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Abstract
Let P be a simple thin polyomino, namely a polyomino that has no holes and does
not contain a square tetromino as a subpolyomino. In this paper, we determine the
reduced Hilbert–Poincaré series h(t)/(1 − t)d of K [P] by proving that h(t) is the
rook polynomial of P . As an application, we characterize the Gorenstein simple thin
polyominoes.
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1 Introduction

Polyominoes are two-dimensional objects obtained by joining edge by edge squares
of same size, and they are studied from the point of view of combinatorics, e.g., in
tiling problems of the plane (see [6]). Recently, in [13], Qureshi introduced a binomial
ideal induced by the geometry of a given polyomino P , called polyomino ideal, and
the related algebra K [P] (see Sect. 2). From that moment, different authors studied
algebraic properties related to this ideal (see [9,11,14,16]). In particular, in [9,14] the
authors proved that if P is simple, namely the polyomino has no holes, then K [P] is
a Cohen–Macaulay domain.

In this paper, we compare two generating functions associated with polyominoes:
the Hilbert series of K [P] and the rook polynomial of P (see [15, Chapter 7]). The
well-known “rook problem” is the problem of enumerating the number of ways of
placing k non-attacking rooks on a chessboard. In a similar way, let P be a polyomino
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Fig. 1 The square tetromino

and let rk be the number of ways of arranging k non-attacking rooks on the cells of
P . The polynomial

rP (t) =
r(P)∑

k=0

rktk

is called the rook polynomial of P and r(P) is called the rook number of P .
In a recent paper [4], the authors proved that, for particular convex polyominoes

P , the Castelnuovo–Mumford regularity of K [P] is equal to r(P). Starting from this
result, we consider the Hilbert–Poincaré series of simple polyominoes as a nice object
to grasp the above equality and other fundamental invariants by using elementary
proofs.

We say that a polyomino P is thin (see [12]) if P does not contain the square
tetromino (see Fig. 1) as a subpolyomino.

One of the main results of this paper is the following

Theorem 1.1 LetP be a simple thin polyomino such that the reduced Hilbert–Poincaré
series of K [P] is

HPK [P](t) = h(t)

(1 − t)d
.

Then, h(t) is the rook polynomial of P .

In particular, it follows that the Castelnuovo–Mumford regularity of K [P] is r(P) and
the multiplicity of K [P] is rP (1). Theorem 1.1 gives us information on the Hilbert
series and the Castelnuovo–Mumford regularity of the toric ring related to the bipartite
graph GP induced in a natural way by a simple polyomino P (see [13, Section 2] and
Sect. 2). The condition thatP is thin translates to the condition that the bipartite graph
GP does not contain K3,3 as a subgraph, where K3,3 is the complete bipartite graph
with two parts of equal size 3.

An open question is to give a complete characterization of the Gorensteinness of the
algebra K [P]whenP is a simple polyomino. Some partial results in this direction are
in [1,4,13]. The other main result of this paper is Theorem 4.2, in which we classify the
simple thin polyominoes P having a Gorenstein algebra K [P], due to the geometric
properties of P . At the end, we present a conjecture and an open question.
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2 Preliminaries

In this section, we recall general definitions and notation on polyominoes and algebraic
invariants of commutative algebra (see also [7,18]).

Let a = (i, j), b = (k, �) ∈ N
2, with i ≤ k and j ≤ �, the set [a, b] = {(r , s) ∈

N
2 : i ≤ r ≤ k and j ≤ s ≤ �} is called an interval of N

2. If i < k and j < �, [a, b]
is called a proper interval, and the elements a, b, c, d are called corners of [a, b],
where c = (i, �) and d = (k, j). In particular, a, b are called diagonal corners and
c, d anti-diagonal corners of [a, b]. The corner a (resp. c) is also called the left lower
(resp. upper) corner of [a, b], and d (resp. b) is the right lower (resp. upper) corner of
[a, b]. A proper interval of the form C = [a, a + (1, 1)] is called a cell. Its vertices
V (C) are a, a + (1, 0), a + (0, 1), a + (1, 1), and its edges E(C) are

{a, a + (1, 0)}, {a, a + (0, 1)}, {a + (1, 0), a + (1, 1)}, {a + (0, 1), a + (1, 1)}.

In the following, we denote by e(C) the left lower corner of a cell C .
Let P be a finite collection of cells of N

2, and let C and D be two cells of P . Then,
C and D are said to be connected, if there is a sequence of cells C = C1, . . . , Cm = D
ofP such that Ci ∩Ci+1 is an edge of Ci for i = 1, . . . , m −1. In addition, if Ci �= C j

for all i �= j , then C1, . . . , Cm is called a path (connecting C and D). A collection
of cells P is called a polyomino if any two cells of P are connected. We denote by
V (P) = ∪C∈PV (C) the vertex set ofP . The number of cells ofP is called the rank of
P , and we denote it by rkP . A proper interval [a, b] is called an inner interval of P if
all cells of [a, b] belong toP . We say that a polyomino P is simple if for any two cells
C and D of N

2 not belonging to P , there exists a path C = C1, . . . , Cm = D such
that Ci /∈ P for any i = 1, . . . , m. An interval [a, b] with a = (i, j) and b = (k, �)

is called a horizontal edge interval of P if j = � and the sets {(r , j), (r + 1, j)} for
r = i, . . . , k − 1 are edges of cells of P . If a horizontal edge interval of P is not
strictly contained in any other horizontal edge interval of P , then we call it maximal
horizontal edge interval. Similarly, one defines vertical edge intervals and maximal
vertical edge intervals of P .

