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ABSTRACT 
This paper deals with the roll motion analysis of vehicles 

which are provided of two double wishbone independent 

suspension mechanisms on the front side. According to a planar 

car model and supposing that both front wheels are rotating 

about their fixed revolute joints, the position analysis of an eight-

bar mechanism is formulated, in order to determine the position 

of the roll center, along with the fixed and moving centrodes. 

In particular, all instantaneous centers of rotations have 

been determined by devoting particular attention to the roll 

center and to those of each wheel with respect to the vehicle 

chassis, according to the kinematic characteristics of the double 

wishbone independent suspension mechanism. Moreover, a 

suitable mechanism with 18 members and 1 d.o.f. is proposed to 

generate mechanically or by using any CAD-software, both 

centrodes, according to the direct and inverse planar motion of 

the chassis with respect to the ground and vice versa. Finally, a 

first curvature analysis is carried out by using the Euler-Savary 

equation and the inflection circle, in order to determine the 

center of curvature of the mass center trajectory for the chassis 

roll motion. The proposed formulation has been implemented in 

a Matlab program and several examples allowed its validation 

in different mechanism configurations.  

Keywords: Kinematics, linkages, double wishbone 

suspension, roll-center, centrodes. 

1. INTRODUCTION
The design of a vehicle suspension system is one of the most

important aspects of vehicle mechanics, especially with regard 

to the ride stability and comfort [1]. There are different types of 

suspension, and in order to obtain the desired project 

specifications, designers are often faced with optimization 

problems [2]. One of the most used types of suspensions are 

double wishbone independent suspensions, especially in high 

performance vehicles, due to its superior kinematic response.  

In designing this type of suspension model, a fundamental 

parameter is that relating to the motion ratio, which is closely 

linked to the kinematic properties of the suspension itself, such 

as instant center of rotation and roll center [3-4]. However, its 

kinematics is very complicated, as reported in [5-6]. 

From a kinematic point of view, in vehicle suspension 

design, some of the most important entities are the 

abovementioned instant center of rotation and the roll center, 

especially referring to plane lateral kinematics [7-8]. The 

determination of these kinematic entities is generally made 

through the application of the Aronhold-Kennedy theorem [9], 

but to better understand the behavior of the mechanical system 

one can refer to different suitable kinematic tools, which have 

been extensively treated over the years [10-13]. 

Among these, centrodes can have many applications in the 

kinematic analysis and synthesis, such as in the field of cam 

mechanisms [14], linkages [15-16], but also in the vehicle 

mechanics [17]. On the other hand, together with the centrodes 

in the analysis and synthesis of mechanisms, some geometric 

loci of interest can be used, as reported in [18]. 

In particular, the inflection circle turns out to be very 

important in the kinematic analysis of plane mechanisms 

[19-20]. 

The first phase of kinematic analysis is that of position 

analysis, which can be carried out by referring to both analytical 

[21] and graphical [22] methods, with the aim of calculating the 

instant center of rotation and the centers of curvature, through 

the application of the Euler-Savary equation. 

In this paper, the roll motion analysis of vehicles which are 

provided of two double wishbone independent suspension 

mechanisms on the front side, is carried out according to a planar 

car model that consists of an eight-bar mechanism. Both 

centrodes are determined and a first curvature analysis is 

developed. The proposed formulation has been validated by 

means of several graphical and numerical results. 
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2. PLANAR CAR MODEL 
One major problem in automotive suspension design is of 

locating the instant center of rotation IC between the body of the 

vehicle and the ground. The problem can be solved by using 

planar models of the front and rear axles of the vehicle to first 

locate the front and rear ICs of the vehicle body relative to the 

ground, as called roll centers. The line connecting these two ICs 

is the roll axis of the vehicle, the disposition of which relative to 

the center of mass is critical to the concerning dynamics stability 

of the vehicle. A two-dimensional vehicle model is composed by 

a car body and two wheels which are connected by a double-

wishbone suspension system as sketched in Fig. 1. A double 

wishbone suspension is a type of independent suspension system 

for vehicles that uses two wishbone-shaped arms to control the 

movement of the wheels. It’s also often referred to as a double 

A-arms. Referring to Fig.1, the wheel 2 is connected to an upper 

4 and lower control arm 3, respectively which are attached to the 

body of vehicle 8. Similarly, to the wheel 5 because the system 

is symmetrical with respect the axis of the body 8.  

