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Abstract: We consider the plane wave focusing characteristics of the layered cylindrical
Luneburg lens equipped with a conformal strip of graphene, in the H-polarization case. The
angular width and location of the strip is arbitrary, and its surface impedance is characterized with
the aid of the quantum-physics Kubo formalism. We use a mathematically accurate full-wave
analytical regularization technique, which is based on the explicit inversion of the problem static
part and yields a Fredholm second-kind matrix equation. This guarantees the convergence of the
resulting meshless numerical algorithm. We compute the focusing ability of a microsize lens as
a function of the frequency in the wide range up to 60 THz. This analysis shows that a graphene
strip, placed into the focal area of the Luneburg lens, enhances its focusing ability at the resonance
frequency of the strip plasmon mode proportionally to the quality factor. This frequency is
defined by the strip width and is tunable with the aid of graphene’s chemical potential.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The Luneburg lens (LL) is a spherical or circular-cylindrical dielectric lens of the radius RM with
the relative dielectric permittivity depending on the radial coordinate r as ε(r) = 2 − (r/RM)2 so
that it takes the value of 1 at the lens surface. In the geometrical-optics (GO) approximation,
such a lens has the focal point just at its outer surface [1–3]. In the realistic scenario, LL is finite
in size and discrete [2–7], for instance, concentrically layered as in Fig. 1(a), and the outer lens
layer has non-vanishing contrast with the free space. Under the plane-wave illumination, such a
lens has not a focal point but finite-size focal area, which shrinks to the half-wavelength limit if
the lens size gets larger.

The lens focusing ability can be estimated as the maximum field magnitude within the focal
area (normalized by the plane-wave amplitude); it grows proportionally to kRM , where k is the
wavenumber. Note that in real-life systems the focusing ability is spoiled each time when the
frequency coincides with a high-Q eigenfrequency of a whispering-gallery mode of the outer
lens layer [4]. To shift these frequencies off the operational range, the lens should have the outer
layer permittivity as close to 1 as possible.

Without a size increment, a raise of the focusing ability of a quasi-optical antenna is possible
with the aid of the resonance sub-wavelength elements placed into the focal area. Recently, this
opportunity has been pointed out to in [8] (see Figs. 4 and 5 with brief discussion after them) for
the simplest dielectric lens antenna shaped as a uniform circular dielectric rod decorated with a
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                                       (a)                                                                                (b)

Fig. 1. Cross sections of the bare discrete M-layer concentric Luneburg lens (a) and the
same lens decorated with a conformal strip of graphene (b), illuminated by the plane wave.
The strip is shown as a black arc centered at ϕ= 0.

conformal graphene strip. The achieved enhancement is explained by the interplay of the GO
focusing, a.k.a. “electromagnetic jet effect” [9,10], and the plasmon-mode resonances of the
graphene strip, provided that the latter is placed into the focal area.

Indeed, in the case of the H (TE) polarization, a strip of graphene is able to support the
transversal plasmon modes with low natural frequencies and moderate Q-factors. Both the
frequencies and the associated Q-factors can be controlled by the graphene chemical potential and
electron relaxation time, as follows from the quantum-physics Kubo theory [11] of the graphene
conductivity. To help the readers, we remind the corresponding expressions in Appendix A.

Note that the plasmon modes of dielectric scatterers with graphene elements are the object of
active research today [12–21]. These studies show that such composite scatterers are complicated
open resonators, supporting both the dielectric-part modes and the plasmon modes of graphene
elements.

It should be noted, however, that the focusing ability of a layered LL and opportunity of its
improvement with the aid of the resonance graphene elements has not been studied so far. Instead,
LL’s ability to collimate the main beam of the radiation pattern, when fed by a localized source
placed on the lens surface, has been the main object of research in [4,5]; therefore, LL-based
antennas are famous, first of all, for their high directivity.

Still, another important application of LL is its use as enhancer of the backward (monostatic
radar) scattering cross section. In such applications, discrete LL is equipped with conformal
metal (in the modeling, perfectly electrically conducting (PEC)) “cap” [22–24]. In contrast to
more common metal right-corner reflector, such a radar target shows high reflection in a wider
range of the incidence angles.

Replacement of PEC reflector with graphene one, which supports plasmon modes, still leads
to the enhanced backscattering [25]. Besides, as graphene is lossy, this configuration shows
enhanced absorption, especially at the plasmon resonance frequency [26].