Let P be a polyomino and define the polynomial ring R = K [xv | v ∈ V (P)] over
a field K . The binomial xa xb − xcxd ∈ R is called an inner 2-minor of P if [a, b] is
an inner interval of P , where c, d are the anti-diagonal corners of [a, b]. We denote
byM the set of all inner 2-minors of P . The ideal IP ⊂ R generated byM is called
the polyomino ideal of P . We also set K [P] = R/IP .

By combining [9, Theorem 2.1] with [8, Corollary 3.3], one obtains the following

Lemma 2.1 Let P be a simple polyomino. Then, K [P] is a normal Cohen–Macaulay
domain of Krull dimension |V (P)| − rkP .

We recall that given a simple polyominoP , the K -algebra K [P] coincides with the
toric ring of a bipartite graph GP defined as follows. Let {V1, . . . , Vm} be the set of
the maximal vertical edge intervals of P and {H1, . . . , Hn} be the set of the maximal
horizontal edge intervals of P (see Fig. 2). We denote by GP the associated bipartite
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graph of P with vertex set {v1, . . . , vm} ∪ {h1, . . . , hn} and edge set

E(GP ) = {{vi , h j } : Vi ∩ Hj ∈ V (P)}.

The graph GP is known to be weakly chordal (see [14, Lemma 2.1]). For further
information on toric ideal of graphs, see also [2,10]. Let T = K [vi h j : {vi , h j } ∈
E(GP )] ⊂ K [v1, . . . , vm, h1, . . . , hn] be the toric ring of GP . We denote by ai j

the vertex of P that lies on the intersection of the edge intervals Vi and Hj , and we
denote by xi j the variable of R associated with ai j . Let ϕ : R → T be the K -algebra
homomorphism defined by ϕ(xi j ) = vi h j , we set JP = ker ϕ. According to Lemma
2.1, JP = IP , that is K [P] ∼= T . Thanks to the above interpretation and [2, Theorem
4.9], we obtain an upper bound for the Castelnuovo–Mumford regularity of K [P].
Lemma 2.2 Let P be a simple polyomino, and let {V1, . . . , Vm} be the set of the
maximal vertical edge intervals of P and {H1, . . . , Hn} be the set of the maximal
horizontal edge intervals of P . Then,

reg K [P] ≤ min{m, n} − 1.

The bound in Lemma 2.2 could be far from the value of reg K [P], as one can see
in the polyomino in Fig. 2.

Let R be a standard graded ring and I be a homogeneous ideal. TheHilbert function
HR/I : N → N is defined by

HR/I (k) := dimK (R/I )k

where (R/I )k is the k-degree component of the gradation of R/I , while the Hilbert–
Poincaré series of R/I is

HPR/I (t) :=
∑

k∈N
HR/I (k)tk .

Fig. 2 A polyomino P with
reg K [P] = 2 and
m = n = l >> 2

H1

H2

H3

Hl

V1 V2

V3 Vl
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By theHilbert–Serre theorem, theHilbert–Poincaré series of R/I is a rational function.
In particular, by reducing this rational function we get

HPR/I (t) = h(t)

(1 − t)d
.

for some h(t) ∈ Z[t], where d is the Krull dimension of R/I . The degree of HPR/I (t)
as a rational function, namely deg h(t) − d, is called a-invariant of R/I , denoted
by a(R/I ). It is known that whenever R/I is Cohen–Macaulay, we have a(R/I ) =
reg R/I − depth R/I , that is reg R/I = deg h(t).

We recall the following result about Hilbert series

Proposition 2.3 Let I be a homogeneous ideal of a graded ring R, let f ∈ R be a
homogeneous element of degree d and consider the following exact sequence.

0 R/(I : f ) R/I R/(I , f ) 0
· f

Then,

1. HPR/I (t) = HPR/(I , f )(t) + tdHPR/(I : f )(t)
2. If f is a regular element, then

HPR/I (t) = 1

1 − td
HPR/(I , f )(t).

We also rephrase the result of Stanley [17, Theorem 4.4] that is fundamental for
our aim in Sect. 4.

Theorem 2.4 Let R = K [x1, . . . , xn] be a standard graded polynomial ring, I be a
homogeneous ideal of R such that R/I is a Cohen–Macaulay domain, and let

HPR/I (t) =

s∑
i=0

hi t i

(1 − t)d

be the reduced Hilbert series of R/I . Then, R/I is Gorenstein if and only if for any
i = 0, . . . , s, we have hi = hs−i .