The wheels can move up and down independently of each 

other, thanks to the double wishbone design. This means that 

double wishbone suspension can provide a smoother ride than 

other types of suspensions. 

 

 
 

FIGURE 1: PLANAR CAR MODEL 

 

 
 

FIGURE 2: ALL ICS AND THE CORRESPONDING AK LINES. 

The lines of center or Aronhold-Kennedy lines are lines 

along which the ICs of the three distinct links are located. 

The total number of ICs of a mechanism with n links is equals 

to a combination of n taken by 2, as 

 

( )
IC

1

2

−
=

n n
n                                     (1) 

 

When n = 8 the nIC is equal to 28. Fig.2 show the 8-bar with all 

its ICs and all AK lines identified. 

Referring to Fig. 2, P2 and P5 are the instant centers of 

rotation (ICs) of left and right wheel contacts points; P23 and P24 

are the ICs of links 2 with respect 3 and 2 with respect 4 

respectively; P38 and P48 are the ICs of links 3 with respect 8 and 

4 with respect 8 respectively; P56 and P57 are the ICs of links 5 

with respect 6 and 5 with respect 7 respectively; P68 and P78 are 

the ICs of links 6 with respect 8 and 7 with respect 8 respectively. 

As shown in Fig. 2, P28 can be found with the aid of 

Aronhold-Kennedy theorem which states that it must lie on the 

intersection of lines P24 - P48 and P23 - P38, respectively, while, 

P58 must lie on the intersection of lines P24 - P48 and P23 - P38, 

respectively. Similarly, the roll center P8 is identified by the 

intersection of the lines passing through the centers P2 - P28 and 

P5 – P58, respectively. 

 

3. ROLL MOTION ANALYSIS 

Referring to Fig.3, the position analysis is developed by the 

following three loop-closure equations 

 

2 4 8 7 1 5+ =r r r + r r rB b F+ +                          (1) 

2 3 8 6 1 5+ =r r r + r r rA b E+ +                          (2) 

2 4 8 3+ =r r r rh+                                  (3) 

 

Consequently, the position vectors rA, rB, rC, rD, rE, rF, rG, 

rH, and rG8, of points A, B, C, D, E, F, G, H and G8 are given by 

 

2=r rA A     2=r rB B      2 3= +r r rC A     2 4= +r r rD B  (4) 

8= +r r rG C b    8= +r r rH D b     1 5= +r r rE E     1 5= +r r rF F        (5) 

( )8 8 8

1

2
= + +r r r rG D b h

                             (6) 

 
 

FIGURE 3: VECTOR LOOPS OF 8-BAR MECHANISM. 
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Thus, each vector ri for i = 1, …, 7 can be expressed in matrix 

form with respect to the fixed frame OX0Y0 as 
 

 cos sin   1 =r
T

i i i ir                             (6) 

 

where ri and  i are the magnitude and the counterclockwise 

angle of vector ri respectively, while T indicates the transpose, 

while r8b and r8h can be expressed as 

 

 8 8 8 8cos sin   1 =r
T

b br                          (7) 

 8 8 8 8cos sin   1     =r
T

h h h hr                     (8) 

 

where 
8 8

3
 

2
  

 
 
 

+h = . 

Developing Eq. (1) – (3) one has 
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( )
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+

+
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2 2 3 3 8 8 6 6 1 5 5 0

2 2 3 3 8 8 6 6 5 5 0

cos cos cos cos cos

sin sin sin sin sin

     
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+

+
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2 2 4 4 8 8 3 3

2 2 4 4 8 8 3 3

cos cos cos cos

sin sin sin sin

     

     
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h h

h h

r + +r r r

r + +r r r
      (11) 

 

Equations (9 – 11) represent a non-linear system, where ri, 

2, 0= 0,  = ,  =  are given, while the oriented angles 3, 

4, 5, 6, 7, and 8 are the unknowns. 

This non-linear system has been solved by using the fsolve 

function of Matlab, which can give the solution without 

iterations. In particular, the fsolve function is able to find all the 

independent variables, such those for which all the functions are 

zero or near zero. Thus, the choice of the initial configuration of 

the mechanism is important in order to obtain a right result. 

