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Abstract: In the last decades, there has been an increasing number of human patients who suffer
from upper-limb disorders limiting their motor abilities. One of the possible solutions that gained
extensive research interest is the development of robot-aided rehabilitation training setups, including
either end-effector or exoskeleton robots, which showed various advantages compared to traditional
manual rehabilitation therapy. One of the main challenges of these systems is to control the robot’s
motion to track a desirable rehabilitation training trajectory while being affected by either voluntary
or involuntary human forces depending on the patient’s recovery state. Several previous studies
have been targeting exoskeleton robotic systems focusing on their structure, clinical features, and
control methods, with limited review on end-effector-based robotic rehabilitation systems. In this
regard, an overview of the most common end-effector robotic devices used for upper-limb rehabilita-
tion is provided in this paper, describing their mechanical structure, features, clinical application,
commercialization, advantages, and shortcomings. Additionally, a comprehensive review on possi-
ble control methods applied to end-effector rehabilitation exploitation is presented. These control
methods are categorized as conventional, robust, intelligent, and most importantly, adaptive con-
trollers implemented to serve for diverse rehabilitation control modes, addressing their development,
implementation, findings, and possible drawbacks.

Keywords: review; end-effector; upper limb; rehabilitation; control; adaptive

1. Introduction

According to a global study jointly developed by the World Health Organization
(WHO) and the Institute for Health Metrics and Evaluation (IHME) provided in 2021,
one third of the world’s population were living with a health condition [1]. Globally, there
was an increase of about 79.4% in the number of people living with disabilities between 1990
and 2021. The recorded disability conditions were classified as musculoskeletal disorders
(MSDs), neurological disorders, sensory impairments, mental disorders, and others. Most
of the disabilities were classified as musculoskeletal and neurological disorders. MSDs are
composed of more than 150 different diseases/conditions and impairments that include
muscles, nerves, tendons, joints, and other injuries and postural disorders [2]. About
1.71 billion people encounter musculoskeletal conditions worldwide [3]. Moreover, neuro-
logical disorders are defined as diseases of the central and peripheral nervous system [4].
It can occur due to cerebrovascular conditions, such as strokes and other severe diseases.
About 12 million people are recorded to suffer from strokes yearly worldwide [5].
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Thus, the need for rehabilitation is increasing all over the world due to the presence of
the aforementioned health conditions. Rehabilitation is crucial as it can help in preventing,
reducing, or managing complications associated with many health conditions, such as
postural disorders, spinal cord injury, stroke, accidents, or fractures that can extensively
limit humans’ motor abilities and activities of daily living (ADL) [6,7]. These patients are
dramatically affected in terms of physical, financial, and mental issues.

In the last decades, extensive research interest has been directed towards robot-aided
rehabilitation training solutions, which have shown various advantages compared to
traditional manual rehabilitation therapy [7]. This is mainly due to their ability to perform
the rehabilitation task in a repetitive and efficient manner, improving the patient’s motor
abilities [7]. The main challenge is to design and implement a robotic system structure that
is capable of performing rehabilitation therapy in an effective and safe manner.

In this regard, several robotic systems have been built to serve as upper or lower
extremity rehabilitation robots. These robots are mainly classified as end-effector robots
or exoskeletons [8–12]. End-effector robots are said to have a simple structure that can
be easily adapted to diverse patients’ configurations and health conditions. However,
exoskeletons are considered to reproduce the kinematics of the human limb and support
its motion through controlling each joint separately [8,10]. This makes exoskeletons more
complex to develop but more precise in terms of joint control [13].

One of the prime challenges of rehabilitation robotic system development is its control
structure, as the control system should be designed to consider the human configuration,
recovery stage, motor ability, intentions, and safety. Various controllers were reviewed
by previous papers including conventional, intelligent, and robust controllers with a
limited number of reviews on adaptive control methods, which are considered to be
vital for robotic rehabilitation. Adaptive control methods are used to adjust the control
parameters based on the patient’s real-time performance and health condition. This ensures
personalized, safe, and effective therapy that evolves with the patient’s progress and
changing capabilities [8–11]. Moreover, to the best of the authors’ knowledge, various
studies focus on reviewing these control systems for exoskeleton robots without listing the
possible controllers for the end-effector ones [8–11].

Thus, this paper aims to provide a comprehensive review on rehabilitation robots
focusing on upper-limb rehabilitation systems. The main reason behind presenting this
comprehensive review paper is to serve as a positive guiding value for future researchers in
upper-limb rehabilitation robotics field. One of the study objectives is to review several end-
effector and exoskeleton robotic system structures, discussing their functional differences
in terms of mechanical structure, targeted joints, clinical applications, commercialization,
advantages, and drawbacks. In addition, unlike previous reviews, this study reviews and
summarizes several diverse control methods used for upper-limb rehabilitation utilizing
end-effector robots. These control methods are categorized as conventional, robust, in-
telligent, and most importantly, adaptive controllers implemented to serve for diverse
rehabilitation control modes. The control methods are further classified as model-based
and data-driven-based non-adaptive or adaptive control methods, which are used to handle
multi degrees of freedom (DoF) end-effector robotic systems. Furthermore, the adaptive
control methods introduced are further decomposed into several categories, listing the
development, findings, and possible drawbacks of each controller in each category.

The paper is organized as follows: Section 2 includes the literature search strategy
and information sources used to build the structure of the review. Section 3 presents an
overview of upper-limb rehabilitation robots including the end-effector and exoskeleton
robots investigated in the previous literature. In addition, it includes the possible clinical
and functional requirements needed for an efficient and safe rehabilitation process. Section 4
discusses the control modes and challenges available in upper-limb rehabilitation robotics.
The end-effector control methods are reviewed in Section 5. Finally, Section 6 summarizes
the work of the paper and recommends future endeavors.
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2. Literature Search Methodology

In order to find several articles related to upper-limb robotic rehabilitation systems,
three platforms; IEEE Xplore, Scopus, and PubMed, were searched. These platforms are
the databases for this review. Three sets of keywords were used to search through the
aforementioned databases, as this paper is mainly presented to serve two objectives.

The first is to examine a multitude of end-effector and exoskeleton robotic systems
used for upper-limb rehabilitation in previous review papers. Thus, the keywords used
were (Rehabilitation AND Robot AND Upper AND (Review OR Survey)). The second is
focused on the control algorithms implemented in end-effector robots utilized for upper-
limb rehabilitation. As a result, the keywords used were (Rehabilitation AND Robot AND
Upper AND Control AND End AND Effector).

For a more focused review on adaptive controllers, the keywords were modified to
include “Adaptive”: (Rehabilitation AND Robot AND Upper AND Control AND End
AND Effector AND Adaptive). Articles published since 2009 were included. A diagram is
presented in Figure 1 to demonstrate the search methodology.

Figure 1. Search methodology diagram.

3. Overview of Upper-Limb Rehabilitation Robots

Recently, various robotic systems for upper-limb rehabilitation have been developed.
These systems are designed to perform task-oriented repetitive movements which in turn
enhance the muscle strength and expand the range of motion of the patient’s affected
limb [10,14]. This section provides a comprehensive overview of upper-limb rehabilitation
robot mechanisms, discussing their functional differences in terms of mechanical structure,
targeted joints, clinical applications, commercialization, advantages, and drawbacks. In ad-
dition, the clinical and functional requirements that such systems have to meet are covered
to support an effective and efficient rehabilitation process.

3.1. Rehabilitation Robot Mechanisms

Generally, rehabilitation robots can be classified as end-effector and exoskeleton mech-
anisms [8–12] as shown in Figure 2. The end-effector robotic system interacts with the
patient through the most distal segment of the human limb (e.g., human wrist) without
direct alignment between the patient and the robot’s joints. These systems are said to have
a simple structure that can be easily adapted to diverse patients’ configurations and health
conditions. In addition end-effector robots are contemplated to have convenient control
approaches with high precision [8,10,14].

Focusing on upper-limb end-effector robots, various robotic manipulators have been
developed for patients suffering from musculoskeletal and neurological disorders [10].
One of the early developed end-effector robots for upper-limb rehabilitation was the MIT
Manus [15]. It was designed to determine whether repetitive reaching exercises using a
robotic device could enhance the recovery of the upper-limb function in hemiparetic stroke
survivors [16]. Other robotic systems such as ARM (Assisted Rehabilitation and Mea-
surement) Guide [17], MIME (Mirror-Image Movement Enabler) [18], Bi-Manu-Track [19],
GENTLE/s [20], and Italian NeReBot [21] neurorehabilitation robots, as well as ACT3D [22]
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and ACT4D [23] (Arm Coordination Training Robot) and many others, have previously
been utilized. A summary of the frequently addressed upper-limb end-effector robots
in the previous literature and their main features is provided in Table 1 [8,10,12,24]. The
table includes each robot’s mechanical structure in terms of motion classification, DoF, and
targeted joints. In addition to the disease handled and clinical tests performed. It takes into
account the number of subjects and therapy sessions details. Moreover, the software origin
is highlighted. It is worth mentioning that most software tools used are closed access, only
available for developers and the entities that acquire the robot. Finally, the commercializa-
tion status of each setup is also given. Along with end-effector robots, exoskeletons are
also used to handle neurological and musculoskeletal disorders. Contrary to end-effector
robots, exoskeletons reproduce the kinematics of the human limb and support its motion
through controlling the position and orientation of each joint separately [8,10]. This makes
the exoskeleton robots more complex in terms of control and more expensive as right-limb
exoskeletons cannot be used for left-limb treatment [13]. Thus, exoskeletons are considered
to be hard and expensive to use for bilateral rehabilitation.

(a) End-effector structure (b) Exoskeleton structure

Figure 2. End-effector and exoskeleton robotic structures for upper-limb rehabilitation process.

Several exoskeleton robots have been developed for upper-limb rehabilitation, such
as RUPERT (Robotic Upper Extremity Repetitive Trainer) [25], MAHI EXO-II [26], My-
oPro [27], CADEN (Cable-Actuated Dextrous Exoskeleton for Neurorehabilitation) [28,29],
ARMin [30,31], SUEFUL [32], EXO-UL7 [33], ARMEO Power [34], HAL-SJ (Hybrid Assis-
tive Limb—Single Joint) [35] and many others [36,37]. It is worth mentioning that most
of the presented exoskeleton robots do not provide actuation for all the limb’s DoF [10].
Table 2 provides a summary for some of the upper-limb exoskeletons and their prime fea-
tures [8,10,12,13,24,36,37]. Due to the complex structure of exoskeletons and their inability
to be adapted to serve diverse patients with distinct postural configurations and health
conditions, this study focuses on the end-effector robotic structure. End-effector robots are
considered for their simplicity and ability to interact more easily with the human subject.

It is then crucial to mention the clinical and functional requirements of the end-effector
robotic systems to achieve the desirable rehabilitation task while considering the patient’s
health conditions, comfort and safety.

3.2. Requirements for Upper-Limb Rehabilitation

When considering end-effector robots for upper-limb rehabilitation, several require-
ments should be considered in order to ensure that the application adheres to multiple
stakeholders, including patients, therapists, as well as the robots. Patients’ requirements
are crucial to achieve healthy motor recovery, safety, adaptability, and engagement.

On the other hand, therapists are required to be well trained to use the rehabilitation
robot’s equipment in an efficient and effective way. In addition, the patients’ status needs
to be monitored and analyzed continuously [16].
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Table 1. Main features of frequently addressed upper-limb end-effector robots.