The main challenge in the accurate full-wave modeling of such a composite scatterer as LL
with conformal strip of graphene is that the lens should have quasi-optical size in terms of
the free-space wavelength while the graphene strip width, to resonate on the lowest plasmon
mode, should be deeply sub-wavelength. This requires, for trusted analysis, more efficient, i.e.,
economic and accurate, numerical techniques than conventional numerical approximations and
commercial codes. Guided by these considerations, we consider the scattering from a circular
layered dielectric rod, on the outer surface of which a conformal strip of graphene is placed, using
the code based on the Method of Analytical Regularization (MAR) [27–29], able to overcome
the above indicated difficulties and provide guaranteed convergence.



Research Article Vol. 32, No. 23 / 4 Nov 2024 / Optics Express 41728

This paper builds on the research presented in the preceding conference papers [25,26], however,
greatly extended and deepened. Unlike these works, where the analysis was concentrated on the
far-field scattering and absorption characteristics, here we study the focusing, i.e., the near-field
behavior of layered cylindrical LL, equipped with conformal graphene strip. As a figure-of-merit,
we consider the total field magnitude at the GO focal point, i.e., at the outer boundary of the lens,
however, from the inside of the lens.

On the possibility of layered LL fabrication, it should be stated that today such lenses are
market available as the components of millimeter-wave antennas. As for the THz and infrared
waves, where the graphene properties and the plasmon-mode resonances are the most promising,
the existing technologies allow controlled manufacturing of graphene micro and nanotubes with
dielectric filling [30]; continuing technological progress inspires optimism.

2. Formulation and method

Suppose that a plane H-polarized time-harmonic (e−iωt) wave is incident onto a concentrically
layered dielectric rod decorated with a conformal longitudinal graphene strip, normally to its
axis – see Fig. 1(b). Here, Rp and εp are the outer radius and the relative dielectric permittivity
of the p-th layer with p= 1,. . . ,M, 2δ is the angular width and L = 2δRM is the physical width of
the graphene strip cross-section; then 2θ = 2π − 2δ is the angular width of the slot. Cylindrical
coordinates (r, ϕ, z) are introduced co-axially with the rod. Then, theN-polarized electromagnetic
field is fully characterized by its longitudinal component, Hz. The black arrow in Fig. 1 shows the
direction of the plane wave propagation, and ϕ0 is the angle of incidence counted from the x-axis.

Then, the following 2-D wave-scattering problem is formulated: find the function Hz(r, ϕ) that
satisfies

(i) the Helmholtz equation with the piecewise wavenumber kp in the domains bounded by the
circles of radii Rp and Rp+1, p= 1,. . . ,M, i.e.,

∆Hz(r, ϕ) + (kp)
2Hz(r, ϕ) = 0, (1)

(ii) the dual conditions at r = RM , namely, on the graphene arc L : {r = RM , |ϕ| ≤ δ},

EM
φ + EM+1

φ = 2ZZ0(HM
z − HM+1

z ), EM
φ = EM+1

φ (2)

and on the slot arc S : {r = RM , |ϕ| ≤ θ},

HM
z = HM+1

z , EM
φ = EM+1

φ , (3)

where M+ 1 denotes the domain outside of the lens,

(iii) the tangential components continuity conditions at r = Rp, p = 1, 2, . . . , M − 1,

Hp
z = Hp+1

z , Ep
φ = Ep+1

φ , (4)

(iv) the Sommerfeld radiation condition at infinity,

(v) the local power finiteness condition.

Here, kp = (ω/c)√εp = k√εp = kαp, where c is the light velocity, Z is the surface impedance
of graphene (i.e. the frequency dependent complex resistivity), normalized by the free-space
impedance Z0 – see Appendix A, and Ep

φ = (Z0/ikεp)∂Hp
z /∂r. Note that |Z | ≫ 1 at all frequencies

above several GHz [11].
As known, the conditions (i) – (v) guarantee the uniqueness of the boundary-value problem

solution for all real-valued k.
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To mimic the Luneburg lens, we use the same approach as in [4], i.e. assume the layer
thicknesses being identical and their relative dielectric permittivities taking the following values:

εp = 2 − (p − 1/2)2/M2, (5)

Further, both the incident plane wave, Hinc
z = eik(x cosφ0+y sinφ0), and the total field can be

presented as the angular Fourier series,
- in the domain outside of the lens,

HM+1
z = Hinc

z +

+∞∑︂
n=−∞

dn
Hn(kM+1r)