 

 

4. ROLL CENTER CENTRODES 
In general, the relative planar motion between two rigid 

bodies can be reproduced by the pure rolling of two curves that 

take the role of centrodes, which are traced by the instantaneous 

center of rotation on their corresponding planes. If one of the two 

rigid bodies is fixed, a pair of fixed and moving centrodes can be 

obtained. 

In particular, referring to Fig.4, the fixed centrode  is the 

path traced by the instantaneous center of rotation P8 of the body 

8 with respect the fixed frame OXY, while the moving centrode l 

is the path traced by P8 with respect the moving frame  O8x8y8 

that is attached to link 8. 

According to the Aronhold-Kennedy theorem, the fixed 

centrode  of the body can be expressed by 

( )
( ) ( )

( )
( ) ( )

28 0 58 58 0

28 0 58 28 0 58

8 8

28 0 58 58 0

28 0 58 28 0 58



 −
 

− − − 
 

= =  
 

− 
 − − 

r r

P E P P E

P E P P E P

P

P E P P E

P E P P E P

x x y x y

y x x x y y

y x y x y

y x + x x y y

             (12) 

 

where xP28 and yP28 can be found as the intersection of lines P24 - 

P48 and P23 - P38, one has 

 

( ) ( ) ( ) ( ) ( )
( )( ) ( )( )

( ) ( ) ( ) ( )
( )( ) ( )( )

C

28

C

 (13)

B D A B C A B B D B A C

B D A C B D A C

P

B A C B D A B C A B

B D A C B D A C

x x x y y x y y y y x x x

x x y y y y x x

y y y y y y x x y x x

x x y y y y x + x

  − − + − − − −
  

 − − − − −
 

=  
 

 − − − − + −  
 

− − − −  

r
 

 

while xP58 and yP58 can be found on the intersection of lines P24 - 

P48 and P23 - P38, as 

 

( ) ( ) ( ) ( ) ( )
( )( ) ( )( )

( ) ( ) ( ) ( )
( )( ) ( )( )

58  (14)

F H E F G G E B B H F E G

F H E G F H E G

P
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x x x y y x y y y y x x x

x x y y y y x x

y y y y y y x x y x x
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 

=  
 

 − − − − + −  
 

− − − −  

r
 

 

The moving centrode l takes the form 

 

( ) ( )8 8 8 8 8 8 8cos sin  1    = − −
 

r
T

l P C P CPC PC       (15) 

 

 
 

FIGURE 4: FIXED  AND MOVING CENTRODE l 
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where  

 

( ) ( )
2 2

8 8 8= − + −P C P CPC x x y y    (16) 

81

8

8

tan −
 −

=  
 − 

P C

P C

P C

y y

x x
   (17) 

 

In order to express both moving centrode l of link 8 with 

respect to OXY, the position vector 
*

rPi of a generic point P with 

respect to the moving frame i xi yi can be expressed as 

 

 * * cos sin 1 =r
T

Pi Pi i ir        (18) 

 

and thus, the position vector rPi of P in OXY can be given 

 
*

8=r T rPi Pi    (19) 

 

being T8 the following transformation matrix by  the moving 

frame Oi xi yi to OX0Y0 

 

8 8 8

8 8 8 8

cos sin

sin cos

0 0 1

 

 

− 
 

=
 
  

T

O

O

x

y   (22) 

 

where i is the counterclockwise rotation angle of Oi xi yi with 

respect to OXY, while xOi and yOi are the Cartesian coordinates of 

the origin Oi in the same fixed frame. 

The coordinates (xO, yO) of a point of the osculating circle 

for the fixed centrode  can be found as the intersection of the 

following two straight lines 

 

( )

( )

1 1

1

2 2

2

1
=

1
=

− − −

− − −

M M

M M

y y x x
m

y y x x
m

                        (21) 

Thus, one has 

 

( ) ( )1 2 2 1 1 2 1 2

1 2

1 2 1 1 2 2

1 2



 − + −
 −

− 
 =
 
 − + −
 

−  

r

M M M M

O

M M M M

x m x m m m y x

m m

x x y m x m

m m

  (22) 

 

where 

 
( ) ( )

( ) ( )

1

8 8

1 1

8 8

i i

P P

i i

P P

y y
m

x x

−

−

−
=

−
 

( ) ( )

( ) ( )

1

8 8

2 1

8 8

i+ i

P P

i+ i

P P

x x
m

y y

−
=

−
     (23) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

8 8 8 8

1 1

1 1

8 8 8 8
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= ,      =
2 2

=      =
2 2
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M M
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M M
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x  y
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− −

+
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The curvature radius r of the fixed centrode  can be 

determined as follows 

 

( ) ( )
2 2

1 1  − + −O M O Mr = x x y y                        (25) 

 

The same approach can be also applied to achieve the 

curvature radii of the moving centrode l and the trajectory of the 

mass center G8, respectively.  

