally, space-based experiments like
LARES and Gravity Probe B satellites can give upper bounds on gravitational parameters
(see, e.g., [72]).

In principle, also ground-based experiments can be considered to constrain theories of
gravity at some fundamental level. The main advantages of Earth-based experiments are: (i)
that they provide local responses, not averaged ones; (ii) they can be repeated in different
locations; (iii) they do not require external perturbation modeling, nor independent gravity
maps; (iv) synchronization and tuning are simpler than analogous space-based experiments;
and (v) moreover, the apparatuses can be periodically upgraded to refine the measurements.

In this paper, we propose to constrain theories of gravity exploiting the expected sensitivity
on relativistic precessions of the GINGER (Gyroscopes IN General Relativity) experiment.
In particular, we shall take into account metric theories, whose action includes curvature
invariants and scalar fields. Another theory which we are going to test is the Horava–Lifshitz
gravity which we shall describe below. In both cases, the scalar and vector potentials com-
ing from the weak-field limit are derived. The aim is to constrain the free parameters of
gravitational potentials by GINGER experimental data.

Specifically, GINGER is an Earth-based experiment suitable for measuring the Lense–
Thirring and Geodesic precessions of the rotating Earth. The measurements of the rotation
rate, by means of an array of ring lasers, provide the GR components of the gravito-magnetic
field with a precision of at least 1% [73–78]. Recent results of its prototype GINGERino, at
Gran Sasso Laboratories [78], indicate that GINGER should be able to measure Geodesic and
Lense–Thirring effects with an uncertainty of 1 part in 104 and 103, respectively1, of their
value calculated in the framework of GR. Therefore, we can falsify or constrain the parameter

1 In the first GINGER proposal, the conservative target was 1 part in 102 of the Lense–Thirring effect, but
the data analysis of the existing prototypes shows that the sensitivity is better than expected, and a factor 10
improvement feasible.
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space of extended/modified theories of gravity by comparing their post-Newtonian (PN) and
parameterized post-Newtonian (PPN) predictions to the corresponding GINGER measure-
ments. The general purpose is to demonstrate that theories of gravity can be constrained not
only by astrophysical and cosmological observations or space satellites but also by terrestrial
experiments that can be, in principle, more easily tuned and controlled [79,80].

The paper is organized as follows: In Sect. 2, we overview the main aspects of
extended/modified theories of gravity, paying attention to higher-order scalar–tensor the-
ories and Horava–Lifshitz gravity. These theories can considered general schemes among
the alternatives to GR. In Sect. 3, after briefly introducing the features of Kerr spacetime,
we take into account the PN limit of the considered theories, finding the explicit form of
the Gyroscopic and the Lense–Thirring precessions. Afterward, we use such precessions to
constrain gravity models by GINGER data. Finally, in Sect. 4, we discuss the main results
and the future perspectives of the approach.

2 Examples of extended/modified theories of gravity

As mentioned in Introduction, modified theories of gravity aim to relax some assumption of
GR, as well as that of second-order field equations or symmetric connections, while extended
theories retain the fundamental assumptions of GR but take into account further ingredients
into the gravitational actions like curvature invariants and scalar fields. The motivations
come, essentially, from addressing the behavior of gravitational interaction at ultraviolet
and infrared scales. In this section, we are going to overview some aspects of these theories,
mainly focusing on two classes of theories, which can be considered as a sort of paradigmatic
approach in this topic, with the aim to constrain the weak-field parameters by experimental
observations.