H′
n(kM+1RM)

einφ , r ≥ RM (6)

- in the central domain of the lens,

H1
z =

+∞∑︂
n=−∞

cn
α1Jn(k1r)
J ′n(k1R1)

einφ , r<R1 (7)

- in the p-th layer domain, Rp−1<r<Rp, p = 2, . . . , M,

Hp
z =

+∞∑︂
n=−∞

[︃
ap

n
αpJn(kpr)
J ′n(kpRp)

+ bp
n
αpHn(kpr)
H′

n(kpRp)

]︃
einφ , (8)

Here, Jn(·) and Hn(·) are the Bessel and Hankel (first kind) functions of the order n and
cn, dn, ap

n, bp
n are unknown coefficients, which should be found. Note that the functions (6)–(8)

satisfy the Helmholtz equation and the radiation condition. The condition of the power finiteness
in each domain leads to the following inequalities for the sets of unknowns:

+∞∑︂
n=−∞

{|an |
2, |cn |

2} n−2<∞,
+∞∑︂

n=−∞
{|bn |

2, |dn |
2} n 2<∞ (9)

Substituting (7) and (8) into the continuity conditions (4) with p= 1, we obtain the following
equations:

−b2
nL2

n = cnG1
n, a2

nK2
n = cnΓ

1
n . (10)

Considering the p-th boundary between the rings, we obtain the recurrent formulas for unknown
coefficients,

ap
nGp

n + bp
nSp

n = −bp+1
n Lp+1

n , (11)

ap
nΓ

p
n + bp

nDp
n = ap+1

n Kp+1
n . (12)

Here, the following notations are used:

Lp
n = 2i[πkRp−1Jn

′(kαpRp−1)Hn
′(kαpRp)]

−1, (13)

Kp
n = 2i[πkRp−1Jn

′(kαpRp)Hn
′(kαpRp−1)]

−1, (14)

Γ
p
n =

[︃
αp

Jn(kαpRp)

J ′n(kαpRp)
− αp+1

Hn(kαp+1Rp)

H′n(kαp+1Rp)

]︃
, (15)

Sp
n =

[︃
αp

Hn(kαpRp)

H′n(kαpRp)
− αp+1

Jn(kαp+1Rp)

J ′n(kαp+1Rp)

]︃
, (16)

Dp
n =

[︃
αp

Hn(kαpRp)

H′n(kαpRp)
− αp+1

Hn(kαp+1Rp)

H′n(kαp+1Rp)

]︃
, (17)
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Gp
n =

[︃
αp

Jn(kαpRp)

J ′n(kαpRp)
− αp+1

Jn(kαp+1Rp)

J ′n(kαp+1Rp)

]︃
. (18)

In similar way, denoting the Fourier coefficients of the incident wave and its derivative as

fn = ine−inφ0Jn(kRM), fn ′ = ine−inφ0kJ ′n(kRM). (19)

and considering the continuity conditions of the tangential fields on the outer lens boundary, we
obtain that

dn + fn ′ = aM
n + bM

n . (20)

Finally, using the dual boundary conditions (2) and (3), Eq. (20), and introducing new notations
and unknowns,

An = aM
n

[︂
αM

Jn(kαMRM)

J′n(kαMRM)
−

Hn(kRM)

H′n(kRM)

]︂
− fn+

bM
n

[︂
αM

Hn(kαMRM)

H′n(kαMRM)
−

Hn(kRM)

H′n(kRM)

]︂
n
+ fn ′ Hn(kRM)

H′n(kRM)
,

(21)

Fn =

[︃
f ′n

Hn(kRM)

H′n(kRM)
− fn

]︃
Wn, (22)

we obtain a dual series equation for the unknowns An:⎧⎪⎪⎪⎨⎪⎪⎪⎩
+∞∑︁

n=−∞
Aneinφ = 0, |ϕ| ≤ θ

+∞∑︁
n=−∞

(Wn − iZ)Aneinφ =
+∞∑︁

n=−∞
Fneinφ , θ ≤ |ϕ| ≤ π

(23)

The coefficients Wn are found explicitly from (23) and Eqs. (9)–(12) with the aid of recurrent
formulas – see [25]. They have the following asymptotic representation at |n| → ∞:

Wn = B1 |n| + O(|n|−1), B1 = [kRM(εM + εM+1)]
−1. (24)

This behavior shows that the static part of Eq. (23) forms the Riemann-Hilbert Problem on the
arc of the unit circle on the complex plane. Using the exact analytical solution of RHP in the
form given in [31,32], we perform the analytical regularization of the dual series Eq. (23) and
recast it to the following infinite matrix equation:

Am =

+∞∑︂
n=−∞

[(|n| − B−1
1 Wn + iB−1

1 Z)An + B−1
1 Fn]Tmn(θ), (25)

where m = 0,±1,±2, . . ., and Tmn(θ) are the combinations of the Legendre polynomials of the
argument − cos θ, see [32].