EE Robot Year Classification DoF Targeted Joints Type of Disease Clinical Testing Software Origin Commercial

MIT Manus [15] 1994 Planar motion 2 Shoulder + elbow Stroke, CP, MS, TBI 1000++ [38] from 1999 till 2004,
250 strokes, 3 h/wk for 12 wks [15]

Massachusetts Institute of
Technology (MIT) [15] ✓

ARM-Guide [17] 1995 Linear motion 1 Shoulder + elbow Stroke In 2000, 3 chronic strokes, 3 h/wk
for 8 wks [39]

Rehab Inst. of Chicago, University
of California [40] ✗

NeReBot [21] 1995 Cable-driven motion 2 Shoulder + elbow + wrist Stroke
In 2007, 12 early strokes and
12 unimpaired upper limbs
≈5 h/wk for 4 wks [41]

Robotics Lab, University of
Padua [42] ✗

MIME [18] 1997 Bi-manual motion 6 Shoulder + elbow Stroke

In 2004, 13 chronic strokes, 3 h/wk
for 8 wks [43]

In 2011, 54 hemipareses, up to
30 h [44]

Stanford University [18] ✗

Bi-Manu-Track [19] 2001 Bi-manual motion 2 Adaptive Stroke

In 2016, 34 chronic strokes ≈20 h,
for 4 wks [45]

In 2023, 70 hemiplegic strokes,
6 h/wk for 3 wks [45]

Reha-Stim Co., Germany [46] ✓

GENTLE-/s [20] 2002 3D motion 3 Shoulder + elbow + wrist Stroke In 2007, 31 strokes, 3 h/wk for
9 wks [47] Moog Inc. [48] ✗

HAPTIC MASTER [49] 2002 3D motion 3 Forearm Stroke, dystonia In 2014, 22 chronic strokes, 4 h/wk
for 8 wks [50] Moog Inc. [48] ✗

REHA-ROB [51] 2007 3D motion 3 Shoulder + elbow Stroke In 2007, 30 hemipareses, ≈1 h for
20 days [51]

ABB & comp.: Hungary, UK,
Germany, and Bulgaria [52] ✗

ACT3D [22] 2007 Planar motion 3 Shoulder + elbow Stroke In 2009, N/A hemiparesis, 3 h/wk
for 8 wks [53]

Neuro-imaging, Motor Control,
Northwestern University [53] ✗

Amadeo [54] 2010 Hand Mobility 5 Hand + fingers Stroke, CT

In 2010, 12 ischemic strokes, 3 h/wk
for 8 wks [55]

In 2023, 58 strokes, average 3 h/wk
for 10 wks [56]

TyroS software Tyromotion
GmbH [57] ✓

Braccio di Ferro [58] 2011 Planar motion 2 Shoulder + elbow Stroke, MS In 2010, 10 hemiplegias, 6 to
12 sessions [59] Neurolab, University of Genova [60] ✗

Wristbot [61] 2014 3D motion 3 Wrist Stroke, dystonia In 2021, 23 wrist injuries, 5 h/wk for
3 wks [62]

REACH Prog. University of
Minnesota [63] ✗

Diego [64] 2014 Cable-driven motion 3 Shoulder + elbow Stroke, CP N/A TyroS software Tyromotion
GmbH [65] ✓

MOTORE [66] 2016 Mobile Planar motion 3 Shoulder + elbow + wrist Stroke, MD N/A Humanware, Scuola Superiore
Sant’Anna of Pisa [65] ✓

Abbreviations for the diseases mentioned: CP: cerebral palsy, MS: multiple sclerosis, TBI: traumatic brain injury, CT: carpal tunnel, MD: musculoskeletal disorder, h: Hours, wk: week,
N/A: not applicable.
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Table 2. Main features of the frequently addressed upper limb exoskeleton robots.

Exoskeletons Year DoF Targeted Joints Type of Disease Clinical Testing Commercial

RUPERT [25] 2005 5 Shoulder + humeral +
elbow + forearm + wrist Stroke ✓ ✗

MAHI EXO-II [26] 2006 5 Elbow + forearm + wrist Stroke, SCI ✓ ✗

MyoPro [27] 2006 4 Elbow + wrist + hand Stroke, BPI, BI, SCI ✓ ✓

CADEN [29] 2007 7 Shoulder + elbow + forearm
+ wrist Stroke, SCI ✓ ✗

ARMin II, III [30,31] 2007–2009 6 Shoulder + elbow + lower
arm + wrist Stroke, SCI ✓ ✗

SUEFUL [32] 2009 7 Shoulder + elbow + forearm
+ wrist - ✓ ✗

EXO-UL7 [33] 2011 7 Shoulder + elbow + forearm
+ wrist Stroke ✓ ✗

ARMEO Power [34] 2011 6 Shoulder + elbow + forearm
+ wrist Stroke, CP ✓ ✓

HAL-SJ [35] 2015 1 Single joint, e.g., elbow Joint-specific injury ✓ ✓

Abbreviations for the diseases mentioned: SCI: spinal cord injury, BPI: brachial plexus injury, BI: brain injury,
CP: cerebral palsy.

3.2.1. Clinical Requirements

Clinical requirements and guidelines are necessary for effective clinical practice to
improve the patient’s recovery process [67]. There are several organizations providing
clinical guidelines on stroke management and rehabilitation such as the National Institute
for Health and Care Excellence (NICE), the Intercollegiate Stroke Working Party (ISWP),
the European Stroke Organization (ESO), and others [67]. ESO strongly recommends
robotic rehabilitation as an adjunct therapy procedure to the conventional therapy.

On top of the clinical requirements stated is the desirable trajectory designed for
the patient to follow at each time instant for a successful rehabilitation therapy. Several
dynamic rehabilitation-based recovery trajectories are considered for diverse patients with
different individual configuration, health condition, and recovery stage [68–70]. These
trajectories are divided into task-specific training (TST) and repetitive task training (RTT).
RTT is contemplated to be important alongside traditional exercises. It can be used in
unilateral and bilateral upper-limb rehabilitation depending on the task and level of impair-
ment [67]. It should be intensive, task-specific, adaptive based on progress, goal-oriented,
and meaningful, such as the reaching and grasping tracks which are considered to be prime
activities of daily living (ADL). Regarding the TST, one of the most considered upper and
lower extremities’ rehabilitation-based trajectories is the Proprioceptive Neuromuscular Fa-
cilitation (PNF) pattern [71]. PNF is a therapeutic method designed to promote the response
of nerve impulses to recruit muscles through stimulation of the proprioceptors (e.g., muscle
spindle and Golgi tendon organs) [71]. The PNF pattern is one of the approaches used for
upper and lower extremities in both unilateral and bilateral rehabilitation patterns [72].
The PNF patterns are broken into first and second diagonal patterns (D1 and D2) [73]. Each
diagonal pattern is represented by a sequence of flexion–extension, abduction–adduction,
and internal–external rotation of the addressed joints for an effective rehabilitation process.
Thus, it is crucial to define the suitable rehabilitation trajectory to fulfill the addressed
patient’s requirements taking into account his/her current condition and recovery stage.

Moreover, the acceptance and engagement of both the therapists and patients. As clini-
cians may fear their replacement by new robotic technologies in clinics. However, the ability
to assess and plan the patient’s individual needs is still dependent on the therapist’s exper-
tise and judgment. Robot systems are technologies that are developed to assist therapists
in attaining optimal outcomes for the patients as stated in [16,74].
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Patients’ engagement is vital for their recovery process as not all patients can feel
safe and comfortable while being manipulated by a robotic system. Thus, robots offer
multi-modal feedback incorporating visual, auditory, and haptic interfaces which can be
utilized by interactive games using a Graphical User Interface (GUI) or Virtual Reality (VR)
to gain the patient’s acceptance. The aforementioned organizations do not mention VR in
the context of upper-limb therapy; however, they recommend the use of mirror therapy
and tele-rehabilitation for patients’ engagement.

Another clinical aspect considered is the therapeutic intensity for effective therapy.
NICE, ISWP, and ESO suggest a minimum of three hours on at least five days per week [67].
It is worth mentioning that there is no specific minimum or maximum therapy duration
or frequency to guarantee upper-limb rehabilitation [67]. Based on the authors’ point of
view, the ultimate clinical goal is to restore the patient’s ability to perform activities of
daily living (ADL). Robots must facilitate movements to assist humans in achieving these
tasks effectively. Thus, it is crucial to consider the control algorithm and structure used for
rehabilitation robots.

3.2.2. Functional Requirements

Furthermore, the functional requirements of the robotic systems are important to
address. The degrees of freedom (DoF) and range of motion (RoM) of the robots should
be contemplated to allow more natural full limb motion for a proximal or distal joint or
for the end-effector coordination of patients. Moreover, the system should be adjustable
and customizable to fit different patients’ configuration and physical status including size,
links lengths, and affected joints [74,75]. Robots should ideally be portable or easy to
transport, especially if home-based rehabilitation is intended [76]. In addition, robots have
to be robust and durable to withstand repetitive clinical tasks [75,76]. This includes having
reliable actuators, sensors, and easy-to-maintain components. The robot’s sensory feedback
is required to monitor the human joint angles, forces, muscle activity, and tracked trajectory,
providing real-time data for therapists to adjust the patient’s treatment plan [76].

Added to that, robot control system should be adaptable to the patient’s movements,
adjusting assistance levels, force application, and trajectory based on the patient’s perfor-
mance and feedback in a real-time manner [74,77]. This ensures that the patient is neither
over-assisted nor under-supported, promoting patient’s participation. The robot should be
capable of generating a suitable amount of force to move the patient’s limb. In addition, it
should take into account the back-drivability of the robot, by which the human should be
able to feel the weight of the robotic system [74].

Another crucial functional consideration is the safety of the full process. The robot
must prevent the application of excessive forces or incorrect movements that could lead
to injuries. This requires safe and stable robotic system control methods which should
be examined in multiple clinical trials on diverse subjects, taking into account various
conditions to guarantee patient safety before treatment. This encourages the system’s
adaptability to adjust the robot’s assistance based on the patient’s abilities and robustness
to handle various conditions.

3.2.3. General Requirements

Another important consideration regarding the use of robots in rehabilitation and
physical therapies is the cost of the treatment [16]. This includes the robotic system purchase
and maintenance cost which can be relatively expensive for any clinical facility. In addition
to the training cost for therapists and aides to be able to set up the robots, understand their
hardware and software modules, interact with the robotic systems, and obtain the required
data analyses of each patient, the cost of the treatment for the patient should be considered,
which can also be expensive based on the patient’s recovery status.

As this study focuses on end-effector upper-limb rehabilitation robots, Table 3 high-
lights the clinical and functional requirements for each end-effector robot mentioned
previously in this section [78,79].
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The table presents the most common requirements, such as the trajectory performed,
the intensity of the therapy, the control algorithm developed, the sensory feedback used,
the portability, and the possible interaction with the user through interactive games or
other virtual reality demonstrations.

Table 3. Clinical and functional requirements of upper-limb end-effector robots.