Let us start discussing Extended Theories of Gravity [35]. They usually extend the Hilbert–
Einstein action to a function of curvature invariants and scalar fields. The simplest extension
is the so-called f (R) gravity, whose action reads:

S =
∫ √−g f (R) d4x . (1)

The action depends on a general function of the curvature scalar R. The field equations can
be obtained by varying the action with respect to the metric gμν :

Gμν = 1

fR(R)

{
1

2
gμν [ f (R) − fR(R)R]

+ [∇μ∇ν − gμν�
]

fR(R)

}
, (2)

where the subscript denotes the derivative with respect to R, ∇μ is the covariant derivative,
and � is the d’Alembert operator � = gμν∇μ∇ν . Comparing Eq. (2) with vacuum Einstein
field equations Gμν = 0, we notice that the RHS can be intended as an effective curvature
energy–momentum tensor, namely

T curv
μν = 1

fR(R)

{
1

2
gμν[ f (R) − fR(R)R]

+ [∇μ∇ν − gμν�
]

fR(R)

}
, (3)
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In this way, geometric contributions can be recast as a geometric fluid capable of describing
dark energy and dark matter effects [57].

Among the f (R) extensions, one of the most studied is the Starobinsky model [81,82],
whose action consider second-order corrections to the Ricci scalar. It is

S = 1

16πG N

∫ √−g (R + αR2) d4x . (4)

with G N being the Newton constant. It fits very well early time inflation prescriptions accord-
ing to the PLANCK experiment data [83].

A further extension involving scalar–tensor degrees of freedom with a self-interaction
potential V (φ), a non-minimal coupling F(φ) and kinetic term ω(φ) can be written as:

S =
∫ √−g

[
RF(φ) + ω(φ)∇μφ∇μφ + V (φ)

]
d4x . (5)

It can be shown that under appropriate conformal transformations, the action (1) and the
action (5) can be recast under the same standard of an Einstein theory plus a scalar field [84].
Specifically, f (R) gravity corresponds to ω = 0 in the metric case [35]. The action (5) can
be further generalized by introducing second-order curvature invariants as Rμν Rμν and the
scalar curvature2. It reads:

S =
∫ √−g

[
f
(
R, Rαβ Rαβ, φ

) + ω(φ)∇αφ∇αφ
]

d4x (6)

and includes all the above cases. The variation of the action with respect to the metric tensor
yields the field equations:

fR Rμν − f + ω(φ)∇αφ∇αφ

2
gμν − ∇μ∇ν fR

+gμν� fR + 2 fY Rα
μ Rαν − 2 fY (∇α∇ν Rα

μ + ∇α∇μ Rα
ν )

+�
(

fY Rμν

) + gμν∇β∇α

(
fY Rαβ

) + ω(φ)∇μφ∇νφ = 0,

(7)

where ∇, as above, denotes the covariant derivative with respect to the Levi–Civita con-
nection, the subscript denotes the partial derivative, and Y is defined as Y ≡ Rμν Rμν . The
dynamics of the scalar field is ruled by the Klein–Gordon equation, that is

2ω(φ)�φ + ωφ(φ)∇αφ∇αφ − fφ = 0. (8)

Notice that both the scalar–tensor action (5) and the f (R) action (1) are particular cases of
the general action (6). Constraining this theory, therefore, automatically implies constraining
several Extended Theories of Gravity. In Table 1, we report various Extended Theories of
Gravity, the effective PN potentials and the free parameters characterizing them.

As an example of alternative theory to GR, we consider the Horava–Lifshitz gravity, pro-
posed by Horava in [63]. It has been formulated as an effective quantum gravity approach not
requiring the Lorentz invariance at fundamental ultraviolet scales. This invariance, however,
emerges at large distances. It mainly aims to solve the high-energy issues suffered by GR by
means of a spacetime foliation capable of reproducing the causal structure out of the quantum

2 Introducing also the quadratic Riemann invariant Rαβμν Rαβμν does not add further information thanks to

the Gauss–Bonnet topological term G = R2 − 4Rμν Rμν + Rαβμν Rαβμν which fixes a relation between the
3 curvature quadratic invariants.
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regime. Basic foundations and applications of this approach can be found, e.g., in [85–94].
The starting action is

S =
∫ √−gN

{
1

16πG H L
(K i j Ki j − λK 2)