As can be shown, (25) is fully equivalent to the original boundary-value problem (i)-(v) of
Section 2 and its solution satisfies (9). Note that the estimation (24) for Wn, together with (22)
and the large-index behavior of Tmn(θ) that can be found in [32], prove that (25) is the Fredholm
second kind matrix equation in the space of numerical sequences l2. Therefore, its exact solution
exists in this space for all real values of the wavenumber k (as the purely real eigenvalues of k are
prohibited by the Poynting theorem). Moreover, the Fredholm nature of (25) guarantees that the
solutions of the truncated equation tend to the exact solution of the infinite equation if the order
of truncation is taken larger, N →∞, by the norm in the space l2.
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3. Numerical results and discussion

Before making systematic computations of the lens characteristics, we perform the check of the
convergence of our code. Although it is guaranteed as explained above, the rate of convergence
and the error dependence on the parameters are of interest. Here, we introduce the computational
error as a function of the truncation number, N,

eACS(N) = |SACS(N) − SACS(Nmax)|/SACS(Nmax), (26)

where SACS is the absorption cross-section. This latter quantity corresponds to the power lost in
the graphene strip of our scatterer and can be found, using the Optical Theorem, as

SACS(N) = −(4/k)ReDH(ϕ0, N) − STSCS(N), (27)

where the far-field angular scattering pattern is given by

DH(ϕ, N) =

+N∑︂
n=−N

dn(−i)n(H′
n)

−1einφ , (28)

and the total scattering cross-section is computed as

STSCS(N) = (4/k)
+N∑︂

n=−N
|dn |

2 |H′
n |
−2, (29)

with coefficients dn calculated from the solutions to (25) by the expression

dn =

[︃
An + fn − fn ′

Hn(kRM)

H′n(kRM)

]︃
Wn − fn ′. (30)

Our calculations, presented in Fig. 2, show that for any lens and strip parameters, the error
decreases with N in exponential manner, with the number of layers having no significant effect
on the error; in contrast, smaller values of δ or θ entail larger N to provide the same accuracy.

Fig. 2. Computational error defined by (26) versus the matrix truncation number, for
Nmax = 100.

It can be estimated that, to obtain D correct digits (assuming that D ≥ 2) in the surface current
(i.e. have the error at 10−D), this order should be taken as N = |gplasm |RM + π/2δ + 30D, where
gplasm (|gplasm |>>k) is the propagation constant of the plasmon guided wave supported by the
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sheet of graphene [13]. This places N in the hundreds for a 20-lambda in diameter lens in the
whole THz range even if D is wanted at the machine precision level. As visible in and discussed
below Fig. 4 of [33] (note that considered there Nystrom-type code is numerically equivalent
to MAR, as shown in [34]) commercial codes generally agree with the MAR solutions at low
frequencies, however, start to deviate from them if the frequency exceeds a few THz, and finally
hit a “numerical wall” because the number of unknowns reaches millions and the computation
time becomes unacceptable. These and other merits of MAR-based numerical solutions are
highlighted in [27–29].

Also note that, according to our results, the Optical Theorem is satisfied with machine precision
(i.e., at the 10−16 level) if the field expansion coefficients are found from (25).

As known, in the GO approximation a continuous-epsilon LL has the focal point, with infinite
field magnitude, at the lens outer surface r = RM . That point, however, turns into a finite-area
focal domain with a finite-value field maximum in the full-wave analysis of discrete LLs. When
estimating the lens focusing ability, one has to take into account both the focal domain size and
the field magnitude maximum. However, a reasonable compromise can be achieved if the field
magnitude in the GO focus, i.e., at r = RM , is taken as a simplified figure-of-merit.