3 Hilbert series of simple thin polyominoes

In this section, we compute the Hilbert series of simple thin polyominoes in relation
to their rook polynomial. We start with the following

Definition 3.1 Let C and D be two cells of N
2 such that e(C) ≤ e(D). We call the set

[C, D] = {F ∈ N
2 : e(F) ∈ [e(C), e(D)]}
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interval of cells. If e(C) and e(D) lie either on the same vertical edge interval or on
the same horizontal edge interval, we call [C, D] a cell interval. We call [C, D] inner
interval of cells of P if any cell in [C, D] is a cell of P .

Lemma 3.2 Let P be a simple thin polyomino. Then, any maximal inner interval I
of cells of P is a cell interval, and for any maximal inner interval J �= I such that
V (I ) ∩ V (J ) �= ∅, I and J have either one cell, one edge or one vertex in common.

Proof Since P does not contain a square tetromino, then also any maximal inner
interval of P does not contain a square tetromino; namely, it is a cell interval.

Let I , J be two maximal inner intervals of P such that V (I ) ∩ V (J ) �= ∅. By
contradiction, we consider the following two cases: I and J have two or more edges
in common, not belonging to the same cell, and I and J have two or more cells in
common. In the first case, without loss of generality V (I ) ∩ V (J ) = [(i, j), (k, j)]
with k > i +1. Therefore, the cells whose left lower corners are (i, j −1), (i +1, j −
1), (i, j), (i +1, j) form a square tetromino, that is a contradiction. In the second case,
I ∪ J is a maximal inner interval strictly containing I and J , and this is a contradiction.
The assertion follows. 
�

From now on, we will briefly call inner intervals the inner intervals of cells of a
polyomino P . In the following, we define the simple polyominoes P ′ and P ′′ obtain-
able from a simple (thin) polyominoP . The latter are fundamental for the computation
of the Hilbert series.

Definition 3.3 (Polyomino P ′) Let P be a simple polyomino. We say that a cell C of
P is a leaf if there exists an edge {u, v} of C such that {u, v} ∩ V (P \ {C}) = ∅.
We call the vertices u and v leaf corners of C . We define the polyomino P ′ as the
polyomino P \ {C}.
Definition 3.4 (Polyomino P ′′) Let P be a simple thin polyomino, and let I be a
maximal inner interval of P . We say that P is collapsible in I if there exists one and
only one maximal inner interval J of P intersecting I in a cell, and P = P1 � I �P2
where P1 and P2 are two polyominoes such that P2 is either empty or a cell interval.
When P2 is empty, I is called a tail. When P2 is a cell interval, I is called an endcut.
We define the polyomino P ′′ as follows. Let D be the cell such that I ∩ J = {D},
and let {a, b, a′, b′} be the corners of D where a, b ∈ V (P1) and a′, b′ ∈ V (P2) . We
define P ′′ as the polyomino obtained from P \ I by the identification of the vertices
a and b of P1 with the vertices a′ and b′ of P2, respectively, due to the translation of
the cell interval P2 (see Fig. 3).

Remark 3.5 LetP be a simple thin polyomino collapsible in I with leafC . We observe
that r(P ′) ∈ {r(P), r(P) − 1} and r(P ′′) = r(P) − 1. For example, if P is the
polyomino in Fig. 6 and we consider the leaf C1, then r(P ′) is equal to r(P) − 1. On
the other hand, ifP is the polyomino in Fig. 4 andwe consider the leaf containing u and
v, then r(P ′) is equal to r(P). In both cases, we have r(P ′′) = r(P)−1. In general, if
C belongs to any set of r(P) non-attacking rooks, then any set of non-attacking rooks
of maximal cardinality in P ′ has r(P) − 1 elements. Otherwise, there exists some set
of non-attacking rooks of maximal cardinality inP ′ having r(P) elements. Moreover,
any set of r(P) non-attacking rooks has an element on I , that is r(P ′′) = r(P) − 1.
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I

b

a

b

a

C

DD1 D2

(A) A simple thin polyomino P which is col-
lapsible in the endcut I

b = b

a = a

D1 D2

(B) The polyominoP after the collapsing of
P on I

Fig. 3 The collapsing operation on a simple thin polyomino P

We now want to prove that any simple thin polyomino is collapsible in some inner
interval I . For this aim, we first prove the following

Lemma 3.6 Let P be a simple thin polyomino that is not a cell interval. Then, there
exists a maximal inner interval I of P for which there exists one and only one maximal
inner interval J of P intersecting I in a cell.