−16πG H L

w4

[∇i R jk(∇ i R jk − ∇ j Rik)

−1

8
∇i R∇ i R

]}
d3x dt, (9)

where N i and N are lapse and shift functions, respectively, defined by means of the metric
interval as

ds2 = N 2dt2 − gi j

(
dxi + Ni dt

) (
dx j + N j dt

)
, (10)

while Ki j and K are3

Ki j = 1

2N

(
ġi j − ∇i N j − ∇ j Ni

)
K = gi j K i j . (11)

The constant λ measures the deviation of the kinetic term from GR. The parameter w is a
dimensionless coupling, and G H L becomes G N as soon as GR is recovered. In a spherically
symmetric spacetime, the solution of the field equations occurs analytically and has the form
[95,96]

g00 = g−1
11 = 1 + wr2 − wr2

√
1 + 4G H L M

wr3 . (12)

The Schwarzschild spacetime can be recovered as soon as 4MG H L � wr3.
A generalized Horava–Lifshitz action is

S = 1

16πG H L

∫
N

√
g

{
Ki j K i j − λK 2 − 2� + R

− 16πG H L

(
g2 R2 + g3 Ri j Ri j

)
− (16πG H L)2 [

g4 R3

+ g5 R Ri j Ri j + g6 Ri
j R j

k Rk
i + g7 R∇2 R

+g8
(∇i R jk

) (
∇ i R jk

)]
+ φGi j (

2Ki j + ∇i∇ jφ
)

+A

N
(2� − R)

}
dtd3x, (13)

with Gi j being the 3D-Einstein tensor

Gi j = Ri j − 1

2
gi j R + �gi j , (14)

and A a gauge field depending on spatial coordinates and time.

3 The Kerr solution and the Lense–Thirring precession

Extended/modified theories of gravity discussed in Sect. 2 are very general and have no
predictive power in their fundamental forms, due to the large number of degrees of free-
dom. In order to overcome this difficulty and to have terms of comparison with GR, it is

3 Latin indexes label the spatial coordinates.
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worth searching for their weak-field limit. In this perspective, it is possible to derive expres-
sions of phenomena, like the gyroscopic and Lense–Thirring precessions, to compare with
experimental data.

Before considering the PN and PPN formalism, let us recall how to get the Lense–Thirring
precession starting from a generic Kerr spacetime. The Hilbert–Einstein action

S(G R) =
∫ √−g R d4x, (15)

is the only gravitational action leading to analytic solutions for rotating compact objects,
described by the Kerr metric. It is generally derived starting from the line element

ds2 = A(t, r, θ)dt2 + B(t, r, θ)dr2 + C(t, r, θ)dθ2

+D(t, r, θ) sin2 θdϕ2 + E(t, r, θ)dt dϕ, (16)

according to which a rotating body exhibits a frame-dragging precession. By plugging the
interval (16) in the Einstein field equations derived from Action (15), the rotating spherically
symmetric solution in the equatorial plane reads

ds2 = (
1 − rS

r

)
dt2 − 1

1− rS
r + J2

M2 r2

dr2 − r2dθ2

−
(

r2 + J 2

M2 + rS J 2

M2 r

)
dϕ2 − 2rS J

Mr dt dϕ, (17)

where J is the angular momentum of the rotating object with mass M and rS the
Schwarzschild radius rS = 2G N M . Note that setting J = 0, the Schwarzschild solution
occurs as a particular limit and the asymptotic flatness is recovered. An important effect
related to rotating objects in GR is the so-called frame dragging (or equivalently Lense–
Thirring effect), according to which the spacetime metric is distorted by the rotation, giving
rise to the precession of a test particle orbit. According to GR, the predicted value of the
Lense–Thirring angular precession turns out to be

ΩLT
(G R) = rS

4Mr3 J . (18)