Thus, the diameter  of the inflection circle I can be 

determined by taking into what follows 

 

1 1 1



− = −
 lr r

 




 =
−

l

l

r r

r r
                       (26) 

 

Consequently, the equation of I takes the form 

 

( ) ( )
2

2 2

=
2

 
− + −  

 
O Ox x y yF F                   (27) 

 

where the Cartesian coordinates Ox F  and Oy F  of the center are 

expressed as function of the angle   by 

 

8 8cos ,     sin
2 2

 
 

= − = −O P O Px x y xF F  

1 8

8

tan    



 − −
=

−

P O

P O

y y

x x
                             (28) 

 

Finally, the center of curvature 8G of the path traced by the 

mass center G8 of the chassis, can be obtained from the Euler-

Savary equation, as follows 

 

( )
2

8 8

8 8

8 8

 =G

P G
G

G' G
                               (29) 

 

where 8G' is the corresponding point of G8 that lies on the 

inflection circle. 

 

5. CENTRODES: MECHANICAL GENERATION 
Referring to Figs. 5 and 6, a suitable mechanism with 18 

members and 1 d.o.f. is proposed to generate mechanically or by 

using any CAD-software, both centrodes, according to the direct 

and inverse planar motion of the chassis with respect to the 
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ground and vice versa. This mechanism has been derived by the 

planar car model of Fig. 1, where the links 3 and 4 on the left and 

the links 6 and 7 on the right, have been extended to guide the 

P28 and P58 moving revolute joints, which have also the role of 

ICs and guide the links 14 and 16 by means of both prismatic 

joints in P2 and P5, respectively. The revolute joint laying in the 

roll center P8 is moved to trace the fixed centrode and likewise, 

the moving centrode can be traced by using the inverse 

mechanism of Fig. 6, where the chassis 8 is assumed as fixed 

frame and the ground link 1 becomes the coupler link. 

Referring to Fig.5, the total number of ICs of a mechanism 

with n =18 links is given by 

 

( ) ( ) ( )dof 3 1 2 3 18 1 2 17 4 4 = 1  d.o.f.n n l h == − − − − −  +    (30) 

 

 
 

FIGURE 5: 18-BAR MECHANISM: DIRECT MOTION. 

 

 

 
 

FIGURE 6: 18-BAR MECHANISM: INVERSE MOTION 

 

6. GRAPHICAL AND NUMERICAL RESULTS 
The proposed formulation has been implemented in Matlab 

and validated by means of significant examples. 

In particular, Fig. 7 shows the eight-bar mechanism of the 

planar car model of Fig. 1 for  2 = 55.4 deg, 2 = 1 r/s, r2 =r5 = 

200 u, r2A = r3 = r5E = r6 = 400 u, r2B = r5F = 581.8 u, r4 = 4561.9 

u, r8b = 800 u, r8h = 358 u, while Fig. 8 and 9 show different 

examples for  2 = 61.2 deg and  2 = 57.2 deg., respectively. 

In particular, the moving centrode is internal to the fixed one 

and the inflection circle I is located on the l side. 

 

7. CONCLUSIONS 
The roll motion analysis of vehicles which are provided of 

two double wishbone independent suspension mechanisms on 

the front side, has been formulated by including the 

determination of the fixed and moving centrodes of the chassis, 

which can be also obtained in mechanical way. 

Moreover, a first curvature analysis has been carried out, in 

order to determine the center of curvature of the mass center 

trajectory. Several examples validated the proposed formulation. 

 

 
FIGURE 7. 8-BAR MECHANISM FOR  2 = 55.4 DEG. 

 

 
FIGURE 8. 8-BAR MECHANISM FOR  2 = 61.2 DEG. 
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FIGURE 9: 8-BAR MECHANISM FOR  2 = 57.2 DEG. 
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