Proof SinceP is simple and thin, we observe that for any two cellsC and D ofP , there
is a unique path of cells connecting C and D. By contradiction, assume that for any
maximal inner interval ofP , there are at least two maximal inner intervals intersecting
it in one cell. We show that there exist two different paths connecting two given cells.
For this aim, let I be a maximal inner interval of P . There exist I1 and J such that
I1 ∩ I and I1 ∩ J are cells of P . Furthermore, there exists I2 �= I intersecting I1 in
one cell. By using the same argument, we find a sequence of inner intervals I1, I2, . . .
of P such that I j and I j+1 have a cell in common. Since the number of inner intervals
of P is finite, then there exists k such that Ik = J , and hence, there are two paths
connecting a cell C of I \ I ∩ J with a cell D of J \ I ∩ J , one passing through
I1, . . . , Ik−1 and one passing through the cell I ∩ J . This is a contradiction, and the
assertion follows. 
�
Proposition 3.7 Let P be a simple thin polyomino that is not a cell interval. Then, P
is collapsible in some maximal inner interval I .

Proof If P has a tail, then the assertion follows. Therefore, assume that P does not
contain tails. By contradiction, assume that P has no endcuts. From Lemma 3.6, there
exists a maximal inner interval I1 of P for which there exists one and only one inner
interval J1 of P intersecting I1 in one cell. Let P = P1 � I1 � P2. Since I1 is not
an endcut, then P2 is a simple thin polyomino that is not a cell interval. Moreover,
rkP2 < rkP . Again from Lemma 3.6, there exists an inner interval I2 inP2 for which
there exists one and only one inner interval J2 of P intersecting I2 in one cell. We
write P = P3 � I2 � P4, with P1 ⊂ P3. We repeat the same argument for the simple
thin polyomino P4 with rkP4 < rkP2. By proceeding in this way, since the rkP is
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finite, at the end we find an inner interval Ik for which P = P2k−1 � Ik � P2k such
that rkP2k = 0, namely Ik is a tail, that is a contradiction. 
�

We observe that the interval I in Lemma 3.6 in which P is collapsible has one leaf
C .

Lemma 3.8 Let P be a simple polyomino with a leaf C having leaf corners u and
v, and let P ′ be as in Definition 3.3. Then, ((IP , xu) : xv) = IP ′ + J where J is a
monomial ideal generated in degree one.

Proof Since C is a leaf of P , then there exists a maximal cell interval I of P such that
C ∈ I . Let E = {u1, u2, . . . , ur , u} and F = {v1, . . . , vr , v} be the edge intervals of
length r + 1 of I . We observe that the ideal IP is generated by the inner 2-minors of
P ′ = P \ {C} and by the inner 2-minors of I whose inner intervals contain the cell
C , namely

IP = IP ′ + ({xvxui − xu xvi }i=1,...,r ).

Then,

(IP , xu) = IP ′ + ({xvxui }i=1,...,r ) + (xu).

The thesis follows if we prove that (IP , xu) : xv ⊆ IP ′ + (xu1 , . . . , xur , xu), since the
other inclusion is trivial. If f ∈ (IP , xu) : xv , then xv f ∈ IP ′+({xvxui }i=1,...,r )+(xu),
that is

xv f = g + xvg′ + xu g′′

where g ∈ IP ′ , g′ ∈ (xu1 , . . . , xur ) and, g′′ ∈ R. That is, xv( f − g′) ∈ IP ′ + (xu)

and f − g′ ∈ (IP ′ + (xu)) : xv . Since P ′ is simple, then IP ′ is prime, and since xu is
not a variable of IP ′ , then also IP ′ + (xu) is prime. Therefore, since xv /∈ IP ′ + (xu),
then f − g′ ∈ IP ′ + (xu) and the assertion follows. 
�
Remark 3.9 By using the notation of Lemma 3.8, we want to remark that the ideal in
the statement has different behaviors, depending on the choice of u and v. Let P be
the simple thin polyomino in Fig. 4, namely the skew tetromino.

Since xvxu2 − xu xv2 ∈ IP , then xu xv2 ∈ (IP , xv) and xv2 ∈ (IP , xv) : xu .
Therefore, since x pxv2 −xwxz ∈ IP , then xwxz ∈ (IP , xv) : xu ; namely, (IP , xv) : xu

has a monomial generator of degree 2. Nevertheless, the ideal (IP , xu) : xv has no
monomial generators of degree greater than 1.

Lemma 3.10 Let P be a simple thin polyomino, collapsible in I that has r cells, and
let P1,P2,P ′,P ′′ be as in Definitions 3.3 and 3.4. Let C be a leaf of I with leaf
corners u and v, and assume that E = {u1, u2, . . . , ur , u} is the edge interval of I
such that E ∩ V (P1) = ∅. Then, R/(IP , xu, xv) ∼= K [P ′] and R/((IP , xu) : xv) ∼=
K [P ′′] ⊗ K [y1, . . . , yr−1].
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Fig. 4 The skew tetromino v u

v1 u1

v2 u2

w

z

p

Proof Let F = {v1, . . . , vr , v} be the other edge interval of I of length r + 1. By the
proof of Lemma 3.8, we have

IP = IP ′ + ({xvxui − xu xvi }i=1,...,r ).

and

(IP , xu) = IP ′ + ({xvxui }i=1,...,r , xu).