It has been measured with high precision by Gravity Probe B experiment, which provided
a precession of the order of ΩLT ∼ 1.02 · 10−4 arcseconds per day for the Earth [97]. To
better understand the physical meaning of the Lense–Thirring precession, let us consider the
spacetime dragging. In Kerr-like metrics, the non-vanishing term g03 yields new potentials in
the weak-field limit. As the Newtonian potential 	 is defined by the second-order expansion
of the time component of the metric, namely

g00 = 1

1 − 2G N M
r

∼ 1 + 2G N M

r
= 1 + 2	, (19)

the other potentials arise from the expansion of the general metric (16). As a matter of fact,
spherically symmetric solutions in modified theories of gravity do not often occur analytically,
especially in the presence of matter. This is due to the fact that the extension/modification of
the Hilbert–Einstein action yields higher-order field equations rarely admitting exact solu-
tions.

The Schwarzschild spacetime is recovered when the angular momentum effects can be
discarded. In this formalism, the metric gμν can be expanded by considering a perturbation
hμν of the Minkowski spacetime, so that hμν � ημν and

gμν = ημν + hμν. (20)
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The first-order Einstein tensor turns out to be

Gμν = 1
2 (∂σ ∂μhσ

ν + ∂σ ∂νhσ
μ − ∂μ∂νh − �hμν

−ημν∂ρ∂λhρλ + ημν�h). (21)

When higher-order corrections are considered, new scalar and vector potentials arise in the
approximation. Up to the fourth order, a generic expansion of the metric tensor can be written
as:

gμν ∼
(

1 + g(2)
00 + g(4)

00 + . . . g(3)
0i + . . .

g(3)
0i + . . . −δi j + g(2)

i j + . . .

)

=
(

1 + 2	 + 2� 2Ai

2Ai −δi j + 2�δi j

)
. (22)

It is worth noticing that the second-order expansion of the element g00 provides the Newtonian
potential 	. Moreover, two other scalar potentials (� and �) arise: The former comes from
the second-order expansion of the metric tensor components gi j (in the Newtonian limit),
while the latter is related to the fourth-order expansion of g00 (the PN limit). Specifically,
	(r), �(r) are scalar potentials proportional to (v/c)2, and �(r) is proportional to (v/c)4,
while Ai is a vector potential proportional to the power (v/c)3. For the sake of clearness, in
the metric (16), the elements g00, g0i and δi j gi j can be identified as

g00 ≡ A(t, r, θ) (23)

g0i = E(t, r, θ) (24)

gi jδ
i j = B(t, r, θ) + C(t, r, θ) + D(t, r, θ) (25)

Most interestingly, the second-order expansion of the element g0i leads to a vector potential
Ai . This is the potential linked to the rotations, whose curl operator magnitude (in analogy
to the electromagnetic case) provides the Lense–Thirring precession. In GR, the angular
precession can be derived analytically from the definition:

ΩLT
(G R) = 1

2
(εi jk∂i Ak)(ε�nk∂

� Ak)

= G N

r3

√(
ε�km∂mεi jk Ji x j

)2 = rS

4Mr3 J, (26)

with obvious meaning of the symbols indicating the curl operator. The shape of the vec-
tor potential Ai can be found after replacing the potentials defined in the linearized field
equations. However, the Kerr metric suffers the lack of perfect fluids matching boundary
conditions between external and internal solutions. In this context, extended/modified theo-
ries of gravity might solve the problem, containing free parameters which can be constrained
by experimental observations. Reversing the argument, starting from a general unknown
function of second-order curvature invariants, it could be possible to constrain the form of
the action by comparing the theoretically predicted value of the Lense–Thirring precession
with the measured one.