In Appendix B, we present the color maps of the magnetic field magnitude along the x-axis
as a function of the lens electric size, kRM (Fig. 8(a)-(c)) for discrete LLs with M= 2, 5 and 7,
without the graphene strip. The maps show that the focal domain is indeed close to the lens outer
boundary and shrinks at higher frequencies, provided that the number of layers is M ≥ 5.

Additionally, comparison of panels (a), (b), and (c) shows that the field absolute value maximum
in the focal domain increases with larger numbers of the lens layers, M. Indeed, we see that the
field magnitude at r = RM (i.e. the lens focusing ability) shows a linear growth with this parameter
(Fig. 8(d)). This growth is spoiled, however, by the whispering-gallery mode effect, which
appears above 25 THz for M = 2 but is moved away by taking M larger and, hence, providing a
better matching of the LL outer layer with the free space.

In the case of LL equipped with a graphene strip, the magnetic field is not continuous across
the strip – see (2). Therefore, we define the lens-with-strip focusing ability, FA, as the field
magnitude from inside, i.e., at r = RM − 0, ϕ = ϕ0,

FA =

|︁|︁|︁|︁|︁ +N∑︂
n=−N

[︃
aM

n
αMJn(kMRM)

J ′n(kMRM )
+ bM

n
αMHn(kMRM)

H′
n(kMRM)

]︃
einφ0

|︁|︁|︁|︁|︁ . (31)

To study the effect of the graphene strip on the focal domain of discrete LL, we plot the
magnetic field magnitude along the x-axis in the case of the normal incidence of the plane wave,
ϕ0 = 0, see Fig. 3. Here, the graphene strip is located right in the focal domain. We present the
results of the calculations for two different angular widths of the graphene strip, 2δ = 5o on the
left panels and 2δ = 1o on the right panels, and take the number of layers as M= 2, 5 and 7.

The focusing property of the lens is not yet visible on the left panels, where the strip is 5o wide
and the electric size of the lens is small, 0 ≤ kRM ≤ 7.33. Instead, the plasmon resonance P1
of the graphene strip is visible at 6.13 THz. At this frequency, the field absolute value displays
maximum at r = RM − 0 with a standing wave inside the lens and a shadow zone behind the lens.
Note that if M= 7, then εM = 1.1378 and analytical estimations (37) and (38) in Appendix A
yield the mode frequency as 6.52 THz and the Q-factor as 26.7, i.e. show good agreement with
full-wave computations.

In contrast, the focusing is very well seen on the right panels, where the strip is 1o wide and
12.56 ≤ kRM ≤ 16.76, as a bright area along r = RM . The plasmon resonance P1 of the 1o wide
strip is now around 16 THz and has larger Q-factor of 59.7, see (37), (38); the standing wave
inside the lens and the shadow outside are even better visible than for a wider strip.

In Fig. 4, we plot the dependences of FA (31) versus the frequency for two values of the
graphene strip angular width, δ = 5o (a) and 1o (b). Off the plasmon resonance, these curves
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Fig. 3. The near field magnitude along the x-axis for two values of graphene strip’s angular
width, 2δ =5o (left column) and 1o (right column). The incident plane wave propagates
along the LL symmetry line. The number of the layers is M= 2 for the top raw, 5 for the
middle raw, and 7 for the bottom raw.

show approximately linear growth with the frequency, as expected for a quasi-optical antenna
thanks to the GO focusing mechanism.

However, this dependence overlaps with a remarkable peak at the first plasmon mode P1
frequency. The enhancement of FA is proportional to the Q-factor of that mode that depends on
the graphene parameters as discussed in Appendix A.

Note that on the curves for the wider strip, of 2δ = 5o, the next resonance, on the plasmon
mode P3, has the shape of a drop in FA.

The in-resonance near magnetic field patterns are shown in Figs. 4(c) and (e), respectively,
while their zooms in the focal domain are given in Figs. 4(d) and (f). Their inspection tells that,
at the resonance frequencies, the “focal domain” is dominated by the plasmon-mode field, i.e. is
completely different from the GO case.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. The focusing ability as a function of the frequency for two cases of the graphene strip
angular width, 2δ=5o (a) and 1o (b), under symmetric plane-wave excitation, ϕ0 = 0, and
the amplitude near field patterns and their zooms in the P1 (c), (d) and P3 (e), (f) resonances
for 2δ=5o, The matrix truncation order is N= 160.