Since {u, v}∩V (P ′) = ∅, then (IP , xu, xv) = (IP ′ , xu, xv), that is R/(IP , xu, xv) ∼=
K [P ′].

Now, let I ′′ = ((IP , xu) : xv). By the proof of Lemma 3.8, it arises I ′′ = IP ′ +
(xu1 , . . . , xur , xu). Let us consider J and D as in Definition 3.4, with V (D) = {uk,

uk+1, vk, vk+1}. We can split J into the cell intervals J1 and J2, such that J1 ⊆ P1,
P2 = J2, and the cell D. Since the variables xu1 , . . . , xur , xu are generators of I ′′, then
all of the inner 2-minors of the interval I , and all of the inner 2-minors of J having
corners on uk, uk+1, are redundant. SinceP2 is either empty or a cell interval, then the
edge E is amaximal edge interval ofP (see also Remark 3.9).Wewant to prove that I ′′
has no minimal monomial generators of degree greater than 1. By Lemma 3.8, assume
that there exists a minimal generator xwxz ∈ I ′′, with w, z /∈ {u1, . . . , ur , u} = E .
That is, there exists i ∈ {1, . . . , r} and p ∈ V (P) such that g = xwxz − xui x p is an
inner 2-minor ofP . That is, one betweenw and z, sayw, lies on the same edge interval
containing the ui ’s and w /∈ E ; namely, E ∪ {w} is an edge interval of P containing
E ; that is, E is not a maximal, contradiction.

IfP2 is empty, from Definition 3.4 we have P ′′ = P \ I = P1. Since E ∩ V (P1) =
∅, then I ′′ = IP1 + (xu1 , . . . , xur , xu) , V (P ′′) ∩ F = {vk, vk+1}, and therefore,

R/I ′′ ∼= K [P ′′] ⊗ K [xv1, . . . , xvk−1 , xvk+2 . . . , xvr , xv]

and the assertion follows. Otherwise, let P ′′ be the polyomino arising from the trans-
lation of the edge {uk, uk+1} on the edge {vk, vk+1}. We want to prove that I ′′ = IP ′′
+ (xu1 , . . . , xur , xu).

Let f = f + − f − ∈ I ′′ be an irreducible binomial, and let

V ( f ) = {v ∈ V (P) | xv| f + or xv| f −}.

123



616 Journal of Algebraic Combinatorics (2021) 54:607–624

One of the following is true

(a) V ( f ) ⊆ V (P1) or V ( f ) ⊆ V (P2) \ {uk, uk+1};
(b) |V ( f ) ∩ V (P1)| = |V ( f ) ∩ V (P2) \ {uk, uk+1}| = 2.

In case (a), we have f ∈ IP ′′ .
In case (b), since J is the unique maximal cell interval having non-empty intersection
with bothP1 andP2, we have that |V ( f )∩V (J1)| = |V ( f )∩V (J2)\{uk, uk+1}| = 2.
Since J1 ∪ J2 is a maximal cell interval of P ′′, then f ∈ IP ′′ . The latter proves I ′′ ⊆
IP ′′ + (xu1 , . . . , xur , xu). Similarly, the other inclusion follows, due to the fact that an
inner interval inP ′′ is either an inner interval ofP1, ofP2 (up to the translation defined
in Definition 3.4), or it is contained in J1 ∪ J2. Lastly, since V (P ′′)∩ F = {vk, vk+1},
then

R/I ′′ ∼= K [P ′′] ⊗ K [xv1, . . . , xvk−1 , xvk+2 . . . , xvr , xv]


�
Corollary 3.11 Let P be a simple thin polyomino, collapsible in I that has r cells, with
P ′ and P ′′ as in Definitions 3.3 and 3.4. Then,

HPK [P](t) = 1

1 − t

(
HPK [P ′](t) + t

(1 − t)r−1 · HPK [P ′′](t)
)

Proof Let C be a leaf of I , and let u and v be the leaf corners of C with u satisfying
the hypotheses of Lemma 3.10. We take the following short exact sequence:

0 R/(IP : xu) R/IP R/(IP , xu) 0

SinceP is simple, then fromLemma2.1 IP is prime, that is (IP : xu) = IP . Therefore,
by Proposition 2.3.(2) we have

HPR/IP (t) = 1

1 − t
HPR/(IP ,xu)(t).

Westudy theHilbert series of R/(IP , xu). By applying Proposition 2.3 to the following
short exact sequence:

0 R/((IP , xu) : xv) R/(IP , xu) R/(IP , xu, xv) 0

we get

HPK [P](t) = 1

1 − t

(
HPR/(IP ,xu ,xv)(t) + t · HPR/((IP ,xu):xv)(t)

)
.