Notice that the only vector potential A, which provides corrections to GR, occurs when
the second-order invariant Rμν Rμν is considered into the action. This is due to the fact that
the scalar Rμν Rμν is the only one which carries extra massive modes. However, the potential
of GR is recovered by imposing fY → 0, namely mY → ∞.
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3.1 The PPN formalism in higher-order scalar–tensor gravity

Let us discuss now the weak-field limit of higher-order scalar–tensor gravity with the action
(6). The aim is using the PN limit to find out the theoretical expression of the Lense–Thirring
precession and, subsequently, to constrain the free parameters by the experimental data pro-
vided by GINGER.

No exact solution, in a Kerr spacetime, has been found from the above action, but approxi-
mated solutions can be derived by replacing the metric (22) into the field Eqs.(7) considering
the Taylor expansion [72]

f
(
R, Rαβ Rαβ, φ

) = fR

(
0, 0, φ(0)

)
R

+ fR R
(
0, 0, φ(0)

)
2

R2 + fφφ

(
0, 0, φ(0)

)
2

(
φ − φ(0)

)2

+ fRφ

(
0, 0, φ(0)

)
Rφ + fY

(
0, 0, φ(0)

)
Rαβ Rαβ, (27)

where φ(0) is the zeroth-order expansion of the scalar field φ. From the linearization of the
metric tensor, four potentials arise. In order to find out the effective form of the gyroscopic
and Lense–Thirring precessions, only the scalar potential 	(r) and the vector potential Ai

are needed. They read as:

	(r) = −G N M

r

[
1 + g(ξ, η)e−m Rk̃Rr

+[1/3 − g(ξ, η)]e−m Rk̃φr − 4

3
e−mY r

]
(28)

and

Ai = G N

r3

[
1 − (1 + mY r) e−mY r ] ei jkr j J k, (29)

with the parameters defined as

m2
R = − 1

3 fR R
(
0, 0, φ(0)

) + 2 fY
(
0, 0, φ(0)

)

m2
Y = 1

fY
(
0, 0, φ(0)

)

m2
φ = − fφφ

(
0, 0, φ(0)

)
2ω

(
φ(0)

)

ξ = 3 fRφ

(
0, 0, φ(0)

)2

2ω
(
φ(0)

)
η = mφ

m R

g(ξ, η) = 1 − η2 + ξ + √
η4 + (ξ − 1)2 − 2η2(ξ + 1)

6
√

η4 + (ξ − 1)2 − 2η2(ξ + 1)

k̃2
R,φ = 1 − ξ + η2 ±

√(
1 − ξ + η2

)2 − 4η2

2
. (30)

The vector potential Ai is written in terms of the angular momentum Ji . Observations on Solar
System can provide the constraints on the above parameters. Following [72], the gyroscopic
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precession is

ΩG
(EG) = −

{
g(ξ, η)

(
m Rk̃Rr + 1

)
F

(
m Rk̃RR

)
e−m Rk̃Rr

+8

3
(mY r + 1) F (mYR) e−mY r +

[
1

3
− g(ξ, η)

]

×
(

m Rk̃φr + 1
)

F
(

m Rk̃φR
)

e−m Rk̃φr
} ΩG

(GR)

3
,

where R is the radius of the body, and ΩG
(EG) is the extended gravity effect to be compared

with

ΩG
G R =

∣∣∣∣3G N M

2r3 r × v

∣∣∣∣ , (31)

coming from GR. In Eq. (31), v is the velocity of the Earth in the considered location and

F(mk̃R) = 3

[
(mk̃R) cosh(mk̃R) − sinh(mk̃R)

m3k̃3R3

]
(32)

is a geometric factor multiplying the Yukawa term determined by the parameters of the theory.
On the other hand, the Lense–Thirring precession can be written in terms of GR precession
in Eq. (26). It reads

ΩLT
(EG) = −e−mY r (

1 + mY r + m2
Y r2) ΩLT

(GR) , (33)

where deviations with respect to GR are parameterized by mY , the effective mass related
to the curvature invariant Rμν Rμν . In this way, the total Lense–Thirring precession can be
recast as the sum:

ΩLT
T OT = ΩLT

(EG) + ΩLT
(GR)

= [
1 − e−mY r (

1 + mY r + m2
Y r2)]ΩLT

(GR), (34)

from which ∣∣∣∣∣
ΩLT

T OT

ΩLT
G R

− 1

∣∣∣∣∣ = e−mY r (
1 + mY r + m2

Y r2) , (35)

so that ΩLT
(EG) only quantifies the deviations from ΩLT

(GR). It is worth noticing that Eq. (33)
can be obtained by applying the curl operator to the vector potential (29), that is:

A = G N

r3

[
1 − (1 + mY r) e−mY r ] r × J. (36)

Considering data provided by Gravity Probe B satellite, orbiting at h = 650 km of altitude,
the effective mass mY is constrained to be

mY > 7.1 · 10−5m−1, (37)

given in terms of effective Compton length. This result can be obtained by considering, for
the radial distance r , a sum between the Earth radius REarth and the altitude h, namely
r = REarth + h.

A further lower limit can be achieved by LARES satellite, whose observations on Lense–
Thirring precession constrain the mass mY to be

mY > 1.2 · 10−6m−1. (38)
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Fig. 1 δΩLT /ΩLT
G R as a function of mY . Note that GR is recovered in the limit mY → ∞

Considering Eq. (35), our purpose is now to further constrain the parameter mY by GINGER
data for the gyroscopic and Lense–Thirring precessions. It is worth noticing that GR, in the
Earth frame, predicts a gyroscopic precession of the order ΩG

G R = 6606.1 mas/yr and a
Lense–Thirring, precession of the order ΩLT

G R = 37.2 mas/yr .
From the relation (35), it is possible to select a range of compatibility for the effective

mass mY with GINGER data. To this purpose, we assume that the geodesic term (where
GINGER can reach a precision of 1 part in 104) and the Lense–Thirring term (where the
expected precision is 1 part in 103) can be disentangled. This can be done through different
orientations of the ring lasers of the GINGER array. Replacing in Eq. (35), the distance
between the point where the Lense–Thirring precession is measured and the center of Earth,
the algebraic equation

e−mY r (
1 + mY r + m2

Y r2) ≤ 0.001, (39)

can be solved numerically providing

mY ≥ 1.88 · 10−6m−1. (40)

This result, obtained by an Earth-based experiment, put a further limit to the mass mY and,
therefore, to higher-order scalar–tensor gravity models of the form f (R, Rμν Rμν, φ). The
relation occurring between δΩLT /ΩLT

G R ≡ (ΩLT
T OT − ΩLT

G R)/ΩLT
G R and mY is plotted in Fig.

1.
It shows the high accuracy needed to put physical constraints on the effective mass mY .

In particular, the more accurate the measure, the narrower the allowed range of mY will be.
The value of mY shown in Eq. (40) is comparable with the LARES one, but it can be

considered model independent, since it is a “local” measurement, which can be repeated at
a different location, and does not require a gravity map of the Earth.

3.2 The PPN formalism in Horava–Lifshitz Gravity

Let us discuss now the weak-field limit of Horava–Lifshitz gravity to find out an explicit form
for the gyroscopic and Lense–Thirring precessions. As pointed out in [98,99], in order to be in
agreement with Solar System observations and preserve the power-counting renormalizability
at ultraviolet scales, the matter Lagrangian must be chosen carefully. In [98,99], the authors
propose the following general matter Lagrangian

LM = Ñ
√

g̃LM

(
Ñ , Ñi , g̃i j ;ψn

)
(41)
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where
Ñ = (1 − a1σ) N