EE Robot Trajectory DoF Therapy Intensity Control Feedback Potability Interactive Games

MIT Manus [15] RTT planar
motion 2 3 h/wk for

12 wks [15]
Impedance

control [60,80,81]

Handle torque
and position, joint
position, velocity,

and torque

✗ ✓ InMotion

ARM-Guide [17] Reaching motion,
linear motion 1 3 h/wk for

8 wks [39] PD control [81] Forearm position
and torque ✗ N/A

NeReBot [21] Cable-driven
motion 2 ≈5 h/wk for

4 wks [42] PID control [42] Motor positions ✗ N/A

MIME [18] Bi-manual Motion 6 3 h/wk for
8 wks [43] PID control [81] Forearm pose and

torque ✗ N/A

Bi-Manu-
Track [19] Bi-manual motion 2 6 h/wk for

3 wks [45]
Position/force

control [82] Visual and force ✗ ✓

GENTLE-/s [20] 3D motion 3 3 h/wk for
9 wks [47]

Admittance
control [83]

End-point torque,
position, and

velocity
✗ ✓

HAPTIC
MASTER [49] 3D motion 3 4 h/wk for

8 wks [50]
Admittance
control [83]

End-point torque,
position, and

velocity
✗ ✓

REHA-ROB [51] 3D motion 3 ≈1 h for
20 days [51]

Indirect Force
control [84] End-point torques ✗ N/A

ACT3D [22]
Reaching motion,

planar motion 3 3 h/wk for
8 wks [53]

3D Force
control [85]

End-point torque,
position, and

velocity
✗ N/A

Amadeo [54] Hand mobility 5 3 h/wk for
10 wks [56]

Position
control [86]

End-point
position and force ✓ ✓

Braccio di
Ferro [58] Planar motion 2 6–12 sessions [59] Impedance

control [60,80,81]
Joint angles and
end-point force ✗ ✓

Wristbot [61] 3D motion 3 5 h/wk for
3 wks [62]

Impedance
control [87]

Handle force and
position and
motor torque

✓ ✓

Diego [64] Cable-driven
motion 3 3–5 h/wk N/A Forearm pose ✗ ✓

MOTORE [66] Mobile planar
motion 3 3–5 h/wk N/A N/A ✓ ✓

Abbreviations mentioned: h: Hours, wk: Week, N/A: not applicable.

As shown, most of the end-effector robots presented perform repetitive 3D or planar
movements to assist patients. The average therapeutic intensity is 3–5 h/wk for 8 wks.
Several control algorithms are used for robots to assist the patient in various modes.
The control modes and algorithms are studied in depth in the upcoming sections.The
feedback elements are crucial to investigate for end-effector upper-limb rehabilitation
robots due to their importance in the robotic system control architecture [88]. For most of
the aforementioned end-effector systems, the control feedback is based on position and
force of either the robot’s joints and end-effector or the human’s limb. The sensory feedback
elements used to obtain the angular position and velocity of the robot joints are usually
joint encoders or potentiometers. However, to obtain the robot’s end-effector’s position,
the kinematic configuration of the robot is considered based on mathematical derivations
or visual sensory feedback. Moreover, to obtain the human’s joint configuration and wrist
position, various approaches can be utilized, such as inertia measurement unit (IMU)
sensors attached to the human body for direct measurement or visual sensory feedback
depending on external depth cameras.
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Regarding forces and torques, the robot’s motor torques are measured by torque
sensors attached to each joint. Moreover, the applied forces from the human to the robot
can be measured using force/torque sensors attached to the robot’s handle. In addition,
human muscle strength and activity can be measured using Electromyography (EMG)
sensors which can help in computing the human applied forces [10,37,88]. Most of the
robots are not portable, as they are stationary robots used for clinical purposes and not
designed for home use. Several robots utilize interactive games and virtual reality systems
for patients’ engagement.

4. Robotic Rehabilitation Training Modes and Control Challenges

After highlighting the common clinical and functional requirements for end-effector
robot rehabilitation, it is worth mentioning the robotic rehabilitation training modes and
challenges, which are addressed through this section.

The upper-limb rehabilitation process is divided mainly into two training modes:
passive and active [7,11,37]. These training modes directly reveal the patient’s recovery
stage and are determined according to the control procedure. The passive training mode
is considered to be a common mode in early stages of post-stroke therapy. During this
mode, the patient has a significant difficulty in moving his/her affected limb [11]. Thus,
the rehabilitation robotic system is used to control the human’s limb motion rigidly along
the desirable reference trajectory by utilizing a position controller with relatively high
corrective gains. Moreover, the feedback controller gains have to be tuned carefully to
avoid harming the human while tracking the trajectory. Thus, minimal compliance should
be available to indicate muscle contractions, spasticity, and other synergies [37]. As a result,
the human–robot interaction model indicating the compliance level should be considered
mechanically or as part of the control algorithm.

Once the patient gains a minimal amount of muscle strength, the active training mode
takes place, allowing for shared control of the movements between the human and the
robot [37]. During the active training mode, the robotic control system can be used to
assist the patient’s motion to complete the training exercise. The patient in this phase starts
to provide a sort of force which can be either assistive to track the desirable trajectory,
or resistive to resist the robot’s motion. In case of assistive force, an active-assistive training
mode is activated, which encourages and promotes human engagement. In this regards,
several assist-as-needed control methods have been examined in the literature to assist
the patient’s motion [7]. When the patient enters the final recovery stages, another active
training mode is considered, the “active-resistive training mode”, where the human subject
can resist the motion of the robot by applying a resistive force in a direction opposing the
specified track indicating a considerable muscle strength. In this case, the robot can be stiff
towards the human limb’s motion and push the subjected limb to gain more strength [7].

The passive and active training modes take into account the human–robot interac-
tion model to be able to provide the adequate optimal force and position control signals
necessary to achieve a safe and effective interaction during the rehabilitation process [11].
One of the common human–robot interaction models is a mass–spring–damper system by
which the stiffness, damping, and mass parameters are changeable and optimized based on
the current training mode, considering the patient’s recovery stage, current position, and
applied forces [7,11,89,90]. To achieve the desirable control objectives of the aforementioned
training modes, there are several control challenges mentioned in the literature that should
be examined and discussed.

Control Challenges in Rehabilitation Robotics

The control methods used for upper-limb rehabilitation using end-effector robots have
numerous challenges to handle [11]. One of the major challenges is the system’s uncertain-
ties including the unmodeled dynamics, the parametric uncertainties, and the system’s non-
linearities that are not fully accounted in the robot’s model [12]. Moreover, focusing on hu-
man’s upper extremities, arm dynamics is complex, having multiple variables to consider.
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One of these variables is the time-varying limb parameters that are function in the
muscle strength, motor impairments, fatigue levels, and recovery progress. Thus, the pro-
cess of modeling or estimating the human arm’s parameters is challenging. Estimating or
measuring the human arm’s joints’ motion is a vital challenge especially for end-effector
robots, as end-effector robots can only provide movement measurements for the human
limb’s segment attached to the robot, e.g., the human wrist, and not for all arm segments
and joints [12]. As a result, additive sensors such as off-board depth cameras or on-board
Inertial Measurement Units (IMUs) or Electromyography (EMG) sensors attached to the
human body are used to estimate the joint angles, velocities, muscle activity, and forces
of the patient’s arm. These sensors are considered to have noisy signals and transmission
delays, which can result in inaccurate human states’ estimation or measurement. The
communication delays and loss of information transmitted through the control loop can
affect the system’s stability [11]. In addition, the potential stability loss may happen due
to the uncertain human–robot interaction, as patients may perform sudden involuntary
motion which can resist the robot’s movement. In this regard, the robot’s control system
must detect and compensate for these variations to ensure a smooth and effective therapy
without overshooting that can lead to instability. This can be performed by adding a motion
intention prediction block in the system’s control loop to predict the human arm’s motion,
by examining the interactive forces and joint parameters estimates to produce stable control
with smooth human–robot interaction.

In order to deal with the aforementioned uncertainties and dynamically change hu-
man muscle activity based on the recovery status and unpredictable movements, adaptive
control methods are considered. Most of the previous literature reviews considered the ex-
oskeleton robots’ control schemes, whether traditional, adaptive, learning-based, or others,
to manipulate the human upper extremity in an effective and efficient way [11,37,91]. Thus,
end-effector rehabilitation robots are considered in this review paper for their simplicity,
adaptability, and effectiveness in delivering complex position and force patterns based on
the patient’s recovery status [10,12]. In this regard, various control methods, adaptation
algorithms, interaction principles, and feedback elements for the upper-limb end-effector
rehabilitation robots are discussed in the upcoming sections.

5. Upper-Limb Rehabilitation Robotic End-Effector Control Methods

The main objective of rehabilitation robotic system control approaches is to provide the
optimal required position and force control to achieve safe and efficient passive and active
patient training modes [11]. The performance of the control methods applied to the upper-
limb rehabilitation process is evaluated based on several criteria. The main evaluation
criteria are the accuracy of tracking the defined therapy’s trajectory, the minimum force
applied on the human, and the human’s muscle activity, maximum overshoot, rise time,
and settling time of the system’s variables. Various control methods have been developed
to achieve the aforementioned objective.

5.1. Proportional–Integral–Derivative (PID) Control

One of the most popular model-based controllers usually used for position control
purposes is the Proportional–Integral–Derivative (PID) controller. PID control is a simple
linear model-free control method used mainly during the passive training mode, by which
the patient is completely passive and the robot has full control over the patient arm’s
motion. PID control is used then for trajectory tracking purposes without considering the
applied forces from and on the patient’s arm [92]. The PID block diagram is shown in
Figure 3, and its control law is given by:

u(t) = KPe(t) + KI

∫ t

0
e(τ)dτ + KD ė(t) (1)

where e(t) is the difference between the desirable and actual robot’s joint position, ė(t) is its
time derivative, and u(t) is the control input, which can be the robot’s computed torques.
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Proportional, integral, and derivative gains are defined as KP, KI , and KD, respectively.

Figure 3. PID control structure for upper-limb robotic rehabilitation.

Despite its simple structure and implementation, PID control has several drawbacks.
One of these drawbacks is tuning the gains, which is believed to be hard and time con-
suming, as customized gains for each patient are desirable based on his/her structure and
recovery stage. In addition, there are a possible error accumulation and high-frequency
oscillations that can result in system instability [92]. Thus, PID control is suggested to be
combined with other advanced control methods such as intelligent, robust, or adaptive
control. ARM-Guide and MIME robots are controlled using a PD and PID, respectively [81].

5.2. Impedance Control

As the affected arm gains more strength, the human starts to apply a certain force
on the robot which can be either assistive or resistive forces, activating the active training
mode. These interactive forces ought to be regulated by the control approach through
compliance or resistance. One of the main model-based controllers used to establish a
dynamic relationship between the system’s motion and the human–robot interactive forces
is impedance control [7,11,89,90]. This relationship is defined by a mass–spring–damper
system represented by:

τext(t) = Md ë(t) + Bd ė(t) + Kde(t) (2)

where τext(t) is the joint external torque vector, e(t) is the error between the actual measured
joint angle q and the desired qdes considered without applying an external torque, and ė(t)
and ë(t) are the first and second derivatives of the error, respectively. The parameters
Md, Bd and Kd are the desired mass–spring–damper gains, respectively.

The impedance control has as input the joint angles q indicating the system’s motion
state and as output the torques τ as shown in Figure 4a. Impedance control does not
only consider the possible errors during motion tracking but also considers the human
interaction forces. Thus, this control method is proven to have stable interaction. However,
it does not compensate system uncertainties such as unmodeled dynamics. In addition,
The utilization of a high impedance can lead to system instability. MIT-Manus and Braccio
di Ferro employ impedance control [60,80,81].

5.3. Admittance Control

The admittance controller is similar to the impedance controller. However, the input
of the admittance control structure is the system torques τ, while the output is the desired
joint angles qdes. The desired angles are then inputted into a joint controller to regulate the
position error and output the governed system torques [93], as shown in Figure 4b. The
accuracy and performance of the admittance control are critically dependent on the force
sensor’s accuracy [60]. It is suitable for stiff robots. Similarly to the impedance control, a
high admittance can lead to system instability [11].
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One of the commercial Tyromotion robots, Haptic Master, and GENTLE/s utilize an
admittance control algorithm [83].

(a) Impedance control block diagram

(b) Admittance control block diagram

Figure 4. General impedance and admittance control structures for upper-limb robotic rehabilitation.