Furthermore, by Lemma 3.10, we have

1. R/(IP , xu, xv) ∼= K [P ′];
2. R/((IP , xu) : xv) ∼= K [P ′′] ⊗ K [y1, . . . , yr−1].
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It is well known that

HPK [y1,...,yn ](t) = 1

(1 − t)n

and

HPA⊗B(t) = HPA(t) · HPB(t),

that is

HPR/((IP ,xu):xv)(t) = 1

(1 − t)r−1 · HPK [P ′′](t)

and the assertion follows. 
�
LetP be a cell interval with rkP = r . The ideal IP can be seen as the determinantal

ideal of a 2 × (r + 1) matrix. The resolution of the above ideal is well known (see
[3,5]), as well as its Hilbert series. For the sake of completeness, we give the following
result

Lemma 3.12 Let P be a cell interval with rkP = r . Then,

HPK [P](t) = 1 + r t

(1 − t)r+2 .

Proof By [5, Corollary 6.2], IP has linear resolution, and βi,i+1 = i
(r+1

i+1

)
for i =

1, . . . , r . It is well known that if M is an R-module, then

HPM (t) = 1

(1 − t)n

n∑

i=0

∑

j∈Z
(−1)iβi j t

j .

That is, the Hilbert series of K [P] is

1 +
r−1∑
i=1

(−1)i i
(r+1

i+1

)
t i+1 + (−1)r r tr+1

(1 − t)2r+2 . (∗)

We study the coefficient i
(r+1

i+1

)
for 2 ≤ i ≤ r − 1.

i

(
r + 1

i + 1

)
= (i + 1)

(
r + 1

i + 1

)
−

(
r + 1

i + 1

)

= (r + 1)

(
r

i

)
−

(
r + 1

i + 1

)
= r

(
r

i

)
−

(
r

i + 1

)
.
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Hence, the numerator of Equation (∗) becomes

1 +
r−1∑

i=1

(−1)i
(

r

(
r

i

)
−

(
r

i + 1

))
t i+1 + (−1)r r tr+1

= 1 +
r∑

i=2

(−1)i
(

r

i

)
t i +

r∑

i=1

(−1)i r

(
r

i

)
t i+1 − r t + r t

= (1 − t)r + r t(1 − t)r .

That is,

HPK [P](t) = (1 + r t)(1 − t)r

(1 − t)2r+2 ,

and the assertion follows. 
�

We now state the main theorem (see also Examples 4.3 and 4.4).

Theorem 3.13 Let P be a simple thin polyomino with

HPK [P](t) = h(t)

(1 − t)d
.

Then, h(t) is the rook polynomial of P .

Proof Let I1, . . . Is be the maximal inner intervals of P . We proceed by induction on
p = rkP . If p = 1, then P consists of one cell, and by Lemma 3.12, the statement
follows. Let p > 1 and assume the thesis true for any polyomino with rank less than
or equal to p − 1. If s = 1, then P is a cell interval, and from Lemma 3.12, we have

HPK [P](t) = 1 + pt

(1 − t)p+2 .

The polynomial 1+ pt is the rook polynomial of a cell interval having p cells; that is,
the assertion follows. If s > 1, thenP is not a cell interval; that is, fromProposition 3.7,
P is collapsible in some maximal inner interval I . Assume that I has r cells. In order
to apply Corollary 3.11, we focus on HPK [P ′](t) and HPK [P ′′](t). The polyomino P ′
has p − 1 cells, while the polyomino P ′′ has p − r cells. Hence, from the inductive
hypothesis we have

HPK [P ′](t) =

a∑
i=0

r ′
i t

i

(1 − t)d1
,
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where a = r(P) with r ′
a ≥ 0 due to Remark 3.5, and

a∑
i=0

r ′
i t

i is the rook polynomial

of P ′, and

HPK [P ′′](t) =

b∑
i=0

r ′′
i t i

(1 − t)d2
.

where b = r(P ′′) = r(P) − 1 due to Remark 3.5, and
b∑

i=0
r ′′

i t i is the rook polynomial

of P ′′. From Corollary 3.11, we get that HPK [P](t) is equal to

1

1 − t

(
a∑

i=0
r ′

i t
i

(1 − t)d1
+ 1

(1 − t)r−1

b∑
i=0

r ′′
i t i+1

(1 − t)d2

)
=

a∑
i=0

r ′
i t

i

(1 − t)d1+1 +

b∑
i=0

r ′′
i t i+1

(1 − t)d2+r

We first show that d1 + 1 = d2 + r = n − p, where n = |V (P)|. Since P ′ is
the polyomino having n − 2 vertices and p − 1 cells, then from Lemma 2.1, we
have (n − 2) − (p − 1) = n − p − 1. Moreover, since I is on the 2r + 2 vertices
{x1, . . . , xr , x, y1, . . . , yr , y} but yk, yk+1 for some k are corners of one cell of P \ I ,
then P ′′ is the polyomino having n − 2r vertices and p − r cells, hence from Lemma
2.1 d2 + r − 1 = (n − 2r) − (p − r) + r − 1 = n − p − 1. That is,

HPK [P](t) =
1 +

r(P)∑
i=1

(r ′
i + r ′′

i−1)t
i

(1 − t)d

For 1 ≤ i ≤ r(P), ri = r ′
i + r ′′

i−1. In fact, ri is the number of ways of placing i non-
attacking rooks on all of the cells of P , whereas r ′

i is the number of ways of placing
i non-attacking rooks on the simple thin polyomino P ′, namely the number of ways
of placing i non-attacking rooks on the cells D �= C of P , and r ′′

i−1 is the number of
ways of placing i − 1 non-attacking rooks on the simple thin polyomino P ′′, namely
the number of ways of placing i −1 non-attacking rooks on the cells D of P such that
D /∈ I , given that the i-th rook is placed on the cell C ; hence, the thesis follows. 
�
We immediately deduce the following

Corollary 3.14 Let P be a simple thin polyomino. Then, the Castelnuovo–Mumford
regularity is r(P) and the multiplicity of K [P] is rP (1).