Ñ i = Ni + Ngi j∇ jφ

g̃i j = (1 − a2σ)2 gi j

σ = A − B

N

B = −φ̇ + Ni∇iφ + 1

2
N∇ iφ∇i , φ

(42)

with a1, a2 arbitrary constants. As previously pointed out, A is a gauge field depending on
spatial coordinates and time, N and N i are, respectively, Lapse and Shift functions, and gi j

is the three-dimensional metric. In the PPN formalism, the matter Lagrangian of this theory
has a key role. Assuming a vanishing contribution of the cosmological constant � = 0, the
gyroscopic and Lense–Thirring precessions in Horava–Lifshitz gravity turn out to be related
to those of GR through the relations [100]:∣∣∣∣∣

ΩG
T OT − ΩG

G R

ΩG
G R

∣∣∣∣∣ =
∣∣∣∣2

3

(
G H L

G N
a1 − a2

a1
− 1

)∣∣∣∣ (43)

and ∣∣∣∣∣
ΩLT

T OT − ΩLT
G R

ΩLT
G R

∣∣∣∣∣ =
∣∣∣∣G H L

G N
− 1

∣∣∣∣ , (44)

where the standard Newton constant G N must be distinguished from the effective gravita-
tional constant of Horava–Lifshitz gravity G H L . In this way, the measure on the Lense–
Thirring precession can be used to constrain the effective gravitational constant, which, in
turn, can be replaced in Eq. (43) to find a graphical relation between a1 and a2.

In order to adapt the GINGER measures to the Horava–Lifshitz gravity, in the weak-field
limit, we consider the frequency difference of light for two beams circulating in a laser cavity
in opposite directions. This can be recast as a time difference between the right-handed beam
propagation time and the left-handed one, namely

δτ = PλΩS, (45)

with

ΩS = −2
√

g00

Pλ

∮
g0i

g00
dsi . (46)

In the above equations, P is the perimeter of the ring, λ the laser wavelength and ΩS the
splitting in terms of frequency between the two beams. Replacing the form of g00 and g0i

for Horava–Lifshitz gravity in Eq. (46), ΩS turns out to be [100]

ΩS = 4A

Pλ
ΩE [cos(θ + α)

−
(

1 + G H L

G N
a1 − a2

a1

)
G H L M

R
sin α sin θ

− G H L IE

R3 (2 cos θ cos α + sin θ sin α)

]
, (47)

with A being the area encircled by the light beams, α the angle between the local radial
direction and the normal to the plane of the array-laser ring, θ the colatitude of the laboratory,
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Fig. 2 δΩG/ΩG
G R as a function of a1 and a2, with G H L/G N fixed to 0.999 (top) and 1.001 (bottom)

ΩE the rotation rate of the Earth as measured in the local reference frame and IE the Earth
momentum of inertia. The first term in the RHS is the Sagnac term, and the second is the
gyroscopic term, while last is the Lense–Thirring term. Notice that by setting G H L = G N ,
the splitting in terms of frequency reduces to that of GR, as expected. The presence of two
rings yields a dynamic measure of the angle, so that the overall precision of GINGER is 1/100
in the Lense–Thirring term and 1/1000 in the geodetic term. From Eq. (44), we obtain that
the effective gravitational constant of Horava–Lifshitz gravity is related to the Newtonian
constant through the numerical relation

0.999 G N < G H L < 1.001 G N (48)

Setting
G H L

G N
= 0.999 and replacing into Eq. (47), it turns out that the coupling constants a1

and a2 satisfy the relation

a1(0.999a1 − 0.99985) < a2 < a1(0.999a1 − 1.00015)

if a1 < 0,

a1(0.999a1 − 1.00015) < a2 < a1(0.999a1 − 0.99985)

if a1 > 0. (49)

The graphical representation is shown in Fig. 2.
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Fig. 3 Graphical representation of Eq. (51). Red dot denotes the values of free parameters for which GR is
recovered

Similarly, by setting
G H L

G N
= 1.001, we obtain

a1(1.001a1 − 0.99985) < a2 < a1(1.001a1 − 1.00015)

if a1 < 0

a1(1.001a1 − 1.00015) < a2 < a1(1.001a1 − 0.99985)

if a1 > 0. (50)