The near field in Fig. 4(f) allows to explain the drop in FA. Indeed, the central among the three
hot field spots now has the opposite phase, in comparison to P1, so that a field minimum appears
at the strip center from inside the lens (the maximum appears outside). The resonances on the
higher-order plasmon modes, for both strip widths, are not observable.

Besides, in both cases the curves for M = 2 show periodic ripples at the frequencies above 25
THz, explained by the whispering-gallery mode effect – see Appendix B.
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(a) (b)

Fig. 5. The color map (a) and the plots (b) of the focusing ability versus the frequency and
the chemical potential for the strip width 2δ = 1o under symmetric plane-wave excitation,
ϕ0 = 0. White dashed line corresponds to Eq. (37).

(a) (b)

(c) (d)

Fig. 6. The near field magnitude along the x-axis for the graphene strip width, 2δ =5o (top
row) and 1o (bottom row), versus the plane wave incidence angle, ϕ0. The number of layers
is M= 7.

Thus, both the frequency and the height of the FA peak associated to the plasmon-mode
resonance can be electrically tuned with the aid of the graphene chemical potential, i.e. the
DC bias – this tunability is demonstrated in Fig. 5. As known, today the realistic values of the
chemical potential of the best CVD samples of graphene are limited to 1 eV. This means that the
plasmon-mode frequency can be tuned within the factor of 3 and even larger.
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(a) (b)

Fig. 7. Focusing ability as a function of the plane wave incidence angle for two cases of
graphene strip angular width, 2δ= 5o (a) and 1o (b). The frequency, in each case, corresponds
to the strip plasmon-mode P1 resonance frequency.

To highlight the importance of precise positioning of the graphene strip, we have built the
maps of the near-field cuts along the plane-wave propagation direction (left column) and along
the x-axis (right column), for different values of the incidence angle, ϕ0 (Fig. 6).

Here, M= 7 and the frequencies are 6.33 THz and 15.65 THz, which correspond to the P1
resonance of the 5o and 1o graphene strip, i.e., the maximum FA values in Figs. 4(a) and (b),
respectively.

These color maps show the influence of the incident wave angle of arrival, counted from the
line of symmetry, which passes through the strip’s middle point. If the angle of incidence shifts
behind the strip edge, this leads to significant reduction in the near-field amplitude. Thus, precise
placement of the strip is important for the highest near-field enhancement.

This observation is supported by the plots of FA (31) as a function of the incidence angle of the
plane wave for the lens with M= 7 layers, at the same plasmon-mode resonance P1 frequencies,
as before – see Fig. 7.

4. Conclusions

We have shown that a narrow strip of graphene, placed on the surface of the microsized layered
cylindrical Luneburg lens, is able to provide a dramatic, although narrow-band, enhancement
of the lens focusing ability in the THz range. Moreover, this enhancement is electrostatically
tunable in wide range, which, at the current level of technology, corresponds to the factor of
3. To study accurately the focusing by such a complicated scatterer, with the diameter up to
20 free-space wavelengths however decorated with a deeply sub-wavelength strip, we use the
advanced RHP technique that belongs to the family of the MAR techniques [27–29]. MAR-RHP
inverts analytically the static part of the H-polarized plane-wave scattering problem and yields
the algorithm that has the mathematically guaranteed convergence and easily controlled accuracy.
This accuracy is equally high off and at the plasmon-mode resonances of the graphene strip that
manifest themselves most brightly in the THz range, where the surface impedance of graphene is
reasonably high and dominated by the inductive reactance. As the reported here effect should
be present in the other lens configurations, we believe that it can be exploited for boosting the
sensitivity of various THz receiver systems.
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Appendix A

The Kubo formalism is widely recognized today as a frequency-dependent model of the quantum
electron mobility in graphene [11]. Here, infinite graphene sheet thickness is considered zero and
its surface conductivity, σ(ω, µc, τ, T), consists of two contributions, intraband and interband
conductivities. The first has the analytic expression known as the Drude term [11],

σintra =
iq2

ekBT
πℏ2(ω + iτ−1)

{︃
µc

kBT
+ 2 ln

[︃
1 + exp

(︃
−
µc

kBT

)︃]︃}︃
, (32)

where µc is the chemical potential, τ is the electron relaxation time. qe is the charge of the
electron, T is the temperature, kB is the Boltzmann constant, and ℏ is the reduced Planck constant.
If µc>>kBT (note that kBT = 0.026 eV at T = 300 K), then the ln(·) term in (32) can be neglected.