Remark 3.15 In general, the equality h(t) = rP (t) does not hold for any simple
polyomino P . Let P be the square tetromino. Then, K [P] is the toric ring related to
the complete bipartite graph K3,3, and from [19, Lemma 2.2], we have

h(t) = 1 + 4t + t2 and rP (t) = 1 + 4t + 2t2.
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Even though the two polynomials are different, they have the same degree, that is
reg K [P] = r(P) also in this case.

4 Gorenstein simple thin polyominoes

In this section, we characterize the Gorenstein simple thin polyominoes. We start with
a fundamental definition for our goal.

Definition 4.1 LetP be a simple thin polyomino. A cell C ofP is single if there exists
a unique maximal inner interval of P containing C . If any maximal inner interval of
P has exactly one single cell, we say that P has the S-property.

Let C be the set of the single cells of a simple thin polyomino. We set D as the
collection of cells P \ C. In particular since P is thin, then any cell of D belongs
exactly to two maximal inner intervals of P .

Theorem 4.2 Let P be a simple thin polyomino, I1, . . . , Is be its maximal inner
intervals, and let rP (t) = ∑s

k=0 rktk be its rook polynomial. Then, the following
conditions are equivalent:

(a) K [P] is Gorenstein;
(b) ∀i = 0, . . . , s we have ri = rs−i ;
(c) P satisfies the S-property.

Proof (a)⇔(b): By combining Theorems 2.4 and 3.13, for a simple thin polyomino
P , the Cohen–Macaulay domain K [P] = R/IP is Gorenstein if and only if ∀i =
0, . . . , s, we have ri = rs−i , and the assertion follows. (c)⇒(b): Since P satisfies the
S-property, then any maximal inner interval I of P contains a unique single cell C .
Therefore, let C = {C1, . . . Cs} be the set of the single cells of P , and let I1, . . . , Is

be the maximal inner intervals of P such that Ci ∈ Ii . We setD = P \ C. As we have
observed above, any cell ofD is the intersection of two maximal inner intervals of P ,
and we denote by D jk the cell of D in the intersection of I j and Ik .

Let i be a subset of [s] = {1, 2, . . . , s} of cardinality l, and let jk =
{{ j1, k1}, . . . , { jm, km}} with jt , kt ∈ [s] for 1 ≤ t ≤ m. We denote by Ci = {Ci ∈ C :
i ∈ i} and by Djk = {D jk ∈ D : { j, k} ∈ jk}.

Let j = { j1, . . . jm} and k = {k1, . . . km} be such that j ∩ k = ∅, and let i be such
that i ∩ (j � k) = ∅, then

Ci ∪ Djk (1)

induces a set of d = l + m non-attacking rooks, and any set of non-attacking rooks of
cardinality d can be written in the form (1), and this configuration is unique because
a set jk identifies a unique subset of D and thanks to the S-property, a set i ⊂ [s]
identifies a unique subset of C. Our goal is to prove that for any configuration (1) of
d non-attacking rooks, there exists a unique configuration of the form (1) of s − d
non-attacking rooks. Let Ci∪i∪k = C \ (Ci ∪ Cj ∪ Ck), and since i ∩ (j ∪ k) = ∅, then
|Ci∪j∪k| = s − (l + 2m). From the configuration of cardinality d in (1), we retrieve
the following configuration of cardinality s − d,

Ci∪j∪k ∪ Djk. (2)
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Fig. 5 A simple thin polyomino
Q that does not satisfy the
S-property

A

D B

C1

C2

In fact, s − (l + 2m) + m = s − d and the configuration (2) satisfies the properties
of configuration (1), and the configuration (2) is uniquely determined by (1) because
Djk is fixed, and once we set Ci and j ∪ k, the complement set Ci∪j∪k is unique.

(b)⇒(c): By contraposition, assume that P does not satisfy the S-property, that is
there exists an inner interval I of P having q single cells with q �= 1. We want to
prove that either rs > r0 = 1 or rs−1 > r1 = rkP .