5.4. Robust Control

One of the robust nonlinear model-based controllers used for upper-limb end-effector
robotic rehabilitation is Sliding Mode Control (SMC). SMC is used to handle external dis-
turbances and parametric uncertainties. It is designed to force the system states to converge
on a sliding surface in finite time. With the help of a Lyapunov-based stability analysis,
the SMC control output is designed to cancel the positive nonlinear terms and guarantee
a negative definite or semi-definite rate of change in the designed Lyapunov function to
ensure system stability [92,94]. The SMC structure is presented in Figure 5. The drawback
of the SMC is the chattering effect, which can result in an undesirable switching behavior
in the control action, which can damage the system mechanically. However, this issue can
be solved by adding mathematical smoothing functions [11].

Figure 5. Sliding Mode Control (SMC) structure.

5.5. Adaptive Control

One of the major drawbacks of the aforementioned control methods is a lack of time-
varying adjustable control parameters, that should depend on the patient’s involuntary
movements, recovery stage, and cognitive level [11].
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Thus, adaptive control is worthwhile implementing, as it adjusts the unknown system
parameters in an online manner based on the ongoing operation’s conditions. Figure 6 shows
the general block diagram representation of an adaptive controller. There exist various
adaptive control methods applied to the upper-limb rehabilitation process utilizing an end-
effector manipulator. These methods can be categorized as adaptive impedance/admittance
control, fuzzy-based adaptive control, machine learning-based adaptive control, adaptive
Sliding Mode Control, Model Reference Adaptive Control (MRAC), adaptive backstepping
control, and others. Each of these has its own features, advantages, and drawbacks which
are discussed through the upcoming sub-sections.

Figure 6. Abstracted block diagram of adaptive controllers for upper-limb manipulation.

5.5.1. Adaptive Impedance/Admittance Control

Adaptive impedance/admittance controllers are considered to be the most commonly
used controllers for the end-effector upper-limb rehabilitation process. This is due to
their ability to adjust the robot’s performance based on the patient’s interaction forces,
accommodating varying strength and engagement levels during rehabilitation exercises.

Wang et al. [95] proposed a hybrid impedance control (HIC) for a three-DoF upper
limb robotic manipulator to perform planar rehabilitation motion, needed for the whole-
joint coordination of the shoulder, elbow, and wrist. The controller was designed to switch
between position and force control based on a selection matrix to track the desired position
trajectory and follow the trajectory forces simultaneously. The proposed HIC performance
was compared to an impedance controller through multiple simulation tests. It was ob-
served that the HIC outperformed the impedance controller in terms of effective tracking
of both position and force trajectories, taking into account the joints’ limits. One of the
shortcomings of the study was the absence of stability analysis, which is crucial in rehabili-
tation problems, as well as the possible inability to handle parametric uncertainties and
external disturbances, which can affect the stability and performance of the system. Finally,
the tests were performed in simulations only with no experimental clinical applications.

Moreover, Papaleo et al. [96] proposed a patient-tailored adaptive impedance controller
utilizing a seven-DoF robotic arm for patients to perform planar and 3D point-to-point
movements. The Cartesian stiffness matrix and the task duration were adapted based on
the patient’s bio-mechanical data and performance during the rehabilitation process. Lower
stiffness values and shorter task completion time were associated with better performance
in the presence of patient’s active-assistive forces. While higher stiffness values and longer
task duration were used to assist a struggling patient who was incapable of performing
the task smoothly. The study observed that the system was capable of correctly evaluating
the subject’s behavior online. In addition, the system had the ability to adapt the control
behavior depending on the human’s bio-mechanical features, driving the human towards
the target with a tuned assistance level depending on his/her motor abilities.

Zhang et al. [97] presented an adaptive impedance controller designed to regulate the
interaction force between the robot and the patient, by adjusting the robot’s mechanical
impedance in response to the patient’s exerted forces. It was performed by allowing auto-
matic smooth transitions between three modes based on the patient’s capabilities and re-
quirements. These modes were human-dominant, robot-dominant, and safety stop modes.
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That method demonstrated effective trajectory tracking with minimized steady-state
errors. In addition, the safety stop mode was designed to prevent potential injuries when
conflicting HRIs were detected, ensuring safety and effectiveness.

Luo et al. [98] proposed an adaptive impedance control used to estimate the stiffness
and damping using a least-squares method, taking into account the end-effector’s position
and velocity and the patient’s forces. The simulation results indicated that the patient’s stiff-
ness varied from 50 N/m to 100 N/m, for which the impedance parameters were adjusted
accordingly, highlighting the controller ability to adapt based on the patient’s conditions.
The study showed that the more assistance provided by the robot, the less tracking error.
However, excessive assistance might lead to negative patient efforts, as the patient might
overly rely on the robot rather than engaging actively in the rehabilitation process.

A novel adaptive impedance control was proposed by Li et al. [99] to adaptively
manage robot dynamics while ensuring stability in presence of parametric uncertainties.
To stabilize the system, a backstepping method was applied to design a stable input for
the adaptive impedance controller. The controller was able to switch between two modes
in a smooth manner, which were the desired-impedance mode and the safety-stop mode.
The stability of the system was guaranteed and proven using a Lyapunov-based stability
method. The performance was also validated experimentally.

In 2020, Zhang et al. [100] proposed an impedance-based assist-as-needed (AAN)
control by constructing a virtual channel around the predefined rehabilitation training
trajectory, enabling the patient’s arm to have spatial freedom. Thus, the patient’s arm
could move freely within the allowed virtual channel, while the robot provided assistance
when deviating from the channel. In addition, a large deviation from the desired path was
avoided by constructing a virtual stiffness gradient field around the channel. The controller
was experimentally validated on a seven-DoF Kuka robot performing straight-line and
circular training trajectories. Results showed effective AAN control and improved patient’s
performance. However, it was suggested to examine the controller in more complex
trajectories on elderly volunteers and patients with upper-limb motor dysfunctions to help
in providing more valid realistic results. Moreover, in 2023, Zhang et al. [101] proposed a
self-switching adaptive impedance control based on the tracking error, dividing the virtual
channel control stages into three modes. These modes were a Zero Interaction Force (ZIF)
mode, where the robot was used to offer a fixed assistance in case of slacking human; an
assist-as-needed (AAN) mode, where the robot would offer a variable level of assistance
force by adjusting the controller stiffness coefficient; finally, a Restriction Interaction Region
(RIR) mode, where the training task was considered to be hard for the subject, showing
the difficulty to decrease the tracking error. It was observed that the performance-based
assistance controller performed satisfactorily. However, no consideration for the interaction
forces exerted by the human on the robot was examined. The control was only based on
tracking-error convergence. Furthermore, the stability and safety of the switching mode
system were not guaranteed.

Guatibonza et al. [102] proposed a control approach combining hybrid impedance
control (HIC) and nonlinear adaptive control into a single structure for a seven-DoF upper-
limb rehabilitation system. The controller was utilized to switch between position-based
and force-based control schemes depending on a switching matrix. It was stated that the
stability of the system could not be guaranteed during the transition between the control
schemes using only HIC, thus its combination with a nonlinear controller was crucial to
ensure stability. The nonlinear controller used was the backstepping control, which ensured
stability and adaptability in the presence of system uncertainties and dynamic changes as
mentioned previously [99]. Results showed effective control with a minimum error of 2%
in trajectory tracking. Stability was proven using Lyapunov-based stability method. Stable
response was achieved, as the response was stabilized within 0.9 s in absence of overshoots.
The shortcomings were the absence of real-world experimentation and the integration of
therapist which requires excessive healthcare training.
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Another study that includes adaptive HIC was introduced by Sidek et al. [103], as the
adaptive control framework was initiated to allow switching between position and force
controllers utilizing a novel hybrid automata. The hybrid automata was composed of
7 states, the transition process between states was established based on the level of im-
pairment classified by modified ashworth scale (MAS) for muscle assessment criteria. The
automata was used to obtain the force control selection value depending on a recursive
polynomial model estimator used to estimate the mechanical impedance parameters of the
patient’s limb. The controller was decomposed of inner loop handled by nonlinear feedback
linearization and inverse dynamics control and an outer HIC loop. Results indicated safe
HRI and effective task tracking. However, the stability of the system was not analyzed to
ensure stability within the transitions.

In addition, Arantes et al. [104] investigated a novel adaptive impedance control which
integrated real-time physiological measures; especially from EMG sensors to provide a
customized robotic rehabilitation process. In this method, the participant’s EMG signals
were evaluated continuously during the rehabilitation task, to determine when should the
robot provide assistance or resistance. Results indicated enhancements in performance
metrics as in the average distance error and root-mean-square error (RMSE) between the
robot handle and the target. From the results, an EMG sensor was considered to be the
central feature of the controller to decide its future and also a way to quantify neural drive.

Jeyabalan et al. [105] developed an impedance-based controller that facilitated two modes
of operation for robotic rehabilitation: Unassisted Mode (UAM) and Adaptive Weight
Support Mode (WSM). UAM allowed subjects to perform voluntary active movements with
no physical robotic assistance and minimal interaction forces from the robot’s mechanical
structure. While in WSM, the robot and user worked cooperatively to complete the task.
While the user voluntarily moved his/her arm, the robot provided the amount of weight
support needed to compensate for the weakness in the arm. This support was either fixed
or adaptive based on the user’s training type. This novel approach was demonstrated on an
Arm Rehabilitation Robot (AREBO) designed as self-aligning end-effector robot capable of
providing single-joint or multi-joint assistance. In case of adaptation, the algorithm utilized
forgetting and learning factors to dynamically modify the level of assistance. Results
indicated significance reduction in interaction forces and success rate of around 70% of
the movements performed by the addressed subjects with increased range of motion.
The controller was found to be stable during implementation. However, the stability was
not proven mathematically due to the system’s complexity. Only single-joint movement
was considered, neglecting multi-joints movements that should be addressed.

Apart from impedance control, Lai et al. [106] implemented an adaptive admittance
controller to personalize the control gains, in order to enhance the user comfort and improve
the overall rehabilitation experience. Thus, the study adopted the damped least-squares
method to calculate the robot’s joint velocities and adjust the control parameters dynam-
ically, depending on the patient–robot interaction and the subject’s comfort. The study
indicated that adapting the control parameters highly affected the patient’s comfort and
could improve the user experience dynamically.

A study that incorporated adaptive admittance control was introduced by Mashayekhi
et al. [107], where a self-adapting admittance control was presented depending on the
muscle fatigue level estimated by EMG signals. The detection and estimation processes of
the fatigue level were performed utilizing Neural Network (NN) approaches. When fatigue
was detected, the admittance control damping parameter was reduced, decreasing the
motion difficulty for the patient by constructing a simple linear equation. The Self-Adapting
Admittance Control (SAAC) was compared to a Non-Adapting Adaptive Control (NAAC).
Results showed the effective fatigue detection and the improved movement performance
of SAAC compared to NAAC. EMG sensor noise was a major drawback in the study which
could affect the detection and system performance. In addition, specific training patterns
were considered by limiting the exploration of fatigue patterns.
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Cai et al. [108] developed a real-time robotic-assisted approach to reduce trunk com-
pensation. This approach was based on an admittance control scheme implemented on a
six-DoF Universal Robots robot to assist the three-DoF human shoulder, plus a customized
two-DoF exoskeleton to control the human elbow and wrist joints. The human interaction
forces were measured to estimate the user’s intentions, which were then used to provide
appropriate assistance composed of virtual shoulder and hand assistive forces to correct
compensatory movements. The controller was tested in different modes: Reference-Free
(RF) motion, Compensation with No robot Assistance (CNA), and Compensation with
Robot Assistance (CRA). It was observed that the proposed strategy managed to reduce the
compensation angle by adjusting the robot’s assistance. Robustness was also guaranteed
in different rehabilitation tasks, stating lower deviations between the desired and actual
positions in CRA compared to CNA.

5.5.2. Fuzzy-Based Adaptive Control

Other than the previously mentioned adaptive impedance/admittance controllers,
fuzzy-based adaptive control methods have been utilized in various studies. These control
methods adjust their parameters based on fuzzy-logic principles and are considered model-
free intelligent systems.

In 2010, Xu et al. [109] proposed an adaptive impedance control based on a Dynamic
Recurrent Fuzzy Neural Network (DRFNN). The algorithm adjusted the control parame-
ters dynamically based on changing patient conditions. The controller was compared to
traditional impedance control and Fuzzy Neural Networks (FNNs). It was shown through
simulations that the DRFNN outperformed the other controllers in terms of performance,
with reduced tracking errors and overshoot, stability, and smoothness. By integrating the
dynamic feedback neurons into the control, the DRFNN could handle the nonlinearities and
the dynamics’ uncertainty. Despite the improvement in performance, the DRFNN was still
affected by small overshoot and tracking errors. Moreover, in 2011, Xu et al. [110] improved
the previously investigated method to incorporate an Evolutionary Dynamic Recurrent
Fuzzy Neural Network (EDRFNN) algorithm which included a Genetic Algorithm (GA),
Hybrid Evolutionary Programming (HEP), and Dynamic Back-Propagation (BP) learning.
The GA and HEP were used offline to optimize the parameters of the DRFNN followed by
online estimation using dynamic BP. Force and position tracking in constrained directions
were compared for the EDRFNN, DRFNN, FNN, and traditional impedance control. The
EDRFNN adaptive impedance control whose desired impedance parameters were tuned
based on the combination of the DRFNN, GA, HEP, and dynamic BP algorithm had the
best robust and dynamic performance in sharp changes exhibited by impaired limbs. In the
same year, Xu et al. [111] proposed a fuzzy-based PD position control for passive training
integrated with an impedance force controller. It was applied on a four-DoF robot for shoul-
der, elbow, and wrist joints’ motion to achieve horizontal and vertical flexion/extension
exercises. It was shown that the fuzzy-based PD controller outperformed the standard PD
control in terms of joint position accuracy and trajectory tracking performance. The main
drawback of any of these approaches is that they depend heavily on the fuzzy parameters
which should be set by field experts.

A novel adaptive impedance control incorporating a backstepping method for robust-
ness and fuzzy logic for parameter adaptation was proposed by Bai et al. [112]. The control
parameters were adjusted using fuzzy rules in real time, based on the patient’s interaction
forces applied to the robot. Due to the presence of the backstepping control, the system
responded effectively to uncertainties and variations in patients’ conditions.

Wang et al. [113] presented a novel subject-adaptive AAN control which used the Re-
cursive Least Squares (RLS) algorithm to identify the human arm’s impedance parameters
and obtain an optimal reference trajectory to align with the patient’s motion intentions with
minimum jerk. A fuzzy-logic controller was developed to tune the robot assistance level
based on the patient’s limb impedance and trajectory errors. The controller was designed to
compensate for the unknown disturbances and maximize the active patient’s participation.



Robotics 2024, 13, 181 17 of 28

A performance-based hybrid controller was developed by Li et al. [114] for person-
alized training utilizing a three-DoF cable-driven robot for shoulder, elbow, and wrist
movements performing a planar circular trajectory. The algorithm examined three modes,
resistance, assistance, and restriction modes, which were adjusted based on the tracking
error that reflected the motor strength of the patient. Fuzzy logic was adopted to adapt
the stiffness coefficient and damping forces of the controller based on the tracking error.
The controller was tested on 10 healthy subjects to perform a circular trajectory on a hori-
zontal plane. Results indicated that in resistance mode, the damping force provided was
used to avoid slacking, while in the assistance mode, the stiffness was adjusted to assist
the human, and in the restriction mode, a damping force was applied to limit the human’s
motion and ensure stability. These results indicated that the robot could effectively respond
to the needs of the patient.

Hu et al. [115] used a fuzzy adaptive passive control strategy by which an Artificial
Potential Field (APF) was used to generate the robot’s assistive force. The fuzzy logic
outputted the adapted stiffness coefficient of the potential field as higher potential indi-
cated greater assistance. In addition, the stability of the system was proven using the
Lyapunov-based stability method. The algorithm was tested experimentally on eight
healthy volunteers performing a circular XY plane path utilizing a three-DoF bilateral
robotic arm, one for the healthy arm and the other to assist the affected limb. The stability
of the system was compared to that of the conventional impedance controller. It was proven
that if the robot stopped suddenly, a huge force would be exerted by the conventional
impedance controller, while the Fuzzy Artificial Potential (FAP) controlled the force gener-
ated, as it was dependent on the system’s current position, avoiding any possible harm.

The aforementioned fuzzy-based adaptive methods have various advantages related
to system performance, robustness, uncertainty compensation, and stability. However,
the main drawback of using fuzzy-based adaptation is the complete dependence on the
fuzzy parameters such as membership function, fuzzy rules, and defuzzification method
which should be handled by experts in the field or tuned for reliable performance.

5.5.3. Machine Learning-Based Adaptive Control

One of the most recent data-driven methods is the integration of machine learning
approaches that can be used when building a control system. Several machine learning
approaches have been used to adapt the control parameters for upper-limb rehabilitation
utilizing end-effector robots.

One of these approaches was proposed by Wu et al. [116] combining adaptive ad-
mittance control with a Neural Network (NN)-based Disturbance Observer (AACNDO)
to compensate for external uncertainties and dynamic errors. The disturbance observer
designed was based on a Radial Basis Function (RBF). A position-error-based adaptation
law was used to adjust the controller interaction compliance based on the patient’s motion
intention and recovery stage, facilitating both passive and cooperative training. Three
experiments were used to evaluate the effectiveness of the AACNDO strategy including
a sinusoidal track, circular track with admittance adjustment, and intention-based resis-
tive training. Results showed that AACNDO guaranteed the position control accuracy of
passive training. In addition, the feasibility of AACNDO in adjusting the compliance and
interaction forces was ensured for better performance of cooperative training. Moreover,
the controller’s stability was proven by employing the Lyapunov-based stability method.

Another method was introduced by Ting et al. combining iterative learning motion
control and adaptive iterative learning impedance control for an anthropomorphic arm’s
rehabilitation [117]. The iterative learning control was examined to ensure the robot’s
accurate trajectory tracking, while the adaptive iterative learning-based impedance control
was used to adjust the control forces between the human and the robot, allowing compli-
ance with variable dynamics. Results indicated effective tracking performance, improved
compliance, robustness to disturbances, and stability of the system.
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Miao et al. [118] combined the benefits of fuzzy logic and machine learning to adapt
an admittance-based controller for upper-limb rehabilitation. The adaptation method
used involved a piecewise learning rate-based iterative law to adapt the control gains for
subject-specific training. The adaptation law took into account the Fugl-Meyer Assessment
(FMA) regression model that was used to indicate the subject’s motor performance. The
fuzzy-logic method was used to refine the control parameters based on real-life dynamic
feedback from the subject. Results indicated that the fuzzy-logic model was more robust in
maintaining the stable performance of the system. In addition, the method was considered
to be adaptive to possible perturbations and improved the evaluation reliability.

Shoaib et al. [119] examined various adaptive control approaches on various cable-
driven robotic systems. One of these controllers was an iterative learning controller applied
to a four-DoF cable-driven end-effector robot for upper-limb manipulation. The controller
compensated model uncertainties and handled external disturbances which improved
the system performance. Three different modes were examined, the patient-in-charge,
robot-in-charge, and hybrid support modes. Results demonstrated improved performance
over iterations, adaptability to patient’s needs, and reduced the control effort. However, it
was noted that the performance of the system could be sensitive to the assigned learning
rate and initial conditions. In addition, the time complexity of the controller, especially
considering online adaptation, was huge.

Ai et al. [14] provided a focused review on machine learning-based methods in in-
tention recognition and human–robot interactive control. Focusing on the control part,
two different categories were inspected: NN-based adaptive interaction control, including
the adaptive impedance/admittance, RBF-NN, robust iterative learning, and others, in ad-
dition to reinforcement learning (RL)-based interactive control, including the actor–critic
controllers, impedance/admittance with model-based RL, and others. The NN-based adap-
tive control was observed to suffer from inevitable reconstruction errors limiting the control
trajectory to a bounded stability. In addition, its performance relied heavily on sufficient
training data. It could be time consuming to implement in real time in the presence of
dynamically changing patient’s interactions. Moreover, the RL-based interactive control
might suffer from sub-optimal performance resulting from exploration or exploitation. It
might struggle with convergence as it depends on the reward function. It also had a high
computational cost.

5.5.4. Adaptive Sliding Mode Control

When considering adaptive robust controllers examined for upper-limb rehabili-
tation, Sliding Mode Control (SMC) would be one of the highly regarded controllers.
Hashemi et al. [120] designed an SMC approach for end-effector rehabilitation robot in-
corporating a GA for automatic weight adjustment. SMC was applied to a two-DOF,
four-linkage, fully actuated planar parallelogram manipulator for a planar motion focusing
on the shoulder and elbow joints. SMC was used to manage the system nonlinearities and
disturbances effectively. The GA was used to adapt the SMC parameters by minimizing
the cost function including the end-effector position error, robot input and rate, and the
human’s torque. The adaptation was performed offline. Results showed that the tracking
error had an RMSE of 10.2 mm and 10.3 mm/s for the velocity. The stability and feasibility
indicating the control effort (torque) bounds were guaranteed. In that study, human model
dynamics were oversimplified; in order to apply the controller on experimental bases, a
more realistic model should be taken into account.

Wu et al. [121] developed an adaptive neural cooperative control based on human mo-
tion intention recognition. The human intentions were estimated based on the interaction
forces and the human muscle forces estimated from sEMG sensors with a Kalman filter,
which acted as inputs to a Gaussian Radial Basis Function Network (RBFN) to obtain the
appropriate incremental motion of the upper limb. Additionally, robust adaptive SMC was
integrated into the cooperative control scheme to ensure the accuracy and stability of the
inner-position control loop with uncertainties.



Robotics 2024, 13, 181 19 of 28

It was applied to follow a triangular referenced trajectory through a point-to-point
motion task for a two-DoF robot. The controller results were found to be accurate in terms
of trajectory tracking with an average RMSE of 7.23 mm and a Mean Tracking Error (MTE)
of 20.84 mm in high-interaction compliance conditions, and an RMSE of 3.24 mm and an
MTE of 7.78 mm in low-interaction compliance conditions. The controller was guaranteed
to be stable and robust towards external disturbances and uncertainties.

5.5.5. Adaptive Backstepping Control

Another controller classified as robust is the backstepping control approach. Adaptive
backstepping control was utilized for upper-limb rehabilitation by Abbas et al. [122,123].
Two adaptation methods for the adaptive backstepping controller were defined in [122] to
estimate the unknown dynamics and to maintain the system’s stability. It was applied on a
five-DoF Scorbot-ER Plus to perform a rectangular trajectory. It was observed to surpass
the adaptive computed torque and PID controllers in terms of performance and bandwidth
usage. In [123], an admittance controller was added in the outer control loop to maintain
the compliant interaction, while an event-triggered adaptive backstepping controller was
placed in the outer control loop to handle the uncertainties. Results indicated a faster
response and lower tracking error compared to PID and adaptive SMC with smooth joint
torques compared to adaptive SMC, which had a chattering effect in the control effort.

5.5.6. Model Reference Adaptive Control (MRAC)

A Model Reference Adaptive Impedance Control (MRAIC) was proposed by Shar-
ifi et al. [124,125]. The adaptation law was used to adjust the control parameters online to
compensate for model uncertainties. It ensured that the control loop dynamics of the robot
mimicked the designed reference model for effective tracking. Thus, it was considered
as a model-based control method. The controller was firstly tested in simulations on a
MIT-MANUS rehabilitation robot model [124]; afterwards, it was tested experimentally on
a five-DoF robot equipped with a six-axis force/torque sensor performing the yaw motion
of a tool rod and linear insertion motion [125]. This approach was considered to be highly
sensitive to reference model inaccuracies and external disturbances.

Recently, another implementation of MRAIC was proposed by Omrani et al. [126]
through a time delay estimation-based MRAIC used to estimate the unknown dynamics
and uncertainties and ensure the system stability of a three-DoF robot when performing
a circular trajectory. The controller was compared to a Time-Delay Control (TDC) and
the proposed controller outperformed the TDC in terms of precise and accurate tracking,
robustness, and ability to prevent the effects of unknown dynamics and uncertainties in
the presence of varying external forces.

5.5.7. Discussion

After presenting various end-effector controllers for human upper-limb manipulation
in a rehabilitation process, it is worth mentioning the advantages and drawbacks addressed
in previous studies for each control approach, which are highlighted in this section.

PID controllers have been widely implemented and commercialized in several prod-
ucts [88]. The main advantage of the PID controller is its design simplicity. Acceptable
performance can be achieved when operating in normal conditions and moderate system
frequencies with minimal external disturbances. Thus, the literature presented earlier
shows that a number of successful rehabilitation robotic systems have adopted PID con-
trollers to perform simple rehabilitation motion with minimal user intervention. However,
a standalone PID controller is not enough to produce advanced rehabilitation performance
with dynamically changing conditions, as sudden changes and high-frequency dynamics
can cause delays or system instability. PID control lacks the ability to detect and handle
abnormalities. It is also considered to handle predefined trajectories, which is not desirable
in dynamic rehabilitation. As a result, adaption methods are required to find the best
tuning parameters of the PID control [88].
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Moreover, impedance and admittance controllers are the most common controllers
developed and examined for upper-limb rehabilitation end-effector robots. Conventional
impedance and admittance controllers allow the robotic manipulator to track changing
target positions or forces within a certain range of trajectory tracking errors [115]. However,
external disturbances, such as sudden spasticity of the patient’s arm, can result in an abrupt
halt of the robotic system during the rehabilitation training process. This occurrence may
cause the impedance controller to generate excessive force that could lead to the instability
of the system and result in secondary injury [127].

As the rehabilitation robotic systems are directly connected to the human body, a small
perturbation or wrong movement can cause critical injuries and affect the patient adversely.
Therefore, to ensure better performance and to achieve advanced abilities to reject dis-
turbances, other classes of controllers are adopted in rehabilitative robots, such as robust
and adaptive controllers [88]. The robust control theory focuses on dealing explicitly with
system’s uncertainties and disturbances that are within a predefined boundary [88]. It can
operate at high frequencies. It is desirable for handling dynamically changing rehabilitation
trajectories in a smooth manner. As presented, robust controllers are capable of achieving
stable performance in the presence of bounded errors proven by Lyapunov-based stability
analysis methods. The robust controllers examined in the review are the SMC and the back-
stepping controller. In the literature, several robust controllers have been compared directly
with conventional PID control methods for upper-limb rehabilitation scenarios. Robust
controllers are said to be able to control a robotic system with an advanced robustness level
and higher abilities to resist uncertainties, parameter changes, and disturbances applying
to the system, such as a patient’s hand tremor [88,127].

On the other hand, there are several drawbacks in the addressed robust control
methods. For SMC, a possible chattering effect in its control effort is its main drawback that
can decrease its chance to be used in experimental and clinical applications. The chattering
control effort may result in instability and system damage. The backstepping controller
may suffer from a slow response compared to others, which can affect the rehabilitation
process negatively, especially in active training methods.

Fixed parameter control approaches are considered to be simple, yet these controllers
lack adaptability, which is one of the prime aspects needed to be considered in upper-limb
end-effector rehabilitation robotic systems. One of the model-based adaptive controllers
that depends heavily on model equations is the impedance/admittance control. It is consid-
ered to have the ability to adjust the human–robot interaction forces by taking into account
the patient’s recovery mode and engagement level. Compared to PID control, which is the
benchmark of all control methods, an adaptive controller shares with PID control its simple
structure, However, it can reject the disturbances and uncertainties affecting the system. It
can operate at high frequencies. However, apart from the impedance/admittance adaptive
control advantages, the method of adaptation utilized can affect the system’s complexity,
as it may be undesirable for large dimensional systems [88].

Another model-based adaptive controller is MRAC, which is suitable for dynamically
adapting to system changes in real time based on model discrepancies. Its main drawback
is its dependency on the reference model; thus, there should exist a model which accurately
defines the human–robot interaction behavior [124,125].

Apart from the model-based controllers, there exist other control methods which can
be classified as data-driven systems and can be utilized for control system adaptation.
One of these methods is the fuzzy-logic method. Fuzzy logic can be utilized to serve as an
adaptive control method, such as fuzzy-based adaptation controllers, which are considered
to be intelligent approaches that do not depend on the system’s model, thus not subjected
to model inaccuracies and uncertainties. Thus, it is desirable for handling dynamically
changing rehabilitation trajectories in a smooth manner. However, the response of the
system depends heavily on the choice of the fuzzy membership functions and rules, which
should be continuously tuned based on the patient’s interaction and condition [88,115].
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Another data-driven adaptation method is the machine learning-based control method,
that can be defined as a customizable, flexible method by which the network used can be
trained to handle specific patient needs. Machine learning-based adaptive controllers can
handle nonlinearities and uncertainties present in a human model and predict the human
and robot’s models. Thus, it is desirable in predicting dynamically changing rehabilitation
trajectories, human configuration, and engagement levels. However, they are considered
to be time consuming and hard to implement in real time, as a result of their dependence
on the data used for training. These methods require a large volume of training data to
perform satisfactorily. In addition, they can suffer from overfitting problems [88].

Table 4 highlights the mentioned difference between the examined control methods.

Table 4. Control methods’ classification, advantages, and disadvantages.

Controller Class Advantages Disadvantages

PID [81,92] Model-based - Simple
- Needs parameters tuning
- Suffers from noise amplification
- Nonoptimal and can be unstable

Impedance admittance
[7,11,89,90,93]
[60,80,81,83]

Model-based - Tracks target position/force
- Considers human interactive forces

- Sensitive to sudden changes
- Unstable at high impedance

SMC [11,92,94] Model-based
- Robust to uncertainties,
nonlinearities, and disturbances
- Stable

- Chattering effect

Adaptive impedance/admittance
[95–99,99–108] Model-based

- Adaptive performance
- Tracks target position/force
- Considers human interactive forces

- Not practical for large
dimension systems

Fuzzy-based adaptive control
[109–115] Model-free

- Adaptive performance
- Model independent
- Robust to uncertainties
and nonlinearities

- Highly dependent on the choice of
fuzzy sets and rules
- Adaptation for sets and rules
is desirable

Machine learning-based adaptive
control [14,116–119] Data-driven

- Adaptive performance
- Model independent
- Handles uncertainties
and nonlinearities
- Predicts models

- Needs to be trained
- Needs a large dataset
- High computations
- Overfitting problem

Robust adaptive control [120–123] Model-based
- Robust to uncertainties,
nonlinearities, and disturbances
- Stable

- Chattering effect (SMC)
- Slow response (backstepping)

MRAC [124–126] Model-based
- Adaptive performance
- Tracks the reference model
- Considers human interactive forces

- Depends on reference model

6. Conclusions

This article presented an overview of upper-limb robotic end-effector and exoskeletons’
structure mentioning their features, advantages, and limitations. The study focused on the
upper-limb robotic end-effector structures due to their simple configuration and ability to
handle the rehabilitation motion of diverse patients with different postural configurations
and health conditions. The clinical and functional requirements for these upper-limb end-
effectors were discussed. The control modes and methods for end-effector upper-limb
rehabilitation were presented in a comprehensive review concerning several conventional,
robust, and adaptive controllers. There exist several adaptive techniques that can be used
to handle the upper-limb rehabilitation problem, each of which has its own advantages and
drawbacks to consider. It is hard to mention a suitable adaption method that can be used
for all possible conditions.
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Thus, it is desirable to investigate and implement various adaptive control methods
and hybridize these methods to obtain suitable results applicable to different subjects with
diverse conditions for possible future clinical applications.
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AACNDO Adaptive Admittance Control Neural Network-based Disturbance Observer
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ACT Arm Coordination Training
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APF Artificial Potential Field
AREBO Arm Rehabilitation Robot
ARM Assisted Rehabilitation and Measurement
BP Back-Propagation
CADEN Cable-Actuated Dexterous Exoskeleton for Neuro-rehabilitation
CNA Compensation with No robot Assistance
CRA Compensation with Robot Assistance
D Dimensional
DoF Degree of Freedom
DRFNN Dynamic Recurrent Fuzzy Neural Network
EDRFNN Evolutionary Dynamic Recurrent Fuzzy Neural Network
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FAP Fuzzy Adaptive Potential
FMA Fugl-Meyer Assessment
FNN Fuzzy Neural Network
GA Genetic Algorithm
GUI Graphical User Interface
HEP Hybrid Evolutionary Programming
IHME Institute of Health Metrics and Evaluation
MAS Modified Ashworth Scale
MIME Mirror-Image Movement Enabler
MRAC Model Reference Adaptive Control
MRAIC Model Reference Adaptive Impedance Control
MSD Musculoskeletal disorders
MTE Mean Tracking Error
NAAC Non-Adapting Admittance Control
NN Neural Network
PD Proportional–Derivative
PID Proportional–Integral–Derivative
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RBF Radial Basis Function
RBFN Radial Basis Function Network
RF Reference Free
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RL Reinforcement learning
RLS Recursive Least Squares
RMSE Root-mean-square error
RUPERT Robotic Upper Extremity Repetitive Trainer
SAAC Self-Adapting Admittance Control
sEMG Surface Electromyography
SMC Sliding Mode Control
TDC Time-Delay Control
UAM Unassisted Mode
WHO World Health Organization
WSM Weight Support Mode
ZIF Zero Interaction Force

References
1. World Health Organization. Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030; World

Health Organization: Geneva, Switzerland, 2022.
2. Sebbag, E.; Felten, R.; Sagez, F.; Sibilia, J.; Devilliers, H.; Arnaud, L. The world-wide burden of musculoskeletal diseases: A

systematic analysis of the World Health Organization Burden of Diseases Database. Ann. Rheum. Dis. 2019, 78, 844–848.
[CrossRef]

3. Belluzzi, E.; Pozzuoli, A.; Ruggieri, P. Musculoskeletal Diseases: From Molecular Basis to Therapy. Biomedicines 2023, 12, 32.
[CrossRef]

4. World Health Organization. Neurological Disorders: Public Health Challenges; World Health Organization: Geneva, Switzer-
land, 2006.

5. Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke
Organization (WSO): Global stroke fact sheet 2022. Int. J. Stroke 2022, 17, 18–29. [CrossRef] [PubMed]

6. Gimigliano, F.; Negrini, S. The World Health Organization “rehabilitation 2030: A call for action”. Eur. J. Phys. Rehabil. Med. 2017,
53, 155–168. [CrossRef] [PubMed]

7. Zhang, L.; Guo, S.; Sun, Q. An assist-as-needed controller for passive, assistant, active, and resistive robot-aided rehabilitation
training of the upper extremity. Appl. Sci. 2020, 11, 340. [CrossRef]

8. Sheng, B.; Zhang, Y.; Meng, W.; Deng, C.; Xie, S. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future
prospects. Med. Eng. Phys. 2016, 38, 587–606. [CrossRef]

9. Molteni, F.; Gasperini, G.; Cannaviello, G.; Guanziroli, E. Exoskeleton and end-effector robots for upper and lower limbs
rehabilitation: Narrative review. PM&R 2018, 10, S174–S188.

10. Iandolo, R.; Marini, F.; Semprini, M.; Laffranchi, M.; Mugnosso, M.; Cherif, A.; De Michieli, L.; Chiappalone, M.; Zenzeri, J.
Perspectives and challenges in robotic neurorehabilitation. Appl. Sci. 2019, 9, 3183. [CrossRef]

11. Proietti, T.; Ambrosini, E.; Pedrocchi, A.; Micera, S. Wearable robotics for impaired upper-limb assistance and rehabilitation: State
of the art and future perspectives. IEEE Access 2022, 10, 106117–106134. [CrossRef]

12. Bhujel, S.; Hasan, S. A comparative study of end-effector and exoskeleton type rehabilitation robots in human upper extremity
rehabilitation. Hum.-Intell. Syst. Integr. 2023, 5, 11–42. [CrossRef]

13. Qassim, H.M.; Wan Hasan, W. A review on upper limb rehabilitation robots. Appl. Sci. 2020, 10, 6976. [CrossRef]
14. Ai, Q.; Liu, Z.; Meng, W.; Liu, Q.; Xie, S.Q. Machine learning in robot assisted upper limb rehabilitation: A focused review. IEEE

Trans. Cogn. Dev. Syst. 2021, 15, 2053–2063. [CrossRef]
15. Krebs, H.I.; Ferraro, M.; Buerger, S.P.; Newbery, M.J.; Makiyama, A.; Sandmann, M.; Lynch, D.; Volpe, B.T.; Hogan, N. Rehabilita-

tion robotics: Pilot trial of a spatial extension for MIT-Manus. J. Neuroeng. Rehabil. 2004, 1, 5. [CrossRef]
16. Hidler, J.; Nichols, D.; Pelliccio, M.; Brady, K. Advances in the understanding and treatment of stroke impairment using robotic

devices. Top. Stroke Rehabil. 2005, 12, 22–35. [CrossRef] [PubMed]
17. Nef, T.; Riener, R. ARMin-design of a novel arm rehabilitation robot. In Proceedings of the 9th International Conference on

Rehabilitation Robotics, ICORR 2005, Chicago, IL, USA, 28 June–1 July 2005; pp. 57–60.
18. Lum, P.S.; Burgar, C.G.; Van der Loos, M.; Shor, P.C.; Majmundar, M.; Yap, R. The MIME robotic system for upper-limb

neuro-rehabilitation: Results from a clinical trial in subacute stroke. In Proceedings of the 9th International Conference on
Rehabilitation Robotics, ICORR 2005, Chicago, IL, USA, 28 June–1 July 2005; pp. 511–514.

19. Hesse, S.; Schulte-Tigges, G.; Konrad, M.; Bardeleben, A.; Werner, C. Robot-assisted arm trainer for the passive and active
practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch. Phys. Med. Rehabil. 2003, 84, 915–920. [CrossRef]
[PubMed]

20. Loureiro, R.; Amirabdollahian, F.; Harwin, W. 22 A Gentle/S Approach to Robot Assisted Neuro-Rehabilitation. In Advances in
Rehabilitation Robotics: Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 347–363.

21. Stefano, M.; Patrizia, P.; Mario, A.; Ferlini, G.; Rizzello, R.; Rosati, G. Robotic upper limb rehabilitation after acute stroke by
NeReBot: Evaluation of treatment costs. BioMed Res. Int. 2014, 2014, 265634. [CrossRef] [PubMed]

http://doi.org/10.1136/annrheumdis-2019-215142
http://dx.doi.org/10.3390/biomedicines12010032
http://dx.doi.org/10.1177/17474930211065917
http://www.ncbi.nlm.nih.gov/pubmed/34986727
http://dx.doi.org/10.23736/S1973-9087.17.04746-3
http://www.ncbi.nlm.nih.gov/pubmed/28382807
http://dx.doi.org/10.3390/app11010340
http://dx.doi.org/10.1016/j.medengphy.2016.04.004
http://dx.doi.org/10.3390/app9153183
http://dx.doi.org/10.1109/ACCESS.2022.3210514
http://dx.doi.org/10.1007/s42454-023-00048-y
http://dx.doi.org/10.3390/app10196976
http://dx.doi.org/10.1109/TCDS.2021.3098350
http://dx.doi.org/10.1186/1743-0003-1-5
http://dx.doi.org/10.1310/RYT5-62N4-CTVX-8JTE
http://www.ncbi.nlm.nih.gov/pubmed/15940582
http://dx.doi.org/10.1016/S0003-9993(02)04954-7
http://www.ncbi.nlm.nih.gov/pubmed/12808550
http://dx.doi.org/10.1155/2014/265634
http://www.ncbi.nlm.nih.gov/pubmed/24967345


Robotics 2024, 13, 181 24 of 28

22. Ellis, M.D.; Sukal, T.; DeMott, T.; Dewald, J.P. ACT 3D exercise targets gravity-induced discoordination and improves reaching
work area in individuals with stroke. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics,
Noordwijk, The Netherlands, 12–15 June 2007; pp. 890–895.

23. Stienen, A.H.; McPherson, J.G.; Schouten, A.C.; Dewald, J.P. The ACT-4D: A novel rehabilitation robot for the quantification of
upper limb motor impairments following brain injury. In Proceedings of the 2011 IEEE International Conference on Rehabilitation
Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–6.

24. Singh, H.; Unger, J.; Zariffa, J.; Pakosh, M.; Jaglal, S.; Craven, B.C.; Musselman, K.E. Robot-assisted upper extremity rehabilitation
for cervical spinal cord injuries: A systematic scoping review. Disabil. Rehabil. Assist. Technol. 2018, 13, 704–715. [CrossRef]

25. Balasubramanian, S.; Wei, R.; Perez, M.; Shepard, B.; Koeneman, E.; Koeneman, J.; He, J. RUPERT: An exoskeleton robot for
assisting rehabilitation of arm functions. In Proceedings of the 2008 Virtual Rehabilitation, Vancouver, BC, Canada, 25–27 August
2008; pp. 163–167.

26. Fitle, K.D.; Pehlivan, A.U.; O’malley, M.K. A robotic exoskeleton for rehabilitation and assessment of the upper limb following
incomplete spinal cord injury. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA),
Seattle, WA, USA, 26–30 May 2015; pp. 4960–4966.

27. Chang, S.R.; Hofland, N.; Chen, Z.; Tatsuoka, C.; Richards, L.G.; Bruestle, M.; Kovelman, H.; Naft, J. Myoelectric arm orthosis
assists functional activities: A 3-month home use outcome report. Arch. Rehabil. Res. Clin. Transl. 2023, 5, 100279. [CrossRef]
[PubMed]

28. Garcia, D.A.; Arredondo, R.; Morris, M.; Tosunoglu, S. A review of rehabilitation strategies for stroke recovery. In Proceedings of
the ASME Early Career Technical Conference, Atlanta, GA, USA, 30 July–1 August 2012; pp. 2–3.

29. Perry, J.C.; Rosen, J.; Burns, S. Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 2007, 12, 408–417.
[CrossRef]

30. Nef, T.; Mihelj, M.; Kiefer, G.; Perndl, C.; Muller, R.; Riener, R. ARMin-Exoskeleton for arm therapy in stroke patients. In Proceed-
ings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 12–15 June 2007;
pp. 68–74.

31. Nef, T.; Guidali, M.; Klamroth-Marganska, V.; Riener, R. ARMin-exoskeleton robot for stroke rehabilitation. In Proceedings of the
World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009: Vol. 25/9 Neuroengineering,
Neural Systems, Rehabilitation and Prosthetics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 127–130.

32. Gopura, R.A.R.C.; Kiguchi, K.; Li, Y. SUEFUL-7: A 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based
control. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA,
11–15 October 2009; pp. 1126–1131.

33. Perry, J.C.; Powell, J.M.; Rosen, J. Isotropy of an upper limb exoskeleton and the kinematics and dynamics of the human arm.
Appl. Bionics Biomech. 2009, 6, 175–191. [CrossRef]

34. El-Shamy, S.M. Efficacy of Armeo® robotic therapy versus conventional therapy on upper limb function in children with
hemiplegic cerebral palsy. Am. J. Phys. Med. Rehabil. 2018, 97, 164–169. [CrossRef] [PubMed]

35. Hyakutake, K.; Morishita, T.; Saita, K.; Fukuda, H.; Shiota, E.; Higaki, Y.; Inoue, T.; Uehara, Y. Effects of Home-Based Robotic
Therapy Involving the Single-Joint Hybrid Assistive Limb Robotic Suit in the Chronic Phase of Stroke: A Pilot Study. BioMed Res.
Int. 2019, 2019, 5462694. [CrossRef]

36. van Delden, A.E.; Peper, C.E.; Kwakkel, G.; Beek, P.J. A systematic review of bilateral upper limb training devices for poststroke
rehabilitation. Stroke Res. Treat. 2012, 2012, 972069. [CrossRef] [PubMed]

37. Proietti, T.; Crocher, V.; Roby-Brami, A.; Jarrasse, N. Upper-limb robotic exoskeletons for neurorehabilitation: A review on control
strategies. IEEE Rev. Biomed. Eng. 2016, 9, 4–14. [CrossRef] [PubMed]

38. Krebs, H.I.; Edwards, D.J.; Volpe, B.T. Forging mens et manus: The mit experience in upper extremity robotic therapy. In Neurore-
habilitation Technology; Springer: Cham, Switzerland, 2022; pp. 597–621.

39. Reinkensmeyer, D.J.; Kahn, L.E.; Averbuch, M.; McKenna-Cole, A.; Schmit, B.D.; Rymer, W.Z. Understanding and treating arm
movement impairment after chronic brain injury: Progress with the ARM guide. J. Rehabil. Res. Dev. 2000, 37, 653–662. [PubMed]

40. Sadeghnejad, S.; Abadi, V.S.E.; Jafari, B. Rehabilitation robotics: History, applications, and recent advances. In Medical and
Healthcare Robotics; Academic Press: Cambridge, MA, USA, 2023; pp. 63–85.

41. Rosati, G.; Gallina, P.; Masiero, S. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE
Trans. Neural Syst. Rehabil. Eng. 2007, 15, 560–569. [CrossRef]

42. Rosati, G.; Gallina, P.; Masiero, S.; Rossi, A. Design of a new 5 dof wire-based robot for rehabilitation. In Proceedings of the 9th
International Conference on Rehabilitation RoboticsICORR 2005, Chicago, IL, USA, 28 June–1 July 2005; pp. 430–433.

43. Lum, P.S.; Burgar, C.G.; Shor, P.C. Evidence for improved muscle activation patterns after retraining of reaching movements
with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 186–194.
[CrossRef] [PubMed]

44. Burgar, C.G.; Scremin, A.E.; Garber, S.L.; Van der Loos, H.M.; Deborah Kenney, O.T.R. Robot-assisted upper-limb therapy in
acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. J. Rehabil. Res. Dev. 2011,
48, 445. [CrossRef] [PubMed]

http://dx.doi.org/10.1080/17483107.2018.1425747
http://dx.doi.org/10.1016/j.arrct.2023.100279
http://www.ncbi.nlm.nih.gov/pubmed/37744198
http://dx.doi.org/10.1109/TMECH.2007.901934
http://dx.doi.org/10.1080/11762320902920575
http://dx.doi.org/10.1097/PHM.0000000000000852
http://www.ncbi.nlm.nih.gov/pubmed/29059068
http://dx.doi.org/10.1155/2019/5462694
http://dx.doi.org/10.1155/2012/972069
http://www.ncbi.nlm.nih.gov/pubmed/23251833
http://dx.doi.org/10.1109/RBME.2016.2552201
http://www.ncbi.nlm.nih.gov/pubmed/27071194
http://www.ncbi.nlm.nih.gov/pubmed/11321001
http://dx.doi.org/10.1109/TNSRE.2007.908560
http://dx.doi.org/10.1109/TNSRE.2004.827225
http://www.ncbi.nlm.nih.gov/pubmed/15218933
http://dx.doi.org/10.1682/JRRD.2010.04.0062
http://www.ncbi.nlm.nih.gov/pubmed/21674393


Robotics 2024, 13, 181 25 of 28

45. Hsieh, Y.W.; Liing, R.J.; Lin, K.C.; Wu, C.Y.; Liou, T.H.; Lin, J.C.; Hung, J.W. Sequencing bilateral robot-assisted arm therapy and
constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke. J. Neuroeng. Rehabil. 2016.
[CrossRef]

46. Wu, C.Y.; Yang, C.L.; Chen, M.D.; Lin, K.C.; Wu, L.L. Unilateral versus bilateral robot-assisted rehabilitation on arm-trunk control
and functions post stroke: A randomized controlled trial. J. Neuroeng. Rehabil. 2013, 10, 35. [CrossRef] [PubMed]

47. Amirabdollahian, F.; Loureiro, R.; Gradwell, E.; Collin, C.; Harwin, W.; Johnson, G. Multivariate analysis of the Fugl-Meyer
outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy. J. Neuroeng. Rehabil. 2007, 4, 4.
[CrossRef] [PubMed]

48. van der Linde, R.Q.; Lammertse, P. HapticMaster–a generic force controlled robot for human interaction. Ind. Robot. Int. J. 2003,
30, 515–524. [CrossRef]

49. Van der Linde, R.Q.; Lammertse, P.; Frederiksen, E.; Ruiter, B. The HapticMaster, a new high-performance haptic interface.
In Proc. Eurohaptics; Edinburgh University: Edinburgh, UK, 2002; pp. 1–5.

50. Timmermans, A.A.; Lemmens, R.J.; Monfrance, M.; Geers, R.P.; Bakx, W.; Smeets, R.J.; Seelen, H.A. Effects of task-oriented robot
training on arm function, activity, and quality of life in chronic stroke patients: A randomized controlled trial. J. Neuroeng. Rehabil.
2014, 11, 45. [CrossRef]

51. Fazekas, G.; Horvath, M.; Troznai, T.; Toth, A. Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: A
preliminary study. J. Rehabil. Med. 2007, 39, 580–582. [CrossRef]

52. Bratanov, D.; Vitliemov, P. The experience behind the reharob project–a new robotic system for simultaneous rehabilitation of
upper and lower human limbs. In Proceedings of the 2020 International Conference on Assistive and Rehabilitation Technologies
(iCareTech), Gaza, Palestine, 28–29 August 2020; pp. 19–23.

53. Ellis, M.D.; Dewald, J.P. Application of the ACT 3D Robot in the Evaluation of Functional Reaching Performance and the
Administration of Experimental Interventions. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering,
Munich, Germany, 7–12 September 2009: Vol. 25/9 Neuroengineering, Neural Systems, Rehabilitation and Prosthetics; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 374–376.

54. Serrano-Lopez-Terradas, P.A.; Seco-Rubio, R. Effectiveness of robotic therapy in the proximal and distal rehabilitation of the
upper limb in patients after stroke using the Amadeo® and Armeo® devices: A systematic review of randomized clinical trials
(Efectividad de la terapia robótica en la rehabilitación proximal y distal del miembro superior en personas tras un ictus con los
dispositivos Amadeo® y Armeo®: Una revisión sistemática de ensayos clínicos aleatorizados). Stud. Psychol. 2022, 43, 132–178.

55. Helbok, R.; Schoenherr, G.; Spiegel, M.; Sojer, M.; Brenneis, C. Robot-Assisted Hand Training (Amadeo) Compared with Conventional
Physiotherapy Techniques in Chronic Ischemic Stroke Patients: A Pilot Study; DGNR: Bremen, Germany, 2010.

56. Serrano-López Terradas, P.A.; Criado Ferrer, T.; Jakob, I.; Calvo-Arenillas, J.I. Quo Vadis, Amadeo Hand Robot? A Randomized
Study with a Hand Recovery Predictive Model in Subacute Stroke. Int. J. Environ. Res. Public Health 2022, 20, 690. [CrossRef]
[PubMed]

57. López-Terradas, P.A.S.; Rosendo, D.M.; Lago, M.R. Hand Functional Recovery in Sub-acute Brain Injury Stage Patients using
AMADEO® Robotic-assisted Therapy-A Pilot Clinical Study with Apraxic and Neglect Patients. In Special Session on Virtual and
Augmented Reality Systems for Upper Limbs Rehabilitation; Scitepress: Setúbal, Portugal, 2013; Volume 1.

58. Colombo, R.; Sterpi, I.; Mazzone, A.; Delconte, C.; Pisano, F. Taking a lesson from patients’ recovery strategies to optimize
training during robot-aided rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 276–285. [CrossRef] [PubMed]

59. Vergaro, E.; Casadio, M.; Squeri, V.; Giannoni, P.; Morasso, P.; Sanguineti, V. Self-adaptive robot training of stroke survivors for
continuous tracking movements. J. Neuroeng. Rehabil. 2010, 7, 13. [CrossRef]

60. Casadio, M.; Sanguineti, V.; Morasso, P.G.; Arrichiello, V. Braccio di Ferro: A new haptic workstation for neuromotor rehabilitation.
Technol. Health Care 2006, 14, 123–142. [CrossRef]

61. Elangovan, N.; Yeh, I.L.; Holst-Wolf, J.; Konczak, J. A robot-assisted sensorimotor training program can improve proprioception
and motor function in stroke survivors. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics
(ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 660–664.

62. Albanese, G.A.; Taglione, E.; Gasparini, C.; Grandi, S.; Pettinelli, F.; Sardelli, C.; Catitti, P.; Sandini, G.; Masia, L.; Zenzeri,
J. Efficacy of wrist robot-aided orthopedic rehabilitation: A randomized controlled trial. J. Neuroeng. Rehabil. 2021, 18, 130.
[CrossRef] [PubMed]

63. Konczak, J. WristBot: A Robotic System for the Diagnosis and Physical Rehabilitation of Sensory and Motor Dysfunction of the
Wrist and Hand. 2024. Available online: https://news.cehd.umn.edu/konczak-receives-grant-to-advance-robotic-rehabilitation-
technology/ (accessed on 24 November 2024).

64. Passon, A.; Schauer, T.; Seel, T. Inertial-robotic motion tracking in end-effector-based rehabilitation robots. Front. Robot. AI 2020,
7, 554639. [CrossRef]

65. MOTIONrehab. Robot-Assisted Arm Rehabilitation with DIEGO. 2024. Available online: https://www.motionrehab.co.uk/
intensive-neurological-rehabilitation-centre/diego/ (accessed on 27 November 2024).

66. Saracino, L.; Avizzano, C.A.; Ruffaldi, E.; Cappiello, G.; Curto, Z.; Scoglio, A. MOTORE++ a portable haptic device for domestic
rehabilitation. In Proceedings of the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence,
Italy, 24–27 October 2016; pp. 728–734.

http://dx.doi.org/10.1186/s12984-016-0138-5
http://dx.doi.org/10.1186/1743-0003-10-35
http://www.ncbi.nlm.nih.gov/pubmed/23587106
http://dx.doi.org/10.1186/1743-0003-4-4
http://www.ncbi.nlm.nih.gov/pubmed/17309791
http://dx.doi.org/10.1108/01439910310506783
http://dx.doi.org/10.1186/1743-0003-11-45
http://dx.doi.org/10.2340/16501977-0087
http://dx.doi.org/10.3390/ijerph20010690
http://www.ncbi.nlm.nih.gov/pubmed/36613027
http://dx.doi.org/10.1109/TNSRE.2012.2195679
http://www.ncbi.nlm.nih.gov/pubmed/22623406
http://dx.doi.org/10.1186/1743-0003-7-13
http://dx.doi.org/10.3233/THC-2006-14301
http://dx.doi.org/10.1186/s12984-021-00925-0
http://www.ncbi.nlm.nih.gov/pubmed/34465356
https://news.cehd.umn.edu/konczak-receives-grant-to-advance-robotic-rehabilitation-technology/
https://news.cehd.umn.edu/konczak-receives-grant-to-advance-robotic-rehabilitation-technology/
http://dx.doi.org/10.3389/frobt.2020.554639
https://www.motionrehab.co.uk/intensive-neurological-rehabilitation-centre/diego/
https://www.motionrehab.co.uk/intensive-neurological-rehabilitation-centre/diego/


Robotics 2024, 13, 181 26 of 28

67. O’Flaherty, D.; Ali, K. Recommendations for upper limb motor recovery: An overview of the UK and European rehabilitation
after stroke guidelines (2023). Healthcare 2024, 12, 1433. [CrossRef]

68. Irgens, E.L.; Henriksen, N.; Moe, S. Variations in physiotherapy practice in neurological rehabilitation trajectories–an explorative
interview and observational study. Physiother. Theory Pract. 2020, 36, 95–107. [CrossRef]

69. Harmelink, K.; Dandis, R.; der Van der Wees Pj, P.; Zeegers, A.; der Sanden, M.N.V.; Staal, J. Recovery trajectories over six weeks
in patients selected for a high-intensity physiotherapy program after Total knee Arthroplasty: A latent class analysis. BMC
Musculoskelet. Disord. 2021, 22, 179. [CrossRef]

70. Coratti, G.; Pera, M.C.; Montes, J.; Pasternak, A.; Scoto, M.; Baranello, G.; Messina, S.; Dunaway Young, S.; Glanzman, A.M.;
Duong, T.; et al. Different trajectories in upper limb and gross motor function in spinal muscular atrophy. Muscle Nerve 2021,
64, 552–559. [CrossRef]

71. de Assis, I.S.A.; Luvizutto, G.J.; Bruno, A.C.M.; de Souza, L.A.P.S. The proprioceptive neuromuscular facilitation concept in
parkinson disease: A systematic review and meta-analysis. J. Chiropr. Med. 2020, 19, 181–187. [CrossRef] [PubMed]

72. Adler, S.S.; Beckers, D.; Buck, M. PNF in Practice: An Illustrated Guide; Springer: Berlin/Heidelberg, Germany, 2007.
73. Chaturvedi, P.; Singh, A.K.; Kulshreshtha, D.; Thacker, A.K. PNF in acute stroke. MOJ Anat. Physiol. 2018, 5, 391–399. [CrossRef]
74. Babaiasl, M.; Mahdioun, S.H.; Jaryani, P.; Yazdani, M. A review of technological and clinical aspects of robot-aided rehabilitation

of upper-extremity after stroke. Disabil. Rehabil. Assist. Technol. 2016, 11, 263–280. [CrossRef]
75. Le Danseur, M. Stroke rehabilitation. Crit. Care Nurs. Clin. 2020, 32, 97–108. [CrossRef] [PubMed]
76. Li, L.; Fu, Q.; Tyson, S.; Preston, N.; Weightman, A. A scoping review of design requirements for a home-based upper limb

rehabilitation robot for stroke. Top. Stroke Rehabil. 2022, 29, 449–463. [CrossRef] [PubMed]
77. Casals, A. Adaptive control in neurorehabilitation. In Converging Clinical and Engineering Research on Neurorehabilitation; Springer:

Berlin/ Heidelberg, Germany, 2013; pp. 123–127.
78. Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for upper limb

rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 3. [CrossRef] [PubMed]
79. Yeh, T.N.; Chou, L.W. Clinical Demands of Designs for Rehabilitation Robots in Taiwan. Innovation 2022, 1, 42–47. [CrossRef]
80. Richardson, R.; Brown, M.; Bhakta, B.; Levesley, M. Design and control of a three degree of freedom pneumatic physiotherapy

robot. Robotica 2003, 21, 589–604. [CrossRef]
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