The second contribution is expressed as an integral of the known functions (see [11]). If
µc>>kBT , that integral can be reduced to a simple expression,

σinter =
iq2

e
4πℏ

ln
2µc − (ω + iτ−1)ℏ
2µc + (ω + iτ−1)ℏ

(33)

Then, the normalized surface impedance of graphene, involved into (2), is

Z(ω) = Z−1
0 (σintra + σinter)

−1 (34)

where Z0 =
√︁
µ0/ε0 is the impedance of the free space.

Note that the hexagonal fine structure of graphene has a cell size less than 10 nm. Therefore,
infinite-sheet expressions for graphene’s conductivity are applicable (have good accuracy), if the
size of the patterned graphene is around 30 nm or larger. Besides, graphene’s anisotropy can be
safely neglected at all frequencies below the X-ray range. The relative contribution of two terms
into (34) depends on the frequency and chemical potential. According to [11], the interband
conductivity, (33), is smaller in the absolute value than the intraband one, (32), in a wide range
from the statics to a certain high frequency, which scales with the chemical potential, due to the
dominance of the factor µc(kBT)−1 in the Drude term. For instance, if τ = 0.5 ps, T = 300 K and
µc = 0.5 eV, then |σinter | ≤ 0.1|σintra | at the frequencies below 80 THz. Neglecting the interband
conductivity, we obtain

Z(ω) ≈ (Z0σintra)
−1 = −i(ω + iτ−1)Ω−1, (35)

where the quantity

Ω =
q2

ekBTZ0

πℏ2

{︃
µc

kBT
+ 2 ln

[︃
1 + exp

(︃
−
µc

kBT

)︃]︃}︃
(36)

does not depend on the frequency. Still, at the near infrared and visible light frequencies, the
description of graphene should take into account both types of conductivity.

Due to the fact that ImZ<0 (i.e. the reactance is inductive), infinite flat sheet of graphene can
support the propagation of the plasmon wave [11]. On the patterned graphene samples, this
wave bounces between the edges and creates standing waves, i.e., natural modes. According to
derivations presented in [13,18], the real and imaginary parts of the complex wavenumbers of
the plasmon modes of the flat strip of graphene, lying on the boundary between two material
half-spaces with the relative dielectric permittivities εI and εII , are given by, respectively,

k′m ≈

[︃
π(m − 0.25)Ω
(εI + εII)cL

]︃ 1/2
, k′′m ≈ −

1
2cτ

. (37)

where m= 1,2, . . . is the mode index, L is the strip width, and Ω is given in (36).
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Then, using the same line of reasoning as in [12], the quality factors of the plasmon modes of
graphene strip as a surface-wave Fabry-Perot open resonator are obtained as

Qm ≈ τ

[︃
π(m − 0.25)cΩ
(εI + εII)L

]︃ 1/2
. (38)

Note that (37) and (38) are derived neglecting the interband contribution to the graphene
conductivity. Therefore, these equations are not valid at the very high frequencies (lying in the
visible range [18]) where the interband conductivity cannot be neglected. Besides, in (37) the
radiation losses of the plasmon modes are neglected in favor of the losses in graphene.

Appendix B

In this appendix, we summarize the results of the study of the focal domain and the focusing ability
of the “bare” discrete M-layer cylindrical LL (i.e. without the graphene strip), cross-section of
which is shown in Fig. 1(a).

In Fig. 8, we present the color maps of the field magnitude along the x-axis, as explained in the
text, for M = 2, 5 and 7 – see panels (a), (b) and (c), respectively. On panel (d), we show the
frequency dependences of FA with these layer numbers
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Fig. 8. Near field magnitude along the x-axis of the “bare” layered LL for M = 2 (a), 5 (b)
and 7 (c) and the focusing ability as a function of the frequency (d).

Note that if M = 2 then the focusing ability shows periodic ripples at higher frequencies, which
become more and more pronounced and sharper. This is the effect of the whispering-gallery
modes, studied in [4] – they are excited at the lower frequencies for the lens with larger optical
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contrast between the outer layer and the host medium. Here, we recall that ε2 = 1.4375 for
M = 2, ε5 = 1.19 for M = 5, and ε7 = 1.1378 for M = 7. The ripples can be eliminated in
continuous-epsilon LL, which has ε(RM) = 1. Such a lens can be studied using the approach
developed in [35], however, its fabrication is far beyond the existing technologies.
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