The graphical representation is also reported in Fig 2. The ranges (49) and (50) can be
obtained by considering the precision of GINGER in the geodesic term, that is expected to
be 1 part in 104. Moreover, we only plotted ranges of a1 and a2 which can provide small
corrections to GR. Indeed, we considered a1 ∈ [0.5, 1.5] and a1 ∈ [−0.5, 0.5], so that GR
is recovered as soon as a1 = 1 and a2 = 0. In what follows, we let G H L/G N vary between
0.999 and 1.001, which are the validity limits provided by the analysis of the Lense–Thirring
term. Therefore, the relations between a1, a2 and G H L/G N , that is∣∣∣∣∣

ΩG
T OT − ΩG

G R

ΩG
G R

∣∣∣∣∣ =
∣∣∣∣2

3

(
G H L

G N
a1 − a2

a1
− 1

)∣∣∣∣ < 10−4 (51)

, are plotted in Fig. 3, which shows numerical constraints to the matter Lagrangian of Horava–
Lifshitz gravity. In order to uniquely find a1 and a2, a further analysis is needed. We aim
to use GINGER data in future works, with the purpose to ameliorate the precision of the
numerical values of the free parameters.

4 Discussion and conclusions

We considered two modified theories of gravity and constrained the corresponding free
parameters by GINGER experimental data. The former theory is based on extensions of the
Hilbert–Einstein action and belongs to the so-called Extended Theories of Gravity. Extending
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GR leads to higher-order field equations carrying for the gravitational field. From the weak-
field limit of the theory, it is possible to relate the gyroscopic and Lense–Thirring precessions
with the parameters of these further degrees of freedom. GINGER experimental data of these
precessions put an upper limit to the first derivative of the function f (R, Rμν Rμν, φ) with
respect to the second-order curvature invariant Rμν Rμν . Specifically, we get

mY ≡
√

1

fY
(
0, 0, φ(0)

) ≥ 1.88 · 10−6m−1. (52)

If compared to the results provided by LARES and GP-B, we notice that GINGER can
provide a stronger constraint to the effective mass with respect to the latter.

The second theory here discussed belongs to the class of alternative theories of gravity
aimed to relax some assumptions of GR and to construct actions which better fit the high-
energy shortcomings suffered by Einstein gravity. We considered a specific matter Lagrangian
of Horava–Lifshitz gravity, which preserves the unitarity and allows to fit the Solar System
observations. Such Lagrangian, in the most general form, introduces in the theory two arbi-
trary parameters a1 and a2, which cannot be theoretically constrained. We used the weak-field
limit to find a relation between the two constants and the value of the effective gravitational
constant in Horava–Lifshitz gravity. In particular, from the Lense–Thirring precession we
obtain

0.999 G N < G H L < 1.001 G N . (53)

By means of this result, it turns out that a1 and a2 can be fixed through data on Lense–
Thirring precession, according to which relations (49) and (50) hold. Moreover, considering
a precision of 1/10000 for the geodesic term, Eq. (51) provides a numerical relation between
a1, a2 and G H L/G N , plotted in Fig. 3.

The analysis of this work represents a first step toward constraining modified theories of
gravity and, in general, metric theories through GINGER data.

Some points need to be stressed in conclusion. With respect to results coming from satel-
lites [72], GINGER measurements avoid issues related to the dynamical configurations of
space-based experiments. For example, thanks to the experimental set up, errors and noise
coming from considering fine gravity maps can be avoided. Finally, being the experiment
essentially static, problems related to the timing and the synchronization between different
reference frames (e.g., Earth and satellite) can be removed.

As final remark, we can say that relatively simple experiments like GINGER can achieve
and ameliorate the performances of space-based setups in measuring gravitational parameters.
This could be the starting point for a systematic investigation of theories of gravity by Earth-
based experiments.
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