Let q > 1, and let C, C ′ be two single cells of I . Any set C of s non-attacking rooks
contains a single cell C ′′ of I such that either C ′′ �= C or C ′′ �= C ′. In both cases, the
sets C \ {C ′′} ∪ C and C \ {C ′′} ∪ C ′ are two distinct sets of s non-attacking rooks,
that is rs > 1, and it is a contradiction. Hence, from now on we assume that P do
not exist maximal inner intervals with two or more single cells. That is, any maximal
inner interval of P has either 0 or 1 single cells and in particular, we assume q = 0.
Let C be a set of s non-attacking rooks of P . In this case, one of the following is true:

1. any inner interval J intersecting I in a cell D contains a cell C �= D such that
C ∈ C, in particular I ∩ C = ∅;

2. there exists an inner interval J intersecting I in a cell D ∈ C.
In case (1), (C \ {C}) ∪ {D} is a set of s non-attacking rooks different from C, that is
rs > 1, and it is a contradiction.

In case (2), we want to show rs−1 > r1. Let E be a cell of P . If E ∈ C, then C \ {E}
is a set of s − 1 non-attacking rooks. If E /∈ C, then E is not single; that is, E is
the intersection of two cell intervals I1 and I2. From the maximality of C, there exist
two cells F ∈ I1 and G ∈ I2 with F, G ∈ C, and C \ {F, G} ∪ {E} is a set of s − 1
non-attacking rooks. Hence, rs−1 ≥ r1.

The hypothesis (2) implies that there exist some cells A, B, C1, C2 of P such that
the polyominoQ in Fig. 5 is a subpolyomino of P (up to rotations and reflections). In
fact, without loss of generality assume that A is a cell of I and B is a cell of J . Since
I has no single cells, there exists an inner interval J ′ intersecting I in A. Moreover, if
the cell B is single, then B ∈ C and this contradicts (2). Hence, there exists an inner
interval J ′′ intersecting J in B.

Let F and G be the cells of C that belong to J ′ and J ′′, respectively. We consider
the following sets of s − 1 non-attacking rooks:

C \ {F, D} ∪ {A}, C \ {G, D} ∪ {B}, C \ {F, G, D} ∪ {A, B}.

The first two were mentioned in the discussion above, while the third one increases
the number rs−1. Hence, rs−1 > r1 that is a contradiction.
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Fig. 6 A simple thin polyomino
satisfying the S-property C1 D12

D23

C2

C3 D34

C4


�
Example 4.3 Let P be the polyomino in Fig. 6.

We see that P has 4 maximal inner intervals and a single cell for any of these ones;
that is, P satisfies the S-property. We want to compute the Hilbert series of K [P]. It
is easy to see that r(P) = 4. According to Theorem 3.13, the Hilbert series of K [P]
is

HPK [P](t) =

4∑
i=0

ri t i

(1 − t)d

where d = |V (P)| − rkP = 16 − 7 = 9. We compute ri , namely the number of sets
of i non-attacking rooks for i = 0, . . . , 4.

– i = 0. ∅;
– i = 1. {C1}, {C2}, {C3}, {C4}, {D12}, {D23}, {D34};
– i = 2. {C1, D23}, {C1, C2}, {C1, C3}, {C1, D34}, {C1, C4}, {D12, C3}, {D12,

D34}, {D12, C4}, {C2, C3}, {C2, D34}, {C2, C4}, {D23, C4}, {C3, C4};
– i = 3. {C1, C2, C3}, {C1, C2, C4}, {C1, C3, C4}, {C2, C3, C4}, {C1, C2, D34},

{C1, D23, C4} {D12, C3, C4};
– i = 4. {C1, C2, C3, C4}.

It follows

r0 = 1, r1 = 7, r2 = 13, r3 = 7, r4 = 1,

that is

HPK [P](t) = 1 + 7t + 13t2 + 7t3 + t4

(1 − t)9

and according to Theorem 2.4, K [P] is Gorenstein.
Example 4.4 In the notation of Theorem 4.2, we highlight that the condition rs = 1
is not sufficient to guarantee that the polynomial has symmetric coefficients. In fact,
let us consider the polyomino Q in Fig. 5. The rook number of Q is 3, and the rook
polynomial of Q is

1 + 5t + 6t2 + t3;

123



Journal of Algebraic Combinatorics (2021) 54:607–624 623

in fact, the sets of i non-attacking rooks are

– i = 0. ∅;
– i = 1. {A}, {B}, {C1}, {D}, {C2};
– i = 2. {C1, D}, {C1, C2}, {D, C2}, {B, C1}, {A, C2}, {A, B};
– i = 3. {C1, D, C2};

As already noted in the proof of Theorem 4.2 the fact that r2 > r1 depends on the set
{A, B}.

To conclude the paper, we want to remark that among the thin polyominoes that
are not simple, namely multiply connected, there are some non-prime ones, so that
we cannot directly retrieve the Cohen–Macaulayness of K [P]. Nevertheless, due to
Theorem 3.13 and Remark 3.15, we conjecture the following.

Conjecture 4.5 Let P be a polyomino. Then, P is thin if and only if rP (t) = h(t).

Moreover, due to Theorem 3.13 and [4, Theorem 2.3], we ask the following.

Question 4.6 Let P be a polyomino. Then, reg K [P] = r(P